
1008 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

C

Efficient Crypto Engine for Authenticated

Encryption, Data Traceability, and Replay

Attack Detection Over CAN Bus Network
Amar Rasheed , Mohamed Baza , Mahmoud. M. Badr , Hani Alshahrani ,

and Kim-Kwang Raymond Choo , Senior Member, IEEE

Abstract—Smart vehicles and industrial control systems becom-
ing increasingly complex. They are comprised of a large number of
connected intelligence sensor devices. For such systems, Controller
Area Network (CAN) bus offer high-integrity serial communication
capabilities. It transformed the way how these systems are net-
worked. Due to the lack of data security features on CAN-enabled
systems, many of these systems are vulnerable to a wide range of
cyber threats. This article proposed the development of a crypto-
based subsystem that is capable of supporting CAN authenti-
cated data encryption/decryption, crypto-provable data traceabil-
ity, and replay attack detection capabilities. Data confidentiality
was achieved via the deployment of a lightweight block cipher au-
thenticated encryption scheme based on TinyJAMBU-128. Crypto-
provable data traceability was accomplished through the utilization
of a block-chaining approach. Meanwhile, an anti-replay attack
mechanism that implements CAN message context awareness has
been tested and validated under various data infection rates. Our
CAN security subsystem was fully implemented and deployed on a
testbed with multiple STM32 Nucleo development boards. System
performance for our security schemes was analyzed and compared
with traditional encryption schemes AES, ARIA, and Camellia
with SHA-512 for supporting message authentication. Based on
our performance results, the proposed security subsystem achieved
the lowest CAN bus load and average message overhead compared
to other encryption schemes. In the case of the anti-replay attack
mechanism, we were able to reach a detection rate of 99.99% for
data infection rate below 20%.

Index Terms—Encryption, CAN Bus, authenticated encryption,
decryption algorithm.

Manuscript received 2 April 2023; revised 11 August 2023; accepted 30 Au-

gust 2023. Date of publication 8 September 2023; date of current version 8 Jan-
uary 2024. Recommended for acceptance by Dr. Yang Xiao. (Corresponding
author: Mohamed Baza.)

Amar Rasheed is with the Department of Computer Science, Sam Houston
State University, Huntsville, TX 77340 USA (e-mail: axr249@shsu.edu).

Mohamed Baza is with the Department of Computer Science, College of
Charleston, Charleston, SC 29424 USA (e-mail: bazam@cofc.edu).

Mahmoud. M. Badr is with the Department of Network and Com-
puter Security, Suny Polytechnic Institute, Utica, NY 13502 USA (e-mail:
badrm@sunypoly.edu).

Hani Alshahrani is with the Department of Computer Science, College of
Computer Science and Information Systems, Najran University, Najran 61441,
Saudi Arabia (e-mail: hmalshahrani@nu.edu.sa).

Kim-Kwang Raymond Choo is with the Department of Information System
and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78260
USA (e-mail: raymond.choo@utsa.edu).

Digital Object Identifier 10.1109/TNSE.2023.3312545

Fig. 1. CAN BUS applications.

I. INTRODUCTION

ONTROLLER area network (CAN) protocol has been

widely embraced by the automotive industry (see Fig. 1).

In today’s connected vehicles, CAN enables internal compo-

nents of the vehicle’s complex system to communicate with one

another without the need for a central processing unit. CAN bus

provides low-cost and reliable data communication solutions.

Data generated from various sensor units can be transmitted over

the bus at the rate of 2 to 5 Mb/s. Existing vehicle systems can

support more than 70 intelligent sensors and Electronic Control

Units (ECU)s. The biggest processing unit in any vehicle system

is the engine control unit. Other ECUs that support autonomous

driving capabilities include Advanced Driver Assistant System

(ADAS) unit, airbags, cruise control, battery and recharging

system, and lane assist/collision avoidance.

Additional CAN features like flexibility, reliability, rugged-

ness, and high tolerances against interference makes the tech-

nology an ideal data communication platform for many safety-

critical industrial control system, and autonomous military

platforms (e.g., unmanned Aircraft Systems (UAS) and Lethal

Autonomous Weapon Systems (LAWS)). Tactical military ve-

hicles are highly integrated with multiple sensor fusion modules

and control algorithms. In such systems, rapid decision-making,

fast maneuvering, and collision avoidance capabilities are vital

2327-4697 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

mailto:axr249@shsu.edu
mailto:bazam@cofc.edu
mailto:badrm@sunypoly.edu
mailto:hmalshahrani@nu.edu.sa
mailto:raymond.choo@utsa.edu
http://www.ieee.org/publications/rights/index.html
https://orcid.org/0000-0002-1929-9124
https://orcid.org/0000-0001-5153-8693
https://orcid.org/0000-0002-8986-001X
https://orcid.org/0000-0002-8799-9448
https://orcid.org/0000-0001-9208-5336

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1009

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

for supporting mission dynamics. In both commercial and

military-connected vehicles, CAN protocol shows superiority in

the way how various sensor data get prioritized and transmitted

over the CAN network. For example, camera, LIDAR (Light

Detection and Ranging), GPS (Global Positioning System), en-

gine temperature, and acceleration data computed by the various

subsystems are prioritized based on their assigned CAN message

IDs. Similarly, CAN bus integration into today’s industrial

control systems brings an essential functionality that ensures

the safe operation of such systems. Data prioritization capability

for sensor data and actuators is inherently supported by CAN

which eliminates the need for additional hardware or software

components.

Although CAN bus technology has been incorporated into the

design of a wide range of interconnected systems, traditional

CAN systems still lack the support of basic security primitives

[1], [2]. Data encryption/decryption, message authentication,

and data integrity verification capabilities are not integrated into

current CAN technologies. CAN is a message-based broadcast

system, in which messages can be easily extracted and com-

promised from the bus via the deployment of a malicious ECU

acting as a packet sniffer. Non-authenticated CAN data messages

can be altered during transit and injected into the network. CAN

protocol offers zero resiliency against message replay attacks.

Captured CAN message from previous data transmissions can

be inserted into the CAN bus via a compromised ECU. Further-

more, current CAN technologies are inadequate in providing

cryptographically secured data tracing capability. Specifically,

in the case of a car accident, non-authenticated CAN messages

transmitted over the bus that holds critical information such as

acceleration data, tire pressures, and steering wheel angles are

not cryptographically secured. A malicious ECU will be able

to alter the sequence of data in the trace by placing additional

packets into the trace or even changing the order of the packets

within the trace.

The main thrust of this research includes the development

and deployment of an efficient CAN security subsystem for

CAN-based interconnected systems. The proposed CAN se-

curity subsystem supports two auxiliary security modules in-

tegrated into the existing TinyJAMBU-128 [32] authenticated

encryption scheme. The newly developed security modules en-

hanced TinyJAMBU-128’s security capabilities against CAN

replay attacks. The modified TinyJAMBU-128 is capable of

achieving secure data traceability and data authentication over

CAN bus networks.

Finally, systematical evaluation and third-party methodolog-

ical frameworks that assess the security property of CAN-based

encryption systems have not been proposed in the past. Existing

research literature mainly focuses on classical crypto techniques

that were designed for general-purpose computing systems [44],

[45], [46]. Also, due to CAN bus system requirement, many of

today’s performance metrics that are used to analyze the effi-

ciency of traditional security mechanisms might be unsuitable

for evaluating security algorithms developed for CAN bus net-

work. We have investigated the employment of two performance

metrics that fully describe the impact of deploying our proposed

crypto system: (i) CAN bus overhead capacity and (ii) ECU

processing power. Experimental results that capture the modified

TinyJAMBU-128 authenticated encryption system efficiency in

terms of CAN bus overhead capacity and ECU processing time

were presented during this work.

The following cryptographic techniques have been developed
and deployed onto the proposed CAN security subsystem.

• Lightweight Authenticated Data Encryption Scheme: Effi-

cient and lightweight encryption/decryption scheme based

on TinyJAMBU-128 [32] authenticated encryption was

implemented. We have evaluated the performance of the

proposed authenticated encryption scheme and compared

it with traditional crypto engines that support block cipher

encryption. Performance metrics based on CAN bus load,

message overhead, and processing time were captured

for TinyJAMBU-128 [32], AES128, AES-192, AES-256

[44], SHA-256, ARIA-128, ARIA-192, ARIA-256 [45],

Camellia-128, Camellia-192, and Camellia-256 [46]. Data

encrypted via AES, ARIA, and Camellia were authen-

ticated via the deployment of SHA-512. Based on our

simulation results, the proposed scheme achieved better

performance in terms of message overhead, and CAN

bus load compared to other encryption schemes. We have

analyzed the performance of the proposed replay attack

detection scheme based on true positive and false positive
rates under various malicious data injection rates.

• Efficient Countermeasure Mechanism Against Replay At-

tacks: A cryptographic-based approach that utilizes CAN

channel data communication patterns to derive a transmis-

sion context for each data message sent over the bus. In

our proposed scheme, transmission contexts are encoded

into the associated data packets that are used for encrypting

CAN messages. Our proposed scheme can achieve a 99.9%

replay attack detection rate. CAN messages transmitted

within an invalid context will be detected. We have tested

the proposed scheme by injecting replay messages into the

CAN bus using various injection rates. We have validated

the ability of the system for identifying malicious data

packets sent within invalid transmission contexts.
• Crypto-provable Technique for Data Traceability: To en-

sure the integrity of a trace, CAN data transmitted over

the bus are block-chained using a cryptographic hash

approach. Our proposed scheme provides full resiliency

against data modification and data injection attacks. A

compromised ECU will not be able to insert malicious

CAN data into a pre-computed data-trace.

Our proposed techniques are capable of supporting secure

data transmission, message authentication, and crypto-provable

data traceability function. Data communicated over the CAN

bus will be encrypted and authenticated with minimum data

communication overheads. Our CAN security subsystem makes

existing CAN bus-based interconnected systems fully immu-

nized against replay attacks and threats that targeted the integrity

of the data-trace.

The proposed CAN subsystem was implemented on multiple

STM32F411 [47] boards. Each STM32F411 board features an

ARM Cortex-M4 processing unit, 512KB of flash memory, and

128KB of SRAM, and it is CAN-enabled. We have created

1010 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. CAN bus architecture.

a CAN bus-based interconnected system where STM32F411

systems send and receive data over the CAN bus. Data confi-

dentiality, message authentication, and system resiliency against

replay attacks were tested using the added CAN security sub-

system. Our security subsystem shows superiority in achieving a

high detection rate against replay attacks and is capable of rein-

forcing secure data transmission with minimal communication

overheads.

