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Abstract—Smart vehicles and industrial control systems becom- 
ing increasingly complex. They are comprised of a large number of 
connected intelligence sensor devices. For such systems, Controller 
Area Network (CAN) bus offer high-integrity serial communication 
capabilities. It transformed the way how these systems are net- 
worked. Due to the lack of data security features on CAN-enabled 
systems, many of these systems are vulnerable to a wide range of 
cyber threats. This article proposed the development of a crypto- 
based subsystem that is capable of supporting CAN authenti- 
cated data encryption/decryption, crypto-provable data traceabil- 
ity, and replay attack detection capabilities. Data confidentiality 
was achieved via the deployment of a lightweight block cipher au- 
thenticated encryption scheme based on TinyJAMBU-128. Crypto- 
provable data traceability was accomplished through the utilization 
of a block-chaining approach. Meanwhile, an anti-replay attack 
mechanism that implements CAN message context awareness has 
been tested and validated under various data infection rates. Our 
CAN security subsystem was fully implemented and deployed on a 
testbed with multiple STM32 Nucleo development boards. System 
performance for our security schemes was analyzed and compared 
with traditional encryption schemes AES, ARIA, and Camellia 
with SHA-512 for supporting message authentication. Based on 
our performance results, the proposed security subsystem achieved 
the lowest CAN bus load and average message overhead compared 
to other encryption schemes. In the case of the anti-replay attack 
mechanism, we were able to reach a detection rate of 99.99% for 
data infection rate below 20%. 

Index Terms—Encryption, CAN Bus, authenticated encryption, 
decryption algorithm. 
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Fig. 1.  CAN BUS applications. 
 

 

I. INTRODUCTION 

ONTROLLER area network (CAN) protocol has been 

widely embraced by the automotive industry (see Fig. 1). 

In today’s connected vehicles, CAN enables internal compo- 

nents of the vehicle’s complex system to communicate with one 

another without the need for a central processing unit. CAN bus 

provides low-cost and reliable data communication solutions. 

Data generated from various sensor units can be transmitted over 

the bus at the rate of 2 to 5 Mb/s. Existing vehicle systems can 

support more than 70 intelligent sensors and Electronic Control 

Units (ECU)s. The biggest processing unit in any vehicle system 

is the engine control unit. Other ECUs that support autonomous 

driving capabilities include Advanced Driver Assistant System 

(ADAS) unit, airbags, cruise control, battery and recharging 

system, and lane assist/collision avoidance. 

Additional CAN features like flexibility, reliability, rugged- 

ness, and high tolerances against interference makes the tech- 

nology an ideal data communication platform for many safety- 

critical industrial control system, and autonomous military 

platforms (e.g., unmanned Aircraft Systems (UAS) and Lethal 

Autonomous Weapon Systems (LAWS)). Tactical military ve- 

hicles are highly integrated with multiple sensor fusion modules 

and control algorithms. In such systems, rapid decision-making, 

fast maneuvering, and collision avoidance capabilities are vital 
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for supporting mission dynamics. In both commercial and 

military-connected vehicles, CAN protocol shows superiority in 

the way how various sensor data get prioritized and transmitted 

over the CAN network. For example, camera, LIDAR (Light 

Detection and Ranging), GPS (Global Positioning System), en- 

gine temperature, and acceleration data computed by the various 

subsystems are prioritized based on their assigned CAN message 

IDs. Similarly, CAN bus integration into today’s industrial 

control systems brings an essential functionality that ensures 

the safe operation of such systems. Data prioritization capability 

for sensor data and actuators is inherently supported by CAN 

which eliminates the need for additional hardware or software 

components. 

Although CAN bus technology has been incorporated into the 

design of a wide range of interconnected systems, traditional 

CAN systems still lack the support of basic security primitives 

[1], [2]. Data encryption/decryption, message authentication, 

and data integrity verification capabilities are not integrated into 

current CAN technologies. CAN is a message-based broadcast 

system, in which messages can be easily extracted and com- 

promised from the bus via the deployment of a malicious ECU 

acting as a packet sniffer. Non-authenticated CAN data messages 

can be altered during transit and injected into the network. CAN 

protocol offers zero resiliency against message replay attacks. 

