1008

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Efficient Crypto Engine for Authenticated
Encryption, Data Traceability, and Replay
Attack Detection Over CAN Bus Network

Amar Rasheed ™ , Mohamed Baza

and Kim-Kwang Raymond Choo

Abstract—Smart vehicles and industrial control systems becom-
ing increasingly complex. They are comprised of a large number of
connected intelligence sensor devices. For such systems, Controller
Area Network (CAN) bus offer high-integrity serial communication
capabilities. It transformed the way how these systems are net-
worked. Due to the lack of data security features on CAN-enabled
systems, many of these systems are vulnerable to a wide range of
cyber threats. This article proposed the development of a crypto-
based subsystem that is capable of supporting CAN authenti-
cated data encryption/decryption, crypto-provable data traceabil-
ity, and replay attack detection capabilities. Data confidentiality
was achieved via the deployment of a lightweight block cipher au-
thenticated encryption scheme based on TinyJAMBU-128. Crypto-
provable data traceability was accomplished through the utilization
of a block-chaining approach. Meanwhile, an anti-replay attack
mechanism that implements CAN message context awareness has
been tested and validated under various data infection rates. Our
CAN security subsystem was fully implemented and deployed on a
testbed with multiple STM32 Nucleo development boards. System
performance for our security schemes was analyzed and compared
with traditional encryption schemes AES, ARIA, and Camellia
with SHA-512 for supporting message authentication. Based on
our performance results, the proposed security subsystem achieved
the lowest CAN bus load and average message overhead compared
to other encryption schemes. In the case of the anti-replay attack
mechanism, we were able to reach a detection rate of 99.99% for
data infection rate below 20%.

Index Terms—Encryption, CAN Bus, authenticated encryption,
decryption algorithm.

Manuscript received 2 April 2023; revised 11 August 2023; accepted 30 Au-
gust 2023. Date of publication 8 September 2023; date of current version 8 Jan-
uary 2024. Recommended for acceptance by Dr. Yang Xiao. (Corresponding
author: Mohamed Baza.)

Amar Rasheed is with the Department of Computer Science, Sam Houston
State University, Huntsville, TX 77340 USA (e-mail: axr249@shsu.edu).

Mohamed Baza is with the Department of Computer Science, College of
Charleston, Charleston, SC 29424 USA (e-mail: bazam@cofc.edu).

Mahmoud. M. Badr is with the Department of Network and Com-
puter Security, Suny Polytechnic Institute, Utica, NY 13502 USA (e-mail:
badrm@sunypoly.edu).

Hani Alshahrani is with the Department of Computer Science, College of
Computer Science and Information Systems, Najran University, Najran 61441,
Saudi Arabia (e-mail: hmalshahrani@nu.edu.sa).

Kim-Kwang Raymond Choo is with the Department of Information System
and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78260
USA (e-mail: raymond.choo@utsa.edu).

Digital Object Identifier 10.1109/TNSE.2023.3312545

, Mahmoud. M. Badr

, Hani Alshahrani ™,
, Senior Member, IEEE

Control

Industrial

System with CAN bus
Autonomous vehi-
Tire pressure sen- cle with Can Bus

sormodule

Fig. 1. CAN BUS applications.

I. INTRODUCTION

ONTROLLER area network (CAN) protocol has been

widely embraced by the automotive industry (see Fig. 1).
In today’s connected vehicles, CAN enables internal compo-
nents of the vehicle’s complex system to communicate with one
another without the need for a central processing unit. CAN bus
provides low-cost and reliable data communication solutions.
Data generated from various sensor units can be transmitted over
the bus at the rate of 2 to 5 Mb/s. Existing vehicle systems can
support more than 70 intelligent sensors and Electronic Control
Units (ECU)s. The biggest processing unit in any vehicle system
is the engine control unit. Other ECUSs that support autonomous
driving capabilities include Advanced Driver Assistant System
(ADAS) unit, airbags, cruise control, battery and recharging
system, and lane assist/collision avoidance.

Additional CAN features like flexibility, reliability, rugged-
ness, and high tolerances against interference makes the tech-
nology an ideal data communication platform for many safety-
critical industrial control system, and autonomous military
platforms (e.g., unmanned Aircraft Systems (UAS) and Lethal
Autonomous Weapon Systems (LAWS)). Tactical military ve-
hicles are highly integrated with multiple sensor fusion modules
and control algorithms. In such systems, rapid decision-making,
fast maneuvering, and collision avoidance capabilities are vital

2327-4697 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

mailto:axr249@shsu.edu
mailto:bazam@cofc.edu
mailto:badrm@sunypoly.edu
mailto:hmalshahrani@nu.edu.sa
mailto:raymond.choo@utsa.edu
http://www.ieee.org/publications/rights/index.html
https://orcid.org/0000-0002-1929-9124
https://orcid.org/0000-0001-5153-8693
https://orcid.org/0000-0002-8986-001X
https://orcid.org/0000-0002-8799-9448
https://orcid.org/0000-0001-9208-5336

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION

for supporting mission dynamics. In both commercial and
military-connected vehicles, CAN protocol shows superiority in
the way how various sensor data get prioritized and transmitted
over the CAN network. For example, camera, LIDAR (Light
Detection and Ranging), GPS (Global Positioning System), en-
gine temperature, and acceleration data computed by the various
subsystems are prioritized based on their assigned CAN message
IDs. Similarly, CAN bus integration into today’s industrial
control systems brings an essential functionality that ensures
the safe operation of such systems. Data prioritization capability
for sensor data and actuators is inherently supported by CAN
which eliminates the need for additional hardware or software
components.

Although CAN bus technology has been incorporated into the
design of a wide range of interconnected systems, traditional
CAN systems still lack the support of basic security primitives
[1], [2]. Data encryption/decryption, message authentication,
and data integrity verification capabilities are not integrated into
current CAN technologies. CAN is a message-based broadcast
system, in which messages can be easily extracted and com-
promised from the bus via the deployment of a malicious ECU
acting as a packet sniffer. Non-authenticated CAN data messages
can be altered during transit and injected into the network. CAN
protocol offers zero resiliency against message replay attacks.
Captured CAN message from previous data transmissions can
be inserted into the CAN bus via a compromised ECU. Further-
more, current CAN technologies are inadequate in providing
cryptographically secured data tracing capability. Specifically,
in the case of a car accident, non-authenticated CAN messages
transmitted over the bus that holds critical information such as
acceleration data, tire pressures, and steering wheel angles are
not cryptographically secured. A malicious ECU will be able
to alter the sequence of data in the trace by placing additional
packets into the trace or even changing the order of the packets
within the trace.

The main thrust of this research includes the development
and deployment of an efficient CAN security subsystem for
CAN-based interconnected systems. The proposed CAN se-
curity subsystem supports two auxiliary security modules in-
tegrated into the existing TinyJAMBU-128 [32] authenticated
encryption scheme. The newly developed security modules en-
hanced TinyJAMBU-128’s security capabilities against CAN
replay attacks. The modified TinyJAMBU-128 is capable of
achieving secure data traceability and data authentication over
CAN bus networks.

Finally, systematical evaluation and third-party methodolog-
ical frameworks that assess the security property of CAN-based
encryption systems have not been proposed in the past. Existing
research literature mainly focuses on classical crypto techniques
that were designed for general-purpose computing systems [44],
[45], [46]. Also, due to CAN bus system requirement, many of
today’s performance metrics that are used to analyze the effi-
ciency of traditional security mechanisms might be unsuitable
for evaluating security algorithms developed for CAN bus net-
work. We have investigated the employment of two performance
metrics that fully describe the impact of deploying our proposed
crypto system: (i) CAN bus overhead capacity and (ii) ECU

1009

processing power. Experimental results that capture the modified
TinyJAMBU-128 authenticated encryption system efficiency in
terms of CAN bus overhead capacity and ECU processing time
were presented during this work.

The following cryptographic techniques have been developed

and deployed onto the proposed CAN security subsystem.

* Lightweight Authenticated Data Encryption Scheme: Effi-
cient and lightweight encryption/decryption scheme based
on TinyJAMBU-128 [32] authenticated encryption was
implemented. We have evaluated the performance of the
proposed authenticated encryption scheme and compared
it with traditional crypto engines that support block cipher
encryption. Performance metrics based on CAN bus load,
message overhead, and processing time were captured
for TinyJAMBU-128 [32], AES128, AES-192, AES-256
[44], SHA-256, ARIA-128, ARIA-192, ARIA-256 [45],
Camellia-128, Camellia-192, and Camellia-256 [46]. Data
encrypted via AES, ARIA, and Camellia were authen-
ticated via the deployment of SHA-512. Based on our
simulation results, the proposed scheme achieved better
performance in terms of message overhead, and CAN
bus load compared to other encryption schemes. We have
analyzed the performance of the proposed replay attack

detection scheme based on true positive and false positive

rates under various malicious data injection rates.
L]

Efficient Countermeasure Mechanism Against Replay At-
tacks: A cryptographic-based approach that utilizes CAN
channel data communication patterns to derive a transmis-
sion context for each data message sent over the bus. In
our proposed scheme, transmission contexts are encoded
into the associated data packets that are used for encrypting
CAN messages. Our proposed scheme can achieve a 99.9%
replay attack detection rate. CAN messages transmitted
within an invalid context will be detected. We have tested
the proposed scheme by injecting replay messages into the
CAN bus using various injection rates. We have validated
the ability of the system for identifying malicious data
packets sent within invalid transmission contexts.
Crypto-provable Technique for Data Traceability: To en-
sure the integrity of a trace, CAN data transmitted over
the bus are block-chained using a cryptographic hash
approach. Our proposed scheme provides full resiliency
against data modification and data injection attacks. A
compromised ECU will not be able to insert malicious
CAN data into a pre-computed data-trace.

Our proposed techniques are capable of supporting secure
data transmission, message authentication, and crypto-provable
data traceability function. Data communicated over the CAN
bus will be encrypted and authenticated with minimum data
communication overheads. Our CAN security subsystem makes
existing CAN bus-based interconnected systems fully immu-
nized against replay attacks and threats that targeted the integrity
of the data-trace.

The proposed CAN subsystem was implemented on multiple
STM32F411 [47] boards. Each STM32F411 board features an
ARM Cortex-M4 processing unit, 512KB of flash memory, and
128KB of SRAM, and it is CAN-enabled. We have created

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

1010

[Tewin] T]

§ CAN High g

CAN bus architecture.

Terminator

Resistor

Fig. 2.

a CAN bus-based interconnected system where STM32F411
systems send and receive data over the CAN bus. Data confi-
dentiality, message authentication, and system resiliency against
replay attacks were tested using the added CAN security sub-
system. Our security subsystem shows superiority in achieving a
high detection rate against replay attacks and is capable of rein-
forcing secure data transmission with minimal communication
overheads.

This article is organized as follows. Section II presents the
CAN protocol. Section III describes related works. Section IV
introduces a high-level architecture of the proposed CAN se-
curity subsystem. Section V introduces a lightweight encryp-
tion/decryption algorithm based on the TinyJAMBU-128 crypto
engine. Section VI describes the proposed countermeasure tech-
nique against replay threats. Section VII presents a crypto-
graphic technique based on hash for supporting the integrity
verification of data-trace. Section VIII introduced the security
analysis approach. Section IX shows the performance results
of the proposed CAN security subsystem. Section X illustrates
the interconnected system architecture for the proposed testbed.
Section XI concludes the article and presents future work direc-
tions.

