
Open-shell Tensor Hypercontraction

Tingting Zhao,†,‡ Megan Simons,†,‡ and Devin A. Matthews∗,†

†Department of Chemistry, Southern Methodist University,

Dallas, TX 75275, United States

‡These authors contributed equally to this work.

E-mail: damatthews@smu.edu

Abstract

The extension of least-squares tensor hypercontracted second- and third-order Møller-

Plesset perturbation theory (LS-THC-MP2 and LS-THC-MP3) to open-shell systems

is an important development due to the scaling reduction afforded by THC and the

ubiquity of molecular ions, radicals, and other open-shell reactive species. The com-

plexity of wavefunction-based quantum chemical methods such as Møller-Plesset and

coupled cluster theory is reflected in the steep scaling of the computational costs with

the molecular size. The least-squares tensor hypercontraction (LS-THC) method is an

efficient, single-step factorization for the two-electron integral tensor, but can also be

used to factorize the double excitation amplitudes, leading to significant scaling reduc-

tion. Here, we extend this promising method to open-shell variants of LS-THC-MP2

and -MP3 using diagrammatic techniques and explicit spin-summation. The accu-

racy of the resulting methods for open-shell species is benchmarked on standard tests

systems such as regular alkanes, as well as realistic systems involving bond breaking,

radical stabilization, and other effects. We find that open-shell LS-THC-MPn meth-

ods exhibit errors highly comparable to those produced by closed-shell LS-THC-MPn,

and are highly insensitive to particular chemical interactions, geometries, or even to

moderate spin contamination.
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Introduction

Complexity arising due to the presence of high-order tensors is well known as a bottleneck

in wavefunction-based quantum chemical methods, leading to steep scaling of computational

cost with system size. As the essential component of all electronic structure methods, the

4th-order electron repulsion integral (ERI) tensor, gpqrs ≡ (pr|qs) (with the latter in chemists’

notation),1 is the most obvious target for cost and scaling reduction. Many approaches have

been developed to tackle the complexity of the ERIs, such as the density fitting (DF) approx-

imation2–6 and similar techniques such as the resolution-of-the-identity (RI),7–11 Cholesky

decomposition (CD),11–14 pseudospectral (PS) method,15 and more recently tensor hypercon-

traction (THC).16–21 Approximations of the wavefunction itself have received less attention,

but due to the presence of the 4th-order double excitations amplitude (Ĉ2 or T̂2) which ap-

pear in virtually any wavefunction theory,1,22 some approximation is necessary to achieve

significant reductions in computational scaling.19,23–30

While a wide range of approximations to the ERIs and/or doubles amplitudes have

proven highly successful, the vast majority of these methods have been implemented, tested

on, and subsequently applied to closed-shell systems. While closed-shell systems are of vital

importance to chemistry as a whole—neutral stable chemical species, both reactants and

products, tend to adopt a closed-shell configuration—open-shell species are of equal impor-

tance due to the high reactivity and richness of electronic structure exhibited by radical

species.31 Such species are central to a number of chemical fields, such as organic catalysis,32

environmental and health studies,33 combustion and alternative fuel chemistry,34 and photo-

chemistry.35,36 Additionally, due to the reactive nature of radical transient intermediates or

transition states, they are often difficult to study in the laboratory, requiring more elaborate

instrumentation37 or complicated spectroscopic analysis.38 Thus, it is necessary to develop

quantum chemistry methods to assist the experimental studies of these systems, along with

approximation techniques to reduce computational scaling for the study of larger systems.

We are especially interested in the least squares tensor hypercontraction (LS-THC) 18,20
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method as an efficient approximation of both the ERI and doubles amplitudes tensors. We

and others have previously demonstrated the potential for high accuracy and low scaling

(O(N4), where N is a measure of system size) for closed shell third-order Møller-Plesset

perturbation theory (MP3).21,39 In LS-THC, the fourth order ERI tensor is approximated

as a (hyper)product of five matrices: four collocation matrices, determined by evaluation of

the molecular orbitals at a set of grid points, and a core matrix evaluated by least-squares

fitting of the canonical ERIs (or ERIs approximated by a second method such as density

fitting). In the “MP3a” variant, this approximation is combined with the Laplace transform

quadrature technique40–43 in order to compute the energy without referencing the doubles

amplitudes explicitly. Alternatively, the “MP3b” method invokes an LS-THC factorization

of the first-order doubles amplitudes and instead avoids the computational complexity of

the Laplace transform quadrature (and a quadratic scaling with the number of quadrature

points). Lastly, the “MP3c” and “MP3d” methods directly approximate the second-order

doubles amplitudes, using an energy functional form identical to that used for coupled cluster

and other more complex methods.1,22 This range of interpretations of MP3, as well as the

basic building blocks of the MP3 energy (especially the well-known particle–particle ladder,

hole–hole ladder, and “ring” terms), make MP3 an ideal stepping stone to more complete

theories such as coupled cluster with single and double excitations (CCSD).

In this word, an extension of the LS-THC approach to open-shell MP2 and MP3 en-

ergies was developed using a mixed graphical-algebraic technique for deriving the working

equations. We have implemented the MP3b variant of LS-THC-MP3, but the techniques

developed are immediately applicable to the other MP3 variants as well as to more complex

LS-THC methods.

Theory

The following notational conventions are used throughout this work:
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• The letters pqrs denote arbitrary molecular orbitals (MOs).

• The letters abcdef (ijklmn) denote virtual (occupied) MOs.

• The letters RSTUVWXY denote grid points.

• The letters JK denote auxiliary (density fitting) basis functions.

• Where applicable, α (β) molecular orbitals, pruned grid points, and other quantities

are denoted by an overbar (no overbar).

Least-squares Tensor Hypercontraction

Tensor hypercontraction (LS-THC)17–20 is a method that combines the desirable features of

several other factorizations: the representation of electron distributions over a linear-scaling

auxiliary basis as in DF/RI/CD methods, the pseudospectral method’s flexibility of factoring

exchange terms, the use of least-squares fitting as in DF and alternating least squares-based

CP factorizations (although the LS-THC factorization is linear and non-iterative), and finally

in the least-squares form a grid-based expansion as in the numerical integration of exchange–

correlation functions in density functional theory. The LS-THC form of the ERIs is,

(pr|qs) ≡ gpqrs ≈
∑
RS

(X(pr))Rp (X(pr))Rr VRS(X(qs))Sq (X(qs))Ss (1)

The matrices X are the collocation matrices, determined a priori by evaluation of the

(spatial) molecular orbitals ψp at a set of grid points rR: XR
p = ψp(rR). Superscripts such as

(pr) in (1) differentiate different sets of “pruned” grid points.20 The pruning process is specific

to the occupation of the pair of molecular orbitals, leading to separate occupied–occupied

(X ≡ X(ij)), mixed virtual–occupied (X̃ ≡ X(ai) = X(ia)), or virtual–virtual ( ˜̃X ≡ X(ab))

collocation matrices. The pruning procedure here is based on the Cholesky decomposition,

but other pruning procedures are possible, e.g. based on domain decomposition.44,45 These
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three cases may be further classified by the spin of the associated molecular orbitals (dif-

ferentiated by an overbar on the MO and grid indices), leading to six unique collocation

matrices for open-shell LS-THC-MP3.

