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ARTICLE INFO ABSTRACT

Species distribution models (SDMs), which relate recorded observations (presences) and absences or background
points to environmental characteristics, are powerful tools used to generate hypotheses about the biogeography,
ecology, and conservation of species. Although many researchers have examined the effects of presence and
background point distributions on model outputs, they have not systematically evaluated the effects of various
methods of background point sampling on the performance of a single model algorithm across many species.
Therefore, a consensus on the preferred methods of background point sampling is lacking. Here, we conducted
presence-background SDMs for 20 vertebrate species in North America under a variety of background point
conditions, varying the number of background points used, the size of the buffer used to constrain the back-
ground points around the occurrences, and the percentage of background points sampled within the buffer
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Transferability (“spatial weighting”). We evaluated the accuracy and transferability of the models using Boyce index, overlap
Boyce index with expert-generated range maps, and area overpredicted and underpredicted by the SDM (and AUC for
MaxEnt comparability with other studies).

Simulation

SDM performance is highly dependent on the species modelled but is affected by the number and spread of
background points. Models with little spatial weighting had high accuracy (overlap values), but extreme
extrapolation errors and overprediction. In contrast, SDMs with high transferability (high Boyce index values and
low overprediction) had moderate-to-high spatial weighting. These results emphasize the importance of both
background points and evaluation metric selection in SDMs. For other, more successful metrics, using many
background points with spatial weighting may be preferred for models with large extents. These results can assist
researchers in selecting the background point parameters most relevant for their research question, allowing
them to fine-tune their hypotheses on the distribution of species through space and time.

1. Introduction

The geographic range of a species is a crucial aspect of its ecology,
reflecting how the species interacts with landscapes, climates, and bio-
logical communities (Borges et al., 2019; Holt, 2003; Sonne et al., 2016).
Understanding, modelling, and predicting species ranges are integral to
our understanding of community ecology, biogeography, and ecosystem
functioning (Elith et al., 2010). Species Distribution Models (or SDMs)
are a key innovation used in the evaluation and prediction of species
ranges. SDMs relate species location data (known presences and/or
known absences) to information about the environmental characteristics
at those locations (Elith and Leathwick, 2009). High performance
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computing and easily accessible data have led to the rapid proliferation
of SDM methods and techniques, in part due to the development of
easy-to-use programs that conduct such modelling (for example, Max-
Ent; Phillips et al., 2006, biomod; Thuiller et al., 2009, ecospat; Di Cola
et al., 2017).

In particular, presence-background SDMs are widely used in ecology
and conservation. Instead of requiring true absence data, which are
challenging to acquire and often highly inaccurate (Jarnevich et al.,
2015; Lobo et al., 2010), presence-background SDMs only require
occurrence points and a set of generated background or pseudo-absence
points (but see Sillero and Barbosa, 2021 on the distinction between the
two). Often, these background points may sample the climates
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“available” to a species or the climate throughout the study area of in-
terest (Grimmett et al., 2020). Presence-background SDMs are increas-
ingly used to verify the current distribution of a species on a landscape
(e.g., Stirling et al., 2016), to assess and highlight areas of particular
conservation importance (e.g., Sarkar et al., 2009), to predict species’
future ranges under dynamic change (e.g., Schloss et al., 2012), and to
understand the basic ecological drivers of species ranges through time
(e.g., Fenker et al., 2020), amongst many other topics.

Because of the preponderance of research applying presence-
background SDMs (Cobos et al., 2019), many researchers have exam-
ined the effects of varying model inputs on model accuracy (The ability
of a model to distinguish between areas of high and low habitat suit-
ability in the training domain; Elith et al., 2010; Phillips et al., 2009;
Radosavljevic and Anderson, 2014) and transferability (the ability of a
model trained in one place or time to predict distributions in a different
place or time; Iturbide et al., 2018; Rousseau and Betts, 2022). Much
effort has been dedicated to evaluating the effects of occurrence and
background points on presence-background models, finding that the
density and arrangement of both occurrence and background points
affects model results and transferability (Barbet-Massin et al., 2012;
Chefaoui and Lobo, 2008; Fourcade et al., 2014; Iturbide et al., 2018,
2015; Liu et al., 2019; Wisz et al., 2008; Grimmett et al., 2020). For
example, spatial and environmental bias in occurrence points including
those downloaded from online repositories like GBIF may compromise
the ability of an SDM to fully capture either the fundamental or realized
niche of a species (Boakes et al., 2010; Fourcade et al., 2013; Ruiz-Gu-
tiérrez and Zipkin, 2011; Varela et al., 2014; Yackulic et al., 2013).
Spatially and environmentally subsampling occurrence points before
modelling has quickly become standard practice for mitigating these
biases (Castellanos et al., 2019; Varela et al., 2014).

In contrast to occurrence points, which are usually provided to the
SDM (either from online repositories or from field observations), back-
ground points are usually generated and assembled de novo in presence-
background models. Because of this, the published literature employs
many different, often contradictory, methods of background point
generation (Barbet-Massin et al., 2012). For example, the number of
background points varies widely across SDM research, despite their
clear influences on model results (Fourcade et al., 2014). Some research
uses “large number” strategies, selecting a large, arbitrary number of
background points to generate (e.g., Bennett et al., 2019 uses 10,000).
In contrast, other studies (especially those modelling multiple species)
use a “multiplier” strategy, where the number of background points is
tied to the number of occurrence points based on an (often small)
multiplied coefficient (e.g., 10 times the number of occurrences, Che-
faoui and Lobo, 2008). These varying methods exist despite research
indicating that the number of background points used significantly af-
fects the accuracy of presence-background SDMs (Barbet-Massin et al.,
2012; Chefaoui and Lobo, 2008; Grimmett et al., 2020; Lobo et al., 2010;
Phillips et al., 2009). The spatial extent of the training area (i.e., where
background points are sampled from) similarly varies across SDM
studies. Often, the training extent of an SDM is defined by political,
geographic, or ecological regions, like the Cerrado in South America
(Fenker et al., 2020) or Great Britain (Holloway et al., 2016). Other
studies instead limit SDMs to match the expected range of the species of
interest, using buffers of variable widths around the species occurrences
or a bounding polygon (Stirling et al., 2016; VanDerWal et al., 2009).