Captured CAN message from previous data transmissions can 

be inserted into the CAN bus via a compromised ECU. Further- 

more, current CAN technologies are inadequate in providing 

cryptographically secured data tracing capability. Specifically, 

in the case of a car accident, non-authenticated CAN messages 

transmitted over the bus that holds critical information such as 

acceleration data, tire pressures, and steering wheel angles are 

not cryptographically secured. A malicious ECU will be able 

to alter the sequence of data in the trace by placing additional 

packets into the trace or even changing the order of the packets 

within the trace. 

The main thrust of this research includes the development 

and deployment of an efficient CAN security subsystem for 

CAN-based interconnected systems. The proposed CAN se- 

curity subsystem supports two auxiliary security modules in- 

tegrated into the existing TinyJAMBU-128 [32] authenticated 

encryption scheme. The newly developed security modules en- 

hanced TinyJAMBU-128’s security capabilities against CAN 

replay attacks. The modified TinyJAMBU-128 is capable of 

achieving secure data traceability and data authentication over 

CAN bus networks. 

Finally, systematical evaluation and third-party methodolog- 

ical frameworks that assess the security property of CAN-based 

encryption systems have not been proposed in the past. Existing 

research literature mainly focuses on classical crypto techniques 

that were designed for general-purpose computing systems [44], 

[45], [46]. Also, due to CAN bus system requirement, many of 

today’s performance metrics that are used to analyze the effi- 

ciency of traditional security mechanisms might be unsuitable 

for evaluating security algorithms developed for CAN bus net- 

work. We have investigated the employment of two performance 

metrics that fully describe the impact of deploying our proposed 

crypto system: (i) CAN bus overhead capacity and (ii) ECU 

processing power. Experimental results that capture the modified 

TinyJAMBU-128 authenticated encryption system efficiency in 

terms of CAN bus overhead capacity and ECU processing time 

were presented during this work. 

The following cryptographic techniques have been developed 
and deployed onto the proposed CAN security subsystem. 

• Lightweight Authenticated Data Encryption Scheme: Effi- 

cient and lightweight encryption/decryption scheme based 

on TinyJAMBU-128 [32] authenticated encryption was 

implemented. We have evaluated the performance of the 

proposed authenticated encryption scheme and compared 

it with traditional crypto engines that support block cipher 

encryption. Performance metrics based on CAN bus load, 

message overhead, and processing time were captured 

for TinyJAMBU-128 [32], AES128, AES-192, AES-256 

[44], SHA-256, ARIA-128, ARIA-192, ARIA-256 [45], 

Camellia-128, Camellia-192, and Camellia-256 [46]. Data 

encrypted via AES, ARIA, and Camellia were authen- 

ticated via the deployment of SHA-512. Based on our 

simulation results, the proposed scheme achieved better 

performance in terms of message overhead, and CAN 

bus load compared to other encryption schemes. We have 

analyzed the performance of the proposed replay attack 

detection scheme based on true positive and false positive 
rates under various malicious data injection rates. 

• Efficient Countermeasure Mechanism Against Replay At- 

tacks: A cryptographic-based approach that utilizes CAN 

channel data communication patterns to derive a transmis- 

sion context for each data message sent over the bus. In 

our proposed scheme, transmission contexts are encoded 

into the associated data packets that are used for encrypting 

CAN messages. Our proposed scheme can achieve a 99.9% 

replay attack detection rate. CAN messages transmitted 

within an invalid context will be detected. We have tested 

the proposed scheme by injecting replay messages into the 

CAN bus using various injection rates. We have validated 

the ability of the system for identifying malicious data 

packets sent within invalid transmission contexts. 
• Crypto-provable Technique for Data Traceability: To en- 

sure the integrity of a trace, CAN data transmitted over 

the bus are block-chained using a cryptographic hash 

approach. Our proposed scheme provides full resiliency 

against data modification and data injection attacks. A 

compromised ECU will not be able to insert malicious 

CAN data into a pre-computed data-trace. 

Our proposed techniques are capable of supporting secure 

data transmission, message authentication, and crypto-provable 

data traceability function. Data communicated over the CAN 

bus will be encrypted and authenticated with minimum data 

communication overheads. Our CAN security subsystem makes 

existing CAN bus-based interconnected systems fully immu- 

nized against replay attacks and threats that targeted the integrity 

of the data-trace. 

The proposed CAN subsystem was implemented on multiple 

STM32F411 [47] boards. Each STM32F411 board features an 

ARM Cortex-M4 processing unit, 512KB of flash memory, and 

128KB of SRAM, and it is CAN-enabled. We have created 
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Fig. 2.  CAN bus architecture. 