The final matrix V is the core matrix, and is evaluated by least squares fitting of either

the exact ERI tensor or some intermediate approximation. In this work we utilize density

fitting in order to maintain an overall scaling of O(N4),21

g̃prqs =
∑
JK

(pr|J)(J |K)−1(K|qs) (2)

VRS = argmin
VRS

1

2

∑
pqrs

∣∣∣∣∣g̃prqs −∑
RS

(X(pr))Rp (X(pr))Rr VRS(X(qs))Sq (X(qs))Ss

∣∣∣∣∣
2

=
∑
R′S′

(S
(pr)
RR′)

−1ER′S′(S
(qs)
S′S )−1 (3)

ERS =
∑
pqrs

(X(pr))Rp (X(pr))Rr g̃
pr
qs(X(qs))Sq (X(qs))Ss (4)

S
(pq)
RS =

∑
pq

(X(pq))Rp (X(pq))Rq (X(pq))Sp (X(pq))Sq (5)

where in each case a superscript •−1 is understood as an element of the matrix inverse rather

than an inverse of the matrix element itself. Note that, as with the collocation matrices,

there are as many as six distinct metric matrices S. Due to the possible combination of each

of these six electron distributions, there are as many as 21 different core (V) and fitting

(E) matrices, of which 13 are utilized in open-shell LS-THC-MP3 (assuming a canonical

Hartree–Fock reference for which the single excitation amplitudes can be neglected). In

order to avoid notational clutter, we rely on context to determine which of these 13 core

matrices is intended, unless explicitly specified.

5



Canonical Formulation of MP2 and MP3

In the canonical spin-orbital representation, the MP2 and MP3 energies are defined as,

EMP2 = EMP2a =
1

2

∑
abij

(gijab − gijba)g
ab
ij

εi + εj − εa − εb
(6)

EMP3 = EMP3a =
1

2

∑
abijkl

(gijab − gijba)g
ij
klg

ab
kl

(εi + εj − εa − εb)(εk + εl − εa − εb)

+
1

2

∑
abcdij

(gijab − gijba)g
ab
cdg

cd
ij

(εi + εj − εa − εb)(εi + εj − εc − εd)

+
∑
abcijk

(gijab − gijba)(g
bk
jc − gbkcj )(gacik − gacki )

(εi + εj − εa − εb)(εi + εk − εa − εc)
(7)

Note that the more common formulation of these energies uses the fully second-quantized

representation of the Hamiltonian, Ĥ =
∑

pq f
p
q {a†paq}N + 1

4

∑
pqrs v

pq
rs{a†pa†qasar}N , where

{•}N denotes normal-ordering. The two representations are connected by the simple identity

vpqrs = gpqrs − gpqsr = gpqrs − gqprs . The first-order and second-order perturbed double excitation

amplitudes are most commonly defined by,

t[n]abij = ť[n]abij − ť[n]abji = ť[n]abij − ť[n]baij (8)

ť[1]abij =
gabij

εi + εj − εa − εb
(9)

ť[2]abij =

∑
kl g

ij
klť

[1]ab
kl +

∑
cd g

ab
cd ť

[1]cd
ij +

∑
ck(gbkjc − gbkcj )(ť[1]acik − ť[1]acki)

(εi + εj − εa − εb)
(10)

The representation of ť[n] in a non-antisymmetric form is critical in the following derivation,

where we also show that such a representation is always well-defined by following a physically-

motivated graphical derivation. With these definitions we can write several additional variant

forms of the MP2 and MP3 energies, although all variants are mathematically identical when
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exact ERIs and perturbed amplitudes are used,

EMP2b =
1

2

∑
abij

(gijab − gijba)ť
[1]ab

ij (11)

EMP3b =
1

2

∑
abijkl

(ť[1]†ijab − ť[1]†ijba)g
ij
klť

[1]ab
kl +

1

2

∑
abcdij

(ť[1]†ijab − ť[1]†ijba)g
ab
cd ť

[1]cd
ij

+
∑
abcijk

(ť[1]†ijab − ť[1]†ijba)(g
bk
jc − gbkcj )(ť[1]acik − ť[1]acki) (12)

EMP3c =
1

2

∑
abij

(gijab − gijba)ť
[2]ab

ij (13)

A further variant MP3d is obtained by separating the formation of ť[2] into two parts: eval-

uation of the residual starting with the first-order amplitudes, and division of the residual

by the orbital energy differences to obtain the second-order amplitudes. In Ref. 21 we

showed that this approach results in a distinct LS-THC-MP3 method with lower cost and

nearly-identical numerical error.

Before moving on to the derivation of the LS-THC-MPn approximations, we must deal

with the inseparability of the energy denominators present in (6)–(10). A convenient ap-

proach is the method of “Laplace denominators”, pioneered by Almlöf and others,40,46

1

εi + εj − εa − εb
= −

∫ ∞

0

e(εa+εb−εi−εj)tdt

≈ −
L∑

λ=1

wλe
(εa+εb−εi−εj)tλ

=
L∑

λ=1

τλa τ
λ
b τ

λ
i τ

λ
j (14)

where L is the number of Laplace quadrature points. In this work we use the quadrature de-

veloped by Braess and Hackbusch47 and a sufficient number of quadrature points to evaluate

1/x to a relative accuracy of 10−8 (approximately 9 points).
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Closed-Shell LS-THC-MPn

The MP2a and MP3a formulations of MP2 and MP3, which are defined solely in terms of

integrals and orbital energy denominators, are easily represented in compressed form using

tensor hypercontraction. Spin-integration for closed-shell systems is straightforward (see e.g.

Ref. 1), and we may exploit the equivalence of the different spin-cases of the integrals,

gpqrs = gp̄q̄r̄s̄ = gpq̄rs̄ (15)

We may then expand the equations in terms of say, gpqrs alone and then approximate these

integrals using the form of (1), while also approximating the energy denominators using (14).

This results in the LS-THC-MP2a and LS-THC-MP3a methods,

ELS−THC−MP2a = −
∑
abij

∑
RSTU

L∑
λ=1

τλa τ
λ
b τ

λ
i τ

λ
j

(
2X̃R

a X̃
R
i VRSX̃

S
b X̃

S
j − X̃R

a X̃
R
j VRSX̃

S
b X̃

S
i

)
× X̃T

a X̃
T
i VTUX̃

U
b X̃

U
j (16)

