

ScienceDirect

Circadian regulation of physiology by disordered protein-protein interactions

Lucas B. Sutton^{1,2} and Jennifer M. Hurley^{1,2}

Abstract

Cellular circadian clocks, the molecular timers that coordinate physiology to the day/night cycle across the domains of life, are widely regulated by disordereddisordered protein interactions. Here, we review the disordered-disordered protein interactions in the circadian clock of Neurospora crassa (N. crassa), a filamentous fungus which is a model organism for clocks in higher eukaryotes. We focus on what is known about the interactions between the intrinsically disordered core negative arm protein FREQUENCEY (FRQ), the other proteins comprising the transcription-translation feedback loop, and the proteins that control output. We compare and contrast this model with other models of eukaryotic clocks, illustrating that protein disorder is a conserved and essential mechanism in the maintenance of circadian clock across species.

Addresses

 Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, USA
 Biological Sciences Department, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, USA

Corresponding author: Hurley, Jennifer M. (hurlej2@rpi.edu) (Hurley J.M.)

Current Opinion in Structural Biology 2024, 84:102743

This review comes from a themed issue on Folding and Binding (2024)

Edited by H. Jane Dyson and Peter E. Wright

For a complete overview see the Issue and the Editorial

Available online xxx

https://doi.org/10.1016/j.sbi.2023.102743

0959-440X/© 2023 Elsevier Ltd. All rights reserved.

Physiological fitness and the day/night cycle

Throughout the history of life on earth, organisms have been exposed to the steady oscillation of the day/ night cycle as the earth rotates on its axis. This 24-h, diurnal rotation creates a consistent fluctuation in light and dark, which organisms had to evolve to anticipate. To account for this, most organisms living in the photic zone evolved a molecular timekeeping mechanism termed the circadian clock. This circadian clock is a timer that widely tunes cellular and

organismal physiology to a 24-h pattern, creating circadian rhythms that are exhibited in almost all aspects of life, including gene expression, metabolism, reproduction, and motility [1,2].

As the importance of the circadian clock in organismal fitness became clear, so did the realization that the disruption of this molecular timer, both in the short term and in the long term, could lead to negative physiological effects for organisms [3–5]. Longevity and fitness are decreased in model organisms that are not aligned to their respective circadian cycle [3,6]. In the case of humans, chronic disruptions to the molecular timer over a lifespan greatly increase rates of disease, including conditions such as heart disease, cancer, diabetes, and Alzheimer's Disease, all of which are among the top ten diseases affecting humans as we age [3,7].

Molecular mechanisms underlying the timing of circadian rhythms

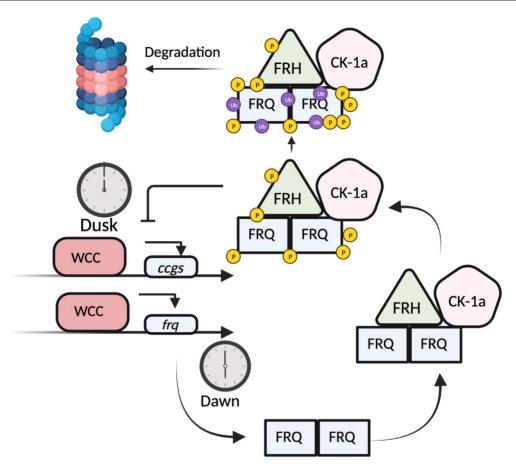
While the term circadian clock can be used to refer to a 24-h timer on several spatial scales, at its core, the clock is timed by a molecular mechanism that is architecturally conserved in fungi and animals, with a more loosely conserved architecture in plants and prokaryotes [1,5,8–10]. This clock comprises a transcription-translation feedback loop (TTFL), which, over the course of a 24-h cycle, progresses from transcriptional activation to post-translational modification to transcriptional repression to complete its cycle [1,8,9,11]. It is this basic mechanism that, in 2017, was given the Nobel Prize in Physiology or Medicine [12].