This article is organized as follows. Section II presents the

CAN protocol. Section III describes related works. Section IV

introduces a high-level architecture of the proposed CAN se-

curity subsystem. Section V introduces a lightweight encryp-

tion/decryption algorithm based on the TinyJAMBU-128 crypto

engine. Section VI describes the proposed countermeasure tech-

nique against replay threats. Section VII presents a crypto-

graphic technique based on hash for supporting the integrity

verification of data-trace. Section VIII introduced the security

analysis approach. Section IX shows the performance results

of the proposed CAN security subsystem. Section X illustrates

the interconnected system architecture for the proposed testbed.

Section XI concludes the article and presents future work direc-

tions.

II. BACKGROUNDS

CAN was first introduced and developed by BOSCH [3] and

is a message-based protocol that supports the broadcasting of

CAN data where there is no centralized unit that facilitates how

data get transmitted over the bus. The original CAN was able

to provide a maximum data communication rate of 1Mbit/sec.

CAN feature a point-to-point communication system, data is

transmitted as small blocks of size 1-8 bytes per message. For

more than thirty years, CAN provided flexibility and upgradabil-

ity to the automotive industry where complex wiring systems

were replaced by CAN-High and CAN-Low wire systems (see

Fig. 2). New ECUs can be added to the network with minimal

modification to the internal system architecture. ISO-11898

defined how CAN protocol is mapped to the ISO Data-link layer

and Physical layer. In this research, the CAN security subsystem

was fully implanted and integrated into the application layer,

while preserving the CAN protocol’s original design integrity.

Our subsystem will serve as plug and play system, it can be

initiated at ECU connected to the systems when data security

feature is imperative for ensuring the safe operation of the

system.

Fig. 3. CAN data frame and CAN arbitration.

One important aspect of CAN communication is that it relies

on carrier sense, multiple access mechanisms with collision de-

tection plus arbitration on message priority (CSMA/CD+AMP)

for accessing the bus. In CAN, ECUs contention over the bus

is resolved using a bit-wise arbitration method, messages are

prioritized based on their programmable ids, and messages with

the highest priority will win the arbitration race. The original

ISO-11898 support a data communication rate from 125kbit/sec

to 1Mbit/sec with an 11-bits message id. The new CAN is able

to provide an extended 29-bits id where 229 different identities

can be created.

A. Message Arbitration

CAN bus was implemented using a twisted and shielded

wiring system with 120 Ohm termination resistors on each

side of the bus. CAN is based on a differential voltage signal

transmitted between CANH and CANL. When the bus is idle, it

remains in a recessive state until one node pulls the state of the

bus to dominate. When two nodes try to send data over the bus

simultaneously, their messages can be corrupted or destroyed.

CAN resolves bus contention via the bit-wise arbitration ap-

proach. Each message transmitted on CAN is identified by an

11-bit ID or 29-bits in the case of standard CAN and extended

CAN respectively. Message prioritization is computed based on

the message’s identifier bit values. Messages with lower binary

values in their identifier fields have higher priority. For example,

a CAN message with its identifier bits field set to dominate (0)

will have the highest priority. When two nodes compete for the

bus, a node with its last transmitted identifier bit set to dominate

will win the arbitration. While the winning node continues in its

frame transmission, the second node stops its data transmission.

The arbitration process is illustrated in Fig. 3.

B. Data Types

There are four types of CAN messages transmitted over the

bus, error frame, overload frame, remote frame, and data frame.

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1011

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

• Data Frame. This message contains the CAN payload,

message identifier field (11 bits for standard CAN and 29

bits for extended CAN), the CRC data, and 2-bit ACK.
• Error Frame. Corrupted CAN messages are detected by

computing CRC on the received data packet. When a

distorted CAN frame is identified, all receiving nodes start

sending data error frames over the bus. CAN controller

implements an error counter to prevent a transmitter from

obtaining exclusive possession of the bus by repeatedly

transmitting error frames.
• Remote Frame. A remote frame is used to request data

from another node connected to the bus. The remote frame

has the RTR bit set to a recessive state. Every node on the

bus will receive the remote frame message, but only nodes

that are interested in the data will send their replies to the

transmitter.
• Overload Frame. A mechanism that produces delays be-

tween CAN messages is required to stabilize the state of the

bus, especially when nodes become too busy and unable to

process all incoming data.
• Valid Frame. An error-free Data frame will have the last

bit in the EOF field set to recessive. While messages with

EOF bit sets to dominate, CAN mark it as an error in the

message which require retransmission.

III. RELATED WORKS

Recent works on threat mitigation and intrusion detection

systems [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [50],

[51] show promising results in detecting CAN bus attacks.

Attacks [14], [15] that target the data integrity of safety-critical

sensor system in a modern vehicle, such as the vehicle Anti-lock

Braking System (ABS) has been presented in [22]. Liuwang K.

[22] proposed a threat detection and attack mitigation technique

against ABS CAN bus attacks. Their method is capable of

identifying sensor attacks and CAN bus attacks related to ABS

with the execution of an attack mitigation strategy that enables

dynamic threat isolation. The authors proposed the develop-

ment of a system that predicts the current state of the vehicle

based on measured historical vehicle state data, derived from

multiple sensor measurements. In their approach, the vehicle

state space is comprised of real-time road friction data (i.e.,

wheel speed and longitude break force). Threat mitigation was

implemented based on the subtraction of anomalous data from

the measured vehicle state data to establish the correct reading

for the vehicle ABS. One shortcoming of the above approach,

hardware integrity verification of ECUs was not considered

during vehicle state identification. Vehicle state ABS computed

during normal operations might contain false data, which leads

to false predictions. For example, during the vehicle state iden-

tification process, malicious ECUs attached to the bus can inject

anomalous data altering the vehicle state data. To overcome

this problem a full inspection needed to be performed before

incorporating the vehicle state into the prediction model.

Data injection based on replay attacks has been exploited

in [23]. P. Thirumavalavasethurayar and T. Ravi [23] proposed

the implantation of attacking the CAN bus by injecting replay

messages over the bus. A testbed of three CAN-enable nodes

was implemented using a universal verification methodology. A

malicious node was deployed to simulate replay attacks. Two

classes of replay attacks were developed full and partial frame

replaying attacks.

Existing works based on sequence-based detection algorithms

[24], hidden Markov models [25], and neural network ap-

proaches have shown promising results in detecting message

injection and replay attacks on the CAN bus. The work presented

by Satya Katragadda [26] illustrated the effectiveness of the

sequence-based anomaly detection algorithm in detecting low-

rate replay threats for over 99% f-score. The proposed scheme

achieved better performance compared to existing dictionary-

based algorithms and a multi-variate Markov chain-based ap-

proach. Mubark Jedh [27] presented a novel approach based on

similarities of successive messages-sequence graphs for detect-

ing Message injection attacks. A detection algorithm based on

generating a Messages-Sequence Graph (MSG) that presents

CAN messages as sequences of data sent within a given time

interval. In their work, the detection of message injection attacks

was achieved through the deployment of cosine similarity and

Pearson correlation methods. Sequences of MSGs were used

to compute similarities that might exist in successive MSGs,

enforced by change point detection, and Long Short-Term Mem-

ory (LSTM) to predict injection attacks on the CAN bus. The

proposed scheme was able to sustain a detection rate of 98.45%

and 1.5 to 2.64 response time. Techniques that rely on a machine

learning approach or sequence-based intrusion detection system

usually require heavy processing and large storage capabilities

to train and estimate the model parameters. Real-time model

training and parameter estimation are not visible with current

CAN bus technology due to CAN nodes’ limited processing

power and storage capacity. To overcome this problem, two

approaches in model training were considered in the literature.

The first approach is based on offline training techniques, where

CAN data is extracted first and then feed into a training algorithm

running on a high-performance computing system. The second

approach implements real-time feature extraction algorithms

and extracted CAN data is communicated directly to a training

model running on the cloud.

Security approaches based on message authentication [16],

[17], [18], [19], [20], [21], hash-based message authentication

code (HMAC) attribute-based encryption, symmetric-based

encryption techniques, and ECC-based key management

algorithms have been investigated in [28], [29]. A crypto-based

technique for detecting CAN message injection and replay

attacks was presented by the work of Timothy Dee in [30]. It en-

hances existing CAN-FD technology by incorporating message

integrity, message authentication, and source node authenticity

capabilities. Message freshness was implemented through the

maintenance of freshness value tables. Security algorithms

implemented with classical authentication schemes require

heavy processing and introduce large communication overhead

to the CAN. A standard CAN data frame is limited to a 64-bit

block of data. Therefore, authentication data or an encrypted

message with a block size larger than 64 bits will require more

than one CAN frame to transmit the data over the bus.

1012 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

Several lightweight detection algorithms against replay at-

tacks have been proposed in the past. F. Páez and H. Kaschel pro-

posed an algorithm that [31] eliminates the need for employing

computationally intensive crypto-based methods for detecting

CAN threats. It relies on the incorporation of a new CAN ID into

the messages’ acceptance filter of nodes. The proposed approach

was tested using a CAN-enable testbed. Modified and replayed

CAN messages were identified by the proposed method at 40µs

detection speed.

Recent work that analyzes the vulnerabilities of attribute-

based signature schemes has been presented by Zhaozhe Kang

and Jiguo Li [33]. The authors show that existing attribute-based

signature scheme can be exploited by attackers through signature

abusing and key exposure. To overcome these issues, the authors

proposed a novel scheme that supports traceable and forward-

secure attribute-based signatures (TFS-ABS). Their proposed

scheme has been proven for enabling unforgeability features

against selective predict e attacks for the standard model. Fur-

thermore, based on their simulation results, the proposed TFS-

ABS was capable of achieving efficient communication and

computation overhead.

Public key authenticated encryption with keyword search

(PAEKS) has been presented by Yang Lu and Jiguo in [34]. The

authors show that data security schemes based on searchable

public key encryption (SPKE) techniques are vulnerable to

keyword-guessing attacks. PAEKS scheme has been proven to

show resiliency against such attacks. To improve PAEKS re-

siliency against adaptively-chosen targets adversaries, adversary

model of PAEKS has been refined and modified. Finally, a light

weight PAEKS scheme that minimizes the computation power

of performing bilinear pairing operations has been implemented.

It showed that the improved light weight PAEKS was capable

of supporting low communication and computation profiles,

which makes the scheme more suitable for power-constrained

devices.

Joseph Bonneau and Cormac Herley [35] examine the diffi-

culty of replacing passwords in today’s web-based user authenti-

cation schemes. In their study, the authors showed that there is a

wide range of security approaches that offered password replace-

ment solutions. Such schemes were capable of providing extra

security primitives that extend existing password capabilities.