ELS−THC−MP3a =
∑
abij

∑
RSTU

L∑
λ=1

τλa τ
λ
b τ

λ
i τ

λ
j

(
2X̃R

a X̃
R
i VRSX̃

S
b X̃

S
j − X̃R

a X̃
R
j VRSX̃

S
b X̃

S
i

)
×

[∑
kl

∑
WY

L∑
λ′=1

τλ
′

a τ
λ′

b τ
λ′

k τ
λ′

l X
T
k X

T
i VTUX

U
l X

U
j X̃

W
a X̃W

k VWY X̃
Y
b X̃

Y
l

+
∑
cd

∑
WY

L∑
λ′=1

τλ
′

c τ
λ′

d τ
λ′

i τ
λ′

j
˜̃XT
a

˜̃XT
c VTU

˜̃XU
b

˜̃XU
d X̃

W
c X̃W

i VWY X̃
Y
d X̃

Y
j

+4
∑
ck

∑
WY

L∑
λ′=1

τλ
′

a τ
λ′

c τ
λ′

i τ
λ′

k X̃
T
c X̃

T
k VTUX̃

U
b X̃

U
j X̃

W
a X̃W

i VWY X̃
Y
c X̃

Y
k

−2
∑
ck

∑
WY

L∑
λ′=1

τλ
′

a τ
λ′

c τ
λ′

i τ
λ′

k X̃
T
c X̃

T
k VTUX̃

U
b X̃

U
j X̃

W
a X̃W

k VWY X̃
Y
c X̃

Y
i

−2
∑
ck

∑
WY

L∑
λ′=1

τλ
′

a τ
λ′

c τ
λ′

i τ
λ′

k
˜̃XT
b

˜̃XT
c VTUX

U
j X

U
k X̃

W
a X̃W

i VWY X̃
Y
c X̃

Y
k

−2
∑
ck

∑
WY

L∑
λ′=1

τλ
′

a τ
λ′

c τ
λ′

i τ
λ′

k
˜̃XT
b

˜̃XT
c VTUX

U
i X

U
k X̃

W
a X̃W

k VWY X̃
Y
c X̃

Y
j

]
(17)
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The “b” variants are simply obtained by directly approximating the first-order (orbital)

doubles amplitudes using THC,

t[1]abij = t[1]āb̄īj̄ = ť[1]abij − ť[1]abji (18)

t[1]ab̄ij̄ = ť[1]abij ≈
∑
RS

X̃R
a X̃

R
i T

[1]
RSX̃

S
b X̃

S
j (19)

ELS−THC−MP2b =
∑
abij

∑
RSTU

(
2X̃R

a X̃
R
i VRSX̃

S
b X̃

S
j − X̃R

a X̃
R
j VRSX̃

S
b X̃

S
i

)
× X̃T

a X̃
T
i T

[1]
TUX̃

U
b X̃

U
j (20)

ELS−THC−MP3b =
∑
abij

∑
RSTU

(
2X̃R

a X̃
R
i T

[1]
RSX̃

S
b X̃

S
j − X̃R

a X̃
R
j T

[1]
RSX̃

S
b X̃

S
i

)
×

[∑
kl

∑
WY

XT
k X

T
i VTUX

U
l X

U
j X̃

W
a X̃W

k T
[1]
WY X̃

Y
b X̃

Y
l

+
∑
cd

∑
WY

˜̃XT
a

˜̃XT
c VTU

˜̃XU
b

˜̃XU
d X̃

W
c X̃W

i T
[1]
WY X̃

Y
d X̃

Y
j

+4
∑
ck

∑
WY

X̃T
c X̃

T
k VTUX̃

U
b X̃

U
j X̃

W
a X̃W

i T
[1]
WY X̃

Y
c X̃

Y
k

−2
∑
ck

∑
WY

X̃T
c X̃

T
k VTUX̃

U
b X̃

U
j X̃

W
a X̃W

k T
[1]
WY X̃

Y
c X̃

Y
i

−2
∑
ck

∑
WY

˜̃XT
b

˜̃XT
c VTUX

U
j X

U
k X̃

W
a X̃W

i T
[1]
WY X̃

Y
c X̃

Y
k

−2
∑
ck

∑
WY

˜̃XT
b

˜̃XT
c VTUX

U
i X

U
k X̃

W
a X̃W

k T
[1]
WY X̃

Y
c X̃

Y
j

]
(21)

We do not further address the MP3c and MP3d variants and instead focus solely on LS-

THC-MP3b.

These equations must be factorized (i.e. parentheses must be inserted to define to order

of operations) before we can obtain efficient working equations. Here we adopt the same

factorization as in our earlier work.21 As an example, consider the “particle-particle ladder”
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term of LS-THC-MP3b (depicted as the PPC and PPX diagrams in Fig. 2),

EPPLb =
∑
abcdij

∑
RSTUWY

(
2X̃R

a X̃
R
i T

[1]
RSX̃

S
b X̃

S
j − X̃R

a X̃
R
j T

[1]
RSX̃

S
b X̃

S
i

)
× ˜̃XT

a
˜̃XT
c VTU

˜̃XU
b

˜̃XU
d X̃

W
c X̃W

i T
[1]
WY X̃

Y
d X̃

Y
j

= 2
∑
Sbj

(∑
U

(∑
Y

(∑
c

(∑
a

˜̃PU
acX̃

S
a

)(∑
i

QY
ciX̃

S
i

))(∑
d

˜̃XU
d X̃

Y
d

)
X̃Y

j

)
˜̃XU
b

)
QS

bj

−
∑
STY

(∑
d

(∑
b

˜̃P T
bdX̃

S
b

)
X̃Y

d

)(∑
i

(∑
c

QY
ci

˜̃XT
c

)
X̃S

i

)(∑
j

(∑
a

QS
aj

˜̃XT
a

)
X̃Y

j

)
(22)

˜̃PR
ab =

∑
S

VRS
˜̃XS
a

˜̃XS
b (23)

QR
ai =

∑
S

T
[1]
RSX̃

S
a X̃

S
i (24)

This factorization enables each step to be completed in at most O(N4) time, given a linear

number of occupied and virtual orbitals as well as grid points. The full working equations

for the closed-shell case are given in Ref. 21, and those for the open-shell case are given in

the ESI.

Open-Shell LS-THC-MPn

Figure 1. Goldstone diagrams for the MP2 energy, omitting denominator lines for clarity.

In the preceding section, we used the non-antisymmetrized doubles amplitudes ť[n]. We

can justify the validity of such a representation in the open-shell case and utilize it to easily

derive open-shell variants of LS-THC-MPn methods by utilizing diagrammatic methods.
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PPC PPX HHC HHX

PHCCC PHCXC PHXCXPHXXX

PHXCC PHCXXPHCCX PHXXC= =

Figure 2. Goldstone diagrams for the MP3 energy, omitting denominator lines for clarity.

First, we may recognize each term in (6), (7), and (10), after distribution of the parenthe-

ses, as a unique Goldstone diagram.21 Here, we use (non-antisymmetrized) Goldstone dia-

grams instead of the usual antisymetrized Goldstone diagrams (ASGs), also called Brandow

diagrams.1,22 As will be seen below, avoiding explicit antisymmetrization allows the same-

spin amplitudes and integrals to be factorized in way which avoids factorization of “exchange-

like” terms. The unique Goldstone diagrams are reproduced in Figures 1, 2, and 3, respec-

tively. In particular, the diagrams in Figure 3 are easily recognized as the necessary contri-

butions to the closed-shell second-order T̂ amplitudes or, with replacement of the bottom

integral vertex by doubles amplitudes, the iterative T̂2 → T̂2 contributions in coupled cluster
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PP

bb

a

a

a
b

b

bi

j

HH

PHCC PHXC PHCXPHXX

a

m

ijij

j

e

e f m n

i j

ai

j

m e

i

m e

b

e m

a

Figure 3. Goldstone diagrams for the ť[2]abij amplitudes, omitting denominator lines for
clarity.

theory. In the closed-shell interpretation, closed loops contribute a factor of 2 and each

diagram is symmetrized, leading to the well-known expression,

(εa + εb − εi − εj)ť
[2]ab

ij =
∑
ef

gabef ť
[1]ef

ij +
∑
mn

gmn
ij ť[1]abmn + (1 + P ai

bj )

(∑
em

2gamie ť
[1]eb

mj

−
∑
em

gamie ť
[1]eb

jm −
∑
em

gamei ť
[1]eb

mj −
∑
em

gamej ť
[1]eb

im

)
(25)

where the permutation operator P ai
bj exchanges the top labels with those on the bottom in

the following expression. Note that in the last term on the right-hand side, the ij orbitals

are ordered differently than in the remaining terms. This highlights the rule for Goldstone

diagrams that, for orbitals sharing the same “column” in the external vertex (e.g. ai or

bj), we must be able to follow a continuous loop through the diagram from one label to the

other. Thus the “PHXX” diagram of Fig. 3 results in such a modified labeling. This choice

is discussed further and theoretically motivated below.