 

 

a CAN bus-based interconnected system where STM32F411 

systems send and receive data over the CAN bus. Data confi- 

dentiality, message authentication, and system resiliency against 

replay attacks were tested using the added CAN security sub- 

system. Our security subsystem shows superiority in achieving a 

high detection rate against replay attacks and is capable of rein- 

forcing secure data transmission with minimal communication 

overheads. 

This article is organized as follows. Section II presents the 

CAN protocol. Section III describes related works. Section IV 

introduces a high-level architecture of the proposed CAN se- 

curity subsystem. Section V introduces a lightweight encryp- 

tion/decryption algorithm based on the TinyJAMBU-128 crypto 

engine. Section VI describes the proposed countermeasure tech- 

nique against replay threats. Section VII presents a crypto- 

graphic technique based on hash for supporting the integrity 

verification of data-trace. Section VIII introduced the security 

analysis approach. Section IX shows the performance results 

of the proposed CAN security subsystem. Section X illustrates 

the interconnected system architecture for the proposed testbed. 

Section XI concludes the article and presents future work direc- 

tions. 

 

II. BACKGROUNDS 

CAN was first introduced and developed by BOSCH [3] and 

is a message-based protocol that supports the broadcasting of 

CAN data where there is no centralized unit that facilitates how 

data get transmitted over the bus. The original CAN was able 

to provide a maximum data communication rate of 1Mbit/sec. 

CAN feature a point-to-point communication system, data is 

transmitted as small blocks of size 1-8 bytes per message. For 

more than thirty years, CAN provided flexibility and upgradabil- 

ity to the automotive industry where complex wiring systems 

were replaced by CAN-High and CAN-Low wire systems (see 

Fig. 2). New ECUs can be added to the network with minimal 

modification to the internal system architecture. ISO-11898 

defined how CAN protocol is mapped to the ISO Data-link layer 

and Physical layer. In this research, the CAN security subsystem 

was fully implanted and integrated into the application layer, 

while preserving the CAN protocol’s original design integrity. 

Our subsystem will serve as plug and play system, it can be 

initiated at ECU connected to the systems when data security 

feature is imperative for ensuring the safe operation of the 

system. 

 
 

 

 

 

 

Fig. 3.  CAN data frame and CAN arbitration. 
 

 

One important aspect of CAN communication is that it relies 

on carrier sense, multiple access mechanisms with collision de- 

tection plus arbitration on message priority (CSMA/CD+AMP) 

for accessing the bus. In CAN, ECUs contention over the bus 

is resolved using a bit-wise arbitration method, messages are 

prioritized based on their programmable ids, and messages with 

the highest priority will win the arbitration race. The original 

ISO-11898 support a data communication rate from 125kbit/sec 

to 1Mbit/sec with an 11-bits message id. The new CAN is able 

to provide an extended 29-bits id where 229 different identities 

can be created. 

 

 

A. Message Arbitration 

CAN bus was implemented using a twisted and shielded 

wiring system with 120 Ohm termination resistors on each 

side of the bus. CAN is based on a differential voltage signal 

transmitted between CANH and CANL. When the bus is idle, it 

remains in a recessive state until one node pulls the state of the 

bus to dominate. When two nodes try to send data over the bus 

simultaneously, their messages can be corrupted or destroyed. 

CAN resolves bus contention via the bit-wise arbitration ap- 

proach. Each message transmitted on CAN is identified by an 

11-bit ID or 29-bits in the case of standard CAN and extended 

CAN respectively. Message prioritization is computed based on 

the message’s identifier bit values. Messages with lower binary 

values in their identifier fields have higher priority. For example, 

a CAN message with its identifier bits field set to dominate (0) 

will have the highest priority. When two nodes compete for the 

bus, a node with its last transmitted identifier bit set to dominate 

will win the arbitration. While the winning node continues in its 

frame transmission, the second node stops its data transmission. 

The arbitration process is illustrated in Fig. 3. 