Finally, species occurrences are often spatially biased towards areas
that are easily accessible by humans (Kramer-Schadt et al., 2013; Phil-
lips et al., 2009). Therefore, randomly sampling background points
across the entire study region may provide inaccurate estimates of
habitat suitability, especially in fragmented landscapes (Ruiz-Gutiérrez
and Zipkin, 2011). Environmentally-subsampling the occurrences and
background points reduces the spatial bias inherent in the occurrences
(Castellanos et al., 2019; Varela et al., 2014), as does sampling back-
ground points closer to the occurrences, e.g., from within a buffer
around them (Barve et al., 2011; Fourcade et al., 2014; M. Iturbide et al.,
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2018; Lobo et al., 2010). However, spatially-constrained background
points are susceptible to overfitting and extrapolation, especially when
transferring an SDM trained on a small spatial extent to a larger one
(Radosavljevic and Anderson, 2014). In fact, other researchers have
employed the opposite strategy, sampling background points exclusively
from outside the buffer around the occurrences (e.g., the SRE method in
the “biomod2” R package Thuiller et al., 2009). To avoid these extrap-
olation issues, Shipley et al. (2022) developed a new strategy (hereafter
called “spatial weighting”), whereby a certain percentage of background
points are sampled from within a buffer, and the rest are sampled from
across the entire study region. Anecdotal evidence suggests that spatially
weighting background points leads to better-performing models, but this
hypothesis has not yet been formally tested (Shipley et al., 2022).

Because each researcher has their own preferred methods of gener-
ating background points, little research has compared different methods
of background point sampling on real study data using the same
modelling parameters and occurrence point sampling. As a result, a
strong consensus has yet to be reached on the best practices of back-
ground point sampling, especially when conducting multi-taxon
research across large geographical extents (Barbet-Massin et al., 2012;
Fourcade et al., 2014; M. Iturbide et al.,, 2015; Lobo et al., 2010;
Machado-Stredel et al., 2021; Senay et al., 2013).

In this study, we evaluate different methods of background point
selection, examining how the number of background points, the size and
shape of the geographic area available to a species, and the spatial
weighting affect presence-background SDM results. We systematically
vary these model inputs and examine their effects on the modelled
ranges of 20 vertebrate species and 6 simulated species across North
America (Table 1). These methods, introduced in the R package meg-
aSDM (Shipley et al., 2022), allow for increased flexibility in the degree
of spatial bias of the background points but have not yet been compre-
hensively examined in the existing literature. Then, we evaluate the
accuracy of these models using multiple quantitative metrics and
examine the background point conditions under which
presence-background models perform best.

We expect that sampling background points randomly across the
study region will over-predict species’ presences near the occurrence
points (see Chefaoui and Lobo, 2008), but we expect that limiting the
sample of the background point to buffers around the occurrence points
will lead to over-prediction in areas farther from the occurrence points.
Fourcade et al. (2014) suggests that the area where the background
points are selected should be biologically meaningful. We hypothesize
this will occur with small to moderate sized buffers, as most species are
unable to access the entire study region of North America. Finally,
following the results of Barbet-Massin et al. (2012), we hypothesize that
the best performing models will have a large number of background
points.

2. Methods
2.1. Data collection

All analyses were conducted using R v. 4.0.5 (R Core Team, 2021),
using the package megaSDM (Shipley et al., 2022). megaSDM uses the
MaxEnt algorithm (from the Java script software provided by Phillips
et al., 2004) to model species distributions across a variety of dynamic
conditions. This package is efficient at handling many species, time
periods, and use cases simultaneously, and it natively incorporates
environmental subsampling of both occurrences and background points
as a way to partially mitigate spatial and environmental bias (Shipley
et al., 2022). For a diagram of our modelling workflow, see Fig. 1. A
short glossary of the data required for species distribution modelling
with megaSDM is provided in Supplementary Appendix 1.

We selected 20 species to model from sets of species that had been
grouped according to geographic range size, taxonomy, and ecology
(Table 1). We obtained species observation data from GBIF (http://
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Table 1
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List of species used in the analysis, along with the number of occurrence points that remained after vetting, the taxonomic class of the species, and the size of the IUCN
range polygon in km?. Species are ordered according to the number of occurrence points after environmental subsampling.

Species Common Name Occurrence Points Class Range Size (km?)
Canis latrans Coyote 5327 Mammal 9,560,176
Procyon lotor Raccoon 5038 Mammal 8,647,235
Trachemys scripta Pond slider 2776 Reptile 2,853,727
Anaxyrus fowleri Fowler’s toad 2423 Amphibian 2,013,427
Pantherophis alleghaniensis Eastern rat snake 1922 Reptile 769,274
Ensatina eschscholtzii Ensatina 1646 Amphibian 322,190
Kinosternon subrubrum Eastern mud turtle 1312 Reptile 1,699,848
Cryptotis parva North American least shrew 840 Mammal 3,591,180
Scaphiopus holbrookii Eastern spadefoot 707 Amphibian 1,276,964
Malaclemys terrapin Diamondback terrapin 497 Reptile 302,835
Desmognathus quadramaculatus Blackbelly salamander 496 Amphibian 84,675
Necturus maculosus Common mudpuppy 419 Amphibian 1,880,503
Deirochelys reticularia Chicken turtle 416 Reptile 999,813
Zapus trinotatus Pacific jumping mouse 342 Mammal 162,699
Microtus townsendii Townsend’s vole 235 Mammal 192,001
Thomomys monticola Mountain pocket gopher 173 Mammal 52,769
Sceloporus woodi Florida scrub lizard 140 Reptile 77,269
Callospermophilus saturatus Cascade golden-mantled ground squirrel 84 Mammal 73,997
Arborimus pomo Sonoma tree vole 60 Mammal 21,852
Plethodon kentucki Cumberland Plateau salamander 36 Amphibian 29,151

www.gbif.org) and manually vetted the occurrences for geographical
and observational accuracy. For a detailed description of the vetting
procedures, see Supplementary Appendix 7. We limited the training
extent of our study to North America (—152° to —58° longitude, 7° to
68° latitude), and projected the models to the extent of the continental
United States (—125° to —65° longitude, 25° to 50° latitude). We chose
to standardize the extent of the study region in order to compare models
across species and to determine the effects of background point methods
on both model accuracy and transferability when decoupled from study
extent (Sarkar et al., 2009). However, because the extent of the study
area may influence model evaluation (Lobo et al., 2008; VanDerWal
et al., 2009), we additionally modelled the species with varying back-
ground extents based on bounding boxes around each of the background
buffers used in the models. We then compared the results of these
varying-extent models with the fixed-extent models (see Varying-Extent
Models in the Results and Supplementary Appendix 4).