For the closed-shell case we may use ťabij without ambiguity since it is precisely defined

as the mixed-spin amplitudes tab̄ij̄ due to the relationship between the various spin cases in
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the closed-shell case.1 However, in the open-shell case we could instead replace the factor

of 2 for closed loops by an explicit summation over spin. In any case, each contraction

line along a loop must carry the same spin since contraction implies a spin integral over

orthonormal spin functions. Then, we can derive equations for the three distinct spin cases

in the spin-unrestricted formalism,

(εa + εb − εi − εj)ť
[2]ab

ij =
∑
ef

gabef ť
[1]ef

ij +
∑
mn

gmn
ij ť[1]abmn + (1 + P ai

bj )

(∑
em

gamie ť
[1]eb

mj

+
∑
em̄

gam̄iē ť
[1]ēb

m̄j −
∑
em

gamie ť
[1]eb

jm −
∑
em

gamei ť
[1]eb

mj −
∑
em

gamej ť
[1]eb

im

)
(26)

(εa + εb̄ − εi − εj̄)ť
[2]ab̄

ij̄ =
∑
ef̄

gab̄ef̄ ť
[1]ef̄

ij̄
+
∑
mn̄

gmn̄
ij̄ ť[1]ab̄mn̄ +

∑
em

gamie ť
[1]eb̄

mj̄ +
∑
ēm̄

gam̄iē ť
[1]ēb̄

m̄j̄

+
∑
em

gb̄mj̄e ť
[1]ea

mi +
∑
ēm̄

gb̄m̄j̄ē ť
[1]ēa

m̄i −
∑
ēm̄

gam̄iē ť
[1]ēb̄

j̄m̄ −
∑
em

gamei ť
[1]eb̄

mj̄

−
∑
em̄

gam̄ej̄ ť
[1]eb̄

im̄ −
∑
em

gb̄mj̄e ť
[1]ea

im −
∑
ēm̄

gb̄m̄ēj̄ ť
[1]ēa

m̄i −
∑
ēm

gb̄mēi ť
[1]ēa

j̄m (27)

(εā + εb̄ − εī − εj̄)ť
[2]āb̄

īj̄ =
∑
ēf̄

gāb̄ēf̄ ť
[1]ēf̄

īj̄
+
∑
m̄n̄

gm̄n̄
īj̄ ť[1]āb̄m̄n̄ + (1 + P āī

b̄j̄ )

(∑
ēm̄

gām̄īē ť
[1]ēb̄

m̄j̄

+
∑
ēm

gāmīe ť
[1]eb̄

mj̄ −
∑
ēm̄

gām̄īē ť
[1]ēb̄

j̄m̄ −
∑
ēm̄

gām̄ē̄i ť
[1]ēb̄

m̄j̄ −
∑
ēm̄

gām̄ēj̄ ť
[1]ēb̄

īm̄

)
(28)

Antisymmetrization of (26) and (28) in accordance with our definition of ť[2]abij arrives pre-

cisely at the standard equations for the second-order amplitudes in a (canonical) unrestricted

Hartree–Fock reference. The application of Goldstone diagrams along with explicit spin-

summation then gives us a rather simple route to derive the open-shell working equations.

The use of Goldstone diagrams also offers a straightforward way to implement THC for

spin-component-scaled Møller–Plesset (SCS-MP) perturbation theories,44,45,48,49 by simply

including a scaling coefficient in each spin-labeled Goldstone diagram. The necessary equiv-

alence of these equations with the standard spin-integrated form after antisymmetrization,

and that these equations trivially reduce to the one given above in the closed-shell is what we

mean by claiming that ť[2] is well-defined. As we discuss below, however, these amplitudes
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and their factorized form are not numerically well-defined, but we can make a consistent

choice based on theoretical arguments.

A recursive application of (26)–(28), with additional terms accounting for single exci-

tation amplitudes, provides a route to define non-antisymmetrized amplitudes for methods

such as coupled cluster with single and double excitations (CCSD). In the present work, we

focus on LS-THC-MP3b, where in fact we only require ť[1]. These amplitudes are trivially

defined in terms of the orbital two-electron integrals,

ť[1]abij =
gabij

ϵa + ϵb − ϵi − ϵj
≈
∑
RS

X̃R
a X̃

R
i T

[1]
RSX̃

S
b X̃

S
j (29)

ť[1]ab̄ij̄ =
gab̄ij̄

ϵa + ϵb̄ − ϵi − ϵj̄
≈
∑
RS̄

X̃R
a X̃

R
i T

[1]

RS̄
X̃ S̄

b̄ X̃
S̄
j̄ (30)

ť[1]āb̄īj̄ =
gāb̄īj̄

ϵā + ϵb̄ − ϵī − ϵj̄
≈
∑
R̄S̄

X̃R̄
ā X̃

R̄
ī T

[1]

R̄S̄
X̃ S̄

b̄ X̃
S̄
j̄ (31)

We note that these chosen definitions, while perhaps obvious given the close relationship

of the first-order amplitudes to the integrals, are also derivable using the diagrammatic

technique outlined above.

Returning to the issue of relabeling the ij indices in the ring terms, we do note that for the

same-spin amplitudes, every term may in fact be written in one of two ways due to the P (ij)

[or equivalently P (ab)] factor which relates the antisymmetric and non-antisymmetric am-

plitudes. Thus, we may technically define a large number of equivalent non-antisymmetric

amplitudes. However, once a tensor factorization such as THC is applied, these different

definitions are no longer equivalent and may incur errors of differing magnitude. In this

regard, our specific choice of (26) and (28) is motivated by the physical compressibility (in

an information-theoretic sense) of inter-electron interactions. The “same column same loop”

rule espoused above allows us to interpret a tensor factorization of the entire diagram as a

“recompression” step. In Fig. 4 we conceptually identify regions of each Goldstone diagram

with the resulting factors in the THC compressed form: electron pairs will be represented
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Figure 4. Goldstone diagrams for the ť[2]abij amplitudes, highlighting the effect of the THC
factorization. Particle-hole pairs, in solid lines, are represented via projection form the orbital
to the grid space using pairs of collocation matrices X. Interactions, in dashed/dotted lines
are represented by the core matrix V[2]. The second-order structure leads to multiple types
of particle-hole pairs and inter-pair interactions: particle-hole pair, dressed particle-
hole pair, bare interaction, bare interaction in Cartesian product space, dressed
interaction.

