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Abstract

The extension of least-squares tensor hypercontracted second- and third-order Mgller-
Plesset perturbation theory (LS-THC-MP2 and LS-THC-MP3) to open-shell systems
is an important development due to the scaling reduction afforded by THC and the
ubiquity of molecular ions, radicals, and other open-shell reactive species. The com-
plexity of wavefunction-based quantum chemical methods such as Mgller-Plesset and
coupled cluster theory is reflected in the steep scaling of the computational costs with
the molecular size. The least-squares tensor hypercontraction (LS-THC) method is an
efficient, single-step factorization for the two-electron integral tensor, but can also be
used to factorize the double excitation amplitudes, leading to significant scaling reduc-
tion. Here, we extend this promising method to open-shell variants of LS-THC-MP2
and -MP3 using diagrammatic techniques and explicit spin-summation. The accu-
racy of the resulting methods for open-shell species is benchmarked on standard tests
systems such as regular alkanes, as well as realistic systems involving bond breaking,
radical stabilization, and other effects. We find that open-shell LS-THC-MPn meth-
ods exhibit errors highly comparable to those produced by closed-shell LS-THC-MPn,
and are highly insensitive to particular chemical interactions, geometries, or even to

moderate spin contamination.



Introduction

Complexity arising due to the presence of high-order tensors is well known as a bottleneck
in wavefunction-based quantum chemical methods, leading to steep scaling of computational
cost with system size. As the essential component of all electronic structure methods, the
4™ _order electron repulsion integral (ERI) tensor, gf? = (pr|gs) (with the latter in chemists’
notation),! is the most obvious target for cost and scaling reduction. Many approaches have
been developed to tackle the complexity of the ERIs, such as the density fitting (DF) approx-
imation®® and similar techniques such as the resolution-of-the-identity (RI),” ! Cholesky

114 pseudospectral (PS) method, ' and more recently tensor hypercon-

decomposition (CD),
traction (THC).*2! Approximations of the wavefunction itself have received less attention,
but due to the presence of the 4"-order double excitations amplitude (C’g or Tg) which ap-
pear in virtually any wavefunction theory,'?? some approximation is necessary to achieve
significant reductions in computational scaling. 1923730

While a wide range of approximations to the ERIs and/or doubles amplitudes have
proven highly successful, the vast majority of these methods have been implemented, tested
on, and subsequently applied to closed-shell systems. While closed-shell systems are of vital
importance to chemistry as a whole—neutral stable chemical species, both reactants and
products, tend to adopt a closed-shell configuration—open-shell species are of equal impor-
tance due to the high reactivity and richness of electronic structure exhibited by radical
species. 3! Such species are central to a number of chemical fields, such as organic catalysis, 32
environmental and health studies,3® combustion and alternative fuel chemistry,* and photo-
chemistry.3>36 Additionally, due to the reactive nature of radical transient intermediates or
transition states, they are often difficult to study in the laboratory, requiring more elaborate
instrumentation®” or complicated spectroscopic analysis.®® Thus, it is necessary to develop
quantum chemistry methods to assist the experimental studies of these systems, along with

approximation techniques to reduce computational scaling for the study of larger systems.

We are especially interested in the least squares tensor hypercontraction (LS-THC) 820



method as an efficient approximation of both the ERI and doubles amplitudes tensors. We
and others have previously demonstrated the potential for high accuracy and low scaling
(O(N*), where N is a measure of system size) for closed shell third-order Mgller-Plesset
perturbation theory (MP3).253% In LS-THC, the fourth order ERI tensor is approximated
as a (hyper)product of five matrices: four collocation matrices, determined by evaluation of
the molecular orbitals at a set of grid points, and a core matrix evaluated by least-squares
fitting of the canonical ERIs (or ERIs approximated by a second method such as density
fitting). In the “MP3a” variant, this approximation is combined with the Laplace transform

40-43 in order to compute the energy without referencing the doubles

quadrature technique
amplitudes explicitly. Alternatively, the “MP3b” method invokes an LS-THC factorization
of the first-order doubles amplitudes and instead avoids the computational complexity of
the Laplace transform quadrature (and a quadratic scaling with the number of quadrature
points). Lastly, the “MP3c¢” and “MP3d” methods directly approximate the second-order
doubles amplitudes, using an energy functional form identical to that used for coupled cluster
and other more complex methods.?? This range of interpretations of MP3, as well as the
basic building blocks of the MP3 energy (especially the well-known particle—particle ladder,
hole-hole ladder, and “ring” terms), make MP3 an ideal stepping stone to more complete
theories such as coupled cluster with single and double excitations (CCSD).