Due to its broad conservation, the principles of the molecular circadian clock have been elucidated in many organisms. While the Nobel Prize was given for work performed in *Drosophila melanogaster*, cyanobacteria, fungi, mice, and humans have all significantly contributed to the model of the molecular clock [1,12–15]. Though there are many differences in these clocks, several underlying principles are consistent among clocks across species, one of which is the importance of temporally regulated protein-protein interactions [16,17]. A key regulator in these temporal protein-protein interactions are regions of intrinsic protein disorder, regions whose amino acid sequence encodes for a heterogenous ensemble of conformations rather than a

single structure, which allows for the flexibility to time the formation of the macromolecular complexes of the TTFL and beyond over the 24-h day [16,18-20]. Evidence suggests that time-of-day dependent phosphorylation, driven by the interaction with kinases, may alter the charge of positive electrostatic patches in clock proteins, changing the availability of binding regions along the protein surface and thus controlling the timing of the formation of macromolecular complexes [16,19,21]. It is on the contribution of intrinsic disorder to the molecular timing of the circadian clock that this chapter will focus. Though a great deal of insight has been gleaned in the past decade in this subfield of circadian rhythms across model systems [18,22-25], due to the brevity of this review, we will focus on the discoveries and contributions made by the repressive arm of a particular clock model organism, the fungi Neurospora crassa (N. crassa), and parallel these findings with what has been shown in other clock model systems.

Neurospora crassa as a model system for the circadian TTFL

The filamentous fungus N. crassa has been a quintessential molecular and genetic model for many areas of research over the past 150 years [26,27]. Relevant to this review, an overt circadian rhythm was discovered in the growth of *N. crassa* in the late 1950s, which was followed shortly by the identification of the genes involved in the TTFL, leading to the use of *N. crassa* as a model for the molecular mechanisms of the clock in eukaryotes [28–30]. The current model of the TTFL in *N. crassa* is that the cycle begins when the activating complex of the clock, the White Collar Complex (WCC) consisting of White Collar-1 (WC-1) and White Collar-2 (WC-2) drives expression of the gene frequency, or frq [30-32]. The frq message is then translated, giving rise to the FREQUENCY (FRQ) protein, which is the central component of the repressing complex of the TTFL [30]. FRQ binds to its partner protein, FREQUENCYinteracting RNA helicase (FRH), which prevents the nonspecific degradation of FRQ, allowing FRQ to enact its role in the TTFL [25,33]. This FRQ/FRH complex (FFC) then interacts with the kinase Casein Kinase 1a (CK1a), leading to the extensive phosphorylation of FRQ over the circadian day, with over 100 validated phosphosites that are precisely timed by the circadian clock [16,34–36]. During its life cycle, the FFC is transported to the nucleus, where it binds to the WCC, repressing the transcriptional activity of the WCC via phosphorylation of the WCC and inhibiting the production of FRQ [37]. Once FRQ becomes hyperphosphorylated, the FFC can no longer repress WCC activity and is ubiquitinated and degraded, allowing the WCC to reactivate the frq promoter and begin the cycle anew (Figure 1) [10,38]. The ability of the TTFL to regulate cellular physiology stems from both the capacity of the WCC to rhythmically activate promoters other than FRQ as well as the temporal formation of repressive arm-centered macromolecular complexes that impart signaling information throughout the cell [16,19,39]. Thirty years of comparative study have shown that the architecture of the clock in N. crassa is much the same as the clock in many eukaryotes, even if the sequence conservation of the proteins involved in the clock is limited [10,18,40].


Intrinsically disordered protein regions regulate interactions within the TTFL

Though there is little sequence conservation in clock proteins from different phyla, there are some shared molecular characteristics. One of these characteristics is that the proteins that are involved in the TTFL, whether in the activating or repressing arms, are either classified as intrinsically disordered proteins (IDPs) or they contain intrinsically disordered regions (IDRs) that account for a significant portion of their sequence (Figure 2) [18,41]. The proteins of the *N. crassa* TTFL are no exception to this rule. In fact, while IDRs were previously found to control clock functions in higher eukaryotic clocks, the first IDP found to be essential for clock function was FRQ in N. crassa [25,42,43].