by a pair of collocation matrices e.g. X̃R
a X̃

R
i which effect a transformation from molecular

orbital to grid space, and pair correlation is represented by the core matrix T[2]. The orbital

labeling in Fig. 4 demands that the collocation matrices capture some correlation effects

leading to “dressed” particle-hole pairs (which contributes to the numerical errors discussed

previously by us21), while the interaction must capture bare, dressed, and higher-dimensional

interactions via a linear-scaling extraction of important features, in a similar spirit to the

singular value decomposition and other low-rank decompositions. Switching either the ij or

ab labels destroys this clear separation in terms of local (raw or dressed Coulombic) interac-

tions of dressed particle-hole pairs, and instead introduces a picture with more exchange-like

interactions. The THC decomposition, like most low-rank decompositions, is not able to

effectively capture such non-local interactions.
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A final numerical issue for the ťabij and ťāb̄īj̄ amplitudes are the exclusion principle-violating

(EPV) amplitudes which occur when i = j or a = b. In the canonical equations these

amplitudes cancel after antisymmetrization and do not affect the energy or properties in any

way. Thus, we could assign these amplitudes any numerical value. However, when applying

the tensor hypercontraction approximation, information from all doubles amplitudes is mixed

together to determine the elements of the core matrix T[2] via least-squares fitting. Thus,

the EPV amplitudes do potentially contribute to the LS-THC-MP3 energy. We argue that,

in order to minimize the impact of EPV amplitudes, we should choose a value for these

amplitudes which produces the most accurate THC decomposition of the doubles amplitudes

as a whole. This guideline is based on the fact that as the THC decomposition approaches

exactness (e.g. as the grid size is increased), the cancellation of the EPV terms, regardless

of their numerical value, becomes more complete. This approach is quite different from

setting the EPV amplitudes themselves to the smallest possible value (namely, zero). Thus,

we suggest to not modify the EPV terms from their definition as obtained using the above

diagrammatic approach, e.g. (26)–(28). Because the THC approximation captures the global

mathematical structure of the amplitudes (i.e. it is an interpolation), a consistent choice of

EPV and non-EPV terms should provide the most compressible amplitudes. For ť[1], which

are the only amplitudes used in LS-THC-MP3b, the proposed choice of the EPV amplitudes

also corresponds directly to the “correct” Coulomb self-interaction.

Following the diagrammatic method using Fig. 2 (where we replace the top and bottom

Hamiltonian vertices by the first-order amplitudes), followed by THC approximation of the

integrals and first-order amplitudes for each spin case, we arrive at equations for open-shell

LS-THC-MP3b,

ELS−THC−MP3b =
∑
abij

∑
RS

(
X̃R

a X̃
R
i T

[1]
RSX̃

S
b X̃

S
j − X̃R

a X̃
R
b T

[1]
RSX̃

S
b X̃

S
i

)
×

[
1

2

∑
kl

∑
TUWY

XT
k X

T
i VTUX

U
l X

U
j X̃

W
a X̃W

k T
[1]
WY X̃

Y
b X̃

Y
l
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+
1

2

∑
cd

∑
TUWY

˜̃XT
a

˜̃XT
c VTU

˜̃XU
b

˜̃XU
d X̃

W
c X̃W

i T
[1]
WY X̃

Y
d X̃

Y
j

+
∑
ck

∑
TUWY

X̃T
c X̃

T
k VTUX̃

U
b X̃

U
j X̃

W
a X̃W

i T
[1]
WY X̃

Y
c X̃

Y
k

+
∑
c̄k̄

∑
T̄UWȲ

X̃ T̄
c̄ X̃

T̄
k̄ VT̄UX̃

U
b X̃

U
j X̃

W
a X̃W

i T
[1]

WȲ
X̃ Ȳ

c̄ X̃
Ȳ
k̄

−
∑
ck

∑
TUWY

X̃T
c X̃

T
k VTUX̃

U
b X̃

U
j X̃

W
a X̃W

k T
[1]
WY X̃

Y
c X̃

Y
i

−
∑
ck

∑
TUWY

˜̃XT
b

˜̃XT
c VTUX

U
j X

U
k X̃

W
a X̃W

i T
[1]
WY X̃

Y
c X̃

Y
k

−
∑
ck

∑
TUWY

˜̃XT
b

˜̃XT
c VTUX

U
i X

U
k X̃

W
a X̃W

k T
[1]
WY X̃

Y
c X̃

Y
j

]

+
∑
ab̄ij̄

∑
RS̄

X̃R
a X̃

R
i T

[1]

RS̄
X̃ S̄

b̄ X̃
S̄
j̄

×

[∑
kl̄

∑
T ŪWȲ

XT
k X

T
i VT ŪX

Ū
l̄ X

Ū
j̄ X̃

W
a X̃W

k T
[1]

WȲ
X̃ Ȳ

b̄ X̃
Ȳ
l̄

+
∑
cd̄

∑
T ŪWȲ

˜̃XT
a

˜̃XT
c VT Ū

˜̃X Ū
b̄

˜̃X Ū
d̄ X̃

W
c X̃W

i T
[1]

WȲ
X̃ Ȳ

d̄ X̃
Ȳ
j̄

+
∑
ck

∑
T ŪWY

X̃T
c X̃

T
k VT ŪX̃

Ū
b̄ X̃

Ū
j̄ X̃

W
a X̃W

i T
[1]
WY X̃

Y
c X̃

Y
k

+
∑
c̄k̄

∑
T̄ ŪW Ȳ

X̃ T̄
c̄ X̃

T̄
k̄ VT̄ ŪX̃

Ū
b̄ X̃

Ū
j̄ X̃

W
a X̃W

i T
[1]

WȲ
X̃ Ȳ

c̄ X̃
Ȳ
k̄

−
∑
ck

∑
T ŪWY

X̃T
c X̃

T
k VT ŪX̃

Ū
b̄ X̃

Ū
j̄ X̃

W
a X̃W

k T
[1]
WY X̃

Y
c X̃

Y
i

−
∑
c̄k̄

∑
T̄ ŪW Ȳ

˜̃X T̄
b̄

˜̃X T̄
c̄ VT̄ ŪX

Ū
j̄ X

Ū
k̄ X̃

W
a X̃W

i T
[1]

WȲ
X̃ Ȳ

c̄ X̃
Ȳ
k̄

−
∑
c̄k

∑
T̄UWȲ

˜̃X T̄
b̄

˜̃X T̄
c̄ VT̄UX

U
i X

U
k X̃

W
a X̃W

k T
[1]

WȲ
X̃ Ȳ

c̄ X̃
Ȳ
j̄

+
∑
ck

∑
TUW̄Y

X̃T
c X̃

T
k VTUX̃

U
a X̃

U
i X̃

W̄
b̄ X̃W̄

j̄ T
[1]

W̄Y
X̃Y

c X̃
Y
k

+
∑
c̄k̄

∑
T̄UW̄ Ȳ

X̃ T̄
c̄ X̃

T̄
k̄ VT̄UX̃

U
a X̃

U
i X̃

W̄
b̄ X̃W̄

j̄ T
[1]