But, with the extra security benefits comes a system deployment

cost and usage which make these security systems less attractive

compared to password-based user authentication techniques.

Finally, the authors provide an evaluation methodology and

benchmark for validating and testing future web authentication

schemes.

Ding Wang and Ping Wang [36] presented a comprehen-

sive analysis of how today’s two-factor authentication schemes

and smart-card-based password authentication mechanisms are

being poorly evaluated and assessed. A fully comprehensive

security assessment model and benchmarking for analyzing

important security features of the proposed schemes become

indispensable tools. The authors proposed a security model that

is capable of extracting import features of an adversary and

generating a set of twelve properties for system testing. Their

main contribution is to devise a new security approach that offers

full resiliency against user corruption and server compromise

threat models.

Another important study expresses the need for a full compre-

hensive systematical assessment methodology that authentica-

tion scheme designers will be able to use to assess their proposed

schemes. Ding Wang, Wenting Li, and Ping Wang [37] showed

that the lack of comprehensive assessment tools leads to what

they called a “break-fix-break-fix” cycle in the area of two-factor

authentication schemes for securing data in industrial wire-

less sensor networks (WSNs). In their work, 44 schemes were

tested under their proposed evaluation framework. The proposed

evaluation framework provides unrepresented evaluation met-

rics for two-factor authentication schemes in industrial WSNs.

In the area of autonomous vehicles (Avs) [38], Qi Jiang and

Ning Zhang proposed a cloud-centric three-factor authentication

and key agreement protocol (CT-AKA). The authors illustrated

how AV with a control capability poses potential threats to

passenger safety. As the system could be exploited by an attacker

and therefore gain him/her full access to the AV system remotely.

The proposed CT-AKA was integrated with passwords, biomet-

rics, and smart card capabilities. To achieve three-factor authen-

tication, CT-AKA was implemented with three biometric en-

cryption approaches, including fuzzy vault, fuzzy commitment,

and fuzzy extractor. To test the visibility of CT-AKA, security

properties were evaluated, and simulation results showed that

their proposed approach was capable of achieving high security

with acceptable communication computation overheads.

A secure user authentication scheme for cloud-assisted IoT

systems has been proposed by Chenyu Wang and Ding Wang

[39]. The authors demonstrated the requirement for a lightweight

user authentication protocol to ensure secure access to IoT data

over the cloud. They were able to analyze IEEE TDSC 2020

scheme to identify common vulnerabilities and challenges for

designing an efficient light weight cloud-assisted user authen-

tication scheme. Security analysis based on the random-oracle

model, heuristic approach, the ProVerif tool, and BAN logic

were used to assess their proposed scheme. Based on a prede-

fined list of security requirements, their proposed scheme was

able to achieve minimum computation and storage overheads on

the gateway.

Qingxuan Wang and Ding Wang [40] discussed the visi-

bility of attacking smart-card-based password authentication

mechanisms via quantum computing. With the vast amount

of processing power available through quantum computing

systems, keeping the current two-factor authentication system

unexploitable poses a great security challenge for systems de-

signers. The authors presented the design of a secure and efficient

smart-card-based password authentication scheme. Their newly

proposed scheme called “quantum2FA” employs Alkim et al.’s

lattice-based key exchange and Wang-Wang’s “fuzzy-verifier

+ honeywords” approach (IEEE TDSC’18). The scheme of-

fers resiliency against the revealed key-reuse attack against

a lattice-based key exchange. Security analysis based on the

random oracle model has been examined to assess the security

properties of “quantum2FA”. Their experimental results show

that quantum2FA offers better computation speed as compared

to existing 2FA techniques.

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1013

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

In this article, we present the implantation and deployment

of a lightweight power-aware crypto engine that support au-

thenticated encryption based on TinyJAMBU-128 [32], crypto-

provable data traceability, and intrusion detection capability

against replay attacks. The proposed engine minimizes com-

munication overhead by fitting authentication data or encrypted

data into a single CAN frame. Our proposed engine enables

message authentication by adding one additional CAN frame to

each CAN data transmitted.

IV. THE PROPOSED SECURITY SUBSYSTEM

We proposed a CAN security subsystem that is capable of

supporting multiple security features to the existing CAN bus.

Crypto-based security blocks that have been implemented and

deployed include (i) a lightweight authenticated encryption en-

gine based on TinyJAMBU-128 [32]. Data transmitted within

a CAN data frame were encrypted and authenticated using a

modified version of TinyJAMBU-128. (ii) lightweight detection

algorithm against CAN replay attacks (iii) block chaining based

on hash computation algorithm that enables the secured capture

of data traces. Each CAN data is encoded into a single hash

block where each block is constructed by computing a hash value

H(Di II H(bli−1) II TID i II Ti), where Di is CAN data field,

H(bli−1) hash of the previous block, TID i is the transaction
id for block i, and Ti is data transmission timestamp. A detail

description of symbols used throughout the article is presented

in Table I.

V. LIGHTWEIGHT CRYPTO-BASED ENCRYPTION

This section introduces our proposed lightweight authenti-

cated encryption scheme. The scheme is a modified version of

the TinyJAMBU-128 [32] authenticated encryption technique.

Data transmitted over the CAN bus is encrypted and authen-

ticated using a small variant of JAMBU. It is implemented

with 128-bit keyed permutation states and 64-bit associated data

blocks. The following section provides a detailed description of

the modified TinyJAMBU-128 authenticated encryption scheme

to support the detection of replay attacks.

A. TinyJAMBU-128 Encryption for Secure Data

Communication and Message Authentication

The proposed authenticated encryption utilizes TinyJAMBU

mode with keyed permutation for randomizing the internal state

of TinyJAMBU during encryption/ decryption.

In the classical version of TinyJAMBU-128 [32], the scheme

was implemented by taking 64-bit associated data, a 64-bit

plaintext message, and a 96-bit nonce as input parameters.

TinyJMABU-128 [32] is comprised of four stages. Stage 1 is

referred to as the initialization stage, encryption key and nonce

are processed during this stage. The associated data string is used

during the second stage of TinyJMABU-128 [32], it is utilized to

update the current state of TinyJAMBU-128 [32] during encryp-

tion. The third stage involves data encryption where a ciphertext

message is computed. Authentication tag generation and verifi-

cation steps were performed during the finalization stage.

TABLE I
DESCRIPTION OF SYMBOLS

In this research, we have modified the internal design of

TinyJAMBU-128 [32] to include one additional stage, the as-

sociated data generation stage. The new stage was implemented

and inserted between the initialization stage and the associated

data processing stage which is referred to as stage 2 in the

original TinyJAMBU-128 [32] algorithm. Besides integrating

associated data processing into the TinyJAMBU-128, CAN

message context computation was also incorporated into the

modified TinyJAMBU-128. CAN message context computation

was integrated into the TinyJAMBU-128 encryption/decryption

engine. Each CAN data frame is bounded into a single message

context prior to transmitting the frames over the CAN chan-

nel. Through the employment of 64-bits associated data strings

within the TinyJAMBU-128 engine, a common message context

can be easily computed by every ECUs on the network.

As illustrated in the classical version of TinyJAMBU-128

[32], associated data strings are supplied by the applica-

tion for each data message encrypted and authenticated via

TinyJAMBU-128. Therefore, to support the employment of our

newly modified version of the TinyJAMBU-128 CAN bus net-

work, we have added a new processing module that enables the

establishment of associated data strings for each CAN frame that

needs to be encrypted and authenticated. The data-associated

module has no impact on the TinyJAMBU-128 encryption/ de-

cryption and authentication stages. The newly modified version

1014 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Key permutation using a 128-bit nonlinear feedback shift reg.

of TinyJAMBU-128 should follow the same security analysis as

the original version.

We have chosen TinyJAMBU-128 [32] due to its small state

size and reduced encrypted message block size. The internal

state of TinyJAMBU-128 was implemented with a 128-bit block

compared to the 192-state size on JAMBU-128. TinyJAMBU-

128 supports an encrypted message size of 32 bits which is half

of the data length that a CAN frame can hold per transmission,

two encrypted data messages can be transmitted over the bus via

a single CAN data frame. Although, TinyJAMBU-128 supports

three modes of operations with possible key sizes: 128-bit, 192-

bit, and 256-bit, in this article, we have considered TinyJAMBU

with a keyed-permutation size of 128-bit. The permutation of

the state is based on the deployment of a 128-bit nonlinear

feedback shift register. The following modules for TinyJAMBU

were implemented and deployed on multiple STM32F411 [47]
development boards:

• Keyed Permutation Module
• Initialization Module
• Associated Data Generation Module
• Associated Data Processing Module
• Data Encryption Module
• Authentication Tag processing Module
• Data Decryption Module
• Verification Module

1) Keyed Permutation Module: TinyJAMBU-128 relies on a

128-bit keyed permutation technique. The state of TinyJAMBU

encryption is updated via the employment of a 128-bit nonlinear

feedback shift register (see Fig. 4).

During each permutation round i, a combination of XOR,

and NAND operations are performed on specific state’s bits.

The content of the state is then shifted by 1 bit to the left.

In TinyJAMBU, m rounds are required to update the state.

Algorithm 1 provides a detailed implementation of the keyed

permutation module. The next section describes the initialization

step of TinyJAMBU-128 [32].

2) Initialization Module: TinyJAMBU-128 [32] has been

implemented on each ECU using a 128-bit key and 96-bit

nonce. We have explored the utilization of multiple CAD IDs

retrieved from previous CAN data frames to compute 64-bit

associated data. To ensure the randomness of the bits within

each computed associated data, bitwise operations that involve

multiple associated data bits combined with a 64-bit nonlinear

feedback shift register that shifts the data by one bit to left during

each round were incorporated into TinyJAMBU-128 implemen-

tation. Initialization of TinyJAMBU-128 was implemented via

bit randomization of the 128-bit state vector. By applying 1024

Algorithm 1: Keyed Permutation Module.

Input: 128-bit key: K← [k0, k1,..., k127]

128-bit state: S ← [s0, s1 ,..., s127]
Permutation rounds: i

Output: Content of the state after being updated

TinyJAMBUStateUpdate (S, K, i):

1: Temp ← s0 ⊕ s47 ⊕ (∼ (s70 ∧ s85)) ⊕ s91 ⊕ ki mod 128

2: for j in range (StateLength-1) do: //StateLength = 127

3: sj ← sj+1 //shift the content of S by 1-bit to the left

4: end for

5: s127 ← Temp
6: end of TinyJAMBUUpdate

Fig. 5. i-th iteration of TinyJAMBU’s Initialization step.

keyed permutation rounds on the state, a highly randomized

128-bit state is computed. During each round, bits [00,1] are

xored with the state’s bits s36, s37, s38 respectively. State’s bits

are randomized by executing 640 keyed permutation rounds

on the state. Finally, bits {s96, s97, …, s127}of the state are

xored repeatedly with a 96-bit nonce. Fig. 5 provides a details

implementation of the initialization modules.