 

B. Data Types 

There are four types of CAN messages transmitted over the 

bus, error frame, overload frame, remote frame, and data frame. 
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• Data Frame. This message contains the CAN payload, 

message identifier field (11 bits for standard CAN and 29 

bits for extended CAN), the CRC data, and 2-bit ACK. 
• Error Frame. Corrupted CAN messages are detected by 

computing CRC on the received data packet. When a 

distorted CAN frame is identified, all receiving nodes start 

sending data error frames over the bus. CAN controller 

implements an error counter to prevent a transmitter from 

obtaining exclusive possession of the bus by repeatedly 

transmitting error frames. 
• Remote Frame. A remote frame is used to request data 

from another node connected to the bus. The remote frame 

has the RTR bit set to a recessive state. Every node on the 

bus will receive the remote frame message, but only nodes 

that are interested in the data will send their replies to the 

transmitter. 
• Overload Frame. A mechanism that produces delays be- 

tween CAN messages is required to stabilize the state of the 

bus, especially when nodes become too busy and unable to 

process all incoming data. 
• Valid Frame. An error-free Data frame will have the last 

bit in the EOF field set to recessive. While messages with 

EOF bit sets to dominate, CAN mark it as an error in the 

message which require retransmission. 

 

III. RELATED WORKS 

Recent works on threat mitigation and intrusion detection 

systems [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [50], 

[51] show promising results in detecting CAN bus attacks. 

Attacks [14], [15] that target the data integrity of safety-critical 

sensor system in a modern vehicle, such as the vehicle Anti-lock 

Braking System (ABS) has been presented in [22]. Liuwang K. 

[22] proposed a threat detection and attack mitigation technique 

against ABS CAN bus attacks. Their method is capable of 

identifying sensor attacks and CAN bus attacks related to ABS 

with the execution of an attack mitigation strategy that enables 

dynamic threat isolation. The authors proposed the develop- 

ment of a system that predicts the current state of the vehicle 

based on measured historical vehicle state data, derived from 

multiple sensor measurements. In their approach, the vehicle 

state space is comprised of real-time road friction data (i.e., 

wheel speed and longitude break force). Threat mitigation was 

implemented based on the subtraction of anomalous data from 

the measured vehicle state data to establish the correct reading 

for the vehicle ABS. One shortcoming of the above approach, 

hardware integrity verification of ECUs was not considered 

during vehicle state identification. Vehicle state ABS computed 

during normal operations might contain false data, which leads 

to false predictions. For example, during the vehicle state iden- 

tification process, malicious ECUs attached to the bus can inject 

anomalous data altering the vehicle state data. To overcome 

this problem a full inspection needed to be performed before 

incorporating the vehicle state into the prediction model. 

Data injection based on replay attacks has been exploited 

in [23]. P. Thirumavalavasethurayar and T. Ravi [23] proposed 

the implantation of attacking the CAN bus by injecting replay 

messages over the bus. A testbed of three CAN-enable nodes 

was implemented using a universal verification methodology. A 

malicious node was deployed to simulate replay attacks. Two 

classes of replay attacks were developed full and partial frame 

replaying attacks. 

Existing works based on sequence-based detection algorithms 

[24], hidden Markov models [25], and neural network ap- 

proaches have shown promising results in detecting message 

injection and replay attacks on the CAN bus. The work presented 

by Satya Katragadda [26] illustrated the effectiveness of the 

sequence-based anomaly detection algorithm in detecting low- 

rate replay threats for over 99% f-score. The proposed scheme 

achieved better performance compared to existing dictionary- 

based algorithms and a multi-variate Markov chain-based ap- 

proach. Mubark Jedh [27] presented a novel approach based on 

similarities of successive messages-sequence graphs for detect- 

ing Message injection attacks. A detection algorithm based on 

generating a Messages-Sequence Graph (MSG) that presents 

CAN messages as sequences of data sent within a given time 

interval. In their work, the detection of message injection attacks 

was achieved through the deployment of cosine similarity and 

Pearson correlation methods. Sequences of MSGs were used 

to compute similarities that might exist in successive MSGs, 

enforced by change point detection, and Long Short-Term Mem- 

ory (LSTM) to predict injection attacks on the CAN bus. The 

proposed scheme was able to sustain a detection rate of 98.45% 

and 1.5 to 2.64 response time. Techniques that rely on a machine 

learning approach or sequence-based intrusion detection system 

usually require heavy processing and large storage capabilities 

to train and estimate the model parameters. Real-time model 

training and parameter estimation are not visible with current 

CAN bus technology due to CAN nodes’ limited processing 

power and storage capacity. To overcome this problem, two 

approaches in model training were considered in the literature. 

The first approach is based on offline training techniques, where 

CAN data is extracted first and then feed into a training algorithm 

running on a high-performance computing system. The second 

approach implements real-time feature extraction algorithms 

and extracted CAN data is communicated directly to a training 

model running on the cloud. 