In this word, an extension of the LS-THC approach to open-shell MP2 and MP3 en-
ergies was developed using a mixed graphical-algebraic technique for deriving the working
equations. We have implemented the MP3b variant of LS-THC-MP3, but the techniques

developed are immediately applicable to the other MP3 variants as well as to more complex

LS-THC methods.

Theory

The following notational conventions are used throughout this work:



The letters pgrs denote arbitrary molecular orbitals (MOs).

The letters abedef (ijklmn) denote virtual (occupied) MOs.

The letters RSTUVW XY denote grid points.

The letters JK denote auxiliary (density fitting) basis functions.

Where applicable, a () molecular orbitals, pruned grid points, and other quantities

are denoted by an overbar (no overbar).

Least-squares Tensor Hypercontraction

Tensor hypercontraction (LS-THC)!" % is a method that combines the desirable features of
several other factorizations: the representation of electron distributions over a linear-scaling
auxiliary basis as in DF /RI/CD methods, the pseudospectral method’s flexibility of factoring
exchange terms, the use of least-squares fitting as in DF and alternating least squares-based
CP factorizations (although the LS-THC factorization is linear and non-iterative), and finally
in the least-squares form a grid-based expansion as in the numerical integration of exchange—

correlation functions in density functional theory. The LS-THC form of the ERISs is,

(prigs) = g7l = Z )y (X P7) Vs (X 0)7 (X197 (1)

The matrices X are the collocation matrices, determined a priori by evaluation of the
(spatial) molecular orbitals v, at a set of grid points rg: Xf = 1,(rg). Superscripts such as
(pr) in (1) differentiate different sets of “pruned” grid points.?° The pruning process is specific
to the occupation of the pair of molecular orbitals, leading to separate occupied—occupied
(X = X)), mixed virtual-occupied (X = X©@) = X)) or virtual-virtual ():( = X(ab)

collocation matrices. The pruning procedure here is based on the Cholesky decomposition,

but other pruning procedures are possible, e.g. based on domain decomposition.**4> These



three cases may be further classified by the spin of the associated molecular orbitals (dif-
ferentiated by an overbar on the MO and grid indices), leading to six unique collocation
matrices for open-shell LS-THC-MP3.

The final matrix V is the core matrix, and is evaluated by least squares fitting of either

the exact ERI tensor or some intermediate approximation. In this work we utilize density

fitting in order to maintain an overall scaling of O(N*),2!
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where in each case a superscript ! is understood as an element of the matrix inverse rather
than an inverse of the matrix element itself. Note that, as with the collocation matrices,
there are as many as six distinct metric matrices S. Due to the possible combination of each
of these six electron distributions, there are as many as 21 different core (V) and fitting
(E) matrices, of which 13 are utilized in open-shell LS-THC-MP3 (assuming a canonical
Hartree—Fock reference for which the single excitation amplitudes can be neglected). In
order to avoid notational clutter, we rely on context to determine which of these 13 core

matrices is intended, unless explicitly specified.



Canonical Formulation of MP2 and MP3

In the canonical spin-orbital representation, the MP2 and MP3 energies are defined as,
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Note that the more common formulation of these energies uses the fully second-quantized
representation of the Hamiltonian, H = > pa fP{abag}n + A_ILqurs vk alalasa,}y, where
{e}y denotes normal-ordering. The two representations are connected by the simple identity

VPl = gPl — gPd = gP? — g9  The first-order and second-order perturbed double excitation

amplitudes are most commonly defined by,
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The representation of £ in a non-antisymmetric form is critical in the following derivation,
where we also show that such a representation is always well-defined by following a physically-
motivated graphical derivation. With these definitions we can write several additional variant

forms of the MP2 and MP3 energies, although all variants are mathematically identical when



exact ERIs and perturbed amplitudes are used,

1
Eypay = B Z(gab g )t [I]Zb (11)
abij
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A further variant MP3d is obtained by separating the formation of 2! into two parts: eval-
uation of the residual starting with the first-order amplitudes, and division of the residual
by the orbital energy differences to obtain the second-order amplitudes. In Ref. 21 we
showed that this approach results in a distinct LS-THC-MP3 method with lower cost and
nearly-identical numerical error.