3) Associated Data Generation Module: In the newly added

stage, a 64-bit associated data string is computed for each CAN

data frame sent over the bus. To link a current CAN data

frame to its previously transmitted CAN messages, CAN ids

for the five most recently transmitted CAN data frames are

utilized to compute a 64-bit associated data string. The computed

associated data string is used during TinyJAMBU-128 state

update to support data encryption and message authentication

for the currently transmitted CAN data frame. The following

algorithm depicts a detailed implementation of the associated

data generation module.

4) Associated Data Processing Module: Associated data Ad

in TinyJAMBU is used to update the content of the state. Each

data message transmitted over the CAN bus is linked to a

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1015

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Associated Data Generation Module.

Inputs: IDi-1 [11]← IDi-1 [id0, id1,..., id10]
//CAN ids for the five most recently transmitted
frames

IDi-2 [11] ← IDi-2 [id0, id1 ,..., id10]
IDi-3 [11] ← IDi-3 [id0, id1 ,..., id10]
IDi-4 [11] ← IDi-4 [id0, id1 ,..., id10]
IDi-5 [11] ← IDi-5 [id0, id1 ,..., id10]

Adtemp [64] ← Adtemp[adtemp0, .., adtemp63]
// Temporary array to hold associated data

Adtemp[adtemp0, adtemp1,. , adtemp63] ←
Zero[00,. , 0] //Adtemp string is initialized to
zero

Output: Adi [64] //Associated data string for i-th frame
AssociatedDataGeneration (Adtemp [64], IDi-1 [11], IDi-2

[11], IDi-3 [11], IDi-4
[11], IDi-5 [11]):

1: Adtemp [adtemp0, adtemp1,. , adtemp10]

← IDi−1[id0, id1,. , id10]
2: Adtemp [adtemp11, adtemp1,. , adtemp21]

← IDi−2[id0, id1,. , id10]
3: Adtemp [adtemp22, adtemp1,. , adtemp32]

← IDi−3[id0, id1,. , id10]
4: Adtemp [adtemp33, adtemp1,. , adtemp43]

← IDi−4[id0, id1,. , id10]
5: Adtemp [adtemp44, adtemp1,. , adtemp54]

← IDi−5[id0, id1,. , id10]
6: for i ← 0 to 9 do: // nonlinear shift register
7: Adtemp[adtemp55] ← Adtemp[adtemp7] ⊕

Adtemp[adtemp54] ⊕ Adtemp[adtemp37]
8: Adtemp[adtemp56] ← Adtemp[adtemp1] ⊕

Adtemp[adtemp10] ⊕ Adtemp[adtemp36]
9: Adtemp[adtemp57] ← Adtemp[adtemp2] ⊕

Adtemp[adtemp17] ⊕ Adtemp[adtemp34]
10: Adtemp[adtemp58] ← Adtemp[adtemp15] ⊕

Adtemp[adtemp23] ⊕ Adtemp[adtemp13]
11: Adtemp[adtemp59] ← Adtemp[adtemp40] ⊕

Adtemp[adtemp27] ⊕ Adtemp[adtemp25]

12: Adtemp[adtemp60] ← Adtemp[adtemp9] ⊕

Fig. 6. i-th iteration of TinyJAMBU’s associated data processing.

CAN IDs. A total of 55 bits were extracted from CAN IDs fields

from the five most recent CAN data frames. Bits are randomized

via the application of several bitwise xor operations with bit

permutation and bitwise rotation. Since we randomize the bits

of each computed 64-bit associated data string, every CAN frame

should have a different associated data string. A 64-bit nonlinear

feedback shift register is implemented to support the establish-

ment of associated data strings. After the initialization step, the

state’s bits s36, s37, and s38 are bitwise xored with bits [0,1],

and 1 respectively. Contents of the state are then bit permutated

by employing 640 rounds of keyed permutation function. After

permutating the state’s bits, 32-bit of the associated data string

is xored with the state. The processing of associated data is

presented in Fig. 6.

5) Data Encryption Module: CAN data of length 64-bit is

encrypted via the TinyJAMBU data encryption algorithm. After

randomizing the content of the state during the associated data

13:

14:

Adtemp[adtemp31] ⊕ Adtemp[adtemp20]
Adtemp[adtemp61] ← Adtemp[adtemp21] ⊕
Adtemp[adtemp39] ⊕ Adtemp[adtemp44]
Adtemp[adtemp62] ← Adtemp[adtemp49] ⊕
Adtemp[adtemp29] ⊕ Adtemp[adtemp5]

processing module and initialization module, 64-bit CAN data is

passed to the data encryption module. During the data encryption

step, the state’s bits s36,s37, s38 are xored with bits [1,0,1]

respectively. State bits are manipulated using 640 rounds of

15: Adtemp[adtemp63] ← Adtemp[adtemp15] ⊕
Adtemp[adtemp11] ⊕ Adtemp[adtemp19]

16: for j ← 0 to 63 do:

17: Adi [j+1] ← Adtemp[j]
18: end for:

19: Adi [0] ← Adtemp[63]
20: for j ← 0 to 63 do:
21: Adtemp[j] ← Adi [j]
22: end for:
23: end for:

 24: end of AssociatedDataGeneration

randomly computed 64-bit associated data. Existing implemen-

tation of TinyJAMBU-128 enables the processing of 64-bit asso-

ciated data strings and plaintext data as input parameters to the

encryption/decryption algorithms. In this research, associated

data strings are constructed by concatenating multiple 11-bit

the keyed permutation function. State’s bits {s96, …,s127}are

updated by xoring the current state bits {s96, …,s127}with CAN

message plaintext’s bits {m32i, …,m32i+31}. The final cipher-

text’s bits are computed by xoring state’s bits {s64, …,s95} with

the plaintext’s bits {m32i, …,m32i+31}.

6) Authentication Tag Processing Module: Authenticated
encryption is supported by TinyJAMBU-128 [32] by generat-

ing a 64-bit authentication tag τMi for CAN message Mi.The

authentication tag is transmitted with the encrypted CAN data

frame. In the proposed system, computed authentication tags are

transmitted over the CAN bus using a single CAN frame with a

predefined ID (2047). For ECUs to be able to recognize that a

CAN frame contains an authentication tag and not a payload, a

special CAN ID is assigned. If an ECU received a CAN frame

with ID 2047, the ECU will be able to recognize and process it

accordingly as an authentication tag. Authentication tags were

1016 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

32 32

M

Algorithm 3: Data Encryption Module.

Input: keylen ← 128 //length of the key

Mlen gth ← 64 //length of CAN message

K [keylen]← [k0, k1,..., k127]

S [keylen] ← [s0, s1,. , s127] //updated during
the associated data processing step

M [mlength]←[m0, m1, . . . , m63]

Output: C [c0,. , c63] //ciphertext
Data Encryption (S, K, M):

1: for j ← 0 to l mlen ⊕ do:

2: s36 ← s36 ⊕ 1

3: s37 ← s37 ⊕ 0

4: s38 ← s38 ⊕ 1
5: TinyJAMBUStateUpdate (S, K, 1024)
6: S [s96, s97, …,

s127]← S [s96, s97, . . . , s127]⊕m[m32j, …,
m32j+31]

7: C [c32i, c32i+1, …,

c32i+31]← S [s64, s65, . . . , s95]⊕m[m32j, …,
m32j+31]

8: return C

9: end for

10: end of Data encryption

Algorithm 5: Data Decryption Module.

Input: keylen ← 128 //length of the key

Clength ← 64 //length of the ciphertext

K [keylen]← [k0, k1 , . . . , k127]

S [keylen] ← [s0, s1,. , s127] //updated during
the associated data processing step

C [Clength]←[c0, c1, . . . , c63]

Output: M [m0,. , m63] // plaintext CAN message
Data Decryption (S, K, C):

1: for j ← 0 to l mlen ⊕ do:

2: s36 ← s36 ⊕ 1

3: s37 ← s37 ⊕ 0

4: s38 ← s38 ⊕ 1
5: TinyJAMBUStateUpdate (S, K, 1024)
6: M [m32i, m32i+1, …,

m32i+31]← S [s64, s65, . . . , s95]⊕C[c32j, …,
c32j+31]

7: S [s96, s97, …,

s127]← S [s96, s97, . . . , s127]⊕M [m32j, …,
m32j+31]

8: return M

9: end for:

10: end of Data Decryption

Algorithm 4: Authentication Tag Processing Module.

Input: K [128]← [k0, k1,..., k127]

S [keylen] ← [s0, s1,. , s127] //updated during
the encryption step

Output: τMi [64]←[τ0, τ1, . . . , τ63]
Authentication tag processing (S, K):

7) Data Decryption Module: During the data decryption

step, initialization and associated data processing modules are

instantiated to update the state of TinyJAMBU-128 [32]. Similar

to data encryption, a 3-bit value of 101 is xored with the state’s

bits s36, s37, and s38 and the contents of these bits are updated

accordingly to the results of the xor operation. Then, 1024 rounds

of the keyed permutation step are applied to the state. During the

first iteration of the data decryption module, bits {m0,..., m31}

are computed by xoring ciphertext bits {c0,..., c31}with state’s

bits {s64,..., s95}. The state’s bits {s96,..., s127} are updated

by xoring the current state’s bits contents {s96,..., s127} with

the computed plaintext bits {m0,..., m31}. Similarly, plaintext

bits {m32,..., m63} is computed by xoring these bits with the

state’s bits s64,..., s95 and then use the generated plaintext bits

to modify the current content of the state’s bits {s96,..., s127}.

The following provides a detailed implementation of the decryp-

tion module.

8) The Verification Module: During the verification step, a

CAN data message Mi can be authenticated by computing a
64-bit authentication tag τ t

i
and compare it with the received

not encrypted. They were transmitted over CAN bus in plaintext authentication tag τM . If τ t = τM the message is authenti-
i Mi i

messages.

Authentication codes are computed based on applying multi-

ple keyed permutations on the state. The first 32 bits of the au-

thentication code are generated by updating the state’s bits using

1024-keyed permutation rounds. The rest of the authentication

code bits {τ32, …, τ63} is established through the employment

of 640 keyed permutation rounds on the state’s bits. Algorithm 3

introduces the Authentication tag processing.

cated and accepted, otherwise, the received message is rejected.