II. BACKGROUNDS

CAN was first introduced and developed by BOSCH [3] and
is a message-based protocol that supports the broadcasting of
CAN data where there is no centralized unit that facilitates how
data get transmitted over the bus. The original CAN was able
to provide a maximum data communication rate of 1Mbit/sec.
CAN feature a point-to-point communication system, data is
transmitted as small blocks of size 1-8 bytes per message. For
more than thirty years, CAN provided flexibility and upgradabil-
ity to the automotive industry where complex wiring systems
were replaced by CAN-High and CAN-Low wire systems (see
Fig. 2). New ECUs can be added to the network with minimal
modification to the internal system architecture. ISO-11898
defined how CAN protocol is mapped to the ISO Data-link layer
and Physical layer. In this research, the CAN security subsystem
was fully implanted and integrated into the application layer,
while preserving the CAN protocol’s original design integrity.
Our subsystem will serve as plug and play system, it can be
initiated at ECU connected to the systems when data security
feature is imperative for ensuring the safe operation of the
system.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

= =

o |7
= Identifier [; k“" lo
i T IR R

CAN Data Frame

Recessive

}!\nde B win the h H 7 H
Node A . .
arbitration

Node B

Dominate

CAN arbitration with two

Fig.3. CAN data frame and CAN arbitration.

One important aspect of CAN communication is that it relies
on carrier sense, multiple access mechanisms with collision de-
tection plus arbitration on message priority (CSMA/CD+AMP)
for accessing the bus. In CAN, ECUs contention over the bus
is resolved using a bit-wise arbitration method, messages are
prioritized based on their programmable ids, and messages with
the highest priority will win the arbitration race. The original
ISO-11898 support a data communication rate from 125kbit/sec
to 1Mbit/sec with an 11-bits message id. The new CAN is able
to provide an extended 29-bits id where 229 different identities
can be created.

A. Message Arbitration

CAN bus was implemented using a twisted and shielded
wiring system with 120 Ohm termination resistors on each
side of the bus. CAN is based on a differential voltage signal
transmitted between CANH and CANL. When the bus is idle, it
remains in a recessive state until one node pulls the state of the
bus to dominate. When two nodes try to send data over the bus
simultaneously, their messages can be corrupted or destroyed.
CAN resolves bus contention via the bit-wise arbitration ap-
proach. Each message transmitted on CAN is identified by an
11-bit ID or 29-bits in the case of standard CAN and extended
CAN respectively. Message prioritization is computed based on
the message’s identifier bit values. Messages with lower binary
values in their identifier fields have higher priority. For example,
a CAN message with its identifier bits field set to dominate (0)
will have the highest priority. When two nodes compete for the
bus, a node with its last transmitted identifier bit set to dominate
will win the arbitration. While the winning node continues in its
frame transmission, the second node stops its data transmission.
The arbitration process is illustrated in Fig. 3.

B. Data Types

There are four types of CAN messages transmitted over the
bus, error frame, overload frame, remote frame, and data frame.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION

Data Frame. This message contains the CAN payload,
message identifier field (11 bits for standard CAN and 29
bits for extended CAN), the CRC data, and 2-bit ACK.
Error Frame. Corrupted CAN messages are detected by
computing CRC on the received data packet. When a
distorted CAN frame is identified, all receiving nodes start
sending data error frames over the bus. CAN controller
implements an error counter to prevent a transmitter from
obtaining exclusive possession of the bus by repeatedly
transmitting error frames.

Remote Frame. A remote frame is used to request data
from another node connected to the bus. The remote frame
has the RTR bit set to a recessive state. Every node on the
bus will receive the remote frame message, but only nodes
that are interested in the data will send their replies to the
transmitter.

Overload Frame. A mechanism that produces delays be-
tween CAN messages is required to stabilize the state of the
bus, especially when nodes become too busy and unable to
process all incoming data.

Valid Frame. An error-free Data frame will have the last
bit in the EOF field set to recessive. While messages with
EOF bit sets to dominate, CAN mark it as an error in the
message which require retransmission.

[II. RELATED WORKS

Recent works on threat mitigation and intrusion detection
systems [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [50],
[51] show promising results in detecting CAN bus attacks.
Attacks [14], [15] that target the data integrity of safety-critical
sensor system in a modern vehicle, such as the vehicle Anti-lock
Braking System (ABS) has been presented in [22]. Liuwang K.
[22] proposed a threat detection and attack mitigation technique
against ABS CAN bus attacks. Their method is capable of
identifying sensor attacks and CAN bus attacks related to ABS
with the execution of an attack mitigation strategy that enables
dynamic threat isolation. The authors proposed the develop-
ment of a system that predicts the current state of the vehicle
based on measured historical vehicle state data, derived from
multiple sensor measurements. In their approach, the vehicle
state space is comprised of real-time road friction data (i.e.,
wheel speed and longitude break force). Threat mitigation was
implemented based on the subtraction of anomalous data from
the measured vehicle state data to establish the correct reading
for the vehicle ABS. One shortcoming of the above approach,
hardware integrity verification of ECUs was not considered
during vehicle state identification. Vehicle state ABS computed
during normal operations might contain false data, which leads
to false predictions. For example, during the vehicle state iden-
tification process, malicious ECUs attached to the bus can inject
anomalous data altering the vehicle state data. To overcome
this problem a full inspection needed to be performed before
incorporating the vehicle state into the prediction model.

Data injection based on replay attacks has been exploited
in [23]. P. Thirumavalavasethurayar and T. Ravi [23] proposed
the implantation of attacking the CAN bus by injecting replay

1011

messages over the bus. A testbed of three CAN-enable nodes
was implemented using a universal verification methodology. A
malicious node was deployed to simulate replay attacks. Two
classes of replay attacks were developed full and partial frame
replaying attacks.

Existing works based on sequence-based detection algorithms
[24], hidden Markov models [25], and neural network ap-
proaches have shown promising results in detecting message
injection and replay attacks on the CAN bus. The work presented
by Satya Katragadda [26] illustrated the effectiveness of the
sequence-based anomaly detection algorithm in detecting low-
rate replay threats for over 99% f-score. The proposed scheme
achieved better performance compared to existing dictionary-
based algorithms and a multi-variate Markov chain-based ap-
proach. Mubark Jedh [27] presented a novel approach based on
similarities of successive messages-sequence graphs for detect-
ing Message injection attacks. A detection algorithm based on
generating a Messages-Sequence Graph (MSG) that presents
CAN messages as sequences of data sent within a given time
interval. In their work, the detection of message injection attacks
was achieved through the deployment of cosine similarity and
Pearson correlation methods. Sequences of MSGs were used
to compute similarities that might exist in successive MSGs,
enforced by change point detection, and Long Short-Term Mem-
ory (LSTM) to predict injection attacks on the CAN bus. The
proposed scheme was able to sustain a detection rate of 98.45%
and 1.5 to 2.64 response time. Techniques that rely on a machine
learning approach or sequence-based intrusion detection system
usually require heavy processing and large storage capabilities
to train and estimate the model parameters. Real-time model
training and parameter estimation are not visible with current
CAN bus technology due to CAN nodes’ limited processing
power and storage capacity. To overcome this problem, two
approaches in model training were considered in the literature.
The first approach is based on offline training techniques, where
CAN data is extracted first and then feed into a training algorithm
running on a high-performance computing system. The second
approach implements real-time feature extraction algorithms
and extracted CAN data is communicated directly to a training
model running on the cloud.

Security approaches based on message authentication [16],
[17], [18], [19], [20], [21], hash-based message authentication
code (HMAC) attribute-based encryption, symmetric-based
encryption techniques, and ECC-based key management
algorithms have been investigated in [28], [29]. A crypto-based
technique for detecting CAN message injection and replay
attacks was presented by the work of Timothy Dee in [30]. It en-
hances existing CAN-FD technology by incorporating message
integrity, message authentication, and source node authenticity
capabilities. Message freshness was implemented through the
maintenance of freshness value tables. Security algorithms
implemented with classical authentication schemes require
heavy processing and introduce large communication overhead
to the CAN. A standard CAN data frame is limited to a 64-bit
block of data. Therefore, authentication data or an encrypted
message with a block size larger than 64 bits will require more
than one CAN frame to transmit the data over the bus.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

1012

Several lightweight detection algorithms against replay at-
tacks have been proposed in the past. F. Paez and H. Kaschel pro-
posed an algorithm that [31] eliminates the need for employing
computationally intensive crypto-based methods for detecting
CAN threats. It relies on the incorporation of a new CAN ID into
the messages’ acceptance filter of nodes. The proposed approach
was tested using a CAN-enable testbed. Modified and replayed
CAN messages were identified by the proposed method at 40us
detection speed.

Recent work that analyzes the vulnerabilities of attribute-
based signature schemes has been presented by Zhaozhe Kang
and Jiguo Li [33]. The authors show that existing attribute-based
signature scheme can be exploited by attackers through signature
abusing and key exposure. To overcome these issues, the authors
proposed a novel scheme that supports traceable and forward-
secure attribute-based signatures (TFS-ABS). Their proposed
scheme has been proven for enabling unforgeability features
against selective predict e attacks for the standard model. Fur-
thermore, based on their simulation results, the proposed TFS-
ABS was capable of achieving efficient communication and
computation overhead.

Public key authenticated encryption with keyword search
(PAEKS) has been presented by Yang Lu and Jiguo in [34]. The
authors show that data security schemes based on searchable
public key encryption (SPKE) techniques are vulnerable to
keyword-guessing attacks. PAEKS scheme has been proven to
show resiliency against such attacks. To improve PAEKS re-
siliency against adaptively-chosen targets adversaries, adversary
model of PAEKS has been refined and modified. Finally, a light
weight PAEKS scheme that minimizes the computation power
of performing bilinear pairing operations has been implemented.
It showed that the improved light weight PAEKS was capable
of supporting low communication and computation profiles,
which makes the scheme more suitable for power-constrained
devices.

Joseph Bonneau and Cormac Herley [35] examine the diffi-
culty of replacing passwords in today’s web-based user authenti-
cation schemes. In their study, the authors showed that there is a
wide range of security approaches that offered password replace-
ment solutions. Such schemes were capable of providing extra
security primitives that extend existing password capabilities.
But, with the extra security benefits comes a system deployment
cost and usage which make these security systems less attractive
compared to password-based user authentication techniques.
Finally, the authors provide an evaluation methodology and
benchmark for validating and testing future web authentication
schemes.

Ding Wang and Ping Wang [36] presented a comprehen-
sive analysis of how today’s two-factor authentication schemes
and smart-card-based password authentication mechanisms are
being poorly evaluated and assessed. A fully comprehensive
security assessment model and benchmarking for analyzing
important security features of the proposed schemes become
indispensable tools. The authors proposed a security model that
is capable of extracting import features of an adversary and
generating a set of twelve properties for system testing. Their
main contribution is to devise a new security approach that offers

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

full resiliency against user corruption and server compromise
threat models.