W̄ Ȳ
X̃ Ȳ

c̄ X̃
Ȳ
k̄

−
∑
c̄k̄

∑
T̄UW̄ Ȳ

X̃ T̄
c̄ X̃

T̄
k̄ VT̄UX̃

U
a X̃

U
i X̃

W̄
b̄ X̃W̄

k̄ T
[1]

W̄ Ȳ
X̃ Ȳ

c̄ X̃
Ȳ
j̄
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−
∑
ck

∑
TUW̄Y

˜̃XT
a

˜̃XT
c VTUX

U
i X

U
k X̃

W̄
b̄ X̃W̄

j̄ T
[1]

W̄Y
X̃Y

c X̃
Y
k

−
∑
ck̄

∑
T ŪW̄Y

˜̃XT
a

˜̃XT
c VT ŪX

Ū
j̄ X

Ū
k̄ X̃

W̄
b̄ X̃W̄

k̄ T
[1]

W̄Y
X̃Y

c X̃
Y
i

]

+
∑
āb̄̄ij̄

∑
R̄S̄

(
X̃R

a X̃
R
i T

[1]

R̄S̄
X̃S

b X̃
S
j − X̃R

a X̃
R
b T

[1]

R̄S̄
X̃S

b X̃
S
i

)

×

[
1

2

∑
k̄l̄

∑
T̄ ŪW̄ Ȳ

X T̄
k̄ X

T̄
ī VT̄ ŪX

Ū
l̄ X

Ū
j̄ X̃

W̄
ā X̃W̄

k̄ T
[1]

W̄ Ȳ
X̃ Ȳ

b̄ X̃
Ȳ
l̄

+
1

2

∑
c̄d̄

∑
T̄ ŪW̄ Ȳ

˜̃X T̄
ā

˜̃X T̄
c̄ VT̄ Ū

˜̃X Ū
b̄

˜̃X Ū
d̄ X̃

W̄
c̄ X̃W̄

ī T
[1]

W̄ Ȳ
X̃ Ȳ

d̄ X̃
Ȳ
j̄

+
∑
c̄k̄

∑
T̄ ŪW̄ Ȳ

X̃ T̄
c̄ X̃

T̄
k̄ VT̄ ŪX̃

Ū
b̄ X̃

Ū
j̄ X̃

W̄
ā X̃W̄

ī T
[1]

W̄ Ȳ
X̃ Ȳ

c̄ X̃
Ȳ
k̄

+
∑
ck

∑
T ŪW̄Y

X̃ T̄
c̄ X̃

T̄
k̄ VT ŪX̃

Ū
b̄ X̃

Ū
j̄ X̃

W̄
ā X̃W̄

ī T
[1]

W̄Y
X̃Y

c X̃
Y
k

−
∑
c̄k̄

∑
T̄ ŪW̄ Ȳ

X̃ T̄
c̄ X̃

T̄
k̄ VT̄ ŪX̃

Ū
b̄ X̃

Ū
j̄ X̃

W̄
ā X̃W̄

k̄ T
[1]

W̄ Ȳ
X̃ Ȳ

c̄ X̃
Ȳ
ī

−
∑
c̄k̄

∑
T̄ ŪW̄ Ȳ

˜̃X T̄
b̄

˜̃X T̄
c̄ VT̄ ŪX

Ū
j̄ X

Ū
k̄ X̃

W̄
ā X̃W̄

ī T
[1]

W̄ Ȳ
X̃ Ȳ

c̄ X̃
Ȳ
k̄

−
∑
c̄k̄

∑
T̄ ŪW̄ Ȳ

˜̃X T̄
b̄

˜̃X T̄
c̄ VT̄ ŪX

Ū
ī X

Ū
k̄ X̃

W̄
ā X̃W̄

k̄ T
[1]

W̄ Ȳ
X̃ Ȳ

c̄ X̃
Ȳ
j̄

]
(32)

These equations bear a striking similarity to those in the closed-shell case, where each open-

shell term corresponds exactly to one of the closed-shell terms, except for numerical prefactor

and the spin of each electron (loop). We leverage this similarity in our implementation by

adding loops over α and β spins to the closed-shell code, resulting in a highly efficient and

maintainable implementation.

In summary, the procedure for deriving open-shell THC methods is quite straightforward:

1. Enumerate all distinct Goldstone diagrams, for example by expanding the Brandow

diagrams/ASGs via permutation of each vertex’s indices.

2. Algebraically evaluate each diagram as usual,1 except that the factor of 2 for closed

loops is replace by an unrestricted sum over α and β spin for each loop (with the same
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spin for all indices in the loop). For open diagrams (amplitude equations), the spin of

external loops is fixed and determined by the spin of the corresponding amplitude to

be determined.

3. Replace each two-electron integral and double excitation amplitude by its THC-factorized

form. For open diagrams, additional collocation matrices are applied to the external

lines in order to form the fitting matrix which will be used to determine the core matrix

by least-squares fitting as in (3) and (4).

Computational Details

Figure 5. 2H-2-azabicyclo[1.1.1]pentane radical with solvation shell. Solvent waters are
numbered by center of mass distance from the solute.

Open-shell LS-THC-MP2a, -MP2b, and -MP3b were implemented in a development ver-

sion of CFOUR.50 We tested the accuracy of these methods on four types of test systems:

1. Linear alkyl radicals (H(CH2)n
•, n=1–20): Geometries were optimized at the
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Figure 6. Ball-and-stick structure of glutathione with all backbone and C–S bonds labeled.

Figure 7. Ball-and-stick structure of 9-propyl-4,11-tridecadienoic acid with arrows pointing
to specific hydrogens referenced in the text.

B3LYP/def2-TZVP level with D3 dispersion correction,51–54 starting with synthetic

structures with RCC = 1.54 Å, RCH = 1.1 Å, and tetrahedral angles.

2. Micro-solvated 2H-2-azabicyclo[1.1.1]pentane radical (Fig. 5): The aqueous

micro-solvation environment and solute radical geometry were determined from a short

QM/MM simulation (see ESI for details). Up to the 11 closest water molecules (based

on the distance of the water oxygen atom to the closest solute atom) were retained in

the THC calculations. Solvation energies were computed without geometry relaxation

or counterpoise corrections.
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3. Glutathione (Fig. 6): A gas-phase structure for glutathione was optimized at the

B3LYP/def2-TZVP level with D3 dispersion correction. Heterolytic and homolytic

bond cleavage energies were calculated for each bond indicated in Fig. 6. Isolated bond

cleavage fragments were re-optimized at the same level of theory. The fragment charges

after heterolytic cleavage were assigned based on the lowest-energy configuration.

4. 9-propyl-4,11-tridecadienoic acid (Fig. 7): An initial structure was obtained at

the same B3LYP/def2-TZVP level with D3 dispersion correction, as well as radical

and ionic structures produced by removing, in turn, each hydrogen atom indicated in

Fig. 7 followed by reoptimization. We also generated 24 distinct conformations using

the FRee Online druG conformation generation (FROG) tool.55 We then removed the

tertiary hydrogen (#5) from each conformation and reoptimized using B3LYP/def2-

TVZP.