Security approaches based on message authentication [16], 

[17], [18], [19], [20], [21], hash-based message authentication 

code (HMAC) attribute-based encryption, symmetric-based 

encryption techniques, and ECC-based key management 

algorithms have been investigated in [28], [29]. A crypto-based 

technique for detecting CAN message injection and replay 

attacks was presented by the work of Timothy Dee in [30]. It en- 

hances existing CAN-FD technology by incorporating message 

integrity, message authentication, and source node authenticity 

capabilities. Message freshness was implemented through the 

maintenance of freshness value tables. Security algorithms 

implemented with classical authentication schemes require 

heavy processing and introduce large communication overhead 

to the CAN. A standard CAN data frame is limited to a 64-bit 

block of data. Therefore, authentication data or an encrypted 

message with a block size larger than 64 bits will require more 

than one CAN frame to transmit the data over the bus. 
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Several lightweight detection algorithms against replay at- 

tacks have been proposed in the past. F. Páez and H. Kaschel pro- 

posed an algorithm that [31] eliminates the need for employing 

computationally intensive crypto-based methods for detecting 

CAN threats. It relies on the incorporation of a new CAN ID into 

the messages’ acceptance filter of nodes. The proposed approach 

was tested using a CAN-enable testbed. Modified and replayed 

CAN messages were identified by the proposed method at 40µs 

detection speed. 

Recent work that analyzes the vulnerabilities of attribute- 

based signature schemes has been presented by Zhaozhe Kang 

and Jiguo Li [33]. The authors show that existing attribute-based 

signature scheme can be exploited by attackers through signature 

abusing and key exposure. To overcome these issues, the authors 

proposed a novel scheme that supports traceable and forward- 

secure attribute-based signatures (TFS-ABS). Their proposed 

scheme has been proven for enabling unforgeability features 

against selective predict e attacks for the standard model. Fur- 

thermore, based on their simulation results, the proposed TFS- 

ABS was capable of achieving efficient communication and 

computation overhead. 

Public key authenticated encryption with keyword search 

(PAEKS) has been presented by Yang Lu and Jiguo in [34]. The 

authors show that data security schemes based on searchable 

public key encryption (SPKE) techniques are vulnerable to 

keyword-guessing attacks. PAEKS scheme has been proven to 

show resiliency against such attacks. To improve PAEKS re- 

siliency against adaptively-chosen targets adversaries, adversary 

model of PAEKS has been refined and modified. Finally, a light 

weight PAEKS scheme that minimizes the computation power 

of performing bilinear pairing operations has been implemented. 

It showed that the improved light weight PAEKS was capable 

of supporting low communication and computation profiles, 

which makes the scheme more suitable for power-constrained 

devices. 

Joseph Bonneau and Cormac Herley [35] examine the diffi- 

culty of replacing passwords in today’s web-based user authenti- 

cation schemes. In their study, the authors showed that there is a 

wide range of security approaches that offered password replace- 

ment solutions. Such schemes were capable of providing extra 

security primitives that extend existing password capabilities. 

But, with the extra security benefits comes a system deployment 

cost and usage which make these security systems less attractive 

compared to password-based user authentication techniques. 

Finally, the authors provide an evaluation methodology and 

benchmark for validating and testing future web authentication 

schemes. 

Ding Wang and Ping Wang [36] presented a comprehen- 

sive analysis of how today’s two-factor authentication schemes 

and smart-card-based password authentication mechanisms are 

being poorly evaluated and assessed. A fully comprehensive 

security assessment model and benchmarking for analyzing 

important security features of the proposed schemes become 

indispensable tools. The authors proposed a security model that 

is capable of extracting import features of an adversary and 

generating a set of twelve properties for system testing. Their 

main contribution is to devise a new security approach that offers 

full resiliency against user corruption and server compromise 

threat models. 

Another important study expresses the need for a full compre- 

hensive systematical assessment methodology that authentica- 

tion scheme designers will be able to use to assess their proposed 

schemes. Ding Wang, Wenting Li, and Ping Wang [37] showed 

that the lack of comprehensive assessment tools leads to what 

they called a “break-fix-break-fix” cycle in the area of two-factor 

authentication schemes for securing data in industrial wire- 

less sensor networks (WSNs). In their work, 44 schemes were 

tested under their proposed evaluation framework. The proposed 

evaluation framework provides unrepresented evaluation met- 

rics for two-factor authentication schemes in industrial WSNs. 