Another important study expresses the need for a full compre-
hensive systematical assessment methodology that authentica-
tion scheme designers will be able to use to assess their proposed
schemes. Ding Wang, Wenting Li, and Ping Wang [37] showed

that the lack of comprehensive assessment tools leads to what
they called a “break-fix-break-fix” cycle in the area of two-factor
authentication schemes for securing data in industrial wire-
less sensor networks (WSNs). In their work, 44 schemes were
tested under their proposed evaluation framework. The proposed
evaluation framework provides unrepresented evaluation met-
rics for two-factor authentication schemes in industrial WSNs.

In the area of autonomous vehicles (Avs) [38], Qi Jiang and
Ning Zhang proposed a cloud-centric three-factor authentication
and key agreement protocol (CT-AKA). The authors illustrated
how AV with a control capability poses potential threats to
passenger safety. As the system could be exploited by an attacker
and therefore gain him/her full access to the AV system remotely.
The proposed CT-AKA was integrated with passwords, biomet-
rics, and smart card capabilities. To achieve three-factor authen-

tication, CT-AKA was implemented with three biometric en-
cryption approaches, including fuzzy vault, fuzzy commitment,
and fuzzy extractor. To test the visibility of CT-AKA, security

properties were evaluated, and simulation results showed that
their proposed approach was capable of achieving high security
with acceptable communication computation overheads.

A secure user authentication scheme for cloud-assisted loT
systems has been proposed by Chenyu Wang and Ding Wang
[39]. The authors demonstrated the requirement for a lightweight
user authentication protocol to ensure secure access to [oT data
over the cloud. They were able to analyze IEEE TDSC 2020
scheme to identify common vulnerabilities and challenges for
designing an efficient light weight cloud-assisted user authen-
tication scheme. Security analysis based on the random-oracle
model, heuristic approach, the ProVerif tool, and BAN logic
were used to assess their proposed scheme. Based on a prede-
fined list of security requirements, their proposed scheme was
able to achieve minimum computation and storage overheads on
the gateway.

Qingxuan Wang and Ding Wang [40] discussed the visi-
bility of attacking smart-card-based password authentication
mechanisms via quantum computing. With the vast amount
of processing power available through quantum computing
systems, keeping the current two-factor authentication system
unexploitable poses a great security challenge for systems de-
signers. The authors presented the design of a secure and efficient
smart-card-based password authentication scheme. Their newly
proposed scheme called “quantum2FA” employs Alkim et al.’s
lattice-based key exchange and Wang-Wang’s “fuzzy-verifier
+ honeywords” approach (IEEE TDSC’18). The scheme of-
fers resiliency against the revealed key-reuse attack against
a lattice-based key exchange. Security analysis based on the
random oracle model has been examined to assess the security
properties of “quantum2FA”. Their experimental results show
that quantum2FA offers better computation speed as compared
to existing 2FA techniques.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION

In this article, we present the implantation and deployment
of a lightweight power-aware crypto engine that support au-
thenticated encryption based on TinyJAMBU-128 [32], crypto-
provable data traceability, and intrusion detection capability
against replay attacks. The proposed engine minimizes com-
munication overhead by fitting authentication data or encrypted
data into a single CAN frame. Our proposed engine enables
message authentication by adding one additional CAN frame to
each CAN data transmitted.

IV. THE PROPOSED SECURITY SUBSYSTEM

We proposed a CAN security subsystem that is capable of
supporting multiple security features to the existing CAN bus.
Crypto-based security blocks that have been implemented and
deployed include (i) a lightweight authenticated encryption en-
gine based on TinyJAMBU-128 [32]. Data transmitted within
a CAN data frame were encrypted and authenticated using a
modified version of TinyJAMBU-128. (ii) lightweight detection
algorithm against CAN replay attacks (iii) block chaining based
on hash computation algorithm that enables the secured capture
of data traces. Each CAN data is encoded into a single hash
block where each block is constructed by computing a hash value
HDi Il Hbl-1) II TID: Il T), where D; is CAN data field,
H(bli-1) hash of the previous block, TID:; is the transaction
id for block 7, and Ti is data transmission timestamp. A detail
description of symbols used throughout the article is presented
in Table 1.

V. LIGHTWEIGHT CRYPTO-BASED ENCRYPTION

This section introduces our proposed lightweight authenti-
cated encryption scheme. The scheme is a modified version of
the TinyJAMBU-128 [32] authenticated encryption technique.
Data transmitted over the CAN bus is encrypted and authen-
ticated using a small variant of JAMBU. It is implemented
with 128-bit keyed permutation states and 64-bit associated data
blocks. The following section provides a detailed description of
the modified TinyJAMBU-128 authenticated encryption scheme
to support the detection of replay attacks.

A. TinyJAMBU-128 Encryption for Secure Data
Communication and Message Authentication

The proposed authenticated encryption utilizes TinyJAMBU
mode with keyed permutation for randomizing the internal state
of TinyJAMBU during encryption/ decryption.

In the classical version of TinyJAMBU-128 [32], the scheme
was implemented by taking 64-bit associated data, a 64-bit
plaintext message, and a 96-bit nonce as input parameters.
TinyJMABU-128 [32] is comprised of four stages. Stage 1 is
referred to as the initialization stage, encryption key and nonce
are processed during this stage. The associated data string is used
during the second stage of TinyJMABU-128 [32], it is utilized to
update the current state of TinyJAMBU-128 [32] during encryp-
tion. The third stage involves data encryption where a ciphertext
message is computed. Authentication tag generation and verifi-
cation steps were performed during the finalization stage.

1013
TABLEI
DESCRIPTION OF SYMBOLS
Symbol Description
H() Hash function
H{bl;_y) Hash of the previous block bl;_y
D; The i-th CAN data field
TID; Transaction id of the i-th block
T; Data transmission timestamp
K 128-bit Tiny]JAMU encryption key
k; The j-th key bit
N 128-bit Tiny]AMU internal state
s; The j-th state bit
@ Bitwise exclusive or operation
Il Message concatenation
ID, 11-bit id for the i-th CAN data frame
id; j-th bit of CAN data frame’s ID
Ty 64-bit authentication tag string for CAN message M,
T The j-th bit's authentication tag,
Ty, 64-bit recomputed authentication tag at the receiv-
ing end for CAN message M,
7 The j-th bit of the recomputed authentication tag
Ad, 64-bit associated data string for the i-th CAN data
frame
M 64-bit plaintext CAN message
m; The j-th bit of the plaintext message
C 64-bit ciphertext message
c; The j-th bit of the ciphertext message
ctx; 64-bit Message context string

H(bl) Recomputed final block

In this research, we have modified the internal design of
TinyJAMBU-128 [32] to include one additional stage, the as-
sociated data generation stage. The new stage was implemented
and inserted between the initialization stage and the associated
data processing stage which is referred to as stage 2 in the
original TinyJAMBU-128 [32] algorithm. Besides integrating
associated data processing into the TinyJAMBU-128, CAN
message context computation was also incorporated into the
modified TinyJAMBU-128. CAN message context computation
was integrated into the TinyJAMBU-128 encryption/decryption
engine. Each CAN data frame is bounded into a single message
context prior to transmitting the frames over the CAN chan-
nel. Through the employment of 64-bits associated data strings
within the TinyJAMBU-128 engine, a common message context
can be easily computed by every ECUs on the network.

As illustrated in the classical version of TinyJAMBU-128
[32], associated data strings are supplied by the applica-
tion for each data message encrypted and authenticated via
TinyJAMBU-128. Therefore, to support the employment of our
newly modified version of the TinyJAMBU-128 CAN bus net-
work, we have added a new processing module that enables the
establishment of associated data strings for each CAN frame that
needs to be encrypted and authenticated. The data-associated
module has no impact on the TinyJAMBU-128 encryption/ de-
cryption and authentication stages. The newly modified version

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

1014

T?ﬁr i —t

S127 S91 Sgs S70 S47 So

Fig. 4. Key permutation using a 128-bit nonlinear feedback shift reg.

of TinyJAMBU-128 should follow the same security analysis as
the original version.

We have chosen TinyJAMBU-128 [32] due to its small state
size and reduced encrypted message block size. The internal
state of TinyJAMBU-128 was implemented with a 128-bit block
compared to the 192-state size on JAMBU-128. TinyJAMBU-
128 supports an encrypted message size of 32 bits which is half
of the data length that a CAN frame can hold per transmission,
two encrypted data messages can be transmitted over the bus via
a single CAN data frame. Although, TinyJAMBU-128 supports
three modes of operations with possible key sizes: 128-bit, 192-
bit, and 256-bit, in this article, we have considered TinyJAMBU
with a keyed-permutation size of 128-bit. The permutation of
the state is based on the deployment of a 128-bit nonlinear
feedback shift register. The following modules for TinyJAMBU

were implemented and deployed on multiple STM32F411 [47]
development boards:

Keyed Permutation Module

* Initialization Module
* Associated Data Generation Module
Associated Data Processing Module
Data Encryption Module
Authentication Tag processing Module
Data Decryption Module
Verification Module

1) Keyed Permutation Module: TinyJAMBU-128 relies on a
128-bit keyed permutation technique. The state of TinyJAMBU
encryption is updated via the employment of a 128-bit nonlinear
feedback shift register (see Fig. 4).

During each permutation round i, a combination of XOR,
and NAND operations are performed on specific state’s bits.
The content of the state is then shifted by 1 bit to the left.
In TinyJAMBU, m rounds are required to update the state.
Algorithm 1 provides a detailed implementation of the keyed
permutation module. The next section describes the initialization
step of TinyJAMBU-128 [32].

2) Initialization Module: TinyJAMBU-128 [32] has been
implemented on each ECU using a 128-bit key and 96-bit
nonce. We have explored the utilization of multiple CAD IDs
retrieved from previous CAN data frames to compute 64-bit
associated data. To ensure the randomness of the bits within
each computed associated data, bitwise operations that involve
multiple associated data bits combined with a 64-bit nonlinear
feedback shift register that shifts the data by one bit to left during
each round were incorporated into TinyJAMBU-128 implemen-
tation. Initialization of TinyJAMBU-128 was implemented via
bit randomization of the 128-bit state vector. By applying 1024

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Algorithm 1: Keyed Permutation Module.

Input: 128-bit key: K [ko, k1,..., ki27]
128-bit state: S < [So, S1,...,
Permutation rounds: i

Output: Content of the state after being updated

TinyJAMBUStateUpdate (S, K, i):

1: Temp — So ® S47 ® (~ (S70 A Sg5)) © So1 @ Ki mod 128

2: for j in range (StateLength-1) do: //StateLength = 127

3: Sj — sj+1 //shift the content of S by 1-bit to the left

4: end for

5: S127 <~ Temp

6: end of TinyJAMBUUpdate

S127]

Iteration i

So 536537538

S127

j'(:127
[T
K:Key

S127 kg
[TTTTT] LI
| State

| |

Keyed Permuta-
tion, 1024 rounds

[TT1

So S96 S127
O 0 P
LTI [TTTTT]

N3z Nonce N3zit31
59 S127

Sg
[T TTTTT

0

Fig.5. i-thiteration of TinyJAMBU?’s Initialization step.

keyed permutation rounds on the state, a highly randomized
128-bit state is computed. During each round, bits [00,1] are
xored with the state’s bits Sze, S37, Sa3g respectively. State’s bits
are randomized by executing 640 keyed permutation rounds
on the state. Finally, bits {Soe, So7, ..., Si27}o0f the state are
xored repeatedly with a 96-bit nonce. Fig. 5 provides a details
implementation of the initialization modules.