We used four bioclimatic variables obtained from WorldClim (Fick
and Hijmans, 2017) at 2.5-minute resolution, relating to the mean and
variance of temperature and precipitation across North America: Mean
Annual Temperature (Biol), Mean Annual Precipitation (Biol12), Tem-
perature Annual Range (Bio7), Coefficient of Precipitation Seasonality
(Biol5). We limited our modelling to these four climatic variables
because of their simple biological and climatic interpretations and to
avoid the effect of predictor collinearity on model transferability (Feng
et al., 2019). The temperature annual range and mean annual temper-
ature were correlated (Kendall’s T = —0.62), because of the cold, highly
seasonal climates of central and northern Canada (which were only
included for training the models). All other variables were only
moderately correlated to each other (Kendall’s T < 0.41). Other envi-
ronmental variables are likely to be influential in certain species dis-
tributions (Williams et al., 2012; Petitpierre et al., 2017; but see Bucklin
et al., 2015; Braunisch et al., 2013). However, we held these four cli-
matic variables constant across all species so that we can compare the
models made from different species without introducing a potential
masking variable and to the reduce the chances of
over-parameterization for any one model. We accounted for the
differing effects of environment on each species after generating the
SDMs (see Species Normalization).

Occurrence points are often spatially and environmentally biased
because of study design and non-random sampling (Fourcade et al.,
2014). These observational biases may in turn lead to biased or inac-
curate models of species distributions (Yackulic et al., 2013). To limit

environmental and spatial biases in the occurrence points, we used the
methods developed by Varela et al. (2014) and expanded by Castellanos
et al. (2019), which environmentally filters occurrence data into a set
number of bins, and removes points that are environmentally clustered.
Models constructed using environmental subsampling often outperform
those that do not (Castellanos et al., 2019; Fourcade et al., 2014; Varela
et al., 2014). We used 25 bins per environmental variable for the envi-
ronmental filtering.

In addition to the real observations of the 20 North American
vertebrate species, we simulated 6 virtual species to evaluate the various
background point methods. The virtual species were simulated using the
“virtualspecies” package in R (Leroy et al., 2016), using the same four
bioclimatic variables we include in the real-species models to create
response curves and to identify areas of suitability. These virtual species
occurrences are intrinsically absent the spatial, environmental, and
sampling biases that come with real occurrences, and therefore can
provide additional information on the performance of the different
techniques of background point sampling we examine. Although these
occurrence points are not environmentally biased, we environmentally
subsampled the virtual species following the same methods as the real
species for consistency. See the supplementary data on FigShare
(https://figshare.com/account/items/24680163) for the characteristics
of each virtual species.

2.2. Background points and modelling

We manipulated three variables governing the prevalence and dis-
tribution of background points in the model: the number of background
points, the size of the buffer within which background points may be
generated (hereafter, buffer size), and a new variable describing the
proportion of background points sampled from within the buffer
(hereafter, spatial weighting). Each variable had five treatment levels
(see Table 2), and for each pairwise combination of the three variables
(n = 125), we generated sets of background points for each species.

2.3. Number of background points

The first variable we manipulated was the number of background
points used in the model. Despite the evident effects of background point
sample size on SDM performance, species distribution modelers
continue to use a wide variety of background point numbers and den-
sities. We evaluated five different treatments for the number of
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Fig. 1. a) A diagram of our workflow, including the inputs we varied to create different background point distributions (Table 2), the environmental subsampling to
reduce spatial bias in the occurrence and background points (Castellanos et al., 2019; Varela et al., 2014), and the five evaluation metrics we used after generating the
model (Table 3). b) Conceptual figure describing the differences between the three evaluation metrics we used that compare the modelled species distribution to a
species range based by expert opinion (IUCN, 2020). Spatial overprediction is the area predicted by the SDM but not covered by the expert range. Spatial over-
prediction is the area predicted by the expert range but not covered by the SDM. Overlap is the area covered by both the SDM and expert range. Percent overlap is
calculated relative to the expert range (Overlap area / IUCN range area) and is therefore mathematically related to spatial underprediction.

Table 2

Table of the background point parameters we varied to generate sets of background points to be used in the SDMs. A description of the parameter modified, the values
tested, and hypothesized “preferred values” of the parameters for high model performance are provided.

Name Description

Values Tested

Preferred Values

Number of The number of pseudo-randomly generated background
Background points generated by megaSDM and used in model
Points evaluation

Buffer Size Size of the buffer from which background points may be

preferentially sampled. Buffer size must be > 0 and may

be any positive number.

Value between 0 and 1 determining the proportion of

background points sampled within the buffer.

Spatial Weighting

1000, 5000, 10,000, 1 * number of
occurrences, 5 * number of occurrences

100 km, 200 km, 95% quantile of nearest
neighbour distance, IUCN range, WWF
ecoregion boundary

0, 0.25, 0.5, 0.75, 1

Varies (Barbet-Massin et al., 2012, etc.)

Not recommended to use very small (close to 0)
or very large buffers (Barve et al., 2011;
Fourcade et al., 2014).

Unknown (Shipley et al., 2022)

background points: 5000, 10,000, 1 x (the number of occurrences), 5 x
(the number of occurrences), and 10 x (the number of occurrences).
These five treatments were chosen to examine the impact of the number
of background points on the resulting model. The two fixed-number
treatments (5000, 10,000) examine how the absolute number of back-
ground points impacts model performance (Barbet-Massin et al., 2012).
The three variable-number treatments (1x, 5%, 10x) examine the impact
of using background points proportional to the number of occurrences (i.
e., varying prevalence) at a low, medium, and high number of back-
ground points (Chefaoui and Lobo, 2008).

2.4. Buffer size

The size of the buffer from which the spatially-weighted background
points are sampled influences the range of environments a species could

live in but does not. Often, an arbitrary, fixed-width buffer is selected for
background point generation (e.g., 100 or 500 km). However, the
habitat available to a given species depends on the ecology of the species
itself, and therefore the ideal buffer width may vary according to the
species modelled. In this study, we compared two fixed-width buffers
(widths of 100 and 200 km) to three novel methods that vary the size
and shape of the buffer based on the species itself. First, we used meg-
aSDM’s functionality to tailor the buffer to the density of occurrences for
each species. The width of the buffer was set proportionally to the 95%
quantile of the nearest neighbour distance for each point (Shipley et al.,
2022). Therefore, species with more widely distributed occurrences that
were observed more sparsely across the landscape will have a wider
background buffer than those with observations tightly clustered in
space.

