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A B S T R A C T   

Species distribution models (SDMs), which relate recorded observations (presences) and absences or background 
points to environmental characteristics, are powerful tools used to generate hypotheses about the biogeography, 
ecology, and conservation of species. Although many researchers have examined the effects of presence and 
background point distributions on model outputs, they have not systematically evaluated the effects of various 
methods of background point sampling on the performance of a single model algorithm across many species. 
Therefore, a consensus on the preferred methods of background point sampling is lacking. Here, we conducted 
presence-background SDMs for 20 vertebrate species in North America under a variety of background point 
conditions, varying the number of background points used, the size of the buffer used to constrain the back
ground points around the occurrences, and the percentage of background points sampled within the buffer 
(“spatial weighting”). We evaluated the accuracy and transferability of the models using Boyce index, overlap 
with expert-generated range maps, and area overpredicted and underpredicted by the SDM (and AUC for 
comparability with other studies). 

SDM performance is highly dependent on the species modelled but is affected by the number and spread of 
background points. Models with little spatial weighting had high accuracy (overlap values), but extreme 
extrapolation errors and overprediction. In contrast, SDMs with high transferability (high Boyce index values and 
low overprediction) had moderate-to-high spatial weighting. These results emphasize the importance of both 
background points and evaluation metric selection in SDMs. For other, more successful metrics, using many 
background points with spatial weighting may be preferred for models with large extents. These results can assist 
researchers in selecting the background point parameters most relevant for their research question, allowing 
them to fine-tune their hypotheses on the distribution of species through space and time.   

1. Introduction 

The geographic range of a species is a crucial aspect of its ecology, 
reflecting how the species interacts with landscapes, climates, and bio
logical communities (Borges et al., 2019; Holt, 2003; Sonne et al., 2016). 
Understanding, modelling, and predicting species ranges are integral to 
our understanding of community ecology, biogeography, and ecosystem 
functioning (Elith et al., 2010). Species Distribution Models (or SDMs) 
are a key innovation used in the evaluation and prediction of species 
ranges. SDMs relate species location data (known presences and/or 
known absences) to information about the environmental characteristics 
at those locations (Elith and Leathwick, 2009). High performance 

computing and easily accessible data have led to the rapid proliferation 
of SDM methods and techniques, in part due to the development of 
easy-to-use programs that conduct such modelling (for example, Max
Ent; Phillips et al., 2006, biomod; Thuiller et al., 2009, ecospat; Di Cola 
et al., 2017). 

In particular, presence-background SDMs are widely used in ecology 
and conservation. Instead of requiring true absence data, which are 
challenging to acquire and often highly inaccurate (Jarnevich et al., 
2015; Lobo et al., 2010), presence-background SDMs only require 
occurrence points and a set of generated background or pseudo-absence 
points (but see Sillero and Barbosa, 2021 on the distinction between the 
two). Often, these background points may sample the climates 
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“available” to a species or the climate throughout the study area of in
terest (Grimmett et al., 2020). Presence-background SDMs are increas
ingly used to verify the current distribution of a species on a landscape 
(e.g., Stirling et al., 2016), to assess and highlight areas of particular 
conservation importance (e.g., Sarkar et al., 2009), to predict species’ 
future ranges under dynamic change (e.g., Schloss et al., 2012), and to 
understand the basic ecological drivers of species ranges through time 
(e.g., Fenker et al., 2020), amongst many other topics. 

Because of the preponderance of research applying presence- 
background SDMs (Cobos et al., 2019), many researchers have exam
ined the effects of varying model inputs on model accuracy (The ability 
of a model to distinguish between areas of high and low habitat suit
ability in the training domain; Elith et al., 2010; Phillips et al., 2009; 
Radosavljevic and Anderson, 2014) and transferability (the ability of a 
model trained in one place or time to predict distributions in a different 
place or time; Iturbide et al., 2018; Rousseau and Betts, 2022). Much 
effort has been dedicated to evaluating the effects of occurrence and 
background points on presence-background models, finding that the 
density and arrangement of both occurrence and background points 
affects model results and transferability (Barbet-Massin et al., 2012; 
Chefaoui and Lobo, 2008; Fourcade et al., 2014; Iturbide et al., 2018, 
2015; Liu et al., 2019; Wisz et al., 2008; Grimmett et al., 2020). For 
example, spatial and environmental bias in occurrence points including 
those downloaded from online repositories like GBIF may compromise 
the ability of an SDM to fully capture either the fundamental or realized 
niche of a species (Boakes et al., 2010; Fourcade et al., 2013; Ruiz-Gu
tiérrez and Zipkin, 2011; Varela et al., 2014; Yackulic et al., 2013). 
Spatially and environmentally subsampling occurrence points before 
modelling has quickly become standard practice for mitigating these 
biases (Castellanos et al., 2019; Varela et al., 2014). 

In contrast to occurrence points, which are usually provided to the 
SDM (either from online repositories or from field observations), back
ground points are usually generated and assembled de novo in presence- 
background models. Because of this, the published literature employs 
many different, often contradictory, methods of background point 
generation (Barbet-Massin et al., 2012). For example, the number of 
background points varies widely across SDM research, despite their 
clear influences on model results (Fourcade et al., 2014). Some research 
uses “large number” strategies, selecting a large, arbitrary number of 
background points to generate (e.g., Bennett et al., 2019 uses 10,000). 
In contrast, other studies (especially those modelling multiple species) 
use a “multiplier” strategy, where the number of background points is 
tied to the number of occurrence points based on an (often small) 
multiplied coefficient (e.g., 10 times the number of occurrences, Che
faoui and Lobo, 2008). These varying methods exist despite research 
indicating that the number of background points used significantly af
fects the accuracy of presence-background SDMs (Barbet-Massin et al., 
2012; Chefaoui and Lobo, 2008; Grimmett et al., 2020; Lobo et al., 2010; 
Phillips et al., 2009). The spatial extent of the training area (i.e., where 
background points are sampled from) similarly varies across SDM 
studies. Often, the training extent of an SDM is defined by political, 
geographic, or ecological regions, like the Cerrado in South America 
(Fenker et al., 2020) or Great Britain (Holloway et al., 2016). Other 
studies instead limit SDMs to match the expected range of the species of 
interest, using buffers of variable widths around the species occurrences 
or a bounding polygon (Stirling et al., 2016; VanDerWal et al., 2009). 