3) Associated Data Generation Module: In the newly added
stage, a 64-bit associated data string is computed for each CAN
data frame sent over the bus. To link a current CAN data
frame to its previously transmitted CAN messages, CAN ids
for the five most recently transmitted CAN data frames are
utilized to compute a 64-bit associated data string. The computed
associated data string is used during TinyJAMBU-128 state
update to support data encryption and message authentication
for the currently transmitted CAN data frame. The following
algorithm depicts a detailed implementation of the associated
data generation module.

4) Associated Data Processing Module: Associated data Ad
in TinyJAMBU is used to update the content of the state. Each
data message transmitted over the CAN bus is linked to a

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1015

Algorithm 2: Associated Data Generation Module.

Inputs: /D1 [11]« IDi1 [ido, id1,..., id1o]
//CAN 1ids for the five most recently transmitted
frames
IDi5 [11] < IDig [ido, id 1, . . ., idio]
ID; 3 [11] < IDi_3 [ido, id1,..., idio]
IDi-4 [11] < IDj-4 [ldo, idi,..., idlo]
IDi.s [11] < IDis [ido, id 1, .. ., idio]
Adtemp [64] — Adtemp|adtempo, .., adtempss]
// Temporary array to hold associated data
Adtemp|adtempo, adtempi,......, adtempes] —
Zero|00,., 0] //Adtemp string is initialized to
zero
Output: Adi [64] //Associated data string for i-th frame
AssociatedDataGeneration (Adtemp [64], IDi.1 [11], IDi2
[11],1Ds3 [11], IDj4
[11], IDss [11]):
1: Adtemp [adtempo, adtempi,., adtempio]
— IDi—1[ido, iy, ..., idlo]
2: Adtemp [adtempr1, adtemps,....... , adtempoi]
— IDifg[ido, idy,. ..., id10]
3: Adtemp [adtempa,, adtemp,....... , adtempso]
— IDi-3[ido, id,. ..., idig]
4: Adtemp [adtempss, adtemps,....... , adtempas]
— IDi—4[ido, idy,. ..., idlo]
5. Adtemp [adtempas, adtempi,....... , adtempsa]
— IDifs[ido, idy,. ..., id10]
6: fori < 0to 9 do: // nonlinear shift register
7. Adtempladtempss| — Adtemp[adtemps] &
Adtempladtempss] ® Adtemp|adtempsy]
8: Adtemp|adtempse] — Adtemp|adtempi] &
Adtemp|adtempio] ® Adtemp|adtempae)
9: Adtempladtemps7;] — Adtemp[adtemps] &
Adtemp|adtemp:7] ® Adtemp|adtempa4]
10: Adtemp|adtempss| — Adtemp|adtemp:s| ©
Adtemp|adtempas] ® Adtemp|adtemp 3]
11: Adtemp|adtempso| — Adtemp|adtempao] ©
Adtempladtempo7] ® Adtemp|adtempos)
12: Adtempladtempeo] — Adtemp|adtempo] ©

Adtempladtempsi] ® Adtempladtempao
13: Adtempladtempsi] — Adtemp|adtempoi] ©

Adtemp|adtempso] ® Adtemp|adtempas]

14: Adtempladtempess] — Adtemp[adtempao] ©
Adtemp|adtempoo] ® Adtempladtemps]

15: Adtemp|adtempss] — Adtemp|adtemp:s] ®
Adtemp|adtemp:1] ® Adtemp|adtempio]

16: for j — 0to 63 do:

17: Adi [j+1] — Adtemp]j|

18: end for:

19: Adi[0] — Adtemp|63]

20: for j < 0to 63 do:

21: Adtemplj| — Adi[j]

22: end for:

23: end for:

24: end of AssociatedDataGeneration

randomly computed 64-bit associated data. Existing implemen-
tation of TinyJAMBU-128 enables the processing of 64-bit asso-
ciated data strings and plaintext data as input parameters to the
encryption/decryption algorithms. In this research, associated
data strings are constructed by concatenating multiple 11-bit

127

s
=TI TTTT]

Sp
[T TTT1

Iteration i
State
0 1
Frame bits
Sp S127 kg k127
== [TTT I O Y = CICIEI == o e
State K:Key
Keyed Permuta-
tion, 640 rounds
Sy Sgg S127
L TTTTT - TTTTTT Istate
L1 [TTT1 [TTTTT Istate
Fig. 6. i-thiteration of TinyJAMBU’s associated data processing.

CAN IDs. A total of 55 bits were extracted from CAN IDs fields
from the five most recent CAN data frames. Bits are randomized
via the application of several bitwise xor operations with bit
permutation and bitwise rotation. Since we randomize the bits
of each computed 64-bit associated data string, every CAN frame
should have a different associated data string. A 64-bit nonlinear
feedback shift register is implemented to support the establish-
ment of associated data strings. After the initialization step, the
state’s bits sze, S37, and Szg are bitwise xored with bits [0,1],
and 1 respectively. Contents of the state are then bit permutated
by employing 640 rounds of keyed permutation function. After
permutating the state’s bits, 32-bit of the associated data string
is xored with the state. The processing of associated data is
presented in Fig. 6.

5) Data Encryption Module: CAN data of length 64-bit is
encrypted via the TinyJAMBU data encryption algorithm. After
randomizing the content of the state during the associated data
processing module and initialization module, 64-bit CAN data is
passed to the data encryption module. During the data encryption
step, the state’s bits S36,S37, S3g are xored with bits [1,0,1]
respectively. State bits are manipulated using 640 rounds of
the keyed permutation function. State’s bits {Soe, ...,S127}are
updated by xoring the current state bits {Soe, ...,S127}with CAN
message plaintext’s bits {maai, ...,m32i31}. The final cipher-
text’s bits are computed by xoring state’s bits {Se4, ...,Sos5} with
the plaintext’s bits {maa2i, ...,M32i+31}.

6) Authentication Tag Processing Module: Authenticated
encryption is supported by TinyJAMBU-128 [32] by generat-
ing a 64-bit authentication tag s, for CAN message M:The
authentication tag is transmitted with the encrypted CAN data
frame. In the proposed system, computed authentication tags are
transmitted over the CAN bus using a single CAN frame with a
predefined ID (2047). For ECUs to be able to recognize that a
CAN frame contains an authentication tag and not a payload, a
special CAN ID is assigned. If an ECU received a CAN frame
with ID 2047, the ECU will be able to recognize and process it
accordingly as an authentication tag. Authentication tags were

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

1016

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Algorithm 3: Data Encryption Module.

Algorithm 5: Data Decryption Module.

Input: keylen — 128 //length of the key
Milen gth — 64 //length of CAN message
K [keylen]— [ko, k1,..., ki27]
S [keylen] < [So, Si,. -...., S127] //lupdated during
the associated data processing step
M [mlength]—[mo, mu, ..., Me3]
Output: C [co,., Cs3] //ciphertext
Data Encryption (S, K, M):
1: forj — Otolmiene do:
S36 “ Sz6 D 1
S37 — S37 @0
S3g — S33 @ 1
TinyJAMBUStateUpdate (S, K, 1024)
S [396, S97, ...,
S127]< S [S96, S97, - -
mazoj31]
7: C[c32i, C32it1, ...,
C32ir31]— S [Se4, Se6s, - -

AT A

., Si127]®m{may;j, ...,

., Sos|®m|masyj, ...,

m3oj+31]
8: return C
9: end for

10: end of Data encryption

Input: keylen — 128 //length of the key

Clength — 64 //length of the ciphertext

K [keylen]— [ko, k1,..., Kki27]

S [keylen] < [so, Si,. -.... , S127] /lupdated during

the associated data processing step

C [Clength]—[co, c1, ..., Cs3
Output: M [mo,., Me3] // plaintext CAN message
Data Decryption (S, K, C):
1: forj— Otolmene do:
S36 < S36 @ 1
S37 — S37 @0
S3g — Szg @ 1
TinyJAMBUStateUpdate (S, K, 1024)
M [ma32i, Ma2it1, ...,
Maoir31]— S [Se4, Ses, --
C32j+31]
7: S [896, S97, ...,

S127]+ S [S96, So7, ..

AR

(] 395]® C[c32f) cees

., S127]®M[mayj, ...,

m3oj+31]
8: return M
9: end for:

10: end of Data Decryption

Algorithm 4: Authentication Tag Processing Module.

Input: K [128] [ko, k1, ..., Ki27]

S [keylen] < [So, Si,-, S127] /lupdated during

the encryption step

Output: i, [64]—[T0, T1, ..., T3]
Authentication tag processing (S, K):
1: S36— S36® 1
S37 — S37 @ 1
S38 — S38 D 1
TinyJAMBUStateUpdate (S, K, 1024)
™, [T, Ty ..., T31]— S [S64, Ses, - .-
S36 — Sz6 D 1
S37 — S37 D 1
S3g8 — S38 D 1
9: TinyJAMBUStateUpdate (S, K, 640)
10: © [132, 133, ..., T63]— S [Se4, Ses, ...
11: return za;
12: end of Authentication tag processing

> 895]

, Sos|

not encrypted. They were transmitted over CAN bus in plaintext

messages.

Authentication codes are computed based on applying multi-
ple keyed permutations on the state. The first 32 bits of the au-
thentication code are generated by updating the state’s bits using
1024-keyed permutation rounds. The rest of the authentication
code bits {132, ..., T3} is established through the employment
of 640 keyed permutation rounds on the state’s bits. Algorithm 3
introduces the Authentication tag processing.

7) Data Decryption Module: During the data decryption
step, initialization and associated data processing modules are
instantiated to update the state of TinyJAMBU-128 [32]. Similar
to data encryption, a 3-bit value of 101 is xored with the state’s
bits Ss6, S37, and Szg and the contents of these bits are updated
accordingly to the results of the xor operation. Then, 1024 rounds
of the keyed permutation step are applied to the state. During the
first iteration of the data decryption module, bits {mo,..., ma1}
are computed by xoring ciphertext bits {co,..., c31}with state’s
bits {Se4,..., Sos}. The state’s bits {Sos,..., Si127} are updated
by xoring the current state’s bits contents {Sos,..., Si27} with
the computed plaintext bits { mo, ..., ma1}. Similarly, plaintext
bits { ms2,..., me3} is computed by xoring these bits with the
state’s bits Se4,..., Sos and then use the generated plaintext bits
to modify the current content of the state’s bits { Soe,..., Si27}.
The following provides a detailed implementation of the decryp-
tion module.

8) The Verification Module: During the verification step, a
CAN data message M; can be authenticated by computing a

64-bit authentication ta; t}w and compare it with the received
authentication tag s . If tt = i the message is authenti-

i

cated and accepted, otherwise, the received message is rejected.
Algorithm 7 provides a full implementation for the verification
module. In the case of miss verification, an error counter is
incremented for each miss verification. We also keep a record
of the CAN frame ID. If the error counter exceeds a predefined
threshold value, the system will send an alert message to all
ECUs connected to the CAN bus. CAN messages that are not
verified will be ignored.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION

Algorithm 6: Verification Module.