The role of protein disorder in the clock in *N. crassa* was initially discovered in the study of the interaction between FRQ and FRH [25]. While at the time little was known about the function of FRO, FRH was predicted to be an essential helicase in *N. crassa* as it is homologous to other known DExD-box ATP-ase helicases [33]. In concordance with this, FRH was shown to have a wellordered three-dimensional structure homologous to other DExD-box helicases and possess RNA-unwinding activity [44,45]. However, in an analysis of the interaction between FRH and FRO, it was found that rather than the well-ordered and conserved helicase regions of FRH, it was the disordered N-terminal arm of FRH that enabled the interaction [25]. Specifically, it was the intrinsically disordered residues in the N-terminal arm of FRH, a region only conserved in fungi that maintained a circadian clock, that, when mutated, inhibited the interaction between FRQ and FRH [25]. A knockout of this region of FRH not only eliminated FRQ/ FRH interaction but decreased FRQ stability and ablated the oscillation of the TTFL [25]. In concordance with this, when the core helicase regions (not in the Nterminal arm) of FRH were mutated, binding between FRQ and FRH still occurred, and the clock still oscillated with a circadian period, suggesting that the helicase activity of FRH and its well-ordered regions are not essential for the proper timing of the TTFL [25].

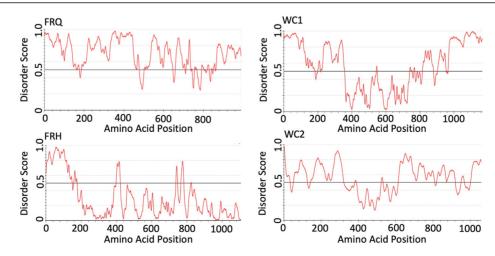

Notably, IDRs dictate interactions that occur within the TTFL that regulate the timing of the circadian clock beyond the regulation of the FFC in N. crassa. In a recently published example, the interaction between FRQ and the activating arm protein WC-1 has been shown to occur via an IDR-IDR interaction [21,46].

Figure 1

The transcription-translation feedback loop in the N. crassa circadian clock. The WCC drives the transcription and translation of FRQ. FRH, and CK-1a form the FFC. The FFC inhibits the WCC, halting transcription of clock-controlled genes, including frq. CK-1a phosphorylates the FFC, leading to the separation of the FFC and the WCC, the ubiquitination of FRQ, the reactivation of the WCC, and ultimately the degradation of FRQ via the proteasome. WCC, White Collar Complex; FRQ, FREQUENCY; FRH, FREQUENCY-Interacting RNA helicase; FFC, FRQ/FRH complex.

Figure 2

IUPred3(long) disorder prediction of N. crassa circadian clock proteins. A low score indicates structured residues, while a high score indicates disordered residues. Predictions illustrate that FRQ and WC2 are disordered, while FRH and WC1 contain large regions of disorder [41]. FRQ, FREQUENCY; FRH, FREQUENCY-Interacting RNA helicase; WC1, White Collar1.

Like the work described below, which first demonstrated the importance of electrostatics in the clock by examining the regulation of clock output, the interaction between WC-1 and FRQ can be disrupted by exposure to high salt, illustrating that electrostatics are important to this IDR-IDR interaction, which is key to the TTFL in the N. crassa circadian clock [19,21]. Given the above evidence, it is likely that many of the clock protein interactions within the TTFL are enabled by intrinsic protein disorder. Similar to what is seen in N. crassa, the TTFL in mice is regulated by disordered protein interactions. For example, the interaction within and between the activating arm proteins basic helixloop-helix ARNT like 1 (BMAL1) and cryptochrome (CRY) and the repressive arm proteins PERIOD proteins (PERs) in the mammalian clock are interactions between IDRs [18,24,47].