Before moving on to the derivation of the LS-THC-MPn approximations, we must deal
with the inseparability of the energy denominators present in (6)—(10). A convenient ap-

proach is the method of “Laplace denominators”, pioneered by Almlof and others, 4046

1 (o]
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where L is the number of Laplace quadrature points. In this work we use the quadrature de-
veloped by Braess and Hackbusch?” and a sufficient number of quadrature points to evaluate

1/x to a relative accuracy of 10™® (approximately 9 points).



Closed-Shell LS-THC-MPn

The MP2a and MP3a formulations of MP2 and MP3, which are defined solely in terms of
integrals and orbital energy denominators, are easily represented in compressed form using
tensor hypercontraction. Spin-integration for closed-shell systems is straightforward (see e.g.

Ref. 1), and we may exploit the equivalence of the different spin-cases of the integrals,
9 =g = gid (15)

We may then expand the equations in terms of say, g’ alone and then approximate these
integrals using the form of (1), while also approximating the energy denominators using (14).

This results in the LS-THC-MP2a and LS-THC-MP3a methods,
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The “b” variants are simply obtained by directly approximating the first-order (orbital)

doubles amplitudes using THC,
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We do not further address the MP3c and MP3d variants and instead focus solely on LS-
THC-MP3b.
These equations must be factorized (i.e. parentheses must be inserted to define to order
of operations) before we can obtain efficient working equations. Here we adopt the same

factorization as in our earlier work.?! As an example, consider the “particle-particle ladder”



term of LS-THC-MP3b (depicted as the PP and PPy diagrams in Fig. 2),
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This factorization enables each step to be completed in at most O(N*) time, given a linear
number of occupied and virtual orbitals as well as grid points. The full working equations
for the closed-shell case are given in Ref. 21, and those for the open-shell case are given in

the ESI.

Open-Shell LS-THC-MPn

FiGUrE 1. Goldstone diagrams for the MP2 energy, omitting denominator lines for clarity.

In the preceding section, we used the non-antisymmetrized doubles amplitudes ™. We
can justify the validity of such a representation in the open-shell case and utilize it to easily

derive open-shell variants of LS-THC-MPn methods by utilizing diagrammatic methods.

10



F1GURE 2. Goldstone diagrams for the MP3 energy, omitting denominator lines for clarity.

First, we may recognize each term in (6), (7), and (10), after distribution of the parenthe-
ses, as a unique Goldstone diagram.?' Here, we use (non-antisymmetrized) Goldstone dia-
grams instead of the usual antisymetrized Goldstone diagrams (ASGs), also called Brandow
diagrams.!?? As will be seen below, avoiding explicit antisymmetrization allows the same-
spin amplitudes and integrals to be factorized in way which avoids factorization of “exchange-
like” terms. The unique Goldstone diagrams are reproduced in Figures 1, 2, and 3, respec-
tively. In particular, the diagrams in Figure 3 are easily recognized as the necessary contri-
butions to the closed-shell second-order 7 amplitudes or, with replacement of the bottom

integral vertex by doubles amplitudes, the iterative Ty — Ty contributions in coupled cluster

11



FiGURE 3. Goldstone diagrams for the f[2]§‘;’ amplitudes, omitting denominator lines for
clarity.

theory. In the closed-shell interpretation, closed loops contribute a factor of 2 and each

diagram is symmetrized, leading to the well-known expression,

(ca+ep— i — &) = Z gbilles 4 Z gt (Z 2gamililes
o Z gamt 1]eb Z gamt 1]eb Z gamt[l leb > (25)

where the permutation operator Pg‘ji exchanges the top labels with those on the bottom in
the following expression. Note that in the last term on the right-hand side, the ij orbitals
are ordered differently than in the remaining terms. This highlights the rule for Goldstone
diagrams that, for orbitals sharing the same “column” in the external vertex (e.g. ai or
bj), we must be able to follow a continuous loop through the diagram from one label to the
other. Thus the “PHy x” diagram of Fig. 3 results in such a modified labeling. This choice
is discussed further and theoretically motivated below.

fab

For the closed-shell case we may use ¢} without ambiguity since it is precisely defined

as the mixed-spin amplitudes tg’ due to the relationship between the various spin cases in

12



the closed-shell case.! However, in the open-shell case we could instead replace the factor
of 2 for closed loops by an explicit summation over spin. In any case, each contraction
line along a loop must carry the same spin since contraction implies a spin integral over
orthonormal spin functions. Then, we can derive equations for the three distinct spin cases

in the spin-unrestricted formalism,
(ga ey — &y — 8] t[2]ab Zgabt (1]ef + ngnt 1]ab 1 + PIZI (Z gamt[l]eb