Input: Taglength — 64 //length of the authentication tag
K [128]« [ko, k1, ..., ki27]
S [keylen] < [So, Si,...... , S127]
/I updated during the initialization step v,
[Taglength]—[tw, T1, ..., T3]
Output: return true if the received tag matches the
computed tag, otherwise return false.
Verification (S, K, t,):

I: Sz~ S36®@1
2: sz37—S37®1
3: Szg— S3zgD1
4: TinyJAMBUStateUpdate §S K, 1024)
5 T T, Ty, ..., T] <= S[s’,s J..,s
6: M 0 1 65 9
S36 — S36 @ 1
7. S37—S37601
8 Szg—S3s®1
9: TinyJAMBUStateUpdate (S, K, 640)
10: © i, 1, ..., v]<S[s ,s ,..s
M; 32 1 63 64 65 95
. t
13: if i, = = 1y, return true
end of Verification
. Compromised ECU
L]]
CAN CAN
§ | cAN bus
<—l— Transmission context of
message Mycomputed
o { with the last k data
‘= i rame
g E 3 M texts of
= ' H essage contexts o
8 : ' : replay message
g P 1
<
e
N TS Replay message of M transmit-
Attack delededo ted under different context
Fig. 7. CAN message replay threat modeling.

VI. CAN REPLAY ATTACK AND THE PROPOSED
COUNTERMEASURE MECHANISM

In this research, we have considered the development of a
countermeasure mechanism against replay attacks on CAN. The
proposed mechanism enables ECUs of detecting the presence of
replay threats occurring on CAN. The following provides full
descriptions of CAN replay threat modeling and its counter-
measurement approach.

A. CAN Message Replay Threat Modeling

We have considered the implementation of simulated CAN
message replay attacks through the deployment of a malicious
ECU that is capable of capturing every CAN data frame sent over
the bus and replaying them at different times (see Fig. 7). We

1017

have applied a random process to inject replay attack messages
into the CAN bus network at various injection rates (2% -
50%). Simulated CAN message replay attacks were tested on
a real testbed that is comprised of three ECUs attached to
CAN. Two of the three nodes were considered benign, while
the third unit was acting as an adversary. Replay attacks were
conducted on the proposed testbed with transmitted CAN data
frames being encrypted and authenticated via TinyJAMBU-128.
During simulation, malicious node continuously sniffs CAN
messages from the bus and retransmits these messages during a
different time interval. Since authenticated encryption provides
zero resiliency against replay threats, we have developed a
technique that extends the security features of TinyJAMBU-128

to support dynamic detection capability against CAN message
replay attacks.

B. Countermeasure Mechanism Against Replay Threats

) Dlynamic detection of CAN message replay attacks was
implemented via the integration of CAN meéssage context

anarasR careRiitm Rarss e b RRG el ey sk AHIRRDGGAN

the proposed approach, we assumed that each transmitted CAN
message is associated with a single context. A message context is
established by using a sequence of & historical CAN data frames.
By observing the state of the CAN channel during the last &
active transmissions, communicating ECUs will be capable of
constructing a common 64-bit binary string that could be used to
represent the context of the next transmitted CAN data frame. In
the proposed approach, a message context is constructed based
on the CAN IDs of the last k-data frames transmitted over the
bus. To send the next CAN data frame, a message context is
computed first by the sender and encoded into a 64-bit associated
data string. Which is hence used to encrypt/decrypt CAN data
frames. Similarly, the message context presented by the 64-bit
associated data string is computed on the receiving node and
used during message authentication and data decryption. Our
proposed technique enables the establishment of secured bonds
between every CAN data frame and the contexts in which these
data frames were transmitted. Since every encrypted CAN data
frame is securely bounded into its message context, encrypted
CAN frames transmitted during different contexts will be de-
tected as CAN message replay threats. The following provides
a high-level implementation of how a message context is com-
puted:

C. Establishment of Message Context Between Two ECUs

CAN message context computation was integrated into the
TinyJAMBU-128 encryption/decryption engine. Each CAN
data frame is bounded into a single message context prior to
transmitting the frames over the CAN channel. When a CAN
frame is transmitted over the CAN bus, a CAN message context
is constructed. The CAN frame’s message context is estab-
lished by using a sequence of & historical CAN data frames.
By observing the state of the CAN channel during the last £
active transmissions, all communicating ECUs will be capable
of constructing a common 64-bit binary string that could be used

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

1018

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

A 64-bit message context shared
with ECUs connected to the bus

L T []

[T

AN

l

\—¢ [T T 1 I_III]III\I'—I

L

CAN bus

Randomizing the 64-bit message

M MR

transmitted k data % SN |
|

!
[T [1
[

2
=R

[T 64-bit message context

Fig. 8. Message context computation.

to represent the context of the next transmitted CAN data frame.
For ECU nodes to be able to establish the first CAN message
context, initially, all ECUs are preloaded with the same orphan
block.

Through the employment of 64-bits associated data strings
within the TinyJAMBU-128 engine, a common message con-
text can be easily computed by every ECUs on the network.
A receiver node can leverage message context information to
determine whether the received CAN data frame is generated
due to a replay attack or due to an actual event. For example,
two ECUs nodes, node A and node B, where node A is acting
as a sender and node B as a receiver. Prior to any data transmis-
sion, both sender and receiver nodes are required to compute
a common 64-bit message context string ctxi. The computed
context message will be encoded into an associated data string
that will be utilized by the TinyJAMBU-128 crypto engine to en-
crypt/decrypt the CAN data frame M. The following protocol’s
steps are required during a CAN message context computation
process (see Fig. 8).

1) CAN messages IDs of the last & transmitted data frames
{IDi-1, ..., ID; s} are recorded by all ECUs including
nodes A & B.

Both sender and receiver copy the recorded CAN mes-
sages IDs into bit 0 through bit 54 of the message context
string ctxi.

Bit 55 through bit 63 of the message context ctxi will be
computed by applying multiple bitwise xor operations on
the content of ctxi.

4) A nonlinear shift register is employed on the content of
ctxi to randomize its bits.

CAN message context ctxi is encoded into a 64-bit
associated data string by the sender and fed into the
TinyJAMBU-128 crypto engine.

The sender encrypts the CAN data frame by applying
TinyJAMBU-128 with the computed message context and
transmits the encrypted data frame over the CAN channel.

2)

3)

5)

6)

7) TinyJAMBU-128 will be executed on the receiver with the
computed associated data string to decipher the received
message.

VII. DATA TRACEABILITY VIA BLOCK CHAINING
AND HASH COMPUTATION

Data traceability capability was supported by the proposed
scheme via the employment of a block-chaining approach. En-
crypted and authenticated CAN data frames received by ECU
nodes are encoded into data blocks. Since the CAN bus is a
broadcast medium, for every CAN data frame sent over the bus,
each ECU node computes its copy of the data block. Data blocks
are chained together to form a common blockchain. Copies of
the computed blockchain are stored at every ECU node attached
to the CAN bus. The final block in the chain serves as an integrity
check for all previous data blocks. Data tracing and data integrity
were supported via blockchain data validation. Blockchain data
stored in ECU nodes can be utilized by the system control
unit to identify (i) abnormal behaviors occurring during system
operations. For example, a malfunctioning ECU node injects
faulty data into the system bus. (ii) anomalous CAN data frames
injected by a malicious ECU node. The proposed block-chaining
protocol is based on a two-step process (see Fig. 9).

A. Data Blocks Construction Scheme

During system operation, when a CAN data frame D; with
id, ID; received by ECU nodes {ECU;, ECUs, ..., ECUn}.
Ev§ry ECU node processes the received data frame as follows:

Each node computes a hash value on the CAN data frame
D, HD: Il H(bli-1) I TID; Il T), where H(bli-1)
represents the hash of the previous block, TID:; is the
transaction id for block i, and T; is data transmission
timestamp. If i = 0, the hash of the previous block H(bl)
will be set to the initialization vector which is called the
orphan block.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1019

Final block (veri-

fication block)
N\

CAN data frames transmitted over

[N - PR |2
o @ [.
B %;QE"E‘ B HE=Es-0 fH=eEs-D
" Blockchain
ECU1 ECU2 FCTI3
All
nodes EI
share the l l 3
same ot- CAN Low 2
phan a%
block E
@-CAN High ® g

Fig. 9. Block chaining in CAN bus for supporting data integrity and secure
data traceability.

* CAN data frame D; along with the computed data block
bliis saved in every ECU node.

* The final block (leaf block) will be used to provide secure
data traceability validation and data integrity checks for
every data frame transmitted over the bus.

B. Blockchain Validation Scheme

CAN data frames transmitted over the bus are captured and
encoded into a single blockchain. The computed blockchain
is shared and stored at every ECU node communicated over
the bus. Our proposed system offers full resiliency against data
modification and data injection attacks via block validation of
the final block in the chain. Due to the blockchain computing
characteristic, a successful data injection attack requires full
modification of the current data block including all subsequent
data blocks, which makes such attacks infeasible. Finally, the
final block in the chain can be used to verify the integrity of
every CAN data frame transmitted over the bus. In the case of a
malfunctioning CAN-enable system, blockchain data collected
from different ECUs can be used to recompute the final block
H(blFinal)- The recomputed final block H(bl‘Fi) is then
compared with the content of the stored final blocﬁ%(blp inal).
If the two final blocks match, then the integrity of the data trace
is verified, and the collected CAN data can be used for further
analysis. Our proposed system offers full resiliency against data
modification and data injection attacks via block validation of
the final block in the chain. Due to the blockchain computing
characteristic, a successful data injection attack requires full
modification of the current data block including all subsequent
data blocks, which makes such attacks infeasible. Finally, the
final block in the chain can be used to verify the integrity of
every CAN data frame transmitted over the bus. In the case of a
malfunctioning CAN-enable system, blockchain data collected
from different ECUs can be used to recompute the final block
H(bl¥inat). The recomputed final block H(blt Fingy) 18 then
compared with the content of the stored final block H(bIF inai).
If the two final blocks match, then the integrity of the data trace
is verified, and the collected CAN data can be used for further
analysis.

Algorithm 7: BlockChaining Verification.

Inputs: i — 0 //Current data block index. Initially
thisvalue is set to zero to represent an orphan block
bly Di//Current CAN data fame transmitted over
the bus and received by all ECUs

Ti// Timestamp of current CAN data frame D;

IDi// 1d of the current CAN data frame D;

H’(bli) // block i computed by the sender ECU and trans
mitted along CAN data frame D; and its
timestamp data T;

H(blo) // Hash value computed on the orphan block

blo.H(blo). is preloaded into every ECU connected to the

CAN bus
Outputs: return true for successful verification and false
for missed verification
BlockChainingVerification (i, D;, T, ID;,
HY(blj :
I if(i== 0
/l ECUj—o, ECUj-1,..., ECUj-nrecompute their
first blocks
in the chain by applying the preloaded orphan block
H(blo). Computed block values are stored internally.
2. H(bh)pey,o — H(Dol| Hblo)| | Dol | To)

/lﬁ\%é‘)ECU i—n - H(Dol |H<blo)| |ID0| | TO)

ECUj-x will compare it computed block
H(bl)gey - With the received block H(blo)
3: M (HDbL) ey jx £ HY(bl)) return false

// If one ECU invalidates the received block, it broadcast

an alert message over the CAN bus. ECUs that received

the first alert message will suspend its processing

for the current block.

4: endif:
5: else:

/I ECUj-o, ECUj-1,..., ECUj-n recompute the
current block in the chain by applying the previous
H(bli-1) and store the computed values in their
internal memory.