All B3LYP geometry optimizations were performed with Q-Chem.56 For all THC calcu-

lations, we used the cc-pVDZ basis set,57 density fitting with the cc-pVDZ-RI auxiliary basis

set,4,5,58 and SG059 as the parent grid. The parent grid was pruned as in Ref. 20, based on a

numerical cutoff ϵ which was varied from 10−1 to 10−4 in each experiment. An unrestricted

Hartree–Fock (UHF) reference was used in all cases.

In most cases, spin contamination of the UHF reference was negligible (< 5%), although

certain systems (e.g. some radical bond-breaking fragments of glutathione and the vinylic

tridecanoic acid radical) exhibit moderate spin contamination, with values of ⟨Ŝ2⟩ as high as

0.99. We specifically avoid the use of a restricted open-shell Hartree–Fock (ROHF) reference,

as these systems provide a test case for how the THC approximation is affected by spin

contamination.
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Results

Size-extensivity of the error

Figure 8. Absolute energy errors for open-shell linear alkyl radicals, H(CH2)n
•. The abso-

lute value of the per-electron error between the THC and corresponding DF-MPn calculation
is plotted for (a) the total LS-THC-MP3b correlation energy, which is the sum of (b) the
LS-THC-MP3b third-order correction and (c) the LS-THC-MP2b correlation energy, and
finally (d) the LS-THC-MP2a correlation energy. ϵ is the Cholesky decomposition cutoff
parameter when pruning the grid, varying logarithmically from 10−1 to 10−4 in steps of 0.2
log units.

We first examine the error of the THC approximations compared to their density-fitted

counterparts for linear alkyl radicals in order to correlate absolute energy errors with system

size. Fig. 8 gives the THC error per correlated electron. THC calculations with a range of

grid cutoff parameters, ϵ, were performed in order to examine the dependence of the error

with grid size (a smaller ϵ results in a larger grid and should yield a smaller error). The error

per electron quickly reaches an approximately constant value, whether for the total MP3
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correlation energy (Fig. 8a), the MP2 correlation energy (Fig. 8c,d), or the MP3 correction

by itself (Fig. 8b). The latter contribution is the most irregular, perhaps due to its smaller

magnitude and sensitivity to the virtual-virtual grid represented by ˜̃X.

Notably, the error for LS-THC-MP2a is much smaller than for LS-THC-MP2b as pre-

viously observed in the closed-shell case. As the total LS-THC-MP3b correlation energy

includes an LS-THC-MP2b contribution, this error is in fact dominated by the MP2 part,

with the MP3 correction error being a minor part for most reasonable choices of ϵ. In each

case, the asymptotic error per electron decreases roughly linearly with respect to ϵ (note that

the ϵ values are chosen on a log scale, and the y-axis is also logarithmic). Certain narrow

ranges of ϵ significantly depart from this trend, e.g. ϵ ∼ 10−1.2 in Fig. 8a or ϵ ∼ 10−3.0 in

Fig. 8d. These irregularities occur due to a sign change in the error.

Typical density-fitting errors for DF-MP3 seem to be approximately 15 µEh/e
− based

on previous experiments.21 This indicates that the LS-THC-MP2b errors are comparable for

ϵ ∼ 10−3.2, or even earlier near ϵ ∼ 10−2.0 if the LS-THC-MP2b contribution is replaced by

LS-THC-MP2a. These results confirm the size-extensivity of open-shell LS-THC-MPn as

was observed for the closed-shell variant. Typical per-electron errors are also similar for the

closed- and open-shell THC methods; e.g. for C8H18/C8H17
• at ϵ = 10−2.4 we find errors of

1.0/0.35 µEh/e
− (MP2a), 102/105 µEh/e

− (MP2b), and 6.9/8.7 µEh/e
− (MP3b correction),

respectively. We also observe, as for closed-shell THC, a “threshold” effect where convergence

of the incremental error to the asymptotic value is only reached for a sufficiently long chain.

This effect diminishes with looser cutoff values (smaller grids), suggesting a saturation of

the orbital pair space for smaller systems.

Radical micro-solvation energies

We next examine the error of the THC approximations for 2H-2-azabicyclo[1.1.1]pentane

(ABP) in order to study how an increase in solvation shell size impacts solvation energy

errors. This is an important test given that subsequent solvent waters will contribute very
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Figure 9. Errors in incremental solvation energy for 2H-2-azabicyclo[1.1.1]pentane in an
explicit water solvation environment. From 1 to 11 waters are added in the order indicated
in Fig. 5. See text for details.

different physical interactions to the total solvation (interaction) energy. For example, the

5th and 7th waters added (see Fig. 5) interact directly with the radical center, and the 7th

water at least forming a hydrogen bond with the amino nitrogen. Other waters interact via

weaker electrostatic interactions or van der Waals interactions and instead hydrogen bond

with other solvent molecules (e.g. the 6th, 8th, and 9th waters), and some more distant

waters do not seem to form any strong interactions, at least with other fragments included

in the present calculations (e.g. the 10th and 11th waters). However, the errors due to THC,

presented as percentages of the incremental solvation energy,

%∆En =

∣∣∣∣1 − ETHC−MP3(ABP · (H2O)n) − ETHC−MP3(ABP · (H2O)n−1)

EDF−MP3(ABP · (H2O)n) − EDF−MP3(ABP · (H2O)n−1)

∣∣∣∣× 100% (33)
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do not show any clear trend with the strength or type of solvent interaction. Rather, the

errors are relatively consistent at moderate cutoff values (0.001 < ϵ < 0.01). At or below

ϵ = 10−2.6, errors are consistently less than 5%. The absence of a trend or significant outliers

indicates a relative insensitivity of THC-MP3 to different types of interactions, and critically,

no bias of the open-shell THC-MP3 method toward or against interactions involving unpaired

electrons.

Bond cleavages and radical stability

We evaluate the robustness of the THC approximation with respect to various bond cleav-

age points and charge/spin separation by examining 13 different bond dissociation energies

(BDEs) for the glutathione system (Fig. 6) and 5 different hydrogen atom abstraction (HA)

energies for the tridecadienoic acid system (Fig. 7).

We only consider bond breakages in glutathione between backbone C–C or C–N bonds,

as well as the C–S bond in the cysteine peptide. For each bond cleavage, we calculate both a

homolytic (AB → A• + B•) and a heterolytic (AB → A− + B+ or AB → A+ + B−, whichever

results in more stable products) bond dissociation energy.

The homolytic and heterolytic bond dissociation energy errors with respect to standard

density fitting calculations are shown in Fig. 10a. Overall, the THC approximation produces

an accurate bond cleavage energy (around 1 kcal/mol) for most of the bond-breaking cases

at reasonable selections of ϵ (ϵ < 0.01). Additionally, the error differences between the

homolytic (solid lines) and heterolytic (dashed lines) bond cleavage energy are of similar

magnitude for each value of ϵ, and at tighter thresholds follow the same trend towards lower

errors for bonds A, F, and L. These bonds cleave the thiol or other terminal functional

groups—because of the “threshold” effect noted above, these bond dissocations result in the

lowest total error due to near-saturation of the THC grid for the smaller fragment. The

closed-shell calculations result in smaller errors for these three cases, perhaps indicating

a slight difference in how quickly the grid saturates in the open- and closed-shell cases.
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Figure 10. Bond dissociation energy errors of glutathione. (a) Absolute BDE error due
to THC for homolytic bond cleavage (open-shell). The bond index refers to labeled bonds
in Fig. 6. (b) Absolute BDE error due to THC for heterolytic bond cleavage (closed-shell).
(c) Absolute errors in the difference between the homolytic and heterolytic BDEs due to
THC. 26



However, “moderate” cutoff values do not show such a trend and instead provide a rather

consistent magnitude of error irrespective of the bond being broken.