Finally, species occurrences are often spatially biased towards areas 
that are easily accessible by humans (Kramer-Schadt et al., 2013; Phil
lips et al., 2009). Therefore, randomly sampling background points 
across the entire study region may provide inaccurate estimates of 
habitat suitability, especially in fragmented landscapes (Ruiz-Gutiérrez 
and Zipkin, 2011). Environmentally-subsampling the occurrences and 
background points reduces the spatial bias inherent in the occurrences 
(Castellanos et al., 2019; Varela et al., 2014), as does sampling back
ground points closer to the occurrences, e.g., from within a buffer 
around them (Barve et al., 2011; Fourcade et al., 2014; M. Iturbide et al., 

2018; Lobo et al., 2010). However, spatially-constrained background 
points are susceptible to overfitting and extrapolation, especially when 
transferring an SDM trained on a small spatial extent to a larger one 
(Radosavljevic and Anderson, 2014). In fact, other researchers have 
employed the opposite strategy, sampling background points exclusively 
from outside the buffer around the occurrences (e.g., the SRE method in 
the “biomod2” R package Thuiller et al., 2009). To avoid these extrap
olation issues, Shipley et al. (2022) developed a new strategy (hereafter 
called “spatial weighting”), whereby a certain percentage of background 
points are sampled from within a buffer, and the rest are sampled from 
across the entire study region. Anecdotal evidence suggests that spatially 
weighting background points leads to better-performing models, but this 
hypothesis has not yet been formally tested (Shipley et al., 2022). 

Because each researcher has their own preferred methods of gener
ating background points, little research has compared different methods 
of background point sampling on real study data using the same 
modelling parameters and occurrence point sampling. As a result, a 
strong consensus has yet to be reached on the best practices of back
ground point sampling, especially when conducting multi-taxon 
research across large geographical extents (Barbet-Massin et al., 2012; 
Fourcade et al., 2014; M. Iturbide et al., 2015; Lobo et al., 2010; 
Machado-Stredel et al., 2021; Senay et al., 2013). 

In this study, we evaluate different methods of background point 
selection, examining how the number of background points, the size and 
shape of the geographic area available to a species, and the spatial 
weighting affect presence-background SDM results. We systematically 
vary these model inputs and examine their effects on the modelled 
ranges of 20 vertebrate species and 6 simulated species across North 
America (Table 1). These methods, introduced in the R package meg
aSDM (Shipley et al., 2022), allow for increased flexibility in the degree 
of spatial bias of the background points but have not yet been compre
hensively examined in the existing literature. Then, we evaluate the 
accuracy of these models using multiple quantitative metrics and 
examine the background point conditions under which 
presence-background models perform best. 

We expect that sampling background points randomly across the 
study region will over-predict species’ presences near the occurrence 
points (see Chefaoui and Lobo, 2008), but we expect that limiting the 
sample of the background point to buffers around the occurrence points 
will lead to over-prediction in areas farther from the occurrence points. 
Fourcade et al. (2014) suggests that the area where the background 
points are selected should be biologically meaningful. We hypothesize 
this will occur with small to moderate sized buffers, as most species are 
unable to access the entire study region of North America. Finally, 
following the results of Barbet-Massin et al. (2012), we hypothesize that 
the best performing models will have a large number of background 
points. 

2. Methods 

2.1. Data collection 

All analyses were conducted using R v. 4.0.5 (R Core Team, 2021), 
using the package megaSDM (Shipley et al., 2022). megaSDM uses the 
MaxEnt algorithm (from the Java script software provided by Phillips 
et al., 2004) to model species distributions across a variety of dynamic 
conditions. This package is efficient at handling many species, time 
periods, and use cases simultaneously, and it natively incorporates 
environmental subsampling of both occurrences and background points 
as a way to partially mitigate spatial and environmental bias (Shipley 
et al., 2022). For a diagram of our modelling workflow, see Fig. 1. A 
short glossary of the data required for species distribution modelling 
with megaSDM is provided in Supplementary Appendix 1. 

We selected 20 species to model from sets of species that had been 
grouped according to geographic range size, taxonomy, and ecology 
(Table 1). We obtained species observation data from GBIF 〈http:// 
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www.gbif.org〉 and manually vetted the occurrences for geographical 
and observational accuracy. For a detailed description of the vetting 
procedures, see Supplementary Appendix 7. We limited the training 
extent of our study to North America (−152◦ to −58◦ longitude, 7◦ to 
68◦ latitude), and projected the models to the extent of the continental 
United States (−125◦ to −65◦ longitude, 25◦ to 50◦ latitude). We chose 
to standardize the extent of the study region in order to compare models 
across species and to determine the effects of background point methods 
on both model accuracy and transferability when decoupled from study 
extent (Sarkar et al., 2009). However, because the extent of the study 
area may influence model evaluation (Lobo et al., 2008; VanDerWal 
et al., 2009), we additionally modelled the species with varying back
ground extents based on bounding boxes around each of the background 
buffers used in the models. We then compared the results of these 
varying-extent models with the fixed-extent models (see Varying-Extent 
Models in the Results and Supplementary Appendix 4). 

We used four bioclimatic variables obtained from WorldClim (Fick 
and Hijmans, 2017) at 2.5-minute resolution, relating to the mean and 
variance of temperature and precipitation across North America: Mean 
Annual Temperature (Bio1), Mean Annual Precipitation (Bio12), Tem
perature Annual Range (Bio7), Coefficient of Precipitation Seasonality 
(Bio15). We limited our modelling to these four climatic variables 
because of their simple biological and climatic interpretations and to 
avoid the effect of predictor collinearity on model transferability (Feng 
et al., 2019). The temperature annual range and mean annual temper
ature were correlated (Kendall’s τ = −0.62), because of the cold, highly 
seasonal climates of central and northern Canada (which were only 
included for training the models). All other variables were only 
moderately correlated to each other (Kendall’s τ < 0.41). Other envi
ronmental variables are likely to be influential in certain species dis
tributions (Williams et al., 2012; Petitpierre et al., 2017; but see Bucklin 
et al., 2015; Braunisch et al., 2013). However, we held these four cli
matic variables constant across all species so that we can compare the 
models made from different species without introducing a potential 
masking variable and to the reduce the chances of 
over-parameterization for any one model. We accounted for the 
differing effects of environment on each species after generating the 
SDMs (see Species Normalization). 