6: H(blypey ., — HDi|Hbl-1)| | IDi|| Ty,
H(blpey, , — HDI|HDL-1)| | IDI| Ty,

H(blygcy, , — HDil|H(bl-1)||IDi | T)
/I Every ECUj—x will compare it computed block
H(bl)gcy -~ with the received block HY(bl)
7: M (H(blgcy ;. £ H(bl)) return false /If one
ECU
validates a received block, it broadcast an alert message
over the CAN bus. ECU received the first alert message
and will suspend processing the current block.
8: end else
9: return true
10: end of the BlockChainingVerification

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

1020

VIII. SECURITY ANALYSIS

Inspired by the works of Ding Wang [41], Qingxuan [42], and
Neal Koblitz [43], we have followed a similar approach in ana-
lyzing the security properties of the modified TinyJAMBU-128
against CAN message replay attacks. However, cryptoanalysis
based on “provable security” has been exploited in the original
work of TinyJAMBU-128 [32], it is limited to two adversary
models (i) nonce-respecting attacks on TinyJAMBU-128 pri-
vacy (ii) nonce-reuse attacks on TinyJamu-128 authenticity. As
suggested in the works of Ding Wang and Qingxuan [41], [42],
[43], security protocols that are provably secure under some
cryptographic assumptions imposed by the designer usually fail
to capture all the different aspects of an adversary model. For
example, CAN replay attacks cannot be captured by exiting
adversarial models presented in TinyJAMBU-128. Also, as we
change the usage dynamic of TinyJAMBU-128 from securing
data in a constrained environment to authenticating and encrypt-
ing messages over CAN bus network, a new systematical secu-
rity assessment methodology with various system performance
metrics has been developed in this work. Our threat analysis was
not based on a formal probabilistic attack modeling technique,
rather it involves the deployment of real adversarial ECU that
inject CAN replay messages over the bus with varying injection
rates. Using a real CAN-enable testbed, we have analyzed the
modified TinyJAMBU-128 based on data privacy, authenticity,
and resiliency against CAN replay attacks.

IX. PERFORMANCE ANALYSIS

CAN data frames are usually transmitted over the bus at
the rate of 10 msec to 500 msec. Based on the underlying
system, processing times for CAN frames are highly dependent
on the underlying processing power of each ECU. ECUs that
handle time-critical tasks are often integrated with a high-end
processer capable of processing messages at the rate of 0.1 msec.
Meanwhile, ECUs that handle non-time-sensitive data usually
have a data processing time of 100 msec to 500 msec. In our
system simulation, we have considered the employment of ECUs
with low-end processor power capability. The proposed security
system offers a tradeoff between reliable data security with
traceability and message delivery time. This section presents
performance analysis of TinyJAMBU-128 lightweight authen-
ticated encryption, AES-128, AES-192, AES-256 [44], ARIA-
128, ARIA-192, ARIA-256 [45], Camellia-128, Camellia-192,
and Camellia-256 [46]. For AES [44], ARIA [45], and Camellia
[46], message authentication was incorporated into these crypto
engines via the full employment of SHA-512.

To compare the performance of modified TinyJAMBU-128
against similar symmetric block cipher encryption schemes,
processing time and message overhead for AES, ARIA, and
CAMELLIA data encryption schemes have been captured and
analyzed during this effort. Since modified TinyJAMBU-128
supports authenticated encryption inherently, data authentica-
tion capability for CAN messages encrypted by AES, ARIA, or
CAMELLIA schemes has been achieved via the employment of
SHA-512. AES is based on substitution-permutation network, it
supports different numbers of rounds. AES-128 uses 10 rounds,

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

AES-192 involves 12 operational rounds, meanwhile, data en-
crypted with AES-256 requires 14 rounds. During each round,
different operations are involved which include, byte substi-
tution, shift-rows permutation, mixcolumns, and addroundkey.
ARIA uses similar technique for enciphering data, it uses a
substitution-network based on AES [44]. ARIA [45] is capable
of supporting three modes of encryptions with different key
sizes, 128, 192, and 256 bits. Depending on the key size, data
encrypted/decrypted by ARIA requires 12 rounds, 14 rounds,
or 16 rounds. ARIA’s main encryption/decryption engine is
comprised of two submodules (i) key scheduling and (ii) data
randomizing. CAMELLIA [46] is another Feistel cipher, the
algorithm performs 18 rounds when a 128-bit key is used for
encryption data. Meanwhile, data encrypted using CAMELLIA-
192 or CAMELLIA-256 only require 24 rounds. The main
design of CAMELLIA includes the “F-function” and the “FL-
function”. The F-function takes 128-bit inputs and mixes them
with the round key. During the F-function call, a single block
is computed. For every six-round block, the algorithm calls the
FL-function where a logical transformation is applied.

For all tested encryption/decryption algorithms, message au-
thentication data were pushed into the CAN bus as separate CAN
data frames. In the proposed testbed, data frames authenticated
via SHA-512 were fragmented into 8 data frames. Since each
CAN data frame can only support a data length of bytes per
frame, each CAN data will require 8 data frames for authenti-
cation to enable authenticated encryption on AES, ARIA, and
Camellia. Meanwhile, TinyJAMBU-128 supports data authen-
tication via a single 64-bit authentication tag. A data frame
encrypted via TinyJAMBU-128 requires only a single CAN data
frame to achieve message authentication. Our simulation results
were based on the observation of all CAN data frames including
authentication tags transmitted over the network.

During this work, we investigated CAN bus load percentage,
data processing time, and message overhead for each of the
deployed crypto algorithms. In our experiment, CAN bus ef-
ficiency based on bus load and message overhead was estimated
under various CAN data transmission rates and a 300KHz CAN
frequency. CAN bus load measurements and message over-
head were captured for TinyJAMBU-128, AES-128, AES-192,
AES-256, ARIA-128, ARIA-192, ARIA-256, Camellia-128,
Camellia-192, and Camellia-256 under continuous data trans-
mission, 1msec, and 10msec CAN data frames transmission
rates.

Fig. 10 shows CAN bus load percentages for TinyJAMBU-
128, AES, ARIA, and Camellia under continuous data trans-
mission. Based on our simulation results, the AES encryption
variant achieved the highest bus load percentages compared
to other data-authenticated encryption modules. The average
CAN bus load measured across the three AES variants was
approximately 880.415% as compared to ARIA, and Camellia
variants which achieved average CAN busloads of 743.38% and
779.211% respectively. Meanwhile, the CAN bus load reached
0.42195% while running TinyJAMBU-128. Similarly, Figs. 11
and 12 illustrate the network performance in terms of bus load
percentages computed at 1 msec and 10 msec data transmission
rates respectively. CAN bus load measurements were collected

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION

T T T T T T

T T T T
10°F 880425 88041 88041 743317 74333 7434 779216 77921 779.21 .

CAN Bus Load (%)
=)

10°

0.42195]
10’] L o el 1A o)l i o o]
N A 2 A1 A% % w1 Al) AL
=4 =l =l Nt AP Nad Nal Nad Nad W
L I I T S
[ela [¥la o O«\‘A

Encryption/Decryption Scheme “,\00\

Fig. 10. Percentage of CAN bus load captured under various data encryption
with continuous data transmission.

T T T T T T T T T T
1o 889.18 871.73 84722 75382 741268 7267 777.98 70567 710.1619 3

)

[

o
T

CAN Bus Load (%
=X

0.4218

1% ‘&%1 ,ijb \1‘6 ,@'L ,Lc,ﬁ A\'l% \c)'l ’L"b \:)fb
AV : ; 5 : ; ; ; ;
T T e e e e
oSN SR

N

Sl
Encryption/Decryption Scheme
Fig. 11. Percentage of CAN bus load captured under various encryption

algorithms with 1 data frame sent every 1 msec.

T T T T T T T T T T
107 BRLST 8706017 849862 756005 7420898 726703 777916 711345 7130717 4

—
o
T
T—T—T
1

CAN Bus Load (%)
=2
—
L

0.41977

Fig. 12. Percentage of CAN bus load captured under various encryption
schemes with 1 data frame sent every 10 msec.

1021

MODIFIED TINYJAMU-12S— 1

CAMELLIA-256] ol

CAMELLIA-192 al

CAMELLIA-128 al

ARIA-256 Al

ARIA-192 al

ARIA-128 1

Encryption/Decryption Scheme

AES-256 gl
AES-192 gl

AES-128 al
10! 10° 10° 10* 10°
Microsecond

Fig. 13. Processing time for various encryption techniques tested on CAN-
enabled devices.

while running the proposed modified TinyJAMBU-128 encryp-
tion. It shows that our CAN network testbed exhibited minimal
bus load as compared to AES, ARIA, and Camellia. Higher
CAN bus loads were recorded while running AES, ARIA, or
Camellia data. Every CAN frame required 8 additional CAN
frames for authentication. In the case of TinyJAMBU-128, each
CAN frame requires only one additional authentication frame.

Data processing for each encryption scheme has been mea-
sured. Processing time was measured based on how much time
is required to encrypt or decrypt a single CAN data frame on
the hardware. As shown in Fig. 13, AES variants have the best
processing time compared to other encryption schemes. Due to
a large number of encryption rounds, TinyJAMBU-128 has the
highest computation time. With a processing time of 50 msec
per CAN data frame encryption, TinyJAMBU-128 remains a
feasible encryption solution for most of today’s CAN bus-based
network systems.

Average CAN bus message overheads were computed during
the execution of AES, ARIA, Camellia, and TinyJAMBU-128. A
total of 500 randomly generated messages were transmitted over
the CAN bus. Three data transmission rates were tested. Fig. 14
presents message overhead observed during continuous data
transmission. It shows that AES, ARIA, and Camellia introduce
an average CAN bus message overhead of approximately 13.67.
As we lower the data transmission rate from continuous to 1 msec
(see Figs. 15 & 16), the average message overhead reduces to
approximately 12.3 for AES, ARIA, and Camellia. In the case of
a 10 msec data transmission rate, message overheads reach 10.98
when running AES, ARIA, or Camellia on the CAN network. For
the various data transmission rates, TinyJAMBU-128 introduces
the lowest message overhead. We have observed 2.15 message
overhead under continuous data transmission, 2.14 and 2.062
under Imsec and 10msec data transmission rates respectively.

Finally, we have analyzed the sensitivity of the proposed
countermeasure scheme against replay attacks. True Positive
Rate (TPR) and False Positive Rate (FPR) of the anti-replay
attacks model has been computed and presented in Figs. 17 and
18. To simulate a replay attack, we considered the deployment

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

1022

13.67

I
T

13.675 136789 13669 136706 136706 136691 136708 13.675 -

P T
DO = o La

Average CAN bus overhead
(message/microsecond)

[R R -]

% ol
'F\ Y

O L
A B)
p({/% 5;?«5 'P‘Q‘\ P\Q,\?' Q__\,'P‘ \J\

W
Encryption/Decryption Scheme

Fig. 14. Average CAN bus overhead captured under various encryption algo-
rithms with continuous data transmission.