In addition to the fixed-width and variable buffer sizes, we used two
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techniques that incorporate ecologically defined buffers for our models.
In theory, the spatially constrained background points should define an
“accessible area” for the species—where a species could theoretically
disperse but does not (Barve et al., 2011; Machado-Stredel et al., 2021).
These areas are predominantly defined by their ecology, and as such
using biologically defined regions to constrain background points may
lead to a more accurate assessment of this accessible area. Using World
Wildlife Fund ecoregions (Olson et al., 2001) we developed a new
method that generates background buffers from the combined extent of
all ecoregions that contained at least one occurrence point of the species.
For our final buffer treatment, we used the IUCN expert-generated range
of the species (IUCN, 2020). IUCN ranges are known to overestimate the
extent of occupancy of a species, especially when compared to survey
data (Hurlbert and Jetz, 2007; Hurlbert and White, 2005), but they es-
timate the species’ extent of occupancy and the area potentially acces-
sible to a species (Barve et al., 2011; Broekman et al., 2022). Therefore,
they may provide a suitable extent from which to generate background
points. For the six virtual species, we generated fake IUCN ranges by
simplifying the presence-absence rasters to 50-km resolution and vec-
torizing them (see supplementary data on FigShare).

2.5. Spatial weighting

To avoid overfitting and over-extrapolation from spatially-weighted
background points, some researchers might choose to sample back-
ground points from both within and outside of an occurrence point
buffer, creating a version of an a priori bias grid (Phillips et al., 2009).
Spatial weighting is a technique to preferentially bias background points
inside of a given buffer, without exclusively sampling from that area
(Shipley et al., 2022). In this study, spatial weighting ranges from O to 1,
where 0 has the background points distributed completely randomly and
1 exclusively samples the background points from within a given buffer.
Numbers between 0 and 1 describe the proportion of background points
sampled exclusively within the buffer (as opposed to being randomly
distributed across the whole study area). We evaluated five different
spatial weighting proportions: 0, 0.25, 0.5, 0.75, and 1, to test how the
varying levels of spatial bias in background points affects the model
performance.

Once we generated the background point sets for each species and
treatment combination, we environmentally subsampled each set of
background points in the same way as the occurrence points. Using each
of the background point sets for each species, we modelled the species
distributions using four replicates in MaxEnt, randomly subsampling the
training occurrence points each time to 80% of the original data and
evaluating the model on the remaining 20%. We set the regularization
to 1 for all replicates of all models; although optimizing the regulari-
zation parameter for each species leads to better performing individual
models (Merow et al., 2013), we kept it constant to more effectively
compare model performance across species.

Table 3
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2.6. Model evaluation

How to accurately evaluate the quality of a species distribution
model is subject to ongoing discussion, with a variety of different
evaluation methods used (e.g., Leroy et al., 2018). No one evaluation
method perfectly describes a model’s fidelity to actual biogeographic
patterns. Therefore, to capture a variety of model behaviors and to allow
comparability with a variety of other studies, we used five distinct
evaluation metrics.

AUC (area under the receiver operating curve) values were long
considered the standard for characterizing SDM, but are nevertheless
unreliable indicators of a model’s accuracy, especially when evaluating
presence-background models (Lobo et al., 2008). Ranging from 0 to 1,
the AUC evaluates the sensitivity (percent of correctly predicted pres-
ences) and specificity (percent of correctly predicted absences) of the
model (Table 3). However, the receiver operating curve was designed
for true negatives instead of background points and therefore provides
undue weight to specificity when, in reality, a species cannot be defin-
itively absent from a background point (Lobo et al., 2008). In addition,
AUC values are influenced by the geographical extent of the model and
the proportion of background points to presence points (Lobo et al.,
2008; Yackulic et al., 2013). Therefore, despite their ubiquity in the
presence-background SDM literature, AUC values do not adequately
confer information about the transferability of the model, nor does it
measure overfitting in areas outside of the training domain. In order to
compare our results with the previous literature (most of which uses
AUQ), we calculated and averaged the test AUC values (from the 20% of
data held back) for each model replicate, but we limit discussion of the
results of the models when evaluated via AUC to Supplementary Ap-
pendix 3.

One common alternative for presence-background models is the
Boyce index, which measures the ratio of predicted presences to ex-
pected presences, based on the continuous habitat suitability generated
by the model (Boyce et al., 2002; Hirzel et al., 2006). In contrast to AUC,
the Boyce index is not dependent on absences and may therefore be less
strongly influenced by the number and distribution of background
points than AUC values are (but see Jiménez and Soberon, 2020).
Furthermore, the Boyce index measures the model’s habitat suitability
after it has projected into geographic space, making it an appropriate
method for evaluating the model’s transferability outside of its training
extent (e.g., Petitpierre et al., 2017).

The Boyce index measures how well the model predicts presences
and absences given the data provided to it. However, because we are
interested in not only the discriminant ability of the model within its
training extent, but also its transferability in geographic space, we
considered three additional evaluation methods that directly compare
the SDMs and the expert-generated range maps from IUCN. These range
maps are coarse-grained and likely overestimate species occupancy
(Hurlbert and Jetz, 2007), but are less influenced by spatial and climatic
bias than species observations, especially when the species has not been
extensively sampled (Fourcade et al., 2013). In fact, Broekman et al.
(2022) compared IUCN ranges with the GPS-tracked movements of 49

Table of the accuracy metrics used to evaluate the generated SDMs. A short description of the metric and which values indicate higher-performing models are also
provided. Although the results for AUC values are not reported in the paper itself, we include AUC here for completeness.

Name Description

Preferred Values

AUC Value

Boyce Index

The area under the receiver operating curve. Ranges from 0 to 1, where 0.5 is a model that
is no better than random and 1 is a perfectly discriminant model.
The correlation between observed and expected frequencies of occurrence points based on

Larger values. AUC values > 0.7 are generally accepted as
“good” models (e.g., Gonzalez-Ferreras et al., 2016)
Larger values

area, ranging from —1 to 1 where 0 indicates a random model (Hirzel et al., 2006).