The error in the difference between the homolytic and heterolytic BDEs (∆BDE) were

also computed and are depicted in Fig. 10b. Across the various bonds, errors for this relative

measure are somewhat lower than for the BDEs themselves. This indicates a reliable error

cancellation between the open- and closed-shell LS-THC calculations on similar systems (note

that the geometries of the products were optimized separately for hetero- and homolytic

cleaveages).

In Fig. 11, bond dissociation energy errors are shown for H{+,•,−} abstraction from 9-

propyl-4,11-tridecadienoic acid. For the closed-shell products (dashed lines; these are all

cationic with the exception of the carboxylate) there does seem to be a trend which tends

to result in lower errors for the more stable cationic products (substituted alkyl radicals

and especially doubly-bonded sp2 cationic centers). This may result from enhanced error

cancellation between more similar geometries where re-hybridization is incomplete. The

errors for radical open-shell products (solid lines) are more consistent, perhaps again due to

reduced rehybridization even in the primary and secondary carbon radicals. Fig. 11b gives

the error in the relative energy between the charged and neutral abstraction products. As

for glutathione, there is some cancellation of errors for, in particular for the carboxyl and

vinyl abstractions where the geometric changes are more similar.

Conformational energy ordering

Again focusing on 9-propyl-4,11-tridecadienoic acid, we examine the relative energies of

24 distinct conformations of the 9H hydrogen abstraction (open-shell radical) and hydride

abstraction (cationic) products. In Fig. 12, the errors in relative conformational energies due

to THC are presented for both types of products. While it is clear that there is not a strong

correlation of the errors between the neutral radical and charged closed-shell products (c.f.

the lack of any distinct trend in the open-shell errors with respect to the closed-shell errors
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Figure 11. Bond dissociation energy errors of 9-propyl-4,11-tridecadienoic acid. (a) Ab-
solute BDE error due to THC for homolytic bond cleavage (open-shell). (b) Absolute BDE
error due to THC for heterolytic bond cleavage (closed-shell). (c) Absolute errors in the
difference between the homolytic and heterolytic BDEs due to THC.
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Figure 12. Errors in the relative energies of 24 conformations 9-propyl-4,11-tridecadienoic
acid due to THC. Conformational energy differences are calculated with respect to the lowest
energy conformation (index 19), and the remaining conformations are ordered by increasing
energy (using the DF-MP3 energies). (a) Errors for open-shell radical conformations. (b)
Errors for closed-shell cationic conformations.

ordered from smallest to largest at ϵ = 10−4). However, both the closed- and open-shell errors

seem to span almost identical ranges for each value of ϵ. The smallest and largest errors, even

at a tight tolerance of ϵ = 10−4, seem to span at least an order of magnitude, although there

does not seem to be a trend of the size of the error with any chemically-relevant features of

the individual conformations. The fact that the smallest errors are significantly lower than

observed in, for example, Fig. 10 may then simply indicate fortuitous error cancellation which

is not reproducible between the radical and cationic structures. Since the final structures in

these cases were optimized independently (despite starting with the same algorithmically-

generated guess structure), this is perhaps not surprising.
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Computational scaling

In the above sections, we have shown that LS-THC-MP3 can achieve below 1 kcal/mol

error with moderate cutoff values (ϵ ≤ 10−2.2). It is equally important to demonstrate the

scaling reduction that can be achieved by the LS-THC method. To that end, we report the

timings of both DF-MP3 and LS-THC-MP3 methods for linear alkyl radicals with varying

cutoff parameters (ϵ), analyzed in Section Size-extensivity of the error. The timings include

the calculation of the MP2 and MP3 correlation energy only. As can be seen in Fig. 13,

is clear that LS-THC-MP3 achieves reduced scaling compared to DF-MP3 (see inset for

measure scaling), and reaches a crossover at around 70 correlated electrons with a cutoff

of ϵ = 10−2.2. Note that the DF-MP3 scaling in this regime is actually dominated by the

formation of the (ab|cd) integrals which scales as O(n5), and other lower-scaling operations.

Conclusions

The LS-THC method has proven to be an efficient approximation of both the ERI and

doubles amplitudes tensors with high accuracy and low scaling for closed-shell systems.

Here, LS-THC was implemented for MP2 and MP3 calculations on open-shell systems and

was evaluated with various test systems: linear alkyl radicals, a micro-solvated amine radi-

cal, heterolytic and homolytic bond cleavages in glutathione, and proton/hydrogen/hydride

abstractions as well as conformational differences of 9-propyl-4,11-tridecadienoic acid. A

number of trends were observed:

1. Similar to the RHF implementation, the LS-THC-MPn errors scale linearly with system

size, after a critical “threshold” molecular size is reached (this effect is diminished for

looser cutoff values). Errors for LS-THC-MP2a are essentially negligible, while errors

in LS-THC-MP3b are dominated by the MP2b contribution. Remaining errors in only

the LS-THC-MP3b contribution are reasonably small with a double-zeta basis set.

2. Reliable error cancellation is evident in almost all calculations of energy differences.
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Figure 13. Timings for DF- and LS-THC-MP3 methods for linear alkyl radicals,
(H(CH2)n

•, n=5–20) with the cc-pVDZ basis set. Both axes are on a logarithmic scale
to highlight the polynomial scaling. All calculations were performed using a single node
with 2× Intel Xeon E5-2695v4 CPUs and 256 GiB of memory; OpenMP was used to paral-
lelize the calculation over all 36 cores. The inset shows the measured scaling of DF-MP3 and
LS-THC-MP3 with ϵ = 10−2.2 obtained via linear regression of the timings for n = 10—20.

The greatest degree of error cancellation occurs when the systems are most chemically

similar, resulting fragments are unequally distributed in size, or potentially when more

stable products are produced. Errors in relative energies are typically below 1 kcal/mol

for moderate cutoff values in the range ϵ < 10−2.2.

3. The errors produced for open-shell systems are highly similar to the errors produced

for chemically similar closed-shell systems. In some cases, error cancellation can also

be exploited between open- and closed-shell processes, such as in the relative BDEs of
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heterolytic and homolytic bond cleavages.

4. The error of the open-shell LS-THC-MPn methods is highly insensitive to the specific

nature of the chemical structure, type of interactions, and even moderately severe spin

contamination of the reference wavefunction.

In summary, open-shell THC seems to be equally as applicable as closed-shell THC and

multi-reference THC .60,61 The diagrammatic method of derivation presented also enables

the implementation of open-shell THC methods with little additional effort compared to the

closed-shell version, and a highly similar code structure which should enable maintainable,

efficient codes.
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