+ Z gilemt 1]eb Z glaemt 1]eb Z gézlmt[l leb Z ggmt[l]eb ) 26)
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Antisymmetrization of (26) and (28) in accordance with our definition of 71?/¢¥

arrives pre-
cisely at the standard equations for the second-order amplitudes in a (canonical) unrestricted
Hartree—Fock reference. The application of Goldstone diagrams along with explicit spin-
summation then gives us a rather simple route to derive the open-shell working equations.
The use of Goldstone diagrams also offers a straightforward way to implement THC for
spin-component-scaled Mgller—Plesset (SCS-MP) perturbation theories, 44454849 by simply
including a scaling coefficient in each spin-labeled Goldstone diagram. The necessary equiv-
alence of these equations with the standard spin-integrated form after antisymmetrization,

and that these equations trivially reduce to the one given above in the closed-shell is what we

mean by claiming that £ is well-defined. As we discuss below, however, these amplitudes

13



and their factorized form are not numerically well-defined, but we can make a consistent
choice based on theoretical arguments.

A recursive application of (26)—(28), with additional terms accounting for single exci-
tation amplitudes, provides a route to define non-antisymmetrized amplitudes for methods
such as coupled cluster with single and double excitations (CCSD). In the present work, we
focus on LS-THC-MP3b, where in fact we only require f). These amplitudes are trivially

defined in terms of the orbital two-electron integrals,

ab
A1lab _ Yij N SRRl 55 w5
' e +6b—6~—€jNZXaXi Trs Xy X; (29)
a T RS
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We note that these chosen definitions, while perhaps obvious given the close relationship
of the first-order amplitudes to the integrals, are also derivable using the diagrammatic
technique outlined above.

Returning to the issue of relabeling the ij indices in the ring terms, we do note that for the
same-spin amplitudes, every term may in fact be written in one of two ways due to the P(ij)
[or equivalently P(ab)] factor which relates the antisymmetric and non-antisymmetric am-
plitudes. Thus, we may technically define a large number of equivalent non-antisymmetric
amplitudes. However, once a tensor factorization such as THC is applied, these different
definitions are no longer equivalent and may incur errors of differing magnitude. In this
regard, our specific choice of (26) and (28) is motivated by the physical compressibility (in
an information-theoretic sense) of inter-electron interactions. The “same column same loop”
rule espoused above allows us to interpret a tensor factorization of the entire diagram as a
“recompression” step. In Fig. 4 we conceptually identify regions of each Goldstone diagram

with the resulting factors in the THC compressed form: electron pairs will be represented
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PHyc PHcx

FIGURE 4. Goldstone diagrams for the 5[2]%(: amplitudes, highlighting the effect of the THC
factorization. Particle-hole pairs, in solid lines, are represented via projection form the orbital
to the grid space using pairs of collocation matrices X. Interactions, in dashed/dotted lines
are represented by the core matrix V2. The second-order structure leads to multiple types

of particle-hole pairs and inter-pair interactions: particle-hole pair, ==dressed particle-
hole pair, bare interaction, bare interaction in Cartesian product space, :::dressed
interaction.

by a pair of collocation matrices e.g. X¥X! which effect a transformation from molecular
orbital to grid space, and pair correlation is represented by the core matrix T, The orbital
labeling in Fig. 4 demands that the collocation matrices capture some correlation effects
leading to “dressed” particle-hole pairs (which contributes to the numerical errors discussed
previously by us?!); while the interaction must capture bare, dressed, and higher-dimensional
interactions via a linear-scaling extraction of important features, in a similar spirit to the
singular value decomposition and other low-rank decompositions. Switching either the ij or
ab labels destroys this clear separation in terms of local (raw or dressed Coulombic) interac-
tions of dressed particle-hole pairs, and instead introduces a picture with more exchange-like
interactions. The THC decomposition, like most low-rank decompositions, is not able to

effectively capture such non-local interactions.