In the area of autonomous vehicles (Avs) [38], Qi Jiang and 

Ning Zhang proposed a cloud-centric three-factor authentication 

and key agreement protocol (CT-AKA). The authors illustrated 

how AV with a control capability poses potential threats to 

passenger safety. As the system could be exploited by an attacker 

and therefore gain him/her full access to the AV system remotely. 

The proposed CT-AKA was integrated with passwords, biomet- 

rics, and smart card capabilities. To achieve three-factor authen- 

tication, CT-AKA was implemented with three biometric en- 

cryption approaches, including fuzzy vault, fuzzy commitment, 

and fuzzy extractor. To test the visibility of CT-AKA, security 

properties were evaluated, and simulation results showed that 

their proposed approach was capable of achieving high security 

with acceptable communication computation overheads. 

A secure user authentication scheme for cloud-assisted IoT 

systems has been proposed by Chenyu Wang and Ding Wang 

[39]. The authors demonstrated the requirement for a lightweight 

user authentication protocol to ensure secure access to IoT data 

over the cloud. They were able to analyze IEEE TDSC 2020 

scheme to identify common vulnerabilities and challenges for 

designing an efficient light weight cloud-assisted user authen- 

tication scheme. Security analysis based on the random-oracle 

model, heuristic approach, the ProVerif tool, and BAN logic 

were used to assess their proposed scheme. Based on a prede- 

fined list of security requirements, their proposed scheme was 

able to achieve minimum computation and storage overheads on 

the gateway. 

Qingxuan Wang and Ding Wang [40] discussed the visi- 

bility of attacking smart-card-based password authentication 

mechanisms via quantum computing. With the vast amount 

of processing power available through quantum computing 

systems, keeping the current two-factor authentication system 

unexploitable poses a great security challenge for systems de- 

signers. The authors presented the design of a secure and efficient 

smart-card-based password authentication scheme. Their newly 

proposed scheme called “quantum2FA” employs Alkim et al.’s 

lattice-based key exchange and Wang-Wang’s “fuzzy-verifier 

+ honeywords” approach (IEEE TDSC’18). The scheme of- 

fers resiliency against the revealed key-reuse attack against 

a lattice-based key exchange. Security analysis based on the 

random oracle model has been examined to assess the security 

properties of “quantum2FA”. Their experimental results show 

that quantum2FA offers better computation speed as compared 

to existing 2FA techniques. 
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In this article, we present the implantation and deployment 

of a lightweight power-aware crypto engine that support au- 

thenticated encryption based on TinyJAMBU-128 [32], crypto- 

provable data traceability, and intrusion detection capability 

against replay attacks. The proposed engine minimizes com- 

munication overhead by fitting authentication data or encrypted 

data into a single CAN frame. Our proposed engine enables 

message authentication by adding one additional CAN frame to 

each CAN data transmitted. 

 

IV. THE PROPOSED SECURITY SUBSYSTEM 

We proposed a CAN security subsystem that is capable of 

supporting multiple security features to the existing CAN bus. 

Crypto-based security blocks that have been implemented and 

deployed include (i) a lightweight authenticated encryption en- 

gine based on TinyJAMBU-128 [32]. Data transmitted within 

a CAN data frame were encrypted and authenticated using a 

modified version of TinyJAMBU-128. (ii) lightweight detection 

algorithm against CAN replay attacks (iii) block chaining based 

on hash computation algorithm that enables the secured capture 

of data traces. Each CAN data is encoded into a single hash 

block where each block is constructed by computing a hash value 

H(Di II H(bli−1) II TID i II Ti), where Di is CAN data field, 

H(bli−1) hash of the previous block, TID i is the transaction 
id for block i, and Ti is data transmission timestamp. A detail 

description of symbols used throughout the article is presented 

in Table I. 

 

V. LIGHTWEIGHT CRYPTO-BASED ENCRYPTION 

This section introduces our proposed lightweight authenti- 

cated encryption scheme. The scheme is a modified version of 

the TinyJAMBU-128 [32] authenticated encryption technique. 

Data transmitted over the CAN bus is encrypted and authen- 

ticated using a small variant of JAMBU. It is implemented 

with 128-bit keyed permutation states and 64-bit associated data 

blocks. The following section provides a detailed description of 

the modified TinyJAMBU-128 authenticated encryption scheme 

to support the detection of replay attacks. 

 

A. TinyJAMBU-128 Encryption for Secure Data 

Communication and Message Authentication 

The proposed authenticated encryption utilizes TinyJAMBU 

mode with keyed permutation for randomizing the internal state 

of TinyJAMBU during encryption/ decryption. 