Circadian regulation of cellular physiology is enabled by regions of intrinsic protein disorder

Though the FRQ/FRH interaction domain (FFD) on FRH comprises an IDR, as do many of the interactions within the *N. crassa* TTFL, the FFD on FRQ has long been understood to reside in one of the few regions of FRQ that is predicted to have a fixed three-dimensional structure [22,25]. This FRQ FFD is recognized as the principal point of interaction and the only region of interaction between FRQ and FRH that is sequence-specific [19,48]. Further, ablation of this region eliminates the function of the TTFL [48].

However, recent work has shown that beyond the binding of FRQ to FRH via this ordered FFD, regions of disorder in FRO may also participate in the interaction with FRH [19]. New data demonstrates that positively charged islands distributed along intrinsically disordered regions of the FRQ sequence nonspecifically bind to FRH via the primarily negatively charged solventaccessible surface of FRH [19]. This model of nonspecific interaction via electrostatics aligns with the current model of a "fuzzy-like" biophysical complex [19]. Contrary to the function of the ordered FFD, ablation of these interactions does not eliminate the function of the TTFL. Rather, mutation of these regions ablates the overt oscillations of the N. crassa clock, demonstrating that these electrostatically driven interactions are important not for the oscillation of the TTFL but for the timing that the TTFL imparts onto cellular physiology [19].

The mechanism by which the fuzzy repressive arm complex of the TTFL can regulate physiology is unknown. However, clues to this mechanism stem from evidence that large macromolecular complexes form around the repressive arm of the *N. crassa* clock, including proteins not involved in the timing of the TTFL itself [16]. Research into these macromolecular

complexes has shown that as many as 500 proteins bind to the repressive arm over the circadian day and that the interaction of these proteins with the repressive arm oscillates with a circadian period and correlates with the phosphorylation of FRQ [16,34]. Concordantly, when the binding regions of the non-TTFL-regulating proteins were predicted computationally along the sequence of FRQ, these proteins were primarily predicted to bind in regions of FRQ that are both intrinsically disordered and phosphorylated over the circadian day [16]. When aligned with the charge blocks on FRQ, a further correlation was noted, suggesting that FRQ interactions tended to occur in disordered and phosphorylated regions that were not electrostatically attracted to FRH [19].

Protein disorder also appears to be a key characteristic of the time at which proteins participate in repressive armcentered macromolecular complexes [16]. Within FRQ macromolecular complexes, FRQ tends to interact more with ordered proteins than IDPs [16]. However, while ordered proteins tend to interact with FRQ when they are at their peak levels, in the case of IDPs that do interact with FRQ, the IDP/IDP interactions tend to occur at the nadir levels, suggesting that FRQ interaction may stabilize the IDPs [16].

Given this data, one can envision a model where phosphorylation of a positively charged region, harboring a target binding site of a FRQ interactor, modulates the electrostatics of that region to regulate its nonspecific binding to FRH [16,19]. In this way, phosphorylation of disordered regions could control access of the target site for the FRQ interactor temporarily. This interaction could either help to stabilize the interactor or bring together a kinase and its target in a time-of-day-specific manner. These data are supported by evidence that FRQ changes its conformation over the circadian day in concordance with both phosphorylation and proteinprotein interactions [16]. The disordered nature of these regions would provide the necessary flexibility to allow FRQ to rapidly change its conformation [16]. The proposed model provides the first biophysically mechanistic explanation of how the repressive arm of the circadian clock can regulate output transcriptionally [16,19]. This is relevant as circadian post-transcriptional regulation has been widely described in the clock field, but little is known about the source of this regulation [39,49].

When the protein analogs of FRQ, the PERIOD proteins in flies (dPER), mice (mPER), and humans (hPER), were analyzed, positively charged islands in regions of disorder were found to be conserved [16]. In addition, when the interactomes of dPER and mPER were analyzed over circadian time, they too were found to form large macromolecular complexes that oscillate over circadian time and have differential interactions

dependent on the predicted disorder of the interactor. suggesting that the function of intrinsic protein disorder in protein-protein interactions that regulate output is conserved in clocks across species [16].