Occurrence points are often spatially and environmentally biased 
because of study design and non-random sampling (Fourcade et al., 
2014). These observational biases may in turn lead to biased or inac
curate models of species distributions (Yackulic et al., 2013). To limit 

environmental and spatial biases in the occurrence points, we used the 
methods developed by Varela et al. (2014) and expanded by Castellanos 
et al. (2019), which environmentally filters occurrence data into a set 
number of bins, and removes points that are environmentally clustered. 
Models constructed using environmental subsampling often outperform 
those that do not (Castellanos et al., 2019; Fourcade et al., 2014; Varela 
et al., 2014). We used 25 bins per environmental variable for the envi
ronmental filtering. 

In addition to the real observations of the 20 North American 
vertebrate species, we simulated 6 virtual species to evaluate the various 
background point methods. The virtual species were simulated using the 
“virtualspecies” package in R (Leroy et al., 2016), using the same four 
bioclimatic variables we include in the real-species models to create 
response curves and to identify areas of suitability. These virtual species 
occurrences are intrinsically absent the spatial, environmental, and 
sampling biases that come with real occurrences, and therefore can 
provide additional information on the performance of the different 
techniques of background point sampling we examine. Although these 
occurrence points are not environmentally biased, we environmentally 
subsampled the virtual species following the same methods as the real 
species for consistency. See the supplementary data on FigShare 
(https://figshare.com/account/items/24680163) for the characteristics 
of each virtual species. 

2.2. Background points and modelling 

We manipulated three variables governing the prevalence and dis
tribution of background points in the model: the number of background 
points, the size of the buffer within which background points may be 
generated (hereafter, buffer size), and a new variable describing the 
proportion of background points sampled from within the buffer 
(hereafter, spatial weighting). Each variable had five treatment levels 
(see Table 2), and for each pairwise combination of the three variables 
(n = 125), we generated sets of background points for each species. 

2.3. Number of background points 

The first variable we manipulated was the number of background 
points used in the model. Despite the evident effects of background point 
sample size on SDM performance, species distribution modelers 
continue to use a wide variety of background point numbers and den
sities. We evaluated five different treatments for the number of 

Table 1 
List of species used in the analysis, along with the number of occurrence points that remained after vetting, the taxonomic class of the species, and the size of the IUCN 
range polygon in km2. Species are ordered according to the number of occurrence points after environmental subsampling.  

Species Common Name Occurrence Points Class Range Size (km2) 

Canis latrans Coyote 5327 Mammal 9,560,176 
Procyon lotor Raccoon 5038 Mammal 8,647,235 
Trachemys scripta Pond slider 2776 Reptile 2,853,727 
Anaxyrus fowleri Fowler’s toad 2423 Amphibian 2,013,427 
Pantherophis alleghaniensis Eastern rat snake 1922 Reptile 769,274 
Ensatina eschscholtzii Ensatina 1646 Amphibian 322,190 
Kinosternon subrubrum Eastern mud turtle 1312 Reptile 1,699,848 
Cryptotis parva North American least shrew 840 Mammal 3,591,180 
Scaphiopus holbrookii Eastern spadefoot 707 Amphibian 1,276,964 
Malaclemys terrapin Diamondback terrapin 497 Reptile 302,835 
Desmognathus quadramaculatus Blackbelly salamander 496 Amphibian 84,675 
Necturus maculosus Common mudpuppy 419 Amphibian 1,880,503 
Deirochelys reticularia Chicken turtle 416 Reptile 999,813 
Zapus trinotatus Pacific jumping mouse 342 Mammal 162,699 
Microtus townsendii Townsend’s vole 235 Mammal 192,001 
Thomomys monticola Mountain pocket gopher 173 Mammal 52,769 
Sceloporus woodi Florida scrub lizard 140 Reptile 77,269 
Callospermophilus saturatus Cascade golden-mantled ground squirrel 84 Mammal 73,997 
Arborimus pomo Sonoma tree vole 60 Mammal 21,852 
Plethodon kentucki Cumberland Plateau salamander 36 Amphibian 29,151  
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background points: 5000, 10,000, 1 × (the number of occurrences), 5 ×
(the number of occurrences), and 10 × (the number of occurrences). 
These five treatments were chosen to examine the impact of the number 
of background points on the resulting model. The two fixed-number 
treatments (5000, 10,000) examine how the absolute number of back
ground points impacts model performance (Barbet-Massin et al., 2012). 
The three variable-number treatments (1x, 5x, 10x) examine the impact 
of using background points proportional to the number of occurrences (i. 
e., varying prevalence) at a low, medium, and high number of back
ground points (Chefaoui and Lobo, 2008). 

2.4. Buffer size 

The size of the buffer from which the spatially-weighted background 
points are sampled influences the range of environments a species could 

live in but does not. Often, an arbitrary, fixed-width buffer is selected for 
background point generation (e.g., 100 or 500 km). However, the 
habitat available to a given species depends on the ecology of the species 
itself, and therefore the ideal buffer width may vary according to the 
species modelled. In this study, we compared two fixed-width buffers 
(widths of 100 and 200 km) to three novel methods that vary the size 
and shape of the buffer based on the species itself. First, we used meg
aSDM’s functionality to tailor the buffer to the density of occurrences for 
each species. The width of the buffer was set proportionally to the 95% 
quantile of the nearest neighbour distance for each point (Shipley et al., 
2022). Therefore, species with more widely distributed occurrences that 
were observed more sparsely across the landscape will have a wider 
background buffer than those with observations tightly clustered in 
space. 

In addition to the fixed-width and variable buffer sizes, we used two 

Fig. 1. a) A diagram of our workflow, including the inputs we varied to create different background point distributions (Table 2), the environmental subsampling to 
reduce spatial bias in the occurrence and background points (Castellanos et al., 2019; Varela et al., 2014), and the five evaluation metrics we used after generating the 
model (Table 3). b) Conceptual figure describing the differences between the three evaluation metrics we used that compare the modelled species distribution to a 
species range based by expert opinion (IUCN, 2020). Spatial overprediction is the area predicted by the SDM but not covered by the expert range. Spatial over
prediction is the area predicted by the expert range but not covered by the SDM. Overlap is the area covered by both the SDM and expert range. Percent overlap is 
calculated relative to the expert range (Overlap area / IUCN range area) and is therefore mathematically related to spatial underprediction. 

Table 2 
Table of the background point parameters we varied to generate sets of background points to be used in the SDMs. A description of the parameter modified, the values 
tested, and hypothesized “preferred values” of the parameters for high model performance are provided.  

Name Description Values Tested Preferred Values 

Number of 
Background 
Points 

The number of pseudo-randomly generated background 
points generated by megaSDM and used in model 
evaluation 

1000, 5000, 10,000, 1 * number of 
occurrences, 5 * number of occurrences 

Varies (Barbet-Massin et al., 2012, etc.) 