14— : - : ‘ - - : . .
13F 4p3 12.302612.3017 12209 12302 12.301 1229 12.3018 123017 1
12 4
B~ E
1k]
g 3
BE 7 3
Z%
556 3
58 5 3
hE 2]
s o 21436
2
l 4
05 _ab b B G b G 4; &
U L ¢ X 1 e
5 5 < ™
112 2 2 P?ﬂ" I’?ﬁ’. P\@h §E ‘,,\Q-,\}} v\g
oS« S &

\('\
Encryption/Decryption Scheme \‘d)

Fig. 15. Average CAN bus overhead captured under various encryption en-
gines with 1 CAN frame sent every 1 msec.

12 T T T T T T T T T T -
1k 10.98 10,982 109819 10,9617 10,975 10,9808 10,982 10,9812 109812 _
. i
B = :
@ 2 -
£ < :
TS E
= T H
o u z
w £ H
2 g H
5 :
. :
=il 2
z E :
3: =
2,062 _
) M
AR ol oo] '1 o o ol <0 %
oAb A AL 7 R ke A
BT e g«t\“ Ko @»\?‘ \@0" oV \{w‘v\“
o Pl
I3
e
\\\OO

Encryption/Decryption Scheme

Fig. 16. Average CAN bus overhead captured under various encryption algo-
rithms with a single CAN data frame transmitted every 10 msc.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Taal

ue positive rata

- B - T VR T R ! S R

Fercentage of replay messages injected inte CAN bus (%)

Fig. 17. CAN network’s True Positive Rate (TPR) was collected under various
percentages of replay attack messages.

| £x False Posiive Rete ‘

Fig. 18. CAN network’s False Positive Rate (FPR) was collected under various
percentages of replay attack messages.

of a malicious node. The attacking node sniffs CAN data frames
from the bus and arbitrarily send replay messages over the
bus. Fig. 17 shows the TPR of the proposed technique under
various injection rates. With injection rates between 2% and
20%, our proposed scheme achieved TPR between 0.99 and
0.97. As we increase the injection rate from 20% to 50%, TPR
decreases to 0.92. Fig. 18 shows the FPR of our anti-replay
attack mechanism. Our performance results show that when the
injection rate is lower than 10%, FPR was estimated as zero, as
we increase the injection rate from 10% to 50%, FPR increases
to 0.076. Based on the performance analysis of the proposed
anti-replay attack model, the model established superiority in
replay message detection.

X. THE PROPOSED TESTBED

To test the feasibility of the proposed CAN security subsys-
tem, we proposed the development of a system that is comprised
of three ECU development platforms with CAN capability. The
three ECU nodes are based on the STM32 Nucleo board. The
three ECU nodes are based on the STM32 Nucleo board. Each
development board is equipped with the ARM 32-bit Cortex

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION

M4 processor, an adaptive real-time accelerator, S0MHz max-
imum CPU frequency, IMB flash programable memory, 128
KB SRAM, random number generator (TNG for HW entropy),
multiple digital timers, three SPI, two 12C, two UART, 3 USART,
and one CAN interface. We have employed the high-speed CAN
transceiver MCP2551 to facilitate CAN data communication
between the ECU nodes. MCP2551 supports a 1Mb/s trans-
fer rate. It is implemented with ISO-11898 standard physical
layer requirements. It supports a system with up to 112 nodes
connected to the bus. Cryptographic algorithms that include
AES, Camellia, Aria, modified TinyJAMBU-128, SHA512, and
the replay attacks countermeasure mechanism were developed
based on utilizing Mbed os API [48] and Mbed TLS library
[49]. AES, Camellia, Aria, and SHAS12 were supported by
the Mbed TLS library. Meanwhile, the modified version of
TinyJAMBU-128 and the countermeasure mechanism against
replay attacks were fully implemented using Mbed os API. CAN
data frames were created and pushed into the bus via CAN API.

XI. CONCLUSION

This article proposed the development and integration of
a crypto-based engine that supports lightweight authenticated
data encryption and secure data traceability capabilities for
systems communicating over the CAN bus network. As opposed
to classical encryption/decryption schemes that require heavy
computation and high communication overheads for supporting
authenticated encryption. Our proposed scheme is based on
TinyJAMBU-128 authenticated data encryption. It maintains
low memory usage and minimal communication overhead which
makes it suitable for securing data on power-limited devices.
Meanwhile, TinyJAMBU-192 and TinyJAMBU-256 modes re-
quire an encryption key size of 192 bits and 256 bits respec-
tively. Due to their large key sizes, they often consume extra
processing time as compared to TinyJAMBU-128. Therefore, in
this research, we have only considered TinyJAMBU-128 during
testing. Another alternative for improving processing time is to
lower the number of rounds require for updating TinyJAMBU’s
internal state. Although lowering the number of permutation
rounds might improve the algorithm’s processing time, it could
impact the resiliency of the system against data breaches. As this
modification required further security analysis which we will
be considering during our future works. Yet to our knowledge,
our work provides a base ground for exploring a lightweight
authenticated encryption scheme for securing data over CAN
bus network with data traceability support and full resiliency
against CAN message replay attacks.

In this article, a modified version of TinyJAMBU-128 was
fully implemented and deployed on multiple CAN-enabled
development boards. Data communicated over the CAN bus
were encrypted and authenticated using TinyJAMBU-128. We
have analyzed the performance of TinyJAMBU-128 in terms of
CAN bus load, processing time, and average message commu-
nication overheads and compared the results against traditional
cryptosystems, such as AES, ARIA, and Camellia. Message
authentication on the classical cryptosystems was established
via the employment of SHA-512. Based on our simulation,

1023

TinyJAMBU-128 outperformed AES, ARIA, and Camellia with
respect to CAN bus load and average CAN data frame overhead.
Since only one data frame is required to authenticate a data
block. In contrast, cryptosystems that relied on SHA-512 for data
authentication took 8 CAN data frames. Finally, an anti-replay
attack model was fully developed and deployed on the proposed
testbed. The proposed model was validated based on various
injection rates. We were able to achieve a TPR between 0.99
and 0.97 for replay attack injection rates between 2% and 20%
respectively. As more replay messages injected on the bus, TRP
decreases to 0.92 with 50% of the transmitted messages were
considered malicious.

ACKNOWLEDGEMENTS

The authors are thankful to the Deanship of Scien-
tific Research at Najran University for funding this work,
under the Research Groups Funding program grant code
(NU/RG/SERC/12/27). The work of K.-K. R. Choo is supported
by NSF (National Science Foundation) CREST Grant HRD-
1736209, and the Cloud Technology Endowed Professorship.

REFERENCES

[1] S.Hartzell, C. Stubel, and T. Bonaci, “Security analysis of an automobile
controller area network bus,” IEEE Potentials, vol. 39, no. 3, pp. 19-24,
May/Jun. 2020.

[2] Y. Zhang, T. Liu, H. Zhao, and C. Ma, “Risk analysis of CAN bus and
ethernet communication security for intelligent connected vehicles,” in
Proc. IEEE Int. Conf. Artif- Intell. Ind. Des ., 2021, pp. 291-295.

[3] Steve Corriagan, “Introduction to controller area network (CAN),”
May 24, 2023. [Online]. Available: https://www.ti.com/lit/an/sloal01b/
sloal01b.pdf?ts=1678332963032&ref url=https%253A%252F%
252Fwww.google.com%252F

[4] H. K. Kalutarage, M. O. Al-Kadri, M. Cheah, and G. Madzudzo, “Context-
aware anomaly detector for monitoring cyber attacks on automotive CAN
bus,” in Proc. 3rd ACM Comput. Sci. Cars Symp., 2019, pp. 1-8.

[5] L. Kang and H. Shen, “Detection and mitigation of sensor and CAN bus
attacks in vehicle anti-lock braking systems,” ACM Trans. Cyber-Phys.
Syst., vol. 6, no. 1, Jan. 2022, Art. no. 9.

[6] M.R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and S. J. Prowell,
“Modeling inter-signal arrival times for accurate detection of CAN bus
signal injection attacks: A data-driven approach to in-vehicle intrusion
detection,” in Proc. 12th Annu. Conf. Cyber Inf. Secur. Res., 2017, pp. 1-4.

[7] D. Caivano, M. De Vincentiis, F. Nitti, and A. Pal, “Quantum optimization
for fast CAN bus intrusion detection,” in Proc. Ist Int. Workshop Quantum
Program. Softw. Eng., 2022, pp. 15-18.

[8] Q. Zhao, M. Chen, Z. Gu, S. Luan, H. Zeng, and S. Chakrabory, “CAN
bus intrusion detection based on auxiliary classifier GAN and out-of-
distribution detection,” ACM Trans. Embed. Comput. Syst.,vol. 21, no. 4,
Jul. 2022, Art. no. 45.

[9] R. Gundu and M. Maleki, “Securing CAN bus in connected and au-

tonomous vehicles using supervised machine learning approaches,” in

Proc. IEEE Int. Conf. Electro Inf. Technol ., 2022, pp. 042—046.

Y. Qiu, T. Misu, and C. Busso, “Driving anomaly detection with conditional

generative adversarial network using physiological and CAN-bus data,” in

Proc. Int. Conf. Multimodal Interaction, 2019, pp. 164—173.

K. Pawelec, R. A. Bridges, and F. L. Combs, “Towards a CAN IDS based

on a neural network data field predictor,” in Proc. ACM Workshop Automot.

Cybersecurity, 2019, pp. 31-34.

T. C. M. Donmez, “Anomaly detection in vehicular CAN bus using

message identifier sequences,” IEEE Access, vol. 9, pp. 136243-136252,

2021.

A. Wang et al., “Anomaly information detection and fault tolerance control

method for CAN-FD bus network,” in Proc. IEEE 19th Int. SoC Des. Conf

., 2022, pp. 308-309.

F. Fenzl, R. Rieke, and A. Dominik, “In-vehicle detection of targeted

CAN bus attacks,” in Proc. 16th Int. Conf. Availability, Rel., Secur., 2021,

Art. no. 32.

[10]

(1]

[12]

[13]

[14]

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1678332963032&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1678332963032&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1678332963032&ref_url=https%253A%252F%252Fwww.google.com%252F

1024

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

R. Brown, A. Marti, C. Jenkins, and S. Shannigrahi, “Dynamic address
validation array (DAVA): A moving target defense protocol for CAN bus,”
in Proc. 7th ACM Workshop Moving Target Defense, 2020, pp. 11-19.
B. Groza, S. Murvay, A. Van Herrewege, and 1. Verbauwhede, “LiBrA-
CAN: Lightweight broadcast authentication for controller area networks,”
ACM Trans. Embed. Comput. Syst., vol. 16, no. 3, Aug. 2017, Art. no. 90.
Y. Xiao, S. Shi, N. Zhang, W. Lou, and Y. T. Hou, “Session key distribution
made practical for CAN and CAN-FD message authentication,” in Proc.
Annu. Comput. Secur. Appl. Conf., 2020, pp. 681-693.

M. Zhang, P. Parsch, H. Hoffmann, and A. Masrur, “Analyzing CAN’s
timing under periodically authenticated encryption,” in Proc. IEEE Conf-
Exhib. Des., Automat. Test Europe, 2022, pp. 620—623.

P. Liu, Y. Liu, X. Wang, C. Fang, X. Guan, and T. Liu, “Channel-state-based
fingerprinting against physical access attack in industrial field bus net-
work,” [EEE Internet Things J.,vol. 9,no. 12, pp. 9557-9573, Jun. 2022.
T. Chong, T. Liu, Y. Zhang, C. Ma, X. Jia, and Z. Wu, “Analysis of
the influence of CAN bus encryption and decryption on real-time per-
formance,” in Proc. I[EEE 2nd Int. Conf. Comput. Commun. Netw. Secur.,
2021, pp. 38-44.