In the classical version of TinyJAMBU-128 [32], the scheme 

was implemented by taking 64-bit associated data, a 64-bit 

plaintext message, and a 96-bit nonce as input parameters. 

TinyJMABU-128 [32] is comprised of four stages. Stage 1 is 

referred to as the initialization stage, encryption key and nonce 

are processed during this stage. The associated data string is used 

during the second stage of TinyJMABU-128 [32], it is utilized to 

update the current state of TinyJAMBU-128 [32] during encryp- 

tion. The third stage involves data encryption where a ciphertext 

message is computed. Authentication tag generation and verifi- 

cation steps were performed during the finalization stage. 

TABLE I 
DESCRIPTION OF SYMBOLS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

In this research, we have modified the internal design of 

TinyJAMBU-128 [32] to include one additional stage, the as- 

sociated data generation stage. The new stage was implemented 

and inserted between the initialization stage and the associated 

data processing stage which is referred to as stage 2 in the 

original TinyJAMBU-128 [32] algorithm. Besides integrating 

associated data processing into the TinyJAMBU-128, CAN 

message context computation was also incorporated into the 

modified TinyJAMBU-128. CAN message context computation 

was integrated into the TinyJAMBU-128 encryption/decryption 

engine. Each CAN data frame is bounded into a single message 

context prior to transmitting the frames over the CAN chan- 

nel. Through the employment of 64-bits associated data strings 

within the TinyJAMBU-128 engine, a common message context 

can be easily computed by every ECUs on the network. 

As illustrated in the classical version of TinyJAMBU-128 

[32], associated data strings are supplied by the applica- 

tion for each data message encrypted and authenticated via 

TinyJAMBU-128. Therefore, to support the employment of our 

newly modified version of the TinyJAMBU-128 CAN bus net- 

work, we have added a new processing module that enables the 

establishment of associated data strings for each CAN frame that 

needs to be encrypted and authenticated. The data-associated 

module has no impact on the TinyJAMBU-128 encryption/ de- 

cryption and authentication stages. The newly modified version 
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Fig. 4.  Key permutation using a 128-bit nonlinear feedback shift reg. 
 

 

of TinyJAMBU-128 should follow the same security analysis as 

the original version. 

We have chosen TinyJAMBU-128 [32] due to its small state 

size and reduced encrypted message block size. The internal 

state of TinyJAMBU-128 was implemented with a 128-bit block 

compared to the 192-state size on JAMBU-128. TinyJAMBU- 

128 supports an encrypted message size of 32 bits which is half 

of the data length that a CAN frame can hold per transmission, 

two encrypted data messages can be transmitted over the bus via 

a single CAN data frame. Although, TinyJAMBU-128 supports 

three modes of operations with possible key sizes: 128-bit, 192- 

bit, and 256-bit, in this article, we have considered TinyJAMBU 

with a keyed-permutation size of 128-bit. The permutation of 

the state is based on the deployment of a 128-bit nonlinear 

feedback shift register. The following modules for TinyJAMBU 

were implemented and deployed on multiple STM32F411 [47] 
development boards: 

• Keyed Permutation Module 
• Initialization Module 
• Associated Data Generation Module 
• Associated Data Processing Module 
• Data Encryption Module 
• Authentication Tag processing Module 
• Data Decryption Module 
• Verification Module 

1) Keyed Permutation Module: TinyJAMBU-128 relies on a 

128-bit keyed permutation technique. The state of TinyJAMBU 

encryption is updated via the employment of a 128-bit nonlinear 

feedback shift register (see Fig. 4). 

During each permutation round i, a combination of XOR, 

and NAND operations are performed on specific state’s bits. 

The content of the state is then shifted by 1 bit to the left. 

In TinyJAMBU, m rounds are required to update the state. 

Algorithm 1 provides a detailed implementation of the keyed 

permutation module. The next section describes the initialization 

step of TinyJAMBU-128 [32]. 

2) Initialization Module: TinyJAMBU-128 [32] has been 

implemented on each ECU using a 128-bit key and 96-bit 

nonce. We have explored the utilization of multiple CAD IDs 

retrieved from previous CAN data frames to compute 64-bit 

associated data. To ensure the randomness of the bits within 

each computed associated data, bitwise operations that involve 

multiple associated data bits combined with a 64-bit nonlinear 

feedback shift register that shifts the data by one bit to left during 

each round were incorporated into TinyJAMBU-128 implemen- 

tation. Initialization of TinyJAMBU-128 was implemented via 

bit randomization of the 128-bit state vector. By applying 1024 

Algorithm 1: Keyed Permutation Module. 
 