Buffer Size Size of the buffer from which background points may be 
preferentially sampled. Buffer size must be ≥ 0 and may 
be any positive number. 

100 km, 200 km, 95% quantile of nearest 
neighbour distance, IUCN range, WWF 
ecoregion boundary 

Not recommended to use very small (close to 0) 
or very large buffers (Barve et al., 2011;  
Fourcade et al., 2014). 

Spatial Weighting Value between 0 and 1 determining the proportion of 
background points sampled within the buffer. 

0, 0.25, 0.5, 0.75, 1 Unknown (Shipley et al., 2022)  
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techniques that incorporate ecologically defined buffers for our models. 
In theory, the spatially constrained background points should define an 
“accessible area” for the species—where a species could theoretically 
disperse but does not (Barve et al., 2011; Machado-Stredel et al., 2021). 
These areas are predominantly defined by their ecology, and as such 
using biologically defined regions to constrain background points may 
lead to a more accurate assessment of this accessible area. Using World 
Wildlife Fund ecoregions (Olson et al., 2001) we developed a new 
method that generates background buffers from the combined extent of 
all ecoregions that contained at least one occurrence point of the species. 
For our final buffer treatment, we used the IUCN expert-generated range 
of the species (IUCN, 2020). IUCN ranges are known to overestimate the 
extent of occupancy of a species, especially when compared to survey 
data (Hurlbert and Jetz, 2007; Hurlbert and White, 2005), but they es
timate the species’ extent of occupancy and the area potentially acces
sible to a species (Barve et al., 2011; Broekman et al., 2022). Therefore, 
they may provide a suitable extent from which to generate background 
points. For the six virtual species, we generated fake IUCN ranges by 
simplifying the presence-absence rasters to 50-km resolution and vec
torizing them (see supplementary data on FigShare). 

2.5. Spatial weighting 

To avoid overfitting and over-extrapolation from spatially-weighted 
background points, some researchers might choose to sample back
ground points from both within and outside of an occurrence point 
buffer, creating a version of an a priori bias grid (Phillips et al., 2009). 
Spatial weighting is a technique to preferentially bias background points 
inside of a given buffer, without exclusively sampling from that area 
(Shipley et al., 2022). In this study, spatial weighting ranges from 0 to 1, 
where 0 has the background points distributed completely randomly and 
1 exclusively samples the background points from within a given buffer. 
Numbers between 0 and 1 describe the proportion of background points 
sampled exclusively within the buffer (as opposed to being randomly 
distributed across the whole study area). We evaluated five different 
spatial weighting proportions: 0, 0.25, 0.5, 0.75, and 1, to test how the 
varying levels of spatial bias in background points affects the model 
performance. 

Once we generated the background point sets for each species and 
treatment combination, we environmentally subsampled each set of 
background points in the same way as the occurrence points. Using each 
of the background point sets for each species, we modelled the species 
distributions using four replicates in MaxEnt, randomly subsampling the 
training occurrence points each time to 80% of the original data and 
evaluating the model on the remaining 20%.  We set the regularization 
to 1 for all replicates of all models; although optimizing the regulari
zation parameter for each species leads to better performing individual 
models (Merow et al., 2013), we kept it constant to more effectively 
compare model performance across species. 

2.6. Model evaluation 

How to accurately evaluate the quality of a species distribution 
model is subject to ongoing discussion, with a variety of different 
evaluation methods used (e.g., Leroy et al., 2018). No one evaluation 
method perfectly describes a model’s fidelity to actual biogeographic 
patterns. Therefore, to capture a variety of model behaviors and to allow 
comparability with a variety of other studies, we used five distinct 
evaluation metrics. 

AUC (area under the receiver operating curve) values were long 
considered the standard for characterizing SDM, but are nevertheless 
unreliable indicators of a model’s accuracy, especially when evaluating 
presence-background models (Lobo et al., 2008). Ranging from 0 to 1, 
the AUC evaluates the sensitivity (percent of correctly predicted pres
ences) and specificity (percent of correctly predicted absences) of the 
model (Table 3). However, the receiver operating curve was designed 
for true negatives instead of background points and therefore provides 
undue weight to specificity when, in reality, a species cannot be defin
itively absent from a background point (Lobo et al., 2008). In addition, 
AUC values are influenced by the geographical extent of the model and 
the proportion of background points to presence points (Lobo et al., 
2008; Yackulic et al., 2013). Therefore, despite their ubiquity in the 
presence-background SDM literature, AUC values do not adequately 
confer information about the transferability of the model, nor does it 
measure overfitting in areas outside of the training domain. In order to 
compare our results with the previous literature (most of which uses 
AUC), we calculated and averaged the test AUC values (from the 20% of 
data held back) for each model replicate, but we limit discussion of the 
results of the models when evaluated via AUC to Supplementary Ap
pendix 3. 

One common alternative for presence-background models is the 
Boyce index, which measures the ratio of predicted presences to ex
pected presences, based on the continuous habitat suitability generated 
by the model (Boyce et al., 2002; Hirzel et al., 2006). In contrast to AUC, 
the Boyce index is not dependent on absences and may therefore be less 
strongly influenced by the number and distribution of background 
points than AUC values are (but see Jiménez and Soberón, 2020). 
Furthermore, the Boyce index measures the model’s habitat suitability 
after it has projected into geographic space, making it an appropriate 
method for evaluating the model’s transferability outside of its training 
extent (e.g., Petitpierre et al., 2017). 

The Boyce index measures how well the model predicts presences 
and absences given the data provided to it. However, because we are 
interested in not only the discriminant ability of the model within its 
training extent, but also its transferability in geographic space, we 
considered three additional evaluation methods that directly compare 
the SDMs and the expert-generated range maps from IUCN. These range 
maps are coarse-grained and likely overestimate species occupancy 
(Hurlbert and Jetz, 2007), but are less influenced by spatial and climatic 
bias than species observations, especially when the species has not been 
extensively sampled (Fourcade et al., 2013). In fact, Broekman et al. 
(2022) compared IUCN ranges with the GPS-tracked movements of 49 

Table 3 
Table of the accuracy metrics used to evaluate the generated SDMs. A short description of the metric and which values indicate higher-performing models are also 
provided. Although the results for AUC values are not reported in the paper itself, we include AUC here for completeness.  

Name Description Preferred Values 

AUC Value The area under the receiver operating curve. Ranges from 0 to 1, where 0.5 is a model that 
is no better than random and 1 is a perfectly discriminant model. 