Spatial Total area (km?) of the SDM-generated range that falls outside of the bounds of the IUCN
Overprediction range map (see Fig. 1)

Spatial Total area (km?) inside the IUCN range that the SDM range does not occupy (see Fig. 1)
Underprediction

Percent Overlap

Proportion of the area within the SDM generated model that overlaps the IUCN range

Smaller values
Smaller values

Larger values (close to 1)
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terrestrial mammal species, finding high correspondence between the
two estimates of species occupancy. Therefore, expert ranges may be
suitable for evaluating model predictions. Following similar methods as
Fourcade et al. (2013), we constructed binary presence-absence maps
from the continuous habitat suitability maps generated from megaSDM,
setting the threshold for the suitability values as the “test sensitivity plus
specificity” value. This threshold was chosen because of its insensitivity
to occurrence prevalence and its high sensitivity in common species (Liu
et al.,, 2015). We then aggregated the four replicates to create a
“consensus” distribution map.

After constructing the binary distribution maps, we overlaid them
with the IUCN expert generated range maps. From this overlay, we
determined the percent of the IUCN range that overlaps with the
modelled range (% overlap, used in Fourcade et al., 2013; Duan et al.,
2022), in addition to two metrics evaluating the mismatch between the
IUCN and SDM ranges (spatial underprediction and overprediction;
Fig. 1, Table 3). Spatial overprediction is the area included in the pro-
jected SDM range that does not overlap the IUCN expert generated range
map (i.e., a false positive, Fig. 1). In contrast, spatial underprediction
highlights the area included in the IUCN range map not included in the
modelled SDM range (i.e., a false negative, Fig. 1). To account for the
relationship between species range size and underprediction (see Fig. 2),
we additionally calculated the overprediction and underprediction as a
proportion of the species IUCN range size (see Supplementary Appendix
6). The% overlap metric measures the accuracy of the model within the
expected species range, whereas the spatial overprediction and under-
prediction metrics provide greater insight into the transferability of the
model and its ability to correctly identify areas outside of the species
range. To examine how the five evaluation metrics relate to each other,
we conducted non-parametric correlations between each of them
(Supplementary Appendices 2, 3, 4, 5).
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2.7. Species normalization

Each species is influenced by a different suite of climate character-
istics, leading to differences in model performance. To account for this,
we normalized each evaluation metric by species, centring and scaling
the evaluation metrics of each set of models to unit variance. Therefore,
instead of an absolute measure of model performance, our evaluation
metrics indicate model performance relative to the other models
generated for that species. This normalization accounts for the effect of
species identity on the evaluation results. It allowed us to find to the
combination of background point variables that led to the most accurate
models across all species, without being influenced by the specific
ecology of the species.

2.8. Random forests and grid graphs

Once we evaluated and standardized the models, we assessed the
importance of each of the three background point variables to the model
accuracy. We then constructed random forests using the R packages
“randomForest” (Liaw and Wiener, 2002) and “caret” (Kuhn, 2008),
linking the evaluation metrics one at a time to the background point
variables, taxon of the species, and species range size. Using the percent
increase in mean squared error (%MSE), we evaluated the importance of
each background point variable to the evaluation metric. To further
remove the effects of taxon and species range size on the evaluation
metrics, we incorporated the taxonomic class and the range size into
each random forest model. Finally, we created graphs (henceforth, “grid
graphs”; Fig. 4), to show visually how model accuracy was affected by
treatment. The graphs show the average quantile of each normalized
metric for each species, when one of the variables is held constant — a
value of 1 indicates that the variable-treatment combination of interest
leads to consistently high-performing models for that species, whereas a
value of 0 means that the models consistently create inaccurate and
non-transferrable species distributions. We created grid graphs for each
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Fig. 2. Boxplots showing the distribution of values for each evaluation metric by species. In total, 125 models were run for each species (5 treatments of 3 variables).
Species are arranged from smallest range size (A. pomo) to largest range size (C. latrans). Arrows point towards better-performing models for each evaluation metric
(i.e., higher Boyce index and % Overlap; lower spatial underprediction and overprediction).
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treatment and variable combination, and for each evaluation metric.
3. Results

Overall, the accuracy of each model was highly influenced by the
species modelled. All four evaluation metrics (Boyce index,% overlap,
spatial underprediction, and spatial overprediction) varied significantly
across species (Kruskal-Wallis tests, all X2 >539.4,df =19, allp < 0.001,
Fig. 2). Per species, the Boyce index ranged from 0.55 (P. alleghaniensis)
to 0.99 (E. eschscholtzii), the% overlap ranged from 0.54 (M. townsendii)
to 0.94 (C. latrans), the spatial underprediction ranged from 2572
(A. pomo) to 1.44 x 10° (C. saturatus) km?, and the spatial overprediction
ranged from 39,694 (S. woodi) to 1.62 x 108 (N. maculosus) km?. Despite
the significant influence of species on the average values of the evalu-
ation metrics used, we found no consistent relationships between the
absolute range size of a species (calculated from its IUCN range) and
Boyce index,% overlap, or spatial overprediction (all Kendall’'s © <
+0.3), although spatial underprediction was positively correlated to
absolute range size (Kendall’s © = 0.71, see Fig. 2).

When aggregated across all species and treatments, all correlations
between the four metrics used were less than +-0.20. However, when we
conducted the same correlations for each species individually and
averaged them, some relationships strengthened, most notably spatial
overprediction and% overlap (from t = —0.01 to T = 0.38; Supple-
mentary Appendix 2, also see Fig. 1). In addition, when accounting for
species, spatial underprediction was almost perfectly rank-order corre-
lated to% overlap (t = —0.97). Because we mitigate the potential
random effect of species by normalizing each metric by species and
because of the strong correlation between species range size and spatial
underprediction, we removed spatial underprediction from subsequent
analyses.