Algorithm 7 provides a full implementation for the verification

module. In the case of miss verification, an error counter is

incremented for each miss verification. We also keep a record

of the CAN frame ID. If the error counter exceeds a predefined

threshold value, the system will send an alert message to all

ECUs connected to the CAN bus. CAN messages that are not

verified will be ignored.

1: s36 ← s36 ⊕ 1

2: s37 ← s37 ⊕ 1

3: s38 ← s38 ⊕ 1

4: TinyJAMBUStateUpdate (S, K, 1024)

5: τMi [τ0, τ1, …, τ31]← S [s64, s65, . . . , s95]

6: s36 ← s36 ⊕ 1

7: s37 ← s37 ⊕ 1

8: s38 ← s38 ⊕ 1

9: TinyJAMBUStateUpdate (S, K, 640)

10: τMi [τ32, τ33, …, τ63]← S [s64, s65, . . . , s95]

11: return τMi

12: end of Authentication tag processing

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1017

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

t t t

t t t

t

Algorithm 6: Verification Module.

Input: Taglength ← 64 //length of the authentication tag

K [128]← [k0, k1,..., k127]

S [keylen] ← [s0, s1,. , s127]
// updated during the initialization step τMi

[Taglength]←[τ0, τ1, . . . , τ63]
Output: return true if the received tag matches the

computed tag, otherwise return false.

Verification (S, K, τMi):

1: s36 ← s36 ⊕ 1

2: s37 ← s37 ⊕ 1

3: s38 ← s38 ⊕ 1
4: TinyJAMBUStateUpdate (S, K, 1024)
5: τ

t
[τ , τ , . . . , τ] ← S [s , s , …, s]

have applied a random process to inject replay attack messages

into the CAN bus network at various injection rates (2% -

50%). Simulated CAN message replay attacks were tested on

a real testbed that is comprised of three ECUs attached to

CAN. Two of the three nodes were considered benign, while

the third unit was acting as an adversary. Replay attacks were

conducted on the proposed testbed with transmitted CAN data

frames being encrypted and authenticated via TinyJAMBU-128.

During simulation, malicious node continuously sniffs CAN

messages from the bus and retransmits these messages during a

different time interval. Since authenticated encryption provides

zero resiliency against replay threats, we have developed a

technique that extends the security features of TinyJAMBU-128

to support dynamic detection capability against CAN message
Mi 0 1 31 6: 64 65 95 replay attacks.
s36 ← s36 ⊕ 1

7: s37 ← s37 ⊕ 1

8: s38 ← s38 ⊕ 1
9: TinyJAMBUStateUpdate (S, K, 640)

B. Countermeasure Mechanism Against Replay Threats

Dynamic detection of CAN message replay attacks was
10: τ

t
[τ , τ , . . . , τ] ← S [s , s , …, s] implemented via the integration of CAN message context

Mi 32 1 63 64 65 95

11: if τMi 12: = = τMi
 return true awareness capability. Based on the type of event, different CAN

data frames are computed and disseminated over the network. In
end of Verification

Fig. 7. CAN message replay threat modeling.

VI. CAN REPLAY ATTACK AND THE PROPOSED

COUNTERMEASURE MECHANISM

In this research, we have considered the development of a

countermeasure mechanism against replay attacks on CAN. The

proposed mechanism enables ECUs of detecting the presence of

replay threats occurring on CAN. The following provides full

descriptions of CAN replay threat modeling and its counter-

measurement approach.

A. CAN Message Replay Threat Modeling

We have considered the implementation of simulated CAN

message replay attacks through the deployment of a malicious

ECU that is capable of capturing every CAN data frame sent over

the bus and replaying them at different times (see Fig. 7). We

the proposed approach, we assumed that each transmitted CAN

message is associated with a single context. A message context is

established by using a sequence of k historical CAN data frames.

By observing the state of the CAN channel during the last k

active transmissions, communicating ECUs will be capable of

constructing a common 64-bit binary string that could be used to

represent the context of the next transmitted CAN data frame. In

the proposed approach, a message context is constructed based

on the CAN IDs of the last k-data frames transmitted over the

bus. To send the next CAN data frame, a message context is

computed first by the sender and encoded into a 64-bit associated

data string. Which is hence used to encrypt/decrypt CAN data

frames. Similarly, the message context presented by the 64-bit

associated data string is computed on the receiving node and

used during message authentication and data decryption. Our

proposed technique enables the establishment of secured bonds

between every CAN data frame and the contexts in which these

data frames were transmitted. Since every encrypted CAN data

frame is securely bounded into its message context, encrypted

CAN frames transmitted during different contexts will be de-

tected as CAN message replay threats. The following provides

a high-level implementation of how a message context is com-

puted:

C. Establishment of Message Context Between Two ECUs

CAN message context computation was integrated into the

TinyJAMBU-128 encryption/decryption engine. Each CAN

data frame is bounded into a single message context prior to

transmitting the frames over the CAN channel. When a CAN

frame is transmitted over the CAN bus, a CAN message context

is constructed. The CAN frame’s message context is estab-

lished by using a sequence of k historical CAN data frames.

By observing the state of the CAN channel during the last k

active transmissions, all communicating ECUs will be capable

of constructing a common 64-bit binary string that could be used

1018 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Message context computation.

to represent the context of the next transmitted CAN data frame.

For ECU nodes to be able to establish the first CAN message

context, initially, all ECUs are preloaded with the same orphan

block.

Through the employment of 64-bits associated data strings

within the TinyJAMBU-128 engine, a common message con-

text can be easily computed by every ECUs on the network.

A receiver node can leverage message context information to

determine whether the received CAN data frame is generated

due to a replay attack or due to an actual event. For example,

two ECUs nodes, node A and node B, where node A is acting

as a sender and node B as a receiver. Prior to any data transmis-

sion, both sender and receiver nodes are required to compute

a common 64-bit message context string ctxi. The computed

context message will be encoded into an associated data string

that will be utilized by the TinyJAMBU-128 crypto engine to en-

crypt/decrypt the CAN data frame Mi. The following protocol’s

steps are required during a CAN message context computation

process (see Fig. 8).
1) CAN messages IDs of the last k transmitted data frames

{IDi−1, . . . , IDi−5} are recorded by all ECUs including

nodes A & B.

2) Both sender and receiver copy the recorded CAN mes-

sages IDs into bit 0 through bit 54 of the message context

string ctxi.

3) Bit 55 through bit 63 of the message context ctxi will be

computed by applying multiple bitwise xor operations on

the content of ctxi.
4) A nonlinear shift register is employed on the content of

ctxi to randomize its bits.

5) CAN message context ctxi is encoded into a 64-bit

associated data string by the sender and fed into the

TinyJAMBU-128 crypto engine.

6) The sender encrypts the CAN data frame by applying

TinyJAMBU-128 with the computed message context and

transmits the encrypted data frame over the CAN channel.

7) TinyJAMBU-128 will be executed on the receiver with the

computed associated data string to decipher the received

message.

VII. DATA TRACEABILITY VIA BLOCK CHAINING

AND HASH COMPUTATION

Data traceability capability was supported by the proposed

scheme via the employment of a block-chaining approach. En-

crypted and authenticated CAN data frames received by ECU

nodes are encoded into data blocks. Since the CAN bus is a

broadcast medium, for every CAN data frame sent over the bus,

each ECU node computes its copy of the data block. Data blocks

are chained together to form a common blockchain. Copies of

the computed blockchain are stored at every ECU node attached

to the CAN bus. The final block in the chain serves as an integrity

check for all previous data blocks. Data tracing and data integrity

were supported via blockchain data validation. Blockchain data

stored in ECU nodes can be utilized by the system control

unit to identify (i) abnormal behaviors occurring during system

operations. For example, a malfunctioning ECU node injects

faulty data into the system bus. (ii) anomalous CAN data frames

injected by a malicious ECU node. The proposed block-chaining

protocol is based on a two-step process (see Fig. 9).

A. Data Blocks Construction Scheme

During system operation, when a CAN data frame Di with

id, IDi received by ECU nodes {ECU1, ECU2, …, ECUn}.

Every ECU node processes the received data frame as follows:
• Each node computes a hash value on the CAN data frame

Di, H(Di II H(bli−1) II TIDi II Ti), where H(bli−1)

represents the hash of the previous block, TIDi is the
transaction id for block i, and Ti is data transmission

timestamp. If i = 0, the hash of the previous block H(bl0)

will be set to the initialization vector which is called the

orphan block.

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1019

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

Final

j←0

Final

Fig. 9. Block chaining in CAN bus for supporting data integrity and secure
data traceability.

• CAN data frame Di along with the computed data block
bli is saved in every ECU node.

• The final block (leaf block) will be used to provide secure

data traceability validation and data integrity checks for

every data frame transmitted over the bus.

Algorithm 7: BlockChaining Verification.

Inputs: i ← 0 //Current data block index. Initially

thisvalue is set to zero to represent an orphan block

bl0 Di //Current CAN data fame transmitted over

the bus and received by all ECUs

Ti // Timestamp of current CAN data frame Di

IDi // Id of the current CAN data frame Di
H’(bli) // block i computed by the sender ECU and trans

mitted along CAN data frame Di and its

timestamp data Ti

H(bl0) // Hash value computed on the orphan block

bl0.H(bl0). is preloaded into every ECU connected to the

CAN bus

Outputs: return true for successful verification and false

for missed verification

BlockChainingVerification (i, Di, Ti, IDi,

Ht(bli) :

1: if (i = = 0):

// ECUj←0, ECU j←1,..., ECUj←n recompute their

first blocks

in the chain by applying the preloaded orphan block

H(bl0). Computed block values are stored internally.

B. Blockchain Validation Scheme

2: H (bl1)ECU

H(bl1)ECU

j←0
← H(D0||H(bl0)||ID0||T0)
← H(D0||H(bl0)||ID0||T0)

CAN data frames transmitted over the bus are captured and

encoded into a single blockchain. The computed blockchain

is shared and stored at every ECU node communicated over

H (bl1)ECU // Every

j←1

.·

.

← H(D0||H(bl0)||ID0||T0)

the bus. Our proposed system offers full resiliency against data ECUj←x will compare it computed block

modification and data injection attacks via block validation of H(bl1)ECU

j←x with the received block Ht(bl0)

the final block in the chain. Due to the blockchain computing 3: If (H(bl1)ECU

j←x /= Ht(bl1)) return false

characteristic, a successful data injection attack requires full

modification of the current data block including all subsequent

data blocks, which makes such attacks infeasible. Finally, the

final block in the chain can be used to verify the integrity of

every CAN data frame transmitted over the bus. In the case of a

malfunctioning CAN-enable system, blockchain data collected

from different ECUs can be used to recompute the final block

// If one ECU invalidates the received block, it broadcast

an alert message over the CAN bus. ECUs that received

the first alert message will suspend its processing

for the current block.