Larger values. AUC values ≥ 0.7 are generally accepted as 
“good” models (e.g., González-Ferreras et al., 2016) 

Boyce Index The correlation between observed and expected frequencies of occurrence points based on 
area, ranging from −1 to 1 where 0 indicates a random model (Hirzel et al., 2006). 

Larger values 

Spatial 
Overprediction 

Total area (km2) of the SDM-generated range that falls outside of the bounds of the IUCN 
range map (see Fig. 1) 

Smaller values 

Spatial 
Underprediction 

Total area (km2) inside the IUCN range that the SDM range does not occupy (see Fig. 1) Smaller values 

Percent Overlap Proportion of the area within the SDM generated model that overlaps the IUCN range Larger values (close to 1)  
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terrestrial mammal species, finding high correspondence between the 
two estimates of species occupancy. Therefore, expert ranges may be 
suitable for evaluating model predictions. Following similar methods as 
Fourcade et al. (2013), we constructed binary presence-absence maps 
from the continuous habitat suitability maps generated from megaSDM, 
setting the threshold for the suitability values as the “test sensitivity plus 
specificity” value. This threshold was chosen because of its insensitivity 
to occurrence prevalence and its high sensitivity in common species (Liu 
et al., 2015). We then aggregated the four replicates to create a 
“consensus” distribution map. 

After constructing the binary distribution maps, we overlaid them 
with the IUCN expert generated range maps. From this overlay, we 
determined the percent of the IUCN range that overlaps with the 
modelled range (% overlap, used in Fourcade et al., 2013; Duan et al., 
2022), in addition to two metrics evaluating the mismatch between the 
IUCN and SDM ranges (spatial underprediction and overprediction; 
Fig. 1, Table 3). Spatial overprediction is the area included in the pro
jected SDM range that does not overlap the IUCN expert generated range 
map (i.e., a false positive, Fig. 1). In contrast, spatial underprediction 
highlights the area included in the IUCN range map not included in the 
modelled SDM range (i.e., a false negative, Fig. 1). To account for the 
relationship between species range size and underprediction (see Fig. 2), 
we additionally calculated the overprediction and underprediction as a 
proportion of the species IUCN range size (see Supplementary Appendix 
6). The% overlap metric measures the accuracy of the model within the 
expected species range, whereas the spatial overprediction and under
prediction metrics provide greater insight into the transferability of the 
model and its ability to correctly identify areas outside of the species 
range. To examine how the five evaluation metrics relate to each other, 
we conducted non-parametric correlations between each of them 
(Supplementary Appendices 2, 3, 4, 5). 

2.7. Species normalization 

Each species is influenced by a different suite of climate character
istics, leading to differences in model performance. To account for this, 
we normalized each evaluation metric by species, centring and scaling 
the evaluation metrics of each set of models to unit variance. Therefore, 
instead of an absolute measure of model performance, our evaluation 
metrics indicate model performance relative to the other models 
generated for that species. This normalization accounts for the effect of 
species identity on the evaluation results. It allowed us to find to the 
combination of background point variables that led to the most accurate 
models across all species, without being influenced by the specific 
ecology of the species. 

2.8. Random forests and grid graphs 

Once we evaluated and standardized the models, we assessed the 
importance of each of the three background point variables to the model 
accuracy. We then constructed random forests using the R packages 
“randomForest” (Liaw and Wiener, 2002) and “caret” (Kuhn, 2008), 
linking the evaluation metrics one at a time to the background point 
variables, taxon of the species, and species range size. Using the percent 
increase in mean squared error (%MSE), we evaluated the importance of 
each background point variable to the evaluation metric. To further 
remove the effects of taxon and species range size on the evaluation 
metrics, we incorporated the taxonomic class and the range size into 
each random forest model. Finally, we created graphs (henceforth, “grid 
graphs”; Fig. 4), to show visually how model accuracy was affected by 
treatment. The graphs show the average quantile of each normalized 
metric for each species, when one of the variables is held constant – a 
value of 1 indicates that the variable-treatment combination of interest 
leads to consistently high-performing models for that species, whereas a 
value of 0 means that the models consistently create inaccurate and 
non-transferrable species distributions. We created grid graphs for each 

Fig. 2. Boxplots showing the distribution of values for each evaluation metric by species. In total, 125 models were run for each species (5 treatments of 3 variables). 
Species are arranged from smallest range size (A. pomo) to largest range size (C. latrans). Arrows point towards better-performing models for each evaluation metric 
(i.e., higher Boyce index and % Overlap; lower spatial underprediction and overprediction). 
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treatment and variable combination, and for each evaluation metric. 

3. Results 

Overall, the accuracy of each model was highly influenced by the 
species modelled. All four evaluation metrics (Boyce index,% overlap, 
spatial underprediction, and spatial overprediction) varied significantly 
across species (Kruskal-Wallis tests, all χ2 > 539.4, df = 19, all p < 0.001, 
Fig. 2). Per species, the Boyce index ranged from 0.55 (P. alleghaniensis) 
to 0.99 (E. eschscholtzii), the% overlap ranged from 0.54 (M. townsendii) 
to 0.94 (C. latrans), the spatial underprediction ranged from 2572 
(A. pomo) to 1.44 x 106 (C. saturatus) km2, and the spatial overprediction 
ranged from 39,694 (S. woodi) to 1.62 x 106 (N. maculosus) km2. Despite 
the significant influence of species on the average values of the evalu
ation metrics used, we found no consistent relationships between the 
absolute range size of a species (calculated from its IUCN range) and 
Boyce index,% overlap, or spatial overprediction (all Kendall’s τ ≤

±0.3), although spatial underprediction was positively correlated to 
absolute range size (Kendall’s τ = 0.71, see Fig. 2). 

When aggregated across all species and treatments, all correlations 
between the four metrics used were less than ±0.20. However, when we 
conducted the same correlations for each species individually and 
averaged them, some relationships strengthened, most notably spatial 
overprediction and% overlap (from τ = −0.01 to τ = 0.38; Supple
mentary Appendix 2, also see Fig. 1). In addition, when accounting for 
species, spatial underprediction was almost perfectly rank-order corre
lated to% overlap (τ = −0.97). Because we mitigate the potential 
random effect of species by normalizing each metric by species and 
because of the strong correlation between species range size and spatial 
underprediction, we removed spatial underprediction from subsequent 
analyses. 