Protein-protein interactions in the clock regulate circadian liquid-liquid phase separation

One of the hot topics in IDP/IDR protein-protein interactions is their ability to regulate the process of liquid-liquid phase separation (LLPS), the formation of liquid-like particles that are physiologically distinct from their surroundings [50]. These liquid-like droplets broadly assist in cellular organization, metabolism. regulation, and signaling [51,52]. IDP/IDRs within the clock are no different, as this phenomenon has been noted in circadian clock proteins across different species [22,53]. Recent evidence shows that in *N. crassa*, FRQ undergoes LLPS, which is heavily dependent on the phosphorylation state of FRQ [22]. While in liquid droplet form, FRQ phosphorylation is inhibited as CK1a is not able to access FRQ [22]. Further, FRQ can recruit FRH and CK1a, via disordered domains, to these liquid droplets, halting their enzymatic functions [22]. LLPS was also noted in the clock regulatory protein period-2 (PRD2), which is an RNA-binding protein that localizes frq mRNA in liquid droplets [53]. In fact, based on their amino acid composition, many of the proteins in the circadian clock in N. crassa may be able to exhibit LLPS [54].

Similarly, eukaryotic clocks beyond N. crassa exhibit LLPS in their circadian clock. The nuclear receptor and negative arm protein REV-ERBα in mice can form liquid droplets [23]. This physiological event is driven through the N-terminal IDR of REV-ERBa, which recruits nuclear receptor corepressor 1 (NCOR1) to regulate gene expression [23]. In Arabidopsis, EARLY FLOWERING 3 (ELF3), a repressive protein in the clock, contains a predicted prion domain (PrD) with a polyQ repeat, which is known to assemble into liquid droplets [55,56]. With increasing temperature, ELF3 forms liquid droplets dependent on this disordered PrD region [56]. Finally, in *Drosophila* clocks, the PERIOD and CLOCK proteins both form condensates during the repressive phase of the clock, and the breaking of these foci disrupts circadian rhythms [57]. Overall, LLPS is yet another mechanism by which IDPs/IDRs regulate protein-protein interactions to control clock functions across species.

Conclusion/summary

IDPs/IDRs play varied and important roles in the regulation of the circadian clock. Each of these roles is evident in the circadian model organism *N. crassa*, whose repressive arm protein FRQ is highly intrinsically disordered [18]. This characteristic allows for proper maintenance of the circadian clock via the regulation of interactions with FRH, CK1, the WCC, and other binding partners that control the regulation of physiology [16,19,22,53]. These functions are mirrored in IDPs/IDRs from circadian clocks across many eukaryotic species, including humans, mice, fungi, and plants, illustrating that characteristics granted by intrinsic disorder are essential for the circadian clock to anticipate external stimuli [18].

Funding

This work was funded by an NIH-National Institute of Imaging and Bioengineering Biomedical U01EB022546 (to J.M.H.); an NIH-National Institute of General Medical Sciences grant R35GM128687 (to J.M.H.), an NSF-CAREER Award 2045674 (to J.M.H.); and a DOE-FICUS Award 60407 (to J.M.H.).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This work was supported by an NIH-National Institute of Biomedical Imaging and Bioengineering grant U01EB022546 (to J.M.H.); an NIH-National Institute of General Medical Sciences grant R35GM128687 (to J.M.H.); an NSF CAREER Award 2045674 (to J.M.H.); Rensselaer Polytechnic Startup funds (to J.M.H.); a gift from the Warren Alpert Foundation (to J.M.H.), a DOE-FICUS Award 60407 (to J.M.H.) and DOE-SCGSR Fellowship (to L.B.S.). Biorender.com was used in the creation of Figure 1.