4: end if:

5: else:

// ECUj←0, ECU j←1,..., ECUj←n recompute the
t
Final). The recomputed final block H(blt) is then current block in the chain by applying the previous

compared with the content of the stored final block H(blF inal).

If the two final blocks match, then the integrity of the data trace

is verified, and the collected CAN data can be used for further

analysis. Our proposed system offers full resiliency against data

modification and data injection attacks via block validation of

the final block in the chain. Due to the blockchain computing

characteristic, a successful data injection attack requires full

modification of the current data block including all subsequent

H(bli−1) and store the computed values in their

internal memory.

6: H(bli)ECU ← H(Di||H(bli−1)||IDi||Ti),

H(bli)ECUj←1

← H(Di||H(bli−1)||IDi||Ti),

.·

.

H(bli)ECUj←n
← H(Di||H(bli−1)||IDi||Ti)

// Every ECUj←x will compare it computed block

data blocks, which makes such attacks infeasible. Finally, the H(bli)ECU

j←x with the received block Ht(bli)

final block in the chain can be used to verify the integrity of

every CAN data frame transmitted over the bus. In the case of a

7: If (H(bli)ECU

ECU

j←x
/= Ht(bli)) return false //If one

malfunctioning CAN-enable system, blockchain data collected

from different ECUs can be used to recompute the final block

validates a received block, it broadcast an alert message

over the CAN bus. ECU received the first alert message
t
Final). The recomputed final block H(blt) is then and will suspend processing the current block.

compared with the content of the stored final block H(blF inal).

If the two final blocks match, then the integrity of the data trace

is verified, and the collected CAN data can be used for further

analysis.

8: end else

9: return true

10: end of the BlockChainingVerification

j←n

H(bl

H(bl

1020 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

VIII. SECURITY ANALYSIS

Inspired by the works of Ding Wang [41], Qingxuan [42], and

Neal Koblitz [43], we have followed a similar approach in ana-

lyzing the security properties of the modified TinyJAMBU-128

against CAN message replay attacks. However, cryptoanalysis

based on “provable security” has been exploited in the original

work of TinyJAMBU-128 [32], it is limited to two adversary

models (i) nonce-respecting attacks on TinyJAMBU-128 pri-

vacy (ii) nonce-reuse attacks on TinyJamu-128 authenticity. As

suggested in the works of Ding Wang and Qingxuan [41], [42],

[43], security protocols that are provably secure under some

cryptographic assumptions imposed by the designer usually fail

to capture all the different aspects of an adversary model. For

example, CAN replay attacks cannot be captured by exiting

adversarial models presented in TinyJAMBU-128. Also, as we

change the usage dynamic of TinyJAMBU-128 from securing

data in a constrained environment to authenticating and encrypt-

ing messages over CAN bus network, a new systematical secu-

rity assessment methodology with various system performance

metrics has been developed in this work. Our threat analysis was

not based on a formal probabilistic attack modeling technique,

rather it involves the deployment of real adversarial ECU that

inject CAN replay messages over the bus with varying injection

rates. Using a real CAN-enable testbed, we have analyzed the

modified TinyJAMBU-128 based on data privacy, authenticity,

and resiliency against CAN replay attacks.

IX. PERFORMANCE ANALYSIS

CAN data frames are usually transmitted over the bus at

the rate of 10 msec to 500 msec. Based on the underlying

system, processing times for CAN frames are highly dependent

on the underlying processing power of each ECU. ECUs that

handle time-critical tasks are often integrated with a high-end

processer capable of processing messages at the rate of 0.1 msec.

Meanwhile, ECUs that handle non-time-sensitive data usually

have a data processing time of 100 msec to 500 msec. In our

system simulation, we have considered the employment of ECUs

with low-end processor power capability. The proposed security

system offers a tradeoff between reliable data security with

traceability and message delivery time. This section presents

performance analysis of TinyJAMBU-128 lightweight authen-

ticated encryption, AES-128, AES-192, AES-256 [44], ARIA-

128, ARIA-192, ARIA-256 [45], Camellia-128, Camellia-192,

and Camellia-256 [46]. For AES [44], ARIA [45], and Camellia

[46], message authentication was incorporated into these crypto

engines via the full employment of SHA-512.

To compare the performance of modified TinyJAMBU-128

against similar symmetric block cipher encryption schemes,

processing time and message overhead for AES, ARIA, and

CAMELLIA data encryption schemes have been captured and

analyzed during this effort. Since modified TinyJAMBU-128

supports authenticated encryption inherently, data authentica-

tion capability for CAN messages encrypted by AES, ARIA, or

CAMELLIA schemes has been achieved via the employment of

SHA-512. AES is based on substitution-permutation network, it

supports different numbers of rounds. AES-128 uses 10 rounds,

AES-192 involves 12 operational rounds, meanwhile, data en-

crypted with AES-256 requires 14 rounds. During each round,

different operations are involved which include, byte substi-

tution, shift-rows permutation, mixcolumns, and addroundkey.

ARIA uses similar technique for enciphering data, it uses a

substitution-network based on AES [44]. ARIA [45] is capable

of supporting three modes of encryptions with different key

sizes, 128, 192, and 256 bits. Depending on the key size, data

encrypted/decrypted by ARIA requires 12 rounds, 14 rounds,

or 16 rounds. ARIA’s main encryption/decryption engine is

comprised of two submodules (i) key scheduling and (ii) data

randomizing. CAMELLIA [46] is another Feistel cipher, the

algorithm performs 18 rounds when a 128-bit key is used for

encryption data. Meanwhile, data encrypted using CAMELLIA-

192 or CAMELLIA-256 only require 24 rounds. The main

design of CAMELLIA includes the “F-function” and the “FL-

function”. The F-function takes 128-bit inputs and mixes them

with the round key. During the F-function call, a single block

is computed. For every six-round block, the algorithm calls the

FL-function where a logical transformation is applied.

For all tested encryption/decryption algorithms, message au-

thentication data were pushed into the CAN bus as separate CAN

data frames. In the proposed testbed, data frames authenticated

via SHA-512 were fragmented into 8 data frames. Since each

CAN data frame can only support a data length of bytes per

frame, each CAN data will require 8 data frames for authenti-

cation to enable authenticated encryption on AES, ARIA, and

Camellia. Meanwhile, TinyJAMBU-128 supports data authen-

tication via a single 64-bit authentication tag. A data frame

encrypted via TinyJAMBU-128 requires only a single CAN data

frame to achieve message authentication. Our simulation results

were based on the observation of all CAN data frames including

authentication tags transmitted over the network.

During this work, we investigated CAN bus load percentage,

data processing time, and message overhead for each of the

deployed crypto algorithms. In our experiment, CAN bus ef-

ficiency based on bus load and message overhead was estimated

under various CAN data transmission rates and a 300KHz CAN

frequency. CAN bus load measurements and message over-

head were captured for TinyJAMBU-128, AES-128, AES-192,

AES-256, ARIA-128, ARIA-192, ARIA-256, Camellia-128,

Camellia-192, and Camellia-256 under continuous data trans-

mission, 1msec, and 10msec CAN data frames transmission

rates.

Fig. 10 shows CAN bus load percentages for TinyJAMBU-

128, AES, ARIA, and Camellia under continuous data trans-

mission. Based on our simulation results, the AES encryption

variant achieved the highest bus load percentages compared

to other data-authenticated encryption modules. The average

CAN bus load measured across the three AES variants was

approximately 880.415% as compared to ARIA, and Camellia

variants which achieved average CAN busloads of 743.38% and

779.211% respectively. Meanwhile, the CAN bus load reached

0.42195% while running TinyJAMBU-128. Similarly, Figs. 11

and 12 illustrate the network performance in terms of bus load

percentages computed at 1 msec and 10 msec data transmission

rates respectively. CAN bus load measurements were collected

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1021

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Percentage of CAN bus load captured under various data encryption
with continuous data transmission.

Fig. 11. Percentage of CAN bus load captured under various encryption
algorithms with 1 data frame sent every 1 msec.

Fig. 12. Percentage of CAN bus load captured under various encryption
schemes with 1 data frame sent every 10 msec.

Fig. 13. Processing time for various encryption techniques tested on CAN-
enabled devices.

while running the proposed modified TinyJAMBU-128 encryp-

tion. It shows that our CAN network testbed exhibited minimal

bus load as compared to AES, ARIA, and Camellia. Higher

CAN bus loads were recorded while running AES, ARIA, or

Camellia data. Every CAN frame required 8 additional CAN

frames for authentication. In the case of TinyJAMBU-128, each

CAN frame requires only one additional authentication frame.

Data processing for each encryption scheme has been mea-

sured. Processing time was measured based on how much time

is required to encrypt or decrypt a single CAN data frame on

the hardware. As shown in Fig. 13, AES variants have the best

processing time compared to other encryption schemes. Due to

a large number of encryption rounds, TinyJAMBU-128 has the

highest computation time. With a processing time of 50 msec

per CAN data frame encryption, TinyJAMBU-128 remains a

feasible encryption solution for most of today’s CAN bus-based

network systems.

Average CAN bus message overheads were computed during

the execution of AES, ARIA, Camellia, and TinyJAMBU-128. A

total of 500 randomly generated messages were transmitted over

the CAN bus. Three data transmission rates were tested. Fig. 14

presents message overhead observed during continuous data

transmission. It shows that AES, ARIA, and Camellia introduce

an average CAN bus message overhead of approximately 13.67.

As we lower the data transmission rate from continuous to 1 msec

(see Figs. 15 & 16), the average message overhead reduces to

approximately 12.3 for AES, ARIA, and Camellia. In the case of

a 10 msec data transmission rate, message overheads reach 10.98

when running AES, ARIA, or Camellia on the CAN network. For

the various data transmission rates, TinyJAMBU-128 introduces

the lowest message overhead. We have observed 2.15 message

overhead under continuous data transmission, 2.14 and 2.062

under 1msec and 10msec data transmission rates respectively.

Finally, we have analyzed the sensitivity of the proposed

countermeasure scheme against replay attacks. True Positive

Rate (TPR) and False Positive Rate (FPR) of the anti-replay

attacks model has been computed and presented in Figs. 17 and

18. To simulate a replay attack, we considered the deployment

1022 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 14. Average CAN bus overhead captured under various encryption algo-
rithms with continuous data transmission.

Fig. 15. Average CAN bus overhead captured under various encryption en-
gines with 1 CAN frame sent every 1 msec.