The random forest models we created to evaluate the relative 

importance of each background point variable on model evaluation 
displayed several general trends. First, for all evaluation metrics, the 
degree of spatial weighting (how many background points were sampled 
exclusively from within the buffer) was strongly influential in predicting 
the overall value of the metrics (Fig. 3). In fact, the removal of spatial 
weighting led to the highest increase in MSE for all random forest 
models. The size of the buffer used to constrain background points 
significantly influenced the predictions of% overlap, and spatial over
prediction, but was not useful for predicting the Boyce index values. In 
fact, for Boyce index, the removal of buffer size as a variable in the 
random forest model led to a decrease in MSE, suggesting that the 
number of background points did not provide any new information to 
the model (Fig. 3). Finally, the number of background points used 
influenced the values of the Boyce index (for which it was the 2nd most 
important variable), but had little effect on either overlap or spatial 
overprediction (Fig. 3). 

The grid graphs show the specific background point treatments that 
lead to over- and under-performing models compared to the median for 
each species (Fig. 4). We found a clear negative relationship between the 
degree of spatial weighting and the% overlap values, with the highest 
overlap values occurring when randomly sampling background points 
across the entire continent (spatial weighting = 0; Fig. 4). In addition,% 
overlap was high when using ecoregions as the buffer (Fig. 4). Similar 
results were found in AUC values (Supplementary Appendix 3). How
ever, when sampling either entirely within the buffer (spatial weighting 
= 1) or entirely randomly across the continent (spatial weighting = 0), 
the amount of spatial overprediction was also the greatest. Neither% 
overlap nor spatial overprediction were greatly affected by the number 
of background points used, although for larger-ranged species, fewer 
background points tended to increase overlap and led to spatial 
overprediction. 

Unlike the metrics comparing IUCN ranges to the modelled ranges, 

Fig. 3. Barplots describing the importance of each variable (calculated by% increase in mean squared error) in the creation of random forest models for each 
evaluation metric. In addition to the three background point variables examined (number of background points, buffer size, and spatial weight), the taxonomic class 
and range size of each species was added to the random forest models as potential confounding factors. 
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the Boyce index values were smallest with models created with fewer 
background points and were little affected by the size of the buffers. 
However, the SDMs in general performed worse (as evaluated by the 
Boyce index) when background points were sampled exclusively within 
the buffer (spatial weighting = 1) or randomly throughout the study 
region (spatial weighting = 0), with the highest Boyce index values in 14 
out of 20 cases (70%) occurring when the models were created with a 
spatial weighting between 0.25 and 0.75 (Fig. 4). 

3.1. Varying-Extent models 

The results from the fixed-extent models, in which we kept the study 
extent constant across all species and model treatments, differed in 
several notable ways from the varying-extent models, in which we used 
the bounding box around the background buffers as the study extent for 
each model. First, although the correlations amongst the five evaluation 
metrics used remained relatively consistent with the fixed-extent cor
relations (Fig. S2), the relative importance of each treatment variable 
differed between the two methods. First, spatial weighting had much 
less influence on measures of accuracy and transferability when study 
extents were variable than when they were fixed. These changes were 

particularly striking for measures of transferability (Boyce index and 
spatial overprediction), in which spatial weighting dropped from the 
most to the least important variable (Fig. S6). Instead, the number of 
background points and the size of the buffer used tended to have greater 
importance on model transferability (Fig. S6). For example, buffers 
made with IUCN boundaries and using the 95% distance between oc
currences reduced spatial overprediction, but decreased IUCN overlap in 
varying-extent models (Fig. S7), in contrast to the fixed-extent models 
(which demonstrate only minor influence of buffer size on either 
metric). Finally, the tradeoff between spatial weighting, transferability, 
and accuracy disappeared when using varying extents –% overlap was 
similarly influenced by spatial weighting in both the fixed and varying- 
extent models (with lower spatial weighting leading to higher perfor
mance), but Boyce index and spatial overprediction demonstrated no 
relationship with spatial weighting (Fig. S7). 

3.2. Virtual species 

When using virtual species instead of the real species, we again 
observed different results, despite similar correlations between the 
metrics (Fig. S8). The pattern of within-range accuracy (% overlap) was 

Fig. 4. The average quantiles of each evaluation metric, given each background point treatment. A quantile of 1 means that the models created using the given 
treatment have on average higher values than the models created using any other treatment. Likewise, a quantile of 0 suggests that the models created using the given 
treatment have lower values than models using any other treatment. Spatial overprediction values are multiplied by −1 so that darker values indicate better- 
performing models. Species are arranged from smallest (bottom) to largest (top) range sizes. The white asterisks in the top left plot show at which point the 
number of background points using the small multiplier technique is greater than 5000 (one asterisk) or 10,000 (two asterisks). 
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somewhat consistent to the real-species pattern, with high variable 
importance for the number of background points and spatial weighting 
in the random forests (Fig. S10). In addition, as with the true species, the 
size of the buffer used to sample the background points was influential in 
modulating the overlap and spatial overprediction of the model 
(Figs. S9). However, the metrics of transferability showed markedly 
different relationships with the evaluation metrics. The number of 
background points were not influential for the Boyce index and spatial 
overprediction at all, with negative variable importance in the random 
forests and no observable relationship in the grid graphs (Fig. S9). In 
contrast, spatial weighting and buffer size had a greater influence on 
Boyce index and spatial overprediction than the models made from real 
species (Fig. S9). See Supplementary Appendix 5 for a more detailed 
discussion of these results. 

4. Discussion 

Overall, we found significant variation in the three metrics used to 
evaluate model performance (Boyce index,% overlap, spatial over
prediction). The accuracy and transferability of the models varied ac
cording to all three inputs we manipulated, including the number of 
background points, the size of the buffer used to constrain the back
ground points, and the degree of spatial weighting (percent of points 
sampled from within the buffer). However, the metrics all differed in 
their responses to changes in the background points (Fig. 4) and the 
study extent of the model (Supplementary Appendix 4). These results 
emphasize the importance of background point selection on presence- 
background SDMs and the measures used to evaluate them, particu
larly when strong sampling bias exists in the species occurrence records 
and when species’ fundamental niche is not well-estimated. 