15



A final numerical issue for the f?jb and fg’ amplitudes are the exclusion principle-violating
(EPV) amplitudes which occur when ¢ = j or @ = b. In the canonical equations these
amplitudes cancel after antisymmetrization and do not affect the energy or properties in any
way. Thus, we could assign these amplitudes any numerical value. However, when applying
the tensor hypercontraction approximation, information from all doubles amplitudes is mixed
together to determine the elements of the core matrix T!? via least-squares fitting. Thus,
the EPV amplitudes do potentially contribute to the LS-THC-MP3 energy. We argue that,
in order to minimize the impact of EPV amplitudes, we should choose a value for these
amplitudes which produces the most accurate THC decomposition of the doubles amplitudes
as a whole. This guideline is based on the fact that as the THC decomposition approaches
exactness (e.g. as the grid size is increased), the cancellation of the EPV terms, regardless
of their numerical value, becomes more complete. This approach is quite different from
setting the EPV amplitudes themselves to the smallest possible value (namely, zero). Thus,
we suggest to not modify the EPV terms from their definition as obtained using the above
diagrammatic approach, e.g. (26)—(28). Because the THC approximation captures the global
mathematical structure of the amplitudes (i.e. it is an interpolation), a consistent choice of
EPV and non-EPV terms should provide the most compressible amplitudes. For [, which
are the only amplitudes used in LS-THC-MP3b, the proposed choice of the EPV amplitudes
also corresponds directly to the “correct” Coulomb self-interaction.

Following the diagrammatic method using Fig. 2 (where we replace the top and bottom
Hamiltonian vertices by the first-order amplitudes), followed by THC approximation of the
integrals and first-order amplitudes for each spin case, we arrive at equations for open-shell

LS-THC-MP3b,

Ers rncaps = Y 9 (XEXFTRLXERS — XESITRSXS)
abij RS
1 [ [
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ck TOWY
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ck TOWY
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ck TUWY
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ck TUWY
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DIPIR R e
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ck TOWY
X Vao XXX T XX (32)

These equations bear a striking similarity to those in the closed-shell case, where each open-
shell term corresponds exactly to one of the closed-shell terms, except for numerical prefactor
and the spin of each electron (loop). We leverage this similarity in our implementation by
adding loops over o and S spins to the closed-shell code, resulting in a highly efficient and
maintainable implementation.

In summary, the procedure for deriving open-shell THC methods is quite straightforward:

1. Enumerate all distinct Goldstone diagrams, for example by expanding the Brandow

diagrams/ASGs via permutation of each vertex’s indices.

2. Algebraically evaluate each diagram as usual,! except that the factor of 2 for closed

loops is replace by an unrestricted sum over o and 3 spin for each loop (with the same

18



spin for all indices in the loop). For open diagrams (amplitude equations), the spin of
external loops is fixed and determined by the spin of the corresponding amplitude to

be determined.

3. Replace each two-electron integral and double excitation amplitude by its THC-factorized
form. For open diagrams, additional collocation matrices are applied to the external
lines in order to form the fitting matrix which will be used to determine the core matrix

by least-squares fitting as in (3) and (4).

Computational Details

FIGURE 5. 2H-2-azabicyclo[1.1.1]pentane radical with solvation shell. Solvent waters are
numbered by center of mass distance from the solute.

Open-shell LS-THC-MP2a, -MP2b, and -MP3b were implemented in a development ver-

sion of CFOUR.®® We tested the accuracy of these methods on four types of test systems:
1. Linear alkyl radicals (H(CH,),*, n=1-20): Geometries were optimized at the
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Ficure 7. Ball-and-stick structure of 9-propyl-4,11-tridecadienoic acid with arrows pointing
to specific hydrogens referenced in the text.

B3LYP/def2-TZVP level with D3 dispersion correction,® 5% starting with synthetic

structures with Roc = 1.54 A, Reg=1.1 A, and tetrahedral angles.

2. Micro-solvated 2H-2-azabicyclo[1.1.1]pentane radical (Fig. 5): The aqueous
micro-solvation environment and solute radical geometry were determined from a short
QM/MM simulation (see ESI for details). Up to the 11 closest water molecules (based
on the distance of the water oxygen atom to the closest solute atom) were retained in
the THC calculations. Solvation energies were computed without geometry relaxation

or counterpoise corrections.
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3. Glutathione (Fig. 6): A gas-phase structure for glutathione was optimized at the
B3LYP/def2-TZVP level with D3 dispersion correction. Heterolytic and homolytic
bond cleavage energies were calculated for each bond indicated in Fig. 6. Isolated bond
cleavage fragments were re-optimized at the same level of theory. The fragment charges

after heterolytic cleavage were assigned based on the lowest-energy configuration.