Fig. 16. Average CAN bus overhead captured under various encryption algo-
rithms with a single CAN data frame transmitted every 10 msc.

Fig. 17. CAN network’s True Positive Rate (TPR) was collected under various
percentages of replay attack messages.

Fig. 18. CAN network’s False Positive Rate (FPR) was collected under various
percentages of replay attack messages.

of a malicious node. The attacking node sniffs CAN data frames

from the bus and arbitrarily send replay messages over the

bus. Fig. 17 shows the TPR of the proposed technique under

various injection rates. With injection rates between 2% and

20%, our proposed scheme achieved TPR between 0.99 and

0.97. As we increase the injection rate from 20% to 50%, TPR

decreases to 0.92. Fig. 18 shows the FPR of our anti-replay

attack mechanism. Our performance results show that when the

injection rate is lower than 10%, FPR was estimated as zero, as

we increase the injection rate from 10% to 50%, FPR increases

to 0.076. Based on the performance analysis of the proposed

anti-replay attack model, the model established superiority in

replay message detection.

X. THE PROPOSED TESTBED

To test the feasibility of the proposed CAN security subsys-

tem, we proposed the development of a system that is comprised

of three ECU development platforms with CAN capability. The

three ECU nodes are based on the STM32 Nucleo board. The

three ECU nodes are based on the STM32 Nucleo board. Each

development board is equipped with the ARM 32-bit Cortex

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1023

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

M4 processor, an adaptive real-time accelerator, 80MHz max-

imum CPU frequency, 1MB flash programable memory, 128

KB SRAM, random number generator (TNG for HW entropy),

multiple digital timers, three SPI, two I2C, two UART, 3 USART,

and one CAN interface. We have employed the high-speed CAN

transceiver MCP2551 to facilitate CAN data communication

between the ECU nodes. MCP2551 supports a 1Mb/s trans-

fer rate. It is implemented with ISO-11898 standard physical

layer requirements. It supports a system with up to 112 nodes

connected to the bus. Cryptographic algorithms that include

AES, Camellia, Aria, modified TinyJAMBU-128, SHA512, and

the replay attacks countermeasure mechanism were developed

based on utilizing Mbed os API [48] and Mbed TLS library

[49]. AES, Camellia, Aria, and SHA512 were supported by

the Mbed TLS library. Meanwhile, the modified version of

TinyJAMBU-128 and the countermeasure mechanism against

replay attacks were fully implemented using Mbed os API. CAN

data frames were created and pushed into the bus via CAN API.

XI. CONCLUSION

This article proposed the development and integration of

a crypto-based engine that supports lightweight authenticated

data encryption and secure data traceability capabilities for

systems communicating over the CAN bus network. As opposed

to classical encryption/decryption schemes that require heavy

computation and high communication overheads for supporting

authenticated encryption. Our proposed scheme is based on

TinyJAMBU-128 authenticated data encryption. It maintains

low memory usage and minimal communication overhead which

makes it suitable for securing data on power-limited devices.

Meanwhile, TinyJAMBU-192 and TinyJAMBU-256 modes re-

quire an encryption key size of 192 bits and 256 bits respec-

tively. Due to their large key sizes, they often consume extra

processing time as compared to TinyJAMBU-128. Therefore, in

this research, we have only considered TinyJAMBU-128 during

testing. Another alternative for improving processing time is to

lower the number of rounds require for updating TinyJAMBU’s

internal state. Although lowering the number of permutation

rounds might improve the algorithm’s processing time, it could

impact the resiliency of the system against data breaches. As this

modification required further security analysis which we will

be considering during our future works. Yet to our knowledge,

our work provides a base ground for exploring a lightweight

authenticated encryption scheme for securing data over CAN

bus network with data traceability support and full resiliency

against CAN message replay attacks.

In this article, a modified version of TinyJAMBU-128 was

fully implemented and deployed on multiple CAN-enabled

development boards. Data communicated over the CAN bus

were encrypted and authenticated using TinyJAMBU-128. We

have analyzed the performance of TinyJAMBU-128 in terms of

CAN bus load, processing time, and average message commu-

nication overheads and compared the results against traditional

cryptosystems, such as AES, ARIA, and Camellia. Message

authentication on the classical cryptosystems was established

via the employment of SHA-512. Based on our simulation,

TinyJAMBU-128 outperformed AES, ARIA, and Camellia with

respect to CAN bus load and average CAN data frame overhead.

Since only one data frame is required to authenticate a data

block. In contrast, cryptosystems that relied on SHA-512 for data

authentication took 8 CAN data frames. Finally, an anti-replay

attack model was fully developed and deployed on the proposed

testbed. The proposed model was validated based on various

injection rates. We were able to achieve a TPR between 0.99

and 0.97 for replay attack injection rates between 2% and 20%

respectively. As more replay messages injected on the bus, TRP

decreases to 0.92 with 50% of the transmitted messages were

considered malicious.

ACKNOWLEDGEMENTS

The authors are thankful to the Deanship of Scien-

tific Research at Najran University for funding this work,

under the Research Groups Funding program grant code

(NU/RG/SERC/12/27). The work of K.-K. R. Choo is supported

by NSF (National Science Foundation) CREST Grant HRD-

1736209, and the Cloud Technology Endowed Professorship.

REFERENCES

[1] S. Hartzell, C. Stubel, and T. Bonaci, “Security analysis of an automobile
controller area network bus,” IEEE Potentials, vol. 39, no. 3, pp. 19–24,
May/Jun. 2020.

[2] Y. Zhang, T. Liu, H. Zhao, and C. Ma, “Risk analysis of CAN bus and
ethernet communication security for intelligent connected vehicles,” in
Proc. IEEE Int. Conf. Artif. Intell. Ind. Des ., 2021, pp. 291–295.

[3] Steve Corriagan, “Introduction to controller area network (CAN),”
May 24, 2023. [Online]. Available: https://www.ti.com/lit/an/sloa101b/
sloa101b.pdf?ts=1678332963032&ref_url=https%253A%252F%
252Fwww.google.com%252F

[4] H. K. Kalutarage, M. O. Al-Kadri, M. Cheah, and G. Madzudzo, “Context-
aware anomaly detector for monitoring cyber attacks on automotive CAN
bus,” in Proc. 3rd ACM Comput. Sci. Cars Symp., 2019, pp. 1–8.

[5] L. Kang and H. Shen, “Detection and mitigation of sensor and CAN bus
attacks in vehicle anti-lock braking systems,” ACM Trans. Cyber-Phys.
Syst., vol. 6, no. 1, Jan. 2022, Art. no. 9.

[6] M. R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and S. J. Prowell,
“Modeling inter-signal arrival times for accurate detection of CAN bus
signal injection attacks: A data-driven approach to in-vehicle intrusion
detection,” in Proc. 12th Annu. Conf. Cyber Inf. Secur. Res., 2017, pp. 1–4.

[7] D. Caivano, M. De Vincentiis, F. Nitti, and A. Pal, “Quantum optimization
for fast CAN bus intrusion detection,” in Proc. 1st Int. Workshop Quantum
Program. Softw. Eng., 2022, pp. 15–18.

[8] Q. Zhao, M. Chen, Z. Gu, S. Luan, H. Zeng, and S. Chakrabory, “CAN
bus intrusion detection based on auxiliary classifier GAN and out-of-
distribution detection,” ACM Trans. Embed. Comput. Syst., vol. 21, no. 4,
Jul. 2022, Art. no. 45.

[9] R. Gundu and M. Maleki, “Securing CAN bus in connected and au-
tonomous vehicles using supervised machine learning approaches,” in
Proc. IEEE Int. Conf. Electro Inf. Technol ., 2022, pp. 042–046.

[10] Y. Qiu, T. Misu, and C. Busso, “Driving anomaly detection with conditional
generative adversarial network using physiological and CAN-bus data,” in
Proc. Int. Conf. Multimodal Interaction, 2019, pp. 164–173.

[11] K. Pawelec, R. A. Bridges, and F. L. Combs, “Towards a CAN IDS based
on a neural network data field predictor,” in Proc. ACM Workshop Automot.
Cybersecurity, 2019, pp. 31–34.

[12] T. C. M. Dönmez, “Anomaly detection in vehicular CAN bus using
message identifier sequences,” IEEE Access, vol. 9, pp. 136243–136252,
2021.

[13] A. Wang et al., “Anomaly information detection and fault tolerance control
method for CAN-FD bus network,” in Proc. IEEE 19th Int. SoC Des. Conf
., 2022, pp. 308–309.

[14] F. Fenzl, R. Rieke, and A. Dominik, “In-vehicle detection of targeted
CAN bus attacks,” in Proc. 16th Int. Conf. Availability, Rel., Secur., 2021,
Art. no. 32.

https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1678332963032&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1678332963032&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1678332963032&ref_url=https%253A%252F%252Fwww.google.com%252F

1024 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

[15] R. Brown, A. Marti, C. Jenkins, and S. Shannigrahi, “Dynamic address
validation array (DAVA): A moving target defense protocol for CAN bus,”
in Proc. 7th ACM Workshop Moving Target Defense, 2020, pp. 11–19.

[16] B. Groza, S. Murvay, A. Van Herrewege, and I. Verbauwhede, “LiBrA-
CAN: Lightweight broadcast authentication for controller area networks,”
ACM Trans. Embed. Comput. Syst., vol. 16, no. 3, Aug. 2017, Art. no. 90.

[17] Y. Xiao, S. Shi, N. Zhang, W. Lou, and Y. T. Hou, “Session key distribution
made practical for CAN and CAN-FD message authentication,” in Proc.
Annu. Comput. Secur. Appl. Conf., 2020, pp. 681–693.

[18] M. Zhang, P. Parsch, H. Hoffmann, and A. Masrur, “Analyzing CAN’s
timing under periodically authenticated encryption,” in Proc. IEEE Conf.
Exhib. Des., Automat. Test Europe, 2022, pp. 620–623.

[19] P. Liu, Y. Liu, X. Wang, C. Fang, X. Guan, and T. Liu, “Channel-state-based
fingerprinting against physical access attack in industrial field bus net-
work,” IEEE Internet Things J., vol. 9, no. 12, pp. 9557–9573, Jun. 2022.

[20] T. Chong, T. Liu, Y. Zhang, C. Ma, X. Jia, and Z. Wu, “Analysis of
the influence of CAN bus encryption and decryption on real-time per-
formance,” in Proc. IEEE 2nd Int. Conf. Comput. Commun. Netw. Secur.,
2021, pp. 38–44.

[21] P. Biondi, G. Bella, G. Costantino, and I. Matteucci, “Implementing CAN
bus security by TOUCAN,” in Proc. 20th ACM Int. Symp. Mobile Ad Hoc
Netw. Comput., 2019, pp. 399–400.