Across the four metrics used in this study, spatial weighting was on 
average the most important variable in driving model performance in 
the fixed-extent models (Fig. 3). However, spatial weighted affected 
model accuracy and model transferability in different ways. As ex
pected, the measure of within-domain accuracy (% overlap) was higher 
in models without spatial weighting (i.e., background points sampled 
from the entire study area) than those where the background points 
were exclusively sampled from within the buffer (Fig. 4). However, 
these models generally overpredicted areas of suitable habitat, as evi
denced by the higher spatial overprediction and lower Boyce index for 

models with no spatial weighting (Fig. 4). In contrast, an intermediate 
degree of spatial weighting (i.e., between 0.25 and 0.75) led to increased 
transferability, with low spatial overprediction. This tradeoff between 
model accuracy and transferability supports previous literature. Che
faoui and Lobo (2008) found that models with more dispersed back
ground points had higher AUC values than those that had spatially 
restricted background points, but that the models overpredicted the 
realized niche of the species. Similarly, Thuiller et al. (2004) observed 
overestimation in models without absences beyond the known species 
distributions, even while the accuracy of the model (measured using 
AUC values) remained consistently high. AUC values are dependent only 
on the accuracy of classifying presences and absences; therefore, if 
background points are more climatically distant from presence points, 
the AUC values will be artificially inflated, even as the modelled dis
tribution diverges from reality (Chefaoui and Lobo, 2008; Lobo et al., 
2010). 

The limitations of relaying exclusively on measures of within-domain 
model accuracy, especially for presence-background models, were 
further highlighted in the dramatic differences between% overlap and 
AUC values (high to moderate) and Boyce index (low) in fixed-extent 
models with high spatial weighting. Exclusively sampling within a 
buffer may lead to extrapolation in areas with climates not represented 
by the background. For example, Fig. 5 shows an SDM of Z. trinotatus 
(Pacific jumping mouse) created by exclusively sampling background 
points within a tight buffer around the occurrences (black oval). The 
overestimation of habitat suitability in the southeast of the study region 
is not reflected in the% overlap value, which it is only based on the 
climatic extent of the presence and background points and not the entire 
study area. In contrast, the Boyce index is low, reflecting the inability of 
the model to be transferred across space or time. The discordance be
tween AUC,% overlap, and Boyce index values found throughout this 
study indicate that the SDM’s performance when measured using% 
overlap and AUC values has little bearing on its transferability across 
space (also see Petitpierre et al., 2017). As a result, when modelling a 
small species range within a large extent, our results suggest having a 
spatial weight between 0 and 1 leads to the most high-performing SDMs. 
However, if the study extent of the model is only marginally larger than 
the species range itself, the advantages of sampling outside of the buffer 
disappear (Supplementary Appendix 4). In those cases, sampling 
exclusively within a buffer may be preferable (Lobo et al., 2010). 

Fig. 5. Habitat suitability map for Z. trinotatus (Pacific jumping mouse), using 10 * the number of occurrence points for background points, a buffer of 100 km around 
each point, and sampling exclusively within the buffer. The true range of the species is contained within the black oval in the upper left, with a large area of 
overestimation in the bottom right. Despite this clear overestimation, the AUC and overlap values for this model suggests that it is at worst a fair model, in contrast to 
the Boyce index, which shows it to be little better than random. 
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In addition to the degree of spatial weighting, the buffer used to 
weight distance also affected fixed-extent model accuracy, as measured 
by the% overlap between the IUCN range and the model results. World 
Wildlife Fund ecoregions had the highest% overlap, in addition to the 
least amount of spatial overprediction. This suggests that using these 
ecoregion-based buffers may confer a slight increase in overall model 
accuracy, providing support for the “available habitat” interpretation of 
background points (Barve et al., 2011; Fourcade et al., 2014). However, 
more research into using biologically defined buffers for background 
point generation is needed to explore the implications in using ecoregion 
boundaries to model species distributions. In contrast, the number of 
background points did not substantially affect the discrepancy between 
the SDM-generated ranges and the IUCN ranges when evaluating% 
overlap, likely because the threshold we used to define presence-absence 
maps varies according to the conditions of the model (Fig. 3). However, 
when the model’s extent varied with the climate available to the species, 
lower prevalence led to higher overlap (Fig. S7). As expected, AUC 
values were more highly-influenced by background points (with higher 
numbers of background points leading to larger AUC values), and 
showed the same preference for WWF ecoregions as the constraining 
buffer (Supplementary Appendix 3). 

The transferability of the fixed-extent models (measured using the 
Boyce index and spatial overprediction) reacted differently to back
ground inputs than the model accuracy. Aside from spatial weighting, 
the other background point variables we modified (number of back
ground points, size of the buffer) had comparably little effect on the 
overall transferability of the models. Therefore, the transferability of 
these SDMs appears to be predominantly influenced by spatial weighting 
and relatively robust to other background point parameters. 

The models created with study extent tailored to the buffers around 
each set of species occurrences (varying-extent models) demonstrated 
the confounding effect of study extent on model performance. Buffer size 
(which directly corresponded to the study extent of the model) signifi
cantly affected model performances, with higher% overlap but more 
spatial overprediction in models with larger buffers (i.e., 200 km and 
WWF ecoregion buffers). The results are expected, because using ab
sences that are more geographically (and therefore more environmen
tally) distant from occurrence points often leads to artificially lower 
commission errors (Lobo et al., 2008). In addition, despite its clear 
importance for fixed-extent models, the effect of spatial weighting was 
nearly absent from the performance of varying-extent models. There
fore, a moderate amount of spatial weighting appears to be useful when 
extrapolation errors might occur (e.g., modelling a small species range 
on a large extent), but is not useful for models with a tightly-bounding 
study extent. Although the results of the fixed-extent models echo 
those of (Thuiller et al., 2004) in supporting the use of absences well 
outside the species climate envelope when extrapolating species re
sponses to climate (but see VanDerWal et al., 2009), the performance of 
the varying-extent models suggests that these absences are not useful 
when the observed species range fills up much of the study extent. 