4. 9-propyl-4,11-tridecadienoic acid (Fig. 7): An initial structure was obtained at
the same B3LYP/def2-TZVP level with D3 dispersion correction, as well as radical
and ionic structures produced by removing, in turn, each hydrogen atom indicated in
Fig. 7 followed by reoptimization. We also generated 24 distinct conformations using
the FRee Online druG conformation generation (FROG) tool.?® We then removed the
tertiary hydrogen (#5) from each conformation and reoptimized using B3LYP /def2-
TVZP.

All B3LYP geometry optimizations were performed with Q-Chem.? For all THC calcu-
lations, we used the cc-pVDZ basis set,®” density fitting with the cc-pVDZ-RI auxiliary basis
set, 5% and SG0% as the parent grid. The parent grid was pruned as in Ref. 20, based on a
numerical cutoff € which was varied from 107! to 10~ in each experiment. An unrestricted
Hartree—Fock (UHF) reference was used in all cases.

In most cases, spin contamination of the UHF reference was negligible (< 5%), although
certain systems (e.g. some radical bond-breaking fragments of glutathione and the vinylic
tridecanoic acid radical) exhibit moderate spin contamination, with values of (S2) as high as
0.99. We specifically avoid the use of a restricted open-shell Hartree-Fock (ROHF') reference,
as these systems provide a test case for how the THC approximation is affected by spin

contamination.
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Results

Size-extensivity of the error
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FIGURE 8. Absolute energy errors for open-shell linear alkyl radicals, H(CH;),,*. The abso-
lute value of the per-electron error between the THC and corresponding DF-MPn calculation
is plotted for (a) the total LS-THC-MP3b correlation energy, which is the sum of (b) the
LS-THC-MP3b third-order correction and (c) the LS-THC-MP2b correlation energy, and
finally (d) the LS-THC-MP2a correlation energy. € is the Cholesky decomposition cutoff
parameter when pruning the grid, varying logarithmically from 107! to 10~* in steps of 0.2
log units.

We first examine the error of the THC approximations compared to their density-fitted
counterparts for linear alkyl radicals in order to correlate absolute energy errors with system
size. Fig. 8 gives the THC error per correlated electron. THC calculations with a range of
grid cutoff parameters, €, were performed in order to examine the dependence of the error

with grid size (a smaller € results in a larger grid and should yield a smaller error). The error

per electron quickly reaches an approximately constant value, whether for the total MP3
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correlation energy (Fig. 8a), the MP2 correlation energy (Fig. 8c,d), or the MP3 correction
by itself (Fig. 8b). The latter contribution is the most irregular, perhaps due to its smaller
magnitude and sensitivity to the virtual-virtual grid represented by X.

Notably, the error for LS-THC-MP2a is much smaller than for LS-THC-MP2b as pre-
viously observed in the closed-shell case. As the total LS-THC-MP3b correlation energy
includes an LS-THC-MP2b contribution, this error is in fact dominated by the MP2 part,
with the MP3 correction error being a minor part for most reasonable choices of €. In each
case, the asymptotic error per electron decreases roughly linearly with respect to € (note that
the € values are chosen on a log scale, and the y-axis is also logarithmic). Certain narrow
ranges of € significantly depart from this trend, e.g. € ~ 10712 in Fig. 8a or € ~ 10730 in
Fig. 8d. These irregularities occur due to a sign change in the error.

Typical density-fitting errors for DF-MP3 seem to be approximately 15 pEy /e~ based
on previous experiments.?! This indicates that the LS-THC-MP2b errors are comparable for
€ ~ 10732, or even earlier near ¢ ~ 1072 if the LS-THC-MP2b contribution is replaced by
LS-THC-MP2a. These results confirm the size-extensivity of open-shell LS-THC-MPn as
was observed for the closed-shell variant. Typical per-electron errors are also similar for the
closed- and open-shell THC methods; e.g. for CgHig/CgHy7* at € = 10724 we find errors of
1.0/0.35 uEy /e~ (MP2a), 102/105 pEy /e~ (MP2b), and 6.9/8.7 pEy, /e~ (MP3b correction),
respectively. We also observe, as for closed-shell THC, a “threshold” effect where convergence
of the incremental error to the asymptotic value is only reached for a sufficiently long chain.
This effect diminishes with looser cutoff values (smaller grids), suggesting a saturation of

the orbital pair space for smaller systems.