[22] L. Kang and H. Shen, “Attack detection and mitigation for sensor and CAN
bus attacks in vehicle anti-lock braking systems,” in Proc. IEEE 29th Int.
Conf. Comput. Commun. Netw., 2020, pp. 1–9.

[23] P. Thirumavalavasethurayar and T. Ravi, “Implementation of replay attack
in controller area network bus using universal verification methodology,”
in Proc. IEEE Int. Conf. Artif. Intell. Smart Syst ., 2021, pp. 1142–1146.

[24] M. Marchetti and D. Stabili, “Anomaly detection of CAN bus messages
through analysis of ID sequences,” in Proc. IEEE Intell. Veh. Symp.,
pp. 1577–1583, Jun. 2017.

[25] Y. Laarouchi, M. Kaâniche, V. Nicomette, I. Studnia, and E. Alata, “A
language-based intrusion detection approach for automotive embedded
networks,” Int. J. Embedded Syst., vol. 10, no. 1, pp. 1–12, 2018.

[26] S. Katragadda, P. J. Darby, A. Roche, and R. Gottumukkala, “Detecting
low-rate replay-based injection attacks on in-vehicle networks,” IEEE
Access, vol. 8, pp. 54979–54993, 2020.

[27] M. Jedh, L. Ben Othmane, N. Ahmed, and B. Bhargava, “Detection of
message injection attacks onto the CAN bus using similarities of successive
messages-sequence graphs,” IEEE Trans. Inf. Forensics Secur., vol. 16,
pp. 4133–4146, 2021.

[28] B. Shannon, S. Etikala, Y. Gui, A. S. Siddiqui, and F. Saqib, “Blockchain
based distributed key provisioning and secure communication over CAN
FD,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2019, pp. 638–644.

[29] T. Chong, T. Liu, Y. Zhang, C. Ma, X. Jia, and Z. Wu, “Analysis of the
influence of CAN bus encryption and decryption on real time perfor-
mance,” in Proc. IEEE 2nd Int. Conf. Comput. Commun. Netw. Secur.,
2021, pp. 38–44.

[30] T. Dee and A. Tyagi, “Message integrity and authenticity in secure CAN,”
IEEE Consum. Electron. Mag., vol. 10, no. 5, pp. 33–40, Sep. 2021.

[31] F. Páez and H. Kaschel, “A proposal for data authentication, data integrity,
and replay attack rejection for the LIN bus,” in Proc. IEEE CHILEAN Conf.
Elect., Electron. Eng., Inf. Commun. Technol., 2021, pp. 1–7.

[32] TinyJAMBU v2 Specification (nist.gov), May 17, 2021. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-
spec-final.pdf

[33] Z. Kang, J. Li, J. Shen, J. Han, Y. Zuo, and Y. Zhang, “TFS-ABS: Traceable
and forward-secure attribute-based signature scheme with constant-size,”
IEEE Trans. Knowl. Data Eng., vol. 35, no. 9, pp. 9514–9530, Sep. 2023.

[34] Y. Lu and J. Li, “Lightweight public key authenticated encryption with
keyword search against adaptively-chosen-targets adversaries for mobile
devices,” IEEE Trans. Mobile Comput., vol. 21, no. 12, pp. 4397–4409,
Dec. 2022.

[35] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proc. IEEE Symp. Secur. Privacy, 2012,
pp. 553–567.

[36] D. Wang and P. Wang, “Two birds with one stone: Two-factor authentica-
tion with security beyond conventional bound,” IEEE Trans. Dependable
Secure Comput., vol. 15, no. 4, pp. 708–722, Jul./Aug. 2018.

[37] D. Wang, W. Li, and P. Wang, “Measuring two-factor authentication
schemes for real-time data access in industrial wireless sensor net-
works,” IEEE Trans. Ind. Informat., vol. 14, no. 9, pp. 4081–4092,
Sep. 2018.

[38] Q. Jiang, N. Zhang, J. Ni, J. Ma, X. Ma, and K.-K. R. Choo, “Unified
biometric privacy preserving three-factor authentication and key agree-
ment for cloud-assisted autonomous vehicles,” IEEE Trans. Veh. Technol.,
vol. 69, no. 9, pp. 9390–9401, Sep. 2020.

[39] C. Wang, D. Wang, Y. Duan, and X. Tao, “Secure and lightweight user
authentication scheme for cloud-assisted Internet of Things,” IEEE Trans.
Inf. Forensics Secur., vol. 18, pp. 2961–2976, 2023.

[40] Q. Wang, D. Wang, C. Cheng, and D. He, “Quantum2FA: Efficient
quantum-resistant two-factor authentication scheme for mobile devices,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 1, pp. 193–208,
Jan./Feb. 2023.

[41] D. Wang, D. He, P. Wang, and C.-H. Chu, “Anonymous two-factor au-
thentication in distributed systems: Certain goals are beyond attainment,”
IEEE Trans. Dependable Secure Comput., vol. 12, no. 4, pp. 428–442,
Jul./Aug. 2015.

[42] Q. Wang and D. Wang, “Understanding failures in security proofs of
multi-factor authentication for mobile devices,” IEEE Trans. Inf. Forensics
Secur., vol. 18, pp. 597–612, 2023.

[43] N. Koblitz and A. Menezes, “Another look at ‘provable security,” J.
Cryptology, vol. 20, pp. 3–37, 2007.

[44] M. Dworkin et al., “Advanced encryption standard (AES),” Federal Inf.
Process. Standard (NIST FIPS), National Institute of Standards and Tech-
nology, Gaithersburg, MD, USA, 2001, doi: 10.6028/NIST.FIPS.197.

[45] D. Kwon et al., “New block cipher: ARIA,” in Proc. Inf. Secur. Cryptology
- ICISC 2003, 2004, pp. 432–445.

[46] K. Aoki et al., “Camellia: A 128-bit block cipher suitable for multiple
platforms — Design and analysis,” in Proc. Sel. Areas Cryptography. SAC
2000, 2001, pp. 39–56.

[47] stm.com, Arm Cortex-M4 32b MCU+FPU, 125 DMIPS, 512KB Flash,
128KB RAM, USB OTG FS, 11 TIMs, 1 ADC, 13 comm, 2017. [Online].
Available: https://www.st.com/resource/en/datasheet/stm32f411re.pdf

[48] Arm Mbed OS, 2023. [Online]. Available: https://os.mbed.com/mbed-os/
[49] Mbed TLS, 2023. [Online]. Available: https://os.mbed.com/docs/mbed-

os/v6.16/apis/tls.html
[50] A. Rex, R. Amar, V. Hacer, B. Mohamed, M.-S. Louanne, and R. Mahap-

atra, “Harnessing IoT technology for the development of wearable contact
tracing solutions,” in Proc. TRON Symp. (TRONSHOW), 2021, pp. 1–9.

[51] R. Clarke, L. McGuire, M. Baza, A. Rasheed, and M. Alsabaan, “Online
voting scheme using IBM cloud-based hyperledger fabric with privacy-
preservation,” Appl. Sci., vol. 13, no. 13, 2023, Art. no. 7905.

Amar Rasheed is currently an Assistant Profes-
sor with the Department of Computer Science, Sam
Houston State University, Huntsville, TX, USA. He
was a Postdoctoral Fellow with the Information Sci-
ence and Technology Division of the Applied Re-
search Laboratory, Pennsylvania State University,
State College, PA, USA. His research interests in-
clude sensor modeling and data collection algorithms,
efficient data collection schemes for wireless sen-
sor networks, energy-efficient sensor data gathering
mechanisms, secure mobile sensor data communica-

tion models design, cybersecurity systems, cybersecurity risk assessment, and
analysis.

Mohamed Baza received the Ph.D. degree from
Tennessee Technological University, Cookeville, TN,
USA, in December, 2020. He is currently an Assistant
Professor with the Department of Computer Science,
College of Charleston, Charleston, SC, USA. He is
the author of many journals and conferences, such as
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY, IEEE TRANSACTIONS ON NETWORK

SCIENCE AND ENGINEERING, ICC, and CCNC. His

research interests include blockchains, cybersecurity,
and machine learning.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://dx.doi.org/10.6028/NIST.FIPS.197
https://www.st.com/resource/en/datasheet/stm32f411re.pdf
https://os.mbed.com/mbed-os/
https://os.mbed.com/docs/mbed-os/v6.16/apis/tls.html
https://os.mbed.com/docs/mbed-os/v6.16/apis/tls.html

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1025

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

Mahmoud. M. Badr received the B.S. and M.S. de-
grees in electrical engineering (electronics and com-
munications) from Benha University, Cairo, Egypt, in
2013 and 2018, respectively, and the Ph.D. degree in
electrical and computer engineering from Tennessee
Tech University, TN, USA, in 2022. He is with the De-
partment of Network and Computer Security, College
of Engineering, SUNY Polytechnic Institute, Utica,
NY, USA. His research interests include machine
learning, blockchain, cryptography, 5G networks, and
smart grids. He has been selected as a poster winner

at Tennessee Tech. University’s annual Research and creative inquiry day, 2021.

Kim-Kwang Raymond Choo (Senior Member,
IEEE) received the Ph.D. degree in information secu-
rity from the Queensland University of Technology,
Brisbane, QLD, Australia, in 2006. He currently holds
the Cloud Technology Endowed Professorship with
The University of Texas at San Antonio, San Antonio,
TX, USA. He is the founding co-Editor-in-Chief of
ACM Distributed Ledger Technologies: Research &
Practice, and the founding Chair of IEEE Technol-
ogy and Engineering Management Society Techni-
cal Committee (TC) on Blockchain and Distributed

Ledger Technologies. He was the recipient of the 2022 IEEE Hyper-Intelligence
TC Award for Excellence in Hyper-Intelligence Systems (Technical Achieve-
ment award), 2022 IEEE TC on Homeland Security Research and Innovation
Award, 2022 IEEE TC on Secure and Dependable Measurement Mid-Career
Award, and the 2019 IEEE TC on Scalable Computing Award for Excellence in
Scalable Computing (Middle Career Researcher).

Hani Alshahrani received the bachelor’s degree
in computer science from King Khaled University,
Abha, Saudi Arabia, the master’s degree in computer
science from California Lutheran University, Thou-
sand Oaks, CA, USA, and the Ph.D. degree from Oak-
land University, Rochester, MI, USA. He is currently
an Associate Professor of computer science and infor-
mation systems with Najran University, Najran, Saudi
Arabia. His research interests include smartphones,
IoT, crowdsourcing security, and privacy.