The random forest models we created to evaluate the relative

Boyce Index

60
I

% Increase in MSE
40
L

o
Q4
Buffer
Size
o 4
Number of Spatial Class Range
Background -7. Weight Size
- Points
o _
o

60
I

% Increase in MSE
20 40
1

Number of Buffer
Background Size
Points

Ecological Modelling 488 (2024) 110604

importance of each background point variable on model evaluation
displayed several general trends. First, for all evaluation metrics, the
degree of spatial weighting (how many background points were sampled
exclusively from within the buffer) was strongly influential in predicting
the overall value of the metrics (Fig. 3). In fact, the removal of spatial
weighting led to the highest increase in MSE for all random forest
models. The size of the buffer used to constrain background points
significantly influenced the predictions of% overlap, and spatial over-
prediction, but was not useful for predicting the Boyce index values. In
fact, for Boyce index, the removal of buffer size as a variable in the
random forest model led to a decrease in MSE, suggesting that the
number of background points did not provide any new information to
the model (Fig. 3). Finally, the number of background points used
influenced the values of the Boyce index (for which it was the 2nd most
important variable), but had little effect on either overlap or spatial
overprediction (Fig. 3).

The grid graphs show the specific background point treatments that
lead to over- and under-performing models compared to the median for
each species (Fig. 4). We found a clear negative relationship between the
degree of spatial weighting and the% overlap values, with the highest
overlap values occurring when randomly sampling background points
across the entire continent (spatial weighting = 0; Fig. 4). In addition,%
overlap was high when using ecoregions as the buffer (Fig. 4). Similar
results were found in AUC values (Supplementary Appendix 3). How-
ever, when sampling either entirely within the buffer (spatial weighting
= 1) or entirely randomly across the continent (spatial weighting = 0),
the amount of spatial overprediction was also the greatest. Neither%
overlap nor spatial overprediction were greatly affected by the number
of background points used, although for larger-ranged species, fewer
background points tended to increase overlap and led to spatial
overprediction.

Unlike the metrics comparing IUCN ranges to the modelled ranges,
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Fig. 3. Barplots describing the importance of each variable (calculated by% increase in mean squared error) in the creation of random forest models for each
evaluation metric. In addition to the three background point variables examined (number of background points, buffer size, and spatial weight), the taxonomic class
and range size of each species was added to the random forest models as potential confounding factors.
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Fig. 4. The average quantiles of each evaluation metric, given each background point treatment. A quantile of 1 means that the models created using the given
treatment have on average higher values than the models created using any other treatment. Likewise, a quantile of 0 suggests that the models created using the given
treatment have lower values than models using any other treatment. Spatial overprediction values are multiplied by —1 so that darker values indicate better-
performing models. Species are arranged from smallest (bottom) to largest (top) range sizes. The white asterisks in the top left plot show at which point the
number of background points using the small multiplier technique is greater than 5000 (one asterisk) or 10,000 (two asterisks).

the Boyce index values were smallest with models created with fewer
background points and were little affected by the size of the buffers.
However, the SDMs in general performed worse (as evaluated by the
Boyce index) when background points were sampled exclusively within
the buffer (spatial weighting = 1) or randomly throughout the study
region (spatial weighting = 0), with the highest Boyce index values in 14
out of 20 cases (70%) occurring when the models were created with a
spatial weighting between 0.25 and 0.75 (Fig. 4).

3.1. Varying-Extent models

The results from the fixed-extent models, in which we kept the study
extent constant across all species and model treatments, differed in
several notable ways from the varying-extent models, in which we used
the bounding box around the background buffers as the study extent for
each model. First, although the correlations amongst the five evaluation
metrics used remained relatively consistent with the fixed-extent cor-
relations (Fig. S2), the relative importance of each treatment variable
differed between the two methods. First, spatial weighting had much
less influence on measures of accuracy and transferability when study
extents were variable than when they were fixed. These changes were

particularly striking for measures of transferability (Boyce index and
spatial overprediction), in which spatial weighting dropped from the
most to the least important variable (Fig. S6). Instead, the number of
background points and the size of the buffer used tended to have greater
importance on model transferability (Fig. S6). For example, buffers
made with IUCN boundaries and using the 95% distance between oc-
currences reduced spatial overprediction, but decreased IUCN overlap in
varying-extent models (Fig. S7), in contrast to the fixed-extent models
(which demonstrate only minor influence of buffer size on either
metric). Finally, the tradeoff between spatial weighting, transferability,
and accuracy disappeared when using varying extents -% overlap was
similarly influenced by spatial weighting in both the fixed and varying-
extent models (with lower spatial weighting leading to higher perfor-
mance), but Boyce index and spatial overprediction demonstrated no
relationship with spatial weighting (Fig. S7).

3.2. Virtual species
When using virtual species instead of the real species, we again

observed different results, despite similar correlations between the
metrics (Fig. S8). The pattern of within-range accuracy (% overlap) was
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somewhat consistent to the real-species pattern, with high variable
importance for the number of background points and spatial weighting
in the random forests (Fig. S10). In addition, as with the true species, the
size of the buffer used to sample the background points was influential in
modulating the overlap and spatial overprediction of the model
(Figs. S9). However, the metrics of transferability showed markedly
different relationships with the evaluation metrics. The number of
background points were not influential for the Boyce index and spatial
overprediction at all, with negative variable importance in the random
forests and no observable relationship in the grid graphs (Fig. S9). In
contrast, spatial weighting and buffer size had a greater influence on
Boyce index and spatial overprediction than the models made from real
species (Fig. S9). See Supplementary Appendix 5 for a more detailed
discussion of these results.

4. Discussion

Overall, we found significant variation in the three metrics used to
evaluate model performance (Boyce index,% overlap, spatial over-
prediction). The accuracy and transferability of the models varied ac-
cording to all three inputs we manipulated, including the number of
background points, the size of the buffer used to constrain the back-
ground points, and the degree of spatial weighting (percent of points
sampled from within the buffer). However, the metrics all differed in
their responses to changes in the background points (Fig. 4) and the
study extent of the model (Supplementary Appendix 4). These results
emphasize the importance of background point selection on presence-
background SDMs and the measures used to evaluate them, particu-
larly when strong sampling bias exists in the species occurrence records
and when species’ fundamental niche is not well-estimated.