Radical micro-solvation energies

We next examine the error of the THC approximations for 2H-2-azabicyclo[1.1.1]pentane
(ABP) in order to study how an increase in solvation shell size impacts solvation energy

errors. This is an important test given that subsequent solvent waters will contribute very
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FIGURE 9. Errors in incremental solvation energy for 2H-2-azabicyclo[1.1.1]pentane in an
explicit water solvation environment. From 1 to 11 waters are added in the order indicated
in Fig. 5. See text for details.

different physical interactions to the total solvation (interaction) energy. For example, the
5th and 7th waters added (see Fig. 5) interact directly with the radical center, and the 7th
water at least forming a hydrogen bond with the amino nitrogen. Other waters interact via
weaker electrostatic interactions or van der Waals interactions and instead hydrogen bond
with other solvent molecules (e.g. the 6th, 8th, and 9th waters), and some more distant
waters do not seem to form any strong interactions, at least with other fragments included
in the present calculations (e.g. the 10th and 11th waters). However, the errors due to THC,

presented as percentages of the incremental solvation energy,

Eruc—mp3(ABP - (Hy0),) — Ergc—mp3s(ABP - (H20),,—1)

WAE, = |1 —
! Epp-mp3s(ABP - (H20),,) — Epp—pp3(ABP - (H20),,—1)

x 100%  (33)
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do not show any clear trend with the strength or type of solvent interaction. Rather, the
errors are relatively consistent at moderate cutoff values (0.001 < € < 0.01). At or below
€ = 10725, errors are consistently less than 5%. The absence of a trend or significant outliers
indicates a relative insensitivity of THC-MP3 to different types of interactions, and critically,
no bias of the open-shell THC-MP3 method toward or against interactions involving unpaired

electrons.

Bond cleavages and radical stability

We evaluate the robustness of the THC approximation with respect to various bond cleav-
age points and charge/spin separation by examining 13 different bond dissociation energies
(BDEs) for the glutathione system (Fig. 6) and 5 different hydrogen atom abstraction (HA)
energies for the tridecadienoic acid system (Fig. 7).

We only consider bond breakages in glutathione between backbone C—C or C—N bonds,
as well as the C—S bond in the cysteine peptide. For each bond cleavage, we calculate both a
homolytic (AB — A®+B®) and a heterolytic (AB — A~ +B" or AB — A" +B~, whichever
results in more stable products) bond dissociation energy.

The homolytic and heterolytic bond dissociation energy errors with respect to standard
density fitting calculations are shown in Fig. 10a. Overall, the THC approximation produces
an accurate bond cleavage energy (around 1 kcal/mol) for most of the bond-breaking cases
at reasonable selections of € (e < 0.01). Additionally, the error differences between the
homolytic (solid lines) and heterolytic (dashed lines) bond cleavage energy are of similar
magnitude for each value of €, and at tighter thresholds follow the same trend towards lower
errors for bonds A, F, and L. These bonds cleave the thiol or other terminal functional
groups—because of the “threshold” effect noted above, these bond dissocations result in the
lowest total error due to near-saturation of the THC grid for the smaller fragment. The
closed-shell calculations result in smaller errors for these three cases, perhaps indicating

a slight difference in how quickly the grid saturates in the open- and closed-shell cases.
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However, “moderate” cutoff values do not show such a trend and instead provide a rather
consistent magnitude of error irrespective of the bond being broken.

The error in the difference between the homolytic and heterolytic BDEs (ABDE) were
also computed and are depicted in Fig. 10b. Across the various bonds, errors for this relative
measure are somewhat lower than for the BDEs themselves. This indicates a reliable error
cancellation between the open- and closed-shell LS-THC calculations on similar systems (note
that the geometries of the products were optimized separately for hetero- and homolytic
cleaveages).

In Fig. 11, bond dissociation energy errors are shown for H{™*~} abstraction from 9-
propyl-4,11-tridecadienoic acid. For the closed-shell products (dashed lines; these are all
cationic with the exception of the carboxylate) there does seem to be a trend which tends
to result in lower errors for the more stable cationic products (substituted alkyl radicals
and especially doubly-bonded sp? cationic centers). This may result from enhanced error
cancellation between more similar geometries where re-hybridization is incomplete. The
errors for radical open-shell products (solid lines) are more consistent, perhaps again due to
reduced rehybridization even in the primary and secondary carbon radicals. Fig. 11b gives
the error in the relative energy between the charged and neutral abstraction products. As
for glutathione, there is some cancellation of errors for, in particular for the carboxyl and

vinyl abstractions where the geometric changes are more similar.