References

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest
- 1. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ: Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 2005. 6:544-556.
- Serin Y, Acar Tek N: Effect of circadian rhythm on metabolic processes and the regulation of energy balance. Ann Nutr Metab 2019, 74:322-330.
- Lunn RM, Blask DE, Coogan AN, Figueiro MG, Gorman MR, Hall JE, Hansen J, Nelson RJ, Panda S, Smolensky MH, et al.: Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program's workshop on shift work at night, artificial light at night, and circadian disruption. Sci Total Environ 2017, 607-608:1073-1084.
- Evans JA. Davidson AJ: Health consequences of circadian disruption in humans and animal models. Prog Mol Biol Transl Sci 2013. 119:283-323.
- Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR: Plant circadian clocks

- increase photosynthesis, growth, survival, and Competitive advantage. *Science* 2005, **309**:630-633.
- Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS: Importance of circadian timing for aging and longevity. Nat Commun 2021:12.
- Musiek ES, Xiong DD, Holtzman DM: Sleep, circadian rhythms, and the pathogenesis of Alzheimer Disease. Exp Mol Med 2015. 47.
- Li W, Wang Z, Cao J, Dong Y, Chen Y: Perfecting the life clock: the journey from PTO to TTFL. Int J Mol Sci 2023:24.
- Cao X, Yang Y, Selby CP, Liu Z, Sancar A: Molecular mechanism of the repressive phase of the mammalian circadian clock. Proc Natl Acad Sci USA 2020:118.
- Hurley JM, Loros JJ, Dunlap JC: Circadian oscillators: around the transcription–translation feedback loop and on to output. Trends Biochem Sci 2016, 41:834–846.
- Dunlap JC, Loros JJ, Colot HV, Mehra A, Belden WJ, Shi M, Hong CI, Larrondo LF, Baker CL, Chen C-H, et al.: Clocks and rhythms. Cold Spring Harbor Symp Quant Biol 2007, 72:57–68.
- Ledford H, Callaway E: Circadian clocks scoop Nobel prize. Nature 2017, 550:18.
- Takahashi JS: Molecular components of the circadian clock in mammals. Diabetes Obes Metabol 2015, 17:6–11.
- Patke A, Young MW, Axelrod S: Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2020, 21:67–84.
- Johnson CH, Mori T, Xu Y: A cyanobacterial circadian Clockwork. Curr Biol 2008, 18.
- Pelham JF, Mosier AE, Altshuler SC, Rhodes ML, Kirchhoff CL,
 Fall WB, Mann C, Baik LS, Chiu JC, Hurley JM: Conformational changes in the negative arm of the circadian clock correlate with dynamic interactomes involved in post-transcriptional regulation. Cell Rep 2023:42.

This study examines the disorder and interactome of *Neurospora crassa*, *Drosophila*, and human repressive arm proteins FREQUENCY and PERIOD. These proteins are found to be disordered, change conformation over the circadian day, and have circadian cycles to their interactome. Finally, these changes in conformation and interactome are shown to correlate with the circadian phosphorylation of these proteins

- Mosier AE, Hurley JM: Circadian interactomics: how research into protein-protein interactions beyond the core clock has influenced the model of circadian timekeeping. J Biol Rhythm 2021, 36:315–328.
- Pelham JF, Dunlap JC, Hurley JM: Intrinsic disorder is an essential characteristic of components in the conserved circadian circuit. Cell Commun Signal 2020, 18:1–13.
- Jankowski MS, Griffith D, Shastry DG, Pelham JF, Ginell GM, Thomas J, Karande P, Holehouse AS, Hurley JM: The formation of a fuzzy complex in the negative arm regulates the robustness of the circadian clock. bioRxiv 2022, https://doi.org/ 10.1101/2022.01.04.474980.
- Uversky VN: Intrinsically disordered proteins and their "Mysterious" (meta)physics. Front Physiol 2019, 7:8–23.
- Wang B, Dunlap JC: Domains required for the interaction of the central negative element FRQ with its transcriptional activator WCC within the core circadian clock of Neurospora. J Biol Chem 2023:299.

This manuscript investigates the binding of FRQ to the WCC in *Neurospora crassa*. They found that multiple regions of FRQ are needed for the interaction to occur with the WCC, suggesting an electrostatically-driven and multi-valent interaction.