Across the four metrics used in this study, spatial weighting was on
average the most important variable in driving model performance in
the fixed-extent models (Fig. 3). However, spatial weighted affected
model accuracy and model transferability in different ways. As ex-
pected, the measure of within-domain accuracy (% overlap) was higher
in models without spatial weighting (i.e., background points sampled
from the entire study area) than those where the background points
were exclusively sampled from within the buffer (Fig. 4). However,
these models generally overpredicted areas of suitable habitat, as evi-
denced by the higher spatial overprediction and lower Boyce index for

Spatial Weight: 1
Number of BG Points: 10x
Buffer Size: 100 km

Zapus trinotatus
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models with no spatial weighting (Fig. 4). In contrast, an intermediate
degree of spatial weighting (i.e., between 0.25 and 0.75) led to increased
transferability, with low spatial overprediction. This tradeoff between
model accuracy and transferability supports previous literature. Che-
faoui and Lobo (2008) found that models with more dispersed back-
ground points had higher AUC values than those that had spatially
restricted background points, but that the models overpredicted the
realized niche of the species. Similarly, Thuiller et al. (2004) observed
overestimation in models without absences beyond the known species
distributions, even while the accuracy of the model (measured using
AUC values) remained consistently high. AUC values are dependent only
on the accuracy of classifying presences and absences; therefore, if
background points are more climatically distant from presence points,
the AUC values will be artificially inflated, even as the modelled dis-
tribution diverges from reality (Chefaoui and Lobo, 2008; Lobo et al.,
2010).

The limitations of relaying exclusively on measures of within-domain
model accuracy, especially for presence-background models, were
further highlighted in the dramatic differences between% overlap and
AUC values (high to moderate) and Boyce index (low) in fixed-extent
models with high spatial weighting. Exclusively sampling within a
buffer may lead to extrapolation in areas with climates not represented
by the background. For example, Fig. 5 shows an SDM of Z. trinotatus
(Pacific jumping mouse) created by exclusively sampling background
points within a tight buffer around the occurrences (black oval). The
overestimation of habitat suitability in the southeast of the study region
is not reflected in the% overlap value, which it is only based on the
climatic extent of the presence and background points and not the entire
study area. In contrast, the Boyce index is low, reflecting the inability of
the model to be transferred across space or time. The discordance be-
tween AUC,% overlap, and Boyce index values found throughout this
study indicate that the SDM’s performance when measured using%
overlap and AUC values has little bearing on its transferability across
space (also see Petitpierre et al., 2017). As a result, when modelling a
small species range within a large extent, our results suggest having a
spatial weight between 0 and 1 leads to the most high-performing SDMs.
However, if the study extent of the model is only marginally larger than
the species range itself, the advantages of sampling outside of the buffer
disappear (Supplementary Appendix 4). In those cases, sampling
exclusively within a buffer may be preferable (Lobo et al., 2010).

AUC: 0.763
Boyce: 0.064
Overlap: 0.679

High

Habitat
Suitability

Low
RN

Fig. 5. Habitat suitability map for Z. trinotatus (Pacific jumping mouse), using 10 * the number of occurrence points for background points, a buffer of 100 km around
each point, and sampling exclusively within the buffer. The true range of the species is contained within the black oval in the upper left, with a large area of
overestimation in the bottom right. Despite this clear overestimation, the AUC and overlap values for this model suggests that it is at worst a fair model, in contrast to

the Boyce index, which shows it to be little better than random.
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In addition to the degree of spatial weighting, the buffer used to
weight distance also affected fixed-extent model accuracy, as measured
by the% overlap between the IUCN range and the model results. World
Wildlife Fund ecoregions had the highest% overlap, in addition to the
least amount of spatial overprediction. This suggests that using these
ecoregion-based buffers may confer a slight increase in overall model
accuracy, providing support for the “available habitat” interpretation of
background points (Barve et al., 2011; Fourcade et al., 2014). However,
more research into using biologically defined buffers for background
point generation is needed to explore the implications in using ecoregion
boundaries to model species distributions. In contrast, the number of
background points did not substantially affect the discrepancy between
the SDM-generated ranges and the IUCN ranges when evaluating%
overlap, likely because the threshold we used to define presence-absence
maps varies according to the conditions of the model (Fig. 3). However,
when the model’s extent varied with the climate available to the species,
lower prevalence led to higher overlap (Fig. S7). As expected, AUC
values were more highly-influenced by background points (with higher
numbers of background points leading to larger AUC values), and
showed the same preference for WWF ecoregions as the constraining
buffer (Supplementary Appendix 3).

The transferability of the fixed-extent models (measured using the
Boyce index and spatial overprediction) reacted differently to back-
ground inputs than the model accuracy. Aside from spatial weighting,
the other background point variables we modified (number of back-
ground points, size of the buffer) had comparably little effect on the
overall transferability of the models. Therefore, the transferability of
these SDMs appears to be predominantly influenced by spatial weighting
and relatively robust to other background point parameters.

The models created with study extent tailored to the buffers around
each set of species occurrences (varying-extent models) demonstrated
the confounding effect of study extent on model performance. Buffer size
(which directly corresponded to the study extent of the model) signifi-
cantly affected model performances, with higher% overlap but more
spatial overprediction in models with larger buffers (i.e., 200 km and
WWEF ecoregion buffers). The results are expected, because using ab-
sences that are more geographically (and therefore more environmen-
tally) distant from occurrence points often leads to artificially lower
commission errors (Lobo et al., 2008). In addition, despite its clear
importance for fixed-extent models, the effect of spatial weighting was
nearly absent from the performance of varying-extent models. There-
fore, a moderate amount of spatial weighting appears to be useful when
extrapolation errors might occur (e.g., modelling a small species range
on a large extent), but is not useful for models with a tightly-bounding
study extent. Although the results of the fixed-extent models echo
those of (Thuiller et al., 2004) in supporting the use of absences well
outside the species climate envelope when extrapolating species re-
sponses to climate (but see VanDerWal et al., 2009), the performance of
the varying-extent models suggests that these absences are not useful
when the observed species range fills up much of the study extent.