P. Biondi, G. Bella, G. Costantino, and I. Matteucci, “Implementing CAN
bus security by TOUCAN,” in Proc. 20th ACM Int. Symp. Mobile Ad Hoc
Netw. Comput., 2019, pp. 399—400.

L. Kang and H. Shen, “Attack detection and mitigation for sensor and CAN
bus attacks in vehicle anti-lock braking systems,” in Proc. [EEE 29th Int.
Conf. Comput. Commun. Netw., 2020, pp. 1-9.

P. Thirumavalavasethurayar and T. Ravi, “Implementation of replay attack
in controller area network bus using universal verification methodology,”
in Proc. IEEE Int. Conf. Artif- Intell. Smart Syst ., 2021, pp. 1142—1146.
M. Marchetti and D. Stabili, “Anomaly detection of CAN bus messages
through analysis of ID sequences,” in Proc. IEEE Intell. Veh. Symp.,
pp. 1577-1583, Jun. 2017.

Y. Laarouchi, M. Kaaniche, V. Nicomette, I. Studnia, and E. Alata, “A
language-based intrusion detection approach for automotive embedded
networks,” Int. J. Embedded Syst., vol. 10, no. 1, pp. 1-12, 2018.

S. Katragadda, P. J. Darby, A. Roche, and R. Gottumukkala, “Detecting
low-rate replay-based injection attacks on in-vehicle networks,” IEEE
Access, vol. 8, pp. 54979-54993, 2020.

M. Jedh, L. Ben Othmane, N. Ahmed, and B. Bhargava, “Detection of
message injection attacks onto the CAN bus using similarities of successive
messages-sequence graphs,” [EEE Trans. Inf. Forensics Secur., vol. 16,
pp. 41334146, 2021.

B. Shannon, S. Etikala, Y. Gui, A. S. Siddiqui, and F. Saqib, “Blockchain
based distributed key provisioning and secure communication over CAN
FD,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2019, pp. 638—644.
T. Chong, T. Liu, Y. Zhang, C. Ma, X. Jia, and Z. Wu, “Analysis of the
influence of CAN bus encryption and decryption on real time perfor-
mance,” in Proc. IEEE 2nd Int. Conf. Comput. Commun. Netw. Secur-.,
2021, pp. 38-44.

T. Dee and A. Tyagi, “Message integrity and authenticity in secure CAN,”
IEEE Consum. Electron. Mag., vol. 10, no. 5, pp. 33-40, Sep. 2021.

F. Paez and H. Kaschel, “A proposal for data authentication, data integrity,
and replay attack rejection for the LIN bus,” in Proc. IEEE CHILEAN Conf.
Elect., Electron. Eng., Inf. Commun. Technol., 2021, pp. 1-7.
TinyJAMBU v2 Specification (nist.gov), May 17, 2021. [Online].
Auvailable: https://csre.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-
spec-final.pdf

Z.Kang, J. Li, J. Shen, J. Han, Y. Zuo, and Y. Zhang, “TFS-ABS: Traceable
and forward-secure attribute-based signature scheme with constant-size,”
IEEFE Trans. Knowl. Data Eng.,vol.35,n0. 9, pp. 9514-9530, Sep. 2023.
Y. Lu and J. Li, “Lightweight public key authenticated encryption with
keyword search against adaptively-chosen-targets adversaries for mobile
devices,” IEEE Trans. Mobile Comput., vol. 21, no. 12, pp. 4397-4409,
Dec. 2022.

J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proc. I[EEE Symp. Secur. Privacy, 2012,
pp. 553-567.

D. Wang and P. Wang, “Two birds with one stone: Two-factor authentica-
tion with security beyond conventional bound,” /EEE Trans. Dependable
Secure Comput., vol. 15, no. 4, pp. 708-722, Jul./Aug. 2018.

D. Wang, W. Li, and P. Wang, “Measuring two-factor authentication
schemes for real-time data access in industrial wireless sensor net-
works,” [EEE Trans. Ind. Informat., vol. 14, no. 9, pp. 4081-4092,
Sep. 2018.

[38]

[39]

[40]

(42]

[43]

[44]

[45]

[46]
[47]
[48]

[49]

[50]

[51]

Q. Jiang, N. Zhang, J. Ni, J. Ma, X. Ma, and K.-K. R. Choo, “Unified
biometric privacy preserving three-factor authentication and key agree-
ment for cloud-assisted autonomous vehicles,” IEEE Trans. Veh. Technol.,
vol. 69, no. 9, pp. 9390-9401, Sep. 2020.

C. Wang, D. Wang, Y. Duan, and X. Tao, “Secure and lightweight user
authentication scheme for cloud-assisted Internet of Things,” /EEE Trans.
Inf. Forensics Secur., vol. 18, pp. 2961-2976, 2023.

Q. Wang, D. Wang, C. Cheng, and D. He, “Quantum2FA: Efficient
quantum-resistant two-factor authentication scheme for mobile devices,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 1, pp. 193-208,
Jan./Feb. 2023.

D. Wang, D. He, P. Wang, and C.-H. Chu, “Anonymous two-factor au-
thentication in distributed systems: Certain goals are beyond attainment,”
IEEE Trans. Dependable Secure Comput., vol. 12, no. 4, pp. 428-442,
Jul./Aug. 2015.

Q. Wang and D. Wang, “Understanding failures in security proofs of
multi-factor authentication for mobile devices,” IEEE Trans. Inf. Forensics
Secur., vol. 18, pp. 597-612, 2023.

N. Koblitz and A. Menezes, “Another look at ‘provable security,” J.
Cryptology, vol. 20, pp. 3-37, 2007.

M. Dworkin et al., “Advanced encryption standard (AES),” Federal Inf.
Process. Standard (NIST FIPS), National Institute of Standards and Tech-
nology, Gaithersburg, MD, USA, 2001, doi: 10.6028/NIST.FIPS.197.

D. Kwon et al., “New block cipher: ARIA,” in Proc. Inf. Secur. Cryptology
-ICISC 2003, 2004, pp. 432-445.

K. Aoki et al., “Camellia: A 128-bit block cipher suitable for multiple
platforms — Design and analysis,” in Proc. Sel. Areas Cryptography. SAC
2000, 2001, pp. 39-56.

stm.com, Arm Cortex-M4 32b MCU+FPU, 125 DMIPS, 512KB Flash,
128KB RAM, USB OTG FS, 11 TIMs, 1 ADC, 13 comm, 2017. [Online].
Auvailable: https://www.st.com/resource/en/datasheet/stm32f411re.pdf
Arm Mbed OS, 2023. [Online]. Available: https://os.mbed.com/mbed-os/
Mbed TLS, 2023. [Online]. Available: https://os.mbed.com/docs/mbed-
0s/v6.16/apis/tls.html

A.Rex, R. Amar, V. Hacer, B. Mohamed, M.-S. Louanne, and R. Mahap-
atra, “Harnessing IoT technology for the development of wearable contact
tracing solutions,” in Proc. TRON Symp. (TRONSHOW), 2021, pp. 1-9.
R. Clarke, L. McGuire, M. Baza, A. Rasheed, and M. Alsabaan, “Online
voting scheme using IBM cloud-based hyperledger fabric with privacy-
preservation,” Appl. Sci., vol. 13, no. 13, 2023, Art. no. 7905.

Amar Rasheed is currently an Assistant Profes-
sor with the Department of Computer Science, Sam
Houston State University, Huntsville, TX, USA. He
was a Postdoctoral Fellow with the Information Sci-
ence and Technology Division of the Applied Re-
search Laboratory, Pennsylvania State University,
State College, PA, USA. His research interests in-
clude sensor modeling and data collection algorithms,
efficient data collection schemes for wireless sen-
sor networks, energy-efficient sensor data gathering
mechanisms, secure mobile sensor data communica-

tion models design, cybersecurity systems, cybersecurity risk assessment, and
analysis.

Mohamed Baza received the Ph.D. degree from
Tennessee Technological University, Cookeville, TN,
USA, in December, 2020. He is currently an Assistant
Professor with the Department of Computer Science,
College of Charleston, Charleston, SC, USA. He is
the author of many journals and conferences, such as
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE
COMPUTING, IEEE TRANSACTIONS ON VEHICULAR
TecHNOLOGY, IEEE TRANSACTIONS ON NETWORK
SCIENCE AND ENGINEERING, ICC, and CCNC. His
research interests include blockchains, cybersecurity,

and machine learning.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://dx.doi.org/10.6028/NIST.FIPS.197
https://www.st.com/resource/en/datasheet/stm32f411re.pdf
https://os.mbed.com/mbed-os/
https://os.mbed.com/docs/mbed-os/v6.16/apis/tls.html
https://os.mbed.com/docs/mbed-os/v6.16/apis/tls.html

RASHEED et al.: EFFICIENT CRYPTO ENGINE FOR AUTHENTICATED ENCRYPTION, DATA TRACEABILITY, AND REPLAY ATTACK DETECTION 1025

Mahmoud. M. Badr received the B.S. and M.S. de-
grees in electrical engineering (electronics and com-
munications) from Benha University, Cairo, Egypt, in
2013 and 2018, respectively, and the Ph.D. degree in
electrical and computer engineering from Tennessee
Tech University, TN, USA, in 2022. He is with the De-
partment of Network and Computer Security, College
of Engineering, SUNY Polytechnic Institute, Utica,
NY, USA. His research interests include machine
learning, blockchain, cryptography, 5G networks, and
smart grids. He has been selected as a poster winner

at Tennessee Tech. University’s annual Research and creative inquiry day, 2021.

Hani Alshahrani received the bachelor’s degree
in computer science from King Khaled University,
Abha, Saudi Arabia, the master’s degree in computer
science from California Lutheran University, Thou-
sand Oaks, CA, USA, and the Ph.D. degree from Oak-
land University, Rochester, M1, USA. He is currently
an Associate Professor of computer science and infor-
mation systems with Najran University, Najran, Saudi
Arabia. His research interests include smartphones,
IoT, crowdsourcing security, and privacy.

Kim-Kwang Raymond Choo (Senior Member,
IEEE) received the Ph.D. degree in information secu-
rity from the Queensland University of Technology,
Brisbane, QLD, Australia, in 2006. He currently holds
the Cloud Technology Endowed Professorship with
The University of Texas at San Antonio, San Antonio,
TX, USA. He is the founding co-Editor-in-Chief of
ACM Distributed Ledger Technologies: Research &
Practice, and the founding Chair of IEEE Technol-
ogy and Engineering Management Society Techni-
cal Committee (TC) on Blockchain and Distributed
Ledger Technologies. He was the recipient of the 2022 IEEE Hyper-Intelligence
TC Award for Excellence in Hyper-Intelligence Systems (Technical Achieve-
ment award), 2022 IEEE TC on Homeland Security Research and Innovation
Award, 2022 IEEE TC on Secure and Dependable Measurement Mid-Career
Award, and the 2019 IEEE TC on Scalable Computing Award for Excellence in
Scalable Computing (Middle Career Researcher).

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:22:40 UTC from IEEE Xplore. Restrictions apply.