Conformational energy ordering

Again focusing on 9-propyl-4,11-tridecadienoic acid, we examine the relative energies of
24 distinct conformations of the 9H hydrogen abstraction (open-shell radical) and hydride
abstraction (cationic) products. In Fig. 12, the errors in relative conformational energies due
to THC are presented for both types of products. While it is clear that there is not a strong
correlation of the errors between the neutral radical and charged closed-shell products (c.f.

the lack of any distinct trend in the open-shell errors with respect to the closed-shell errors
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ordered from smallest to largest at ¢ = 10™*). However, both the closed- and open-shell errors
seem to span almost identical ranges for each value of e. The smallest and largest errors, even
at a tight tolerance of € = 107, seem to span at least an order of magnitude, although there
does not seem to be a trend of the size of the error with any chemically-relevant features of
the individual conformations. The fact that the smallest errors are significantly lower than
observed in, for example, Fig. 10 may then simply indicate fortuitous error cancellation which
is not reproducible between the radical and cationic structures. Since the final structures in
these cases were optimized independently (despite starting with the same algorithmically-

generated guess structure), this is perhaps not surprising.
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Computational scaling

In the above sections, we have shown that LS-THC-MP3 can achieve below 1 kcal/mol
error with moderate cutoff values (¢ < 107%2). It is equally important to demonstrate the
scaling reduction that can be achieved by the LS-THC method. To that end, we report the
timings of both DF-MP3 and LS-THC-MP3 methods for linear alkyl radicals with varying
cutoff parameters (€), analyzed in Section Size-extensivity of the error. The timings include
the calculation of the MP2 and MP3 correlation energy only. As can be seen in Fig. 13,
is clear that LS-THC-MP3 achieves reduced scaling compared to DF-MP3 (see inset for
measure scaling), and reaches a crossover at around 70 correlated electrons with a cutoff
of ¢ = 10722, Note that the DF-MP3 scaling in this regime is actually dominated by the

formation of the (ab|cd) integrals which scales as O(n®), and other lower-scaling operations.

Conclusions

The LS-THC method has proven to be an efficient approximation of both the ERI and
doubles amplitudes tensors with high accuracy and low scaling for closed-shell systems.
Here, LS-THC was implemented for MP2 and MP3 calculations on open-shell systems and
was evaluated with various test systems: linear alkyl radicals, a micro-solvated amine radi-
cal, heterolytic and homolytic bond cleavages in glutathione, and proton/hydrogen/hydride
abstractions as well as conformational differences of 9-propyl-4,11-tridecadienoic acid. A

number of trends were observed:

1. Similar to the RHF implementation, the LS-THC-MPn errors scale linearly with system
size, after a critical “threshold” molecular size is reached (this effect is diminished for
looser cutoff values). Errors for LS-THC-MP2a are essentially negligible, while errors
in LS-THC-MP3b are dominated by the MP2b contribution. Remaining errors in only

the LS-THC-MP3b contribution are reasonably small with a double-zeta basis set.

2. Reliable error cancellation is evident in almost all calculations of energy differences.
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Ficure 13. Timings for DF- and LS-THC-MP3 methods for linear alkyl radicals,
(H(CHy),*, n=5-20) with the cc-pVDZ basis set. Both axes are on a logarithmic scale
to highlight the polynomial scaling. All calculations were performed using a single node
with 2x Intel Xeon E5-2695v4 CPUs and 256 GiB of memory; OpenMP was used to paral-
lelize the calculation over all 36 cores. The inset shows the measured scaling of DF-MP3 and
LS-THC-MP3 with € = 10722 obtained via linear regression of the timings for n = 10-—20.

The greatest degree of error cancellation occurs when the systems are most chemically
similar, resulting fragments are unequally distributed in size, or potentially when more
stable products are produced. Errors in relative energies are typically below 1 kcal /mol

for moderate cutoff values in the range e < 10722,

3. The errors produced for open-shell systems are highly similar to the errors produced
for chemically similar closed-shell systems. In some cases, error cancellation can also

be exploited between open- and closed-shell processes, such as in the relative BDEs of

31



heterolytic and homolytic bond cleavages.

4. The error of the open-shell LS-THC-MPn methods is highly insensitive to the specific
nature of the chemical structure, type of interactions, and even moderately severe spin

contamination of the reference wavefunction.

In summary, open-shell THC seems to be equally as applicable as closed-shell THC and

C 60,61

multi-reference TH The diagrammatic method of derivation presented also enables

the implementation of open-shell THC methods with little additional effort compared to the
closed-shell version, and a highly similar code structure which should enable maintainable,

efficient codes.
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