The clear differences between our results when using real species and
those when using virtual species suggests fundamental differences in the
assumptions of presence-background modelling when the species
completely fills its fundamental niche. First, the virtual species were
created with known and definite relationships to the environmental
variables modelled, whereas the species used in our analyses have no
such a priori relationships and are influenced by other factors such as
anthropogenic effects, species interactions, and geologic history. The
virtual species therefore live everywhere within the study region that is
suitable, even if there is a barrier to dispersal or a large swath of unin-
habitable area between suitable regions. These patterns lead to models
that are better able to estimate the species’ “true” distribution in areas
without occurrences (i.e., have better transferability), leading to
changes in the Boyce index and overprediction patterns. In contrast, we
observed less discrepancy between virtual and real species in measures
of accuracy (e.g.,% overlap), because these measures are broadly
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unaffected by the amount of niche filling a species undergoes. In addi-
tion, the modelling methods we have employed in this study assume
biased environmental sampling. Environmental filtering attempts to
mitigate environmental bias, but, in the absence of such a bias, it may in
fact introduce bias, by weighting areas of marginal suitability more
heavily than areas within the centre of a species’ niche. Likewise, the
various buffer sizes and spatial weighting used for the background
points attempt to account for biased spatial sampling, but for a virtual
species, there is no spatial bias. The discrepancy between the results of
the real species and virtual species suggest that these methods of back-
ground sampling may not be necessary or appropriate to apply in the
absence of imperfectly sampled data. Therefore, in the exceedingly rare
case of a species with little environmental bias and a well-known
fundamental niche, we would recommend eschewing spatial weight-
ing and constraining background points with a buffer altogether.
Instead, simply manipulating the number of background points and the
spatial extent of the analysis should be the priority for species distri-
bution modelling in those cases.

Different SDM algorithms are likely to respond differently to changes
in background point prevalence and distribution (Grimmett et al.,
2020). No one algorithm consistently performs the best for every
modelling case, and they are each influenced by varying inputs in
different ways (Barbet-Massin et al., 2012; Valavi et al., 2022). We chose
to use only MaxEnt in this study for a few reasons. First, MaxEnt is shown
to be a “generalist” and a “jack of all trades’ model, performing
consistently above average across many different modelling scenarios
(Elith et al., 2010; Giovanelli et al., 2010; Grimmett et al., 2020; Valavi
etal., 2022). In addition, the discriminant ability of MaxEnt is somewhat
less influenced by number and prevalence of occurrences (Grimmett
et al., 2020) and the calibration extent (Giovanelli et al., 2010) than
other algorithms like random forests and support vector machines.
MaxEnt’s relative resilience to occurrence number and extent allows us
to more effectively examine how the distribution of background points
affects SDMs across multiple species. However, a study of how these
same background point changes influence other presence-background
algorithms is needed to fully benchmark how background might influ-
ence species distribution models as a whole. Given the discrepancy be-
tween our results using real species and virtual species, we might expect
models that require pseudo-absences (i.e., regression methods like
generalized linear or additive models) to react differently to
pseudo-absence distribution. For example, Barbet-Massin et al. (2012)
evaluated the true skill statistic (TSS) of several SDM algorithms
generated with various pseudo-absence point distributions, finding
support for a large number of pseudo-absence points and (in the case of
classification and machine learning methods) weighting pseudo-absence
points farther from the occurrences. We suspect these differences arise
from the conceptual differences between background points (which
attempt to sample the climate available to the species) and
pseudo-absences (which attempt to stand in for real absences), but more
research is necessary to confirm this suspicion.

4.1. Conclusions and recommendations

All models are inherently defined by the quality of the data they are
provided, the model inputs and parameters used when running them,
and the scale, extent, and resolution of the analysis. Presence-
background SDMs relying on machine learning techniques (such as
Maxent) are highly influenced by the inputs provided (Radosavljevic
and Anderson, 2014). This research constitutes a “deep-dive” into the
effect of methodological changes in one such input — background point
generation - on the accuracy and transferability of a single,
presence-background model algorithm. Our results clearly show that not
all modelling inputs are created equal, nor are methods for evaluating
the accuracy of an SDM. We identified a discordance between the
best-discriminating models within their training domains (as measured
with the overlap metrics) and the most-transferrable models across
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space (as measured with the Boyce index and overprediction metrics),
supporting previous literature (M. Iturbide et al., 2018; Petitpierre et al.,
2017). Therefore, the specific research question of the study may in-
fluence the selection of model inputs more than with the hypothetical
accuracy or transferability of the model (regardless of the metric used to
evaluate it). In fact, the presence of overprediction and underprediction
in a model may provide valuable insight into the ecological processes
structuring species ranges (Marcia Barbosa et al., 2013). For example, in
an ecological study evaluating the fundamental niche of a species (the
overall habitat a species could potentially inhabit), spatial over-
prediction may in fact be preferred and selected for by sampling back-
ground points randomly throughout the study area (Chefaoui and Lobo,
2008; Lobo et al., 2010; Marcia Barbosa et al., 2013). Another study
examining occupancy of a species in a fragmented conservation hotspot
may instead opt for a model that minimizes spatial overprediction.
Furthermore, the discrepancies between the fixed-extent models and the
varying-extent models serve to highlight the well-known importance of
considering interactions between model extent, background points, and
SDM performance. Studies that look to project small-ranged species into
a big extent may choose different background point parameters than
those that tailor the extent of the study to the species range (i.e., using
moderate levels of spatial weighting instead of sampling exclusively
within the buffer). Finally, the contrasting results of the virtual species
underscores that these methods are designed to reduce bias in the
occurrence data and if little bias occurs in the data, they may not be
appropriate to apply.

Finding proper background point distributions is dependent on the
specific study system and research question and is often more of an art
than a science. The results of SDMs are, by their definition, hypotheses
used to test ecological theory and provide guidance for conservation
actions. These hypotheses may well be falsified, and can only truly be
supported and evaluated by additional observation (Jarnevich et al.,
2015). Here, we provide evidence that researchers must test multiple
combinations of model inputs to “fine-tune” their models to answer their
specific ecological questions. However, we found several general trends
that may be useful for developing accurate SDMs. First, supporting the
research conducted over the last decade, we find that AUC values are a
deeply flawed metric with respect to presence-background models (see
Fig. 5), being strongly affected by the number of background points used
in the model, but unaffected by extrapolation errors that occur outside of
the climate sampled by the background (Supplementary Appendix 3).
Using the Boyce index or metrics comparing the modelled distribution to
an expert hypothesis may help to more accurately evaluate both the
accuracy and transferability of these models. When using these evalu-
ation metrics, we find support for using spatially weighted background
points (especially for small-ranged species on a large extent), in addition
to using an ecologically based buffer like ecoregions to mitigate bias in
the occurrence records. SDMs have the unparalleled ability to model our
changing biological communities on a large scale. These models are
highly versatile tools and should be treated as such. Understanding how
modelling inputs affects the results of these SDMs is the first step to-
wards refining these tools, creating better models to be used for the
complex questions biogeographers answer today.
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