- Tariq D, Maurici N, Bartholomai BM, Chandrasekaran S, Dunlap JC, Bah A, Crane BR: Phosphorylation, disorder, and phase separation govern the behavior of Frequency in the fungal circadian clock. bioRxiv 2023, https://doi.org/10.1101/ 2022.11.03.515097.
- Zhu K, Celwyn IJ, Guan D, Xiao Y, Wang X, Hu W, Jiang C, Cheng L, Casellas R, Lazar MA: An intrinsic disorder region

- controlling condensation of a circadian clock component and rhythmic transcription in the liver. *Mol Cell* 2023, **83**: 3457–3469
- Parico GCG, Partch CL: The tail of cryptochromes: an intrinsically disordered cog within the mammalian circadian clock. Cell Commun Signal 2020:18.
- Hurley JM, Larrondo LF, Loros JJ, Dunlap JC: Conserved RNA helicase FRH acts nonenzymatically to support the intrinsically disordered neurospora clock protein FRQ. Mol Cell 2013, 52:832–843.
- 26. Honda S, Eusebio-Cope A, Miyashita S, Yokoyama A, Aulia A, Shahi S, Kondo H, Suzuki N: Establishment of Neurospora crassa as a model organism for fungal virology. *Nat Commun* 2020:11.
- Roche CM, Loros JJ, McCluskey K, Louise Glass N: Neurospora crassa: looking back and looking forward at a model microbe. Am J Bot 2014, 101:2022–2035.
- Pittendrigh CS, Bruce VG, Rosensweig NS, Rubin ML:
 A biological clock in Neurospora. Nature 1959.
- Crosthwaite SK, Dunlap JC, Loros JJ: Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 1997, 276:763.
- Aronson BD, Johnsont KA, Dunlap JC: Circadian clock locus frequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc Nati Acad Sci USA 1994, 91:7683

 –7687.
- Dunlap JC: Molecular bases for circadian clocks. Cell 1999, 96:271–290.
- 32. Jankowski MS, Chase ZA, Hurley JM: From genetics to molecular oscillations: the circadian clock in neurospora crassa. In *Genetics and biotechnology*. Edited by Benz JP, Schipper K, Springer International Publishing; 2020:77–103.
- Cheng P, He Q, He Q, Wang L, Liu Y: Regulation of the Neurospora circadian clock by an RNA helicase. Genes Dev 2005, 19:234–241.
- Baker CL, Kettenbach AN, Loros JJ, Gerber SA, Dunlap JC: Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol Cell 2009, 34:354–363.
- 35. Wang B, Stevenson EL, Dunlap JC: Functional analysis of 110 phosphorylation sites on the circadian clock protein FRQ identifies clusters determining period length and temperature compensation. *G3: Genes, Genomes, Genetics* 2023:13.
- Tang C-T, Li S, Long C, Cha J, Huang G, Li L, Chen S, Liu Y: Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events. Proc Natl Acad Sci USA 2009, 106:10722–10727.
- Luo C, Loros JJ, Dunlap JC: Nuclear localization is required for function of the essential clock protein FRQ. EMBO J 1998, 17: 1228–1235.
- Larrondo LF, Olivares-Yañez C, Baker CL, Loros JJ, Dunlap JC: Decoupling circadian clock protein turnover from circadian period determination. Science 2015, 347.
- Hurley JM, Jankowski MS, De los Santos H, Crowell AM, Fordyce SB, Zucker JD, Kumar N, Purvine SO, Robinson EW, Shukla A, et al.: Circadian proteomic analysis uncovers mechanisms of post-transcriptional regulation in metabolic pathways. Cell Syst 2018, 7:613–626.e5.
- 40. Dunlap JC, Loros JJ: Making time: conservation of biological clocks from fungi to animals. *Microbiol Spectr* 2017, 5.
- Erdos G, Pajkos M, Dosztányi Z: IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation. Nucleic Acids Res 2021, 49:W297–W303.
- Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, Green CB, Zhang H, Takahashi JS: Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 2012, 337:189–194.