The clear differences between our results when using real species and 
those when using virtual species suggests fundamental differences in the 
assumptions of presence-background modelling when the species 
completely fills its fundamental niche. First, the virtual species were 
created with known and definite relationships to the environmental 
variables modelled, whereas the species used in our analyses have no 
such a priori relationships and are influenced by other factors such as 
anthropogenic effects, species interactions, and geologic history. The 
virtual species therefore live everywhere within the study region that is 
suitable, even if there is a barrier to dispersal or a large swath of unin
habitable area between suitable regions. These patterns lead to models 
that are better able to estimate the species’ “true” distribution in areas 
without occurrences (i.e., have better transferability), leading to 
changes in the Boyce index and overprediction patterns. In contrast, we 
observed less discrepancy between virtual and real species in measures 
of accuracy (e.g.,% overlap), because these measures are broadly 

unaffected by the amount of niche filling a species undergoes. In addi
tion, the modelling methods we have employed in this study assume 
biased environmental sampling. Environmental filtering attempts to 
mitigate environmental bias, but, in the absence of such a bias, it may in 
fact introduce bias, by weighting areas of marginal suitability more 
heavily than areas within the centre of a species’ niche. Likewise, the 
various buffer sizes and spatial weighting used for the background 
points attempt to account for biased spatial sampling, but for a virtual 
species, there is no spatial bias. The discrepancy between the results of 
the real species and virtual species suggest that these methods of back
ground sampling may not be necessary or appropriate to apply in the 
absence of imperfectly sampled data. Therefore, in the exceedingly rare 
case of a species with little environmental bias and a well-known 
fundamental niche, we would recommend eschewing spatial weight
ing and constraining background points with a buffer altogether. 
Instead, simply manipulating the number of background points and the 
spatial extent of the analysis should be the priority for species distri
bution modelling in those cases. 

Different SDM algorithms are likely to respond differently to changes 
in background point prevalence and distribution (Grimmett et al., 
2020). No one algorithm consistently performs the best for every 
modelling case, and they are each influenced by varying inputs in 
different ways (Barbet-Massin et al., 2012; Valavi et al., 2022). We chose 
to use only MaxEnt in this study for a few reasons. First, MaxEnt is shown 
to be a “generalist” and a “jack of all trades’ model, performing 
consistently above average across many different modelling scenarios 
(Elith et al., 2010; Giovanelli et al., 2010; Grimmett et al., 2020; Valavi 
et al., 2022). In addition, the discriminant ability of MaxEnt is somewhat 
less influenced by number and prevalence of occurrences (Grimmett 
et al., 2020) and the calibration extent (Giovanelli et al., 2010) than 
other algorithms like random forests and support vector machines. 
MaxEnt’s relative resilience to occurrence number and extent allows us 
to more effectively examine how the distribution of background points 
affects SDMs across multiple species. However, a study of how these 
same background point changes influence other presence-background 
algorithms is needed to fully benchmark how background might influ
ence species distribution models as a whole. Given the discrepancy be
tween our results using real species and virtual species, we might expect 
models that require pseudo-absences (i.e., regression methods like 
generalized linear or additive models) to react differently to 
pseudo-absence distribution. For example, Barbet-Massin et al. (2012) 
evaluated the true skill statistic (TSS) of several SDM algorithms 
generated with various pseudo-absence point distributions, finding 
support for a large number of pseudo-absence points and (in the case of 
classification and machine learning methods) weighting pseudo-absence 
points farther from the occurrences. We suspect these differences arise 
from the conceptual differences between background points (which 
attempt to sample the climate available to the species) and 
pseudo-absences (which attempt to stand in for real absences), but more 
research is necessary to confirm this suspicion. 

4.1. Conclusions and recommendations 

All models are inherently defined by the quality of the data they are 
provided, the model inputs and parameters used when running them, 
and the scale, extent, and resolution of the analysis. Presence- 
background SDMs relying on machine learning techniques (such as 
Maxent) are highly influenced by the inputs provided (Radosavljevic 
and Anderson, 2014). This research constitutes a “deep-dive” into the 
effect of methodological changes in one such input – background point 
generation – on the accuracy and transferability of a single, 
presence-background model algorithm. Our results clearly show that not 
all modelling inputs are created equal, nor are methods for evaluating 
the accuracy of an SDM. We identified a discordance between the 
best-discriminating models within their training domains (as measured 
with the overlap metrics) and the most-transferrable models across 
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space (as measured with the Boyce index and overprediction metrics), 
supporting previous literature (M. Iturbide et al., 2018; Petitpierre et al., 
2017). Therefore, the specific research question of the study may in
fluence the selection of model inputs more than with the hypothetical 
accuracy or transferability of the model (regardless of the metric used to 
evaluate it). In fact, the presence of overprediction and underprediction 
in a model may provide valuable insight into the ecological processes 
structuring species ranges (Márcia Barbosa et al., 2013). For example, in 
an ecological study evaluating the fundamental niche of a species (the 
overall habitat a species could potentially inhabit), spatial over
prediction may in fact be preferred and selected for by sampling back
ground points randomly throughout the study area (Chefaoui and Lobo, 
2008; Lobo et al., 2010; Márcia Barbosa et al., 2013). Another study 
examining occupancy of a species in a fragmented conservation hotspot 
may instead opt for a model that minimizes spatial overprediction. 
Furthermore, the discrepancies between the fixed-extent models and the 
varying-extent models serve to highlight the well-known importance of 
considering interactions between model extent, background points, and 
SDM performance. Studies that look to project small-ranged species into 
a big extent may choose different background point parameters than 
those that tailor the extent of the study to the species range (i.e., using 
moderate levels of spatial weighting instead of sampling exclusively 
within the buffer). Finally, the contrasting results of the virtual species 
underscores that these methods are designed to reduce bias in the 
occurrence data and if little bias occurs in the data, they may not be 
appropriate to apply. 

Finding proper background point distributions is dependent on the 
specific study system and research question and is often more of an art 
than a science. The results of SDMs are, by their definition, hypotheses 
used to test ecological theory and provide guidance for conservation 
actions. These hypotheses may well be falsified, and can only truly be 
supported and evaluated by additional observation (Jarnevich et al., 
2015). Here, we provide evidence that researchers must test multiple 
combinations of model inputs to “fine-tune” their models to answer their 
specific ecological questions. However, we found several general trends 
that may be useful for developing accurate SDMs. First, supporting the 
research conducted over the last decade, we find that AUC values are a 
deeply flawed metric with respect to presence-background models (see 
Fig. 5), being strongly affected by the number of background points used 
in the model, but unaffected by extrapolation errors that occur outside of 
the climate sampled by the background (Supplementary Appendix 3). 
Using the Boyce index or metrics comparing the modelled distribution to 
an expert hypothesis may help to more accurately evaluate both the 
accuracy and transferability of these models. When using these evalu
ation metrics, we find support for using spatially weighted background 
points (especially for small-ranged species on a large extent), in addition 
to using an ecologically based buffer like ecoregions to mitigate bias in 
the occurrence records. SDMs have the unparalleled ability to model our 
changing biological communities on a large scale. These models are 
highly versatile tools and should be treated as such. Understanding how 
modelling inputs affects the results of these SDMs is the first step to
wards refining these tools, creating better models to be used for the 
complex questions biogeographers answer today. 
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