- Partch CL, Clarkson MW, Özgür S, Lee AL, Sancar A: Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Biochemistry 2005, 44:3795-3805.
- 44. Morales Y. Olsen KJ. Bulcher JM. Johnson SJ: Structure of frequency-interacting RNA helicase from Neurospora crassa reveals high flexibility in a domain critical for circadian rhythm and RNA surveillance. PLoS One 2018, 13.
- Conrad KS, Hurley JM, Widom J, Ringelberg CS, Loros JJ, Dunlap JC, Crane BR: Structure of the frequency-interacting RNA helicase: a protein interaction hub for the circadian clock. EMBO J 2016, 35:1707-1719.
- Wang B, Zhou X, Loros JJ, Dunlap JC: Alternative use of DNA binding domains by the Neurospora White Collar Complex dictates circadian regulation and light responses. Mol Cell Biol 2016, 36:781-793.
- Philpott JM, Freeberg AM, Park J, Lee K, Ricci CG, Hunt SR, Narasimamurthy R, Segal DH, Robles R, Cai Y, et al.: PERIOD phosphorylation leads to feedback inhibition of CK1 activity to control circadian period. Mol Cell 2023, 83:1677-1692.e8.

This investigation determined the role of phosphorylation in a specific region of PERIOD affects CK15 enzymatic activity and PERIOD stability through the regulation of a phosphodegron. This study links a human circadian phenotype to the conformation of clock proteins.

- Guo J, Cheng P, Liu Y: Functional significance of FRH in regulating the phosphorylation and stability of Neurospora circadian clock protein FRQ. J Biol Chem 2010, 285:11508-11515.
- Collins E, Cervantes-Silva M, Timmons G, O'Siorain J, Curtis A, Hurley J: Post-transcriptional circadian regulation in macrophages organizes temporally distinct. Immunometabolic States 2020, https://doi.org/10.1101/2020.02.28.970715.
- 50. Ozawa Y. Anbo H. Ota M. Fukuchi S: Classification of proteins inducing liquid-liquid phase separation: sequential, structural and functional characterization. J Biochem 2023, 173:255-264.
- 51. Wright PE, Dyson HJ: Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 2015, 16:18-29

- 52. Dignon GL, Best RB, Mittal J: Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu Rev Phys Chem 2020, https://doi.org/10.1146/annurevphyschem-071819.
- Bartholomai BM, Gladfelter AS, Loros JJ, Dunlap JC: PRD-2 mediates clock-regulated perinuclear localization of clock gene RNAs within the circadian cycle of Neurospora. Proc Natl Acad Sci USA 2022, https://doi.org/ 10.1073/pnas

This study uses single-molecule RNA fluorescence in situ hybridization (smFISH) to determine that the fraction of frg mRNA in the nucleus changes over the circadian day. Their analysis shows that the RNAbinding protein, PERIOD-2, clusters frg mRNA in a circadian manner over the course of the day.

- Saar KL, Morgunov AS, Qi R, Arter WE, Krainer G, Lee AA, Knowles TPJ: Learning the molecular grammar of protein condensates from sequence determinants and embeddings. Biophysics and Computational Biology 2023, https://doi.org/ 10.1073/pnas.2019053118/-/DCSupplemental.y.
- Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P, Bridges AA, Brangwynne CP, Gladfelter AS: **RNA** controls PolyQ protein phase transitions. Mol Cell 2015, 60: 220-230
- Jung JH, Barbosa AD, Hutin S, Kumita JR, Gao M, Derwort D, Silva CS, Lai X, Pierre E, Geng F, et al.: A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 2020, 585:256-260.
- 57. Xiao Y, Yuan Y, Jimenez M, Sani N, Yadlapalli S: Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms. *Proc Natl Acad Sci USA* 2021:

This research analyzes the circadian clock proteins in Drosophila neurons. They use *in situ* hybridization to demonstrate that clock genes, *period*, and *timeless* form discrete foci near the nuclear periphery and that the positioning of the gene is linked to the PERIOD protein and the repressive phase of the clock.