 

Input: 128-bit key: K← [k0, k1,..., k127] 

128-bit state: S ← [s0, s1 ,..., s127] 
Permutation rounds: i 

Output: Content of the state after being updated 

TinyJAMBUStateUpdate (S, K, i): 

1: Temp ← s0 ⊕ s47 ⊕ (∼ (s70 ∧ s85)) ⊕ s91 ⊕ ki mod 128 

2: for j in range (StateLength-1) do: //StateLength = 127 

3: sj ← sj+1 //shift the content of S by 1-bit to the left 

4: end for 

5: s127 ← Temp 
6: end of TinyJAMBUUpdate 

 
 

 

 

Fig. 5.  i-th iteration of TinyJAMBU’s Initialization step. 

 

 

 

keyed permutation rounds on the state, a highly randomized 

128-bit state is computed. During each round, bits [00,1] are 

xored with the state’s bits s36, s37, s38 respectively. State’s bits 

are randomized by executing 640 keyed permutation rounds 

on the state. Finally, bits {s96, s97, …, s127}of the state are 

xored repeatedly with a 96-bit nonce. Fig. 5 provides a details 

implementation of the initialization modules. 

3) Associated Data Generation Module: In the newly added 

stage, a 64-bit associated data string is computed for each CAN 

data frame sent over the bus. To link a current CAN data 

frame to its previously transmitted CAN messages, CAN ids 

for the five most recently transmitted CAN data frames are 

utilized to compute a 64-bit associated data string. The computed 

associated data string is used during TinyJAMBU-128 state 

update to support data encryption and message authentication 

for the currently transmitted CAN data frame. The following 

algorithm depicts a detailed implementation of the associated 

data generation module. 

4) Associated Data Processing Module: Associated data Ad 

in TinyJAMBU is used to update the content of the state. Each 

data message transmitted over the CAN bus is linked to a 
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Algorithm 2: Associated Data Generation Module. 

Inputs: IDi-1 [11]← IDi-1 [id0, id1,..., id10] 
//CAN ids for the five most recently transmitted 
frames 

IDi-2 [11] ← IDi-2 [id0, id1 ,..., id10] 
IDi-3 [11] ← IDi-3 [id0, id1 ,..., id10] 
IDi-4 [11] ← IDi-4 [id0, id1 ,..., id10] 
IDi-5 [11] ← IDi-5 [id0, id1 ,..., id10] 

Adtemp [64] ← Adtemp[adtemp0, .., adtemp63] 
// Temporary array to hold associated data 

Adtemp[adtemp0, adtemp1,. ..... , adtemp63] ← 
Zero[00,. ...... , 0] //Adtemp string is initialized to 
zero 

Output: Adi [64] //Associated data string for i-th frame 
AssociatedDataGeneration (Adtemp [64], IDi-1 [11], IDi-2 

[11], IDi-3 [11], IDi-4 
[11], IDi-5 [11]): 

1: Adtemp [adtemp0, adtemp1,. ...... , adtemp10] 

← IDi−1[id0, id1,. .... , id10] 
2: Adtemp [adtemp11, adtemp1,. ...... , adtemp21] 

←  IDi−2[id0, id1,. .... , id10] 
3: Adtemp [adtemp22, adtemp1,. ...... , adtemp32] 

← IDi−3[id0, id1,. .... , id10] 
4: Adtemp [adtemp33, adtemp1,. ...... , adtemp43] 

← IDi−4[id0, id1,. .... , id10] 
5: Adtemp [adtemp44, adtemp1,. ...... , adtemp54] 

←  IDi−5[id0, id1,. .... , id10] 
6: for i ← 0 to 9 do: // nonlinear shift register 
7: Adtemp[adtemp55] ← Adtemp[adtemp7] ⊕ 

Adtemp[adtemp54] ⊕ Adtemp[adtemp37] 
8: Adtemp[adtemp56] ← Adtemp[adtemp1] ⊕ 

Adtemp[adtemp10] ⊕ Adtemp[adtemp36] 
9: Adtemp[adtemp57] ← Adtemp[adtemp2] ⊕ 

Adtemp[adtemp17] ⊕ Adtemp[adtemp34] 
10:  Adtemp[adtemp58] ← Adtemp[adtemp15] ⊕ 

Adtemp[adtemp23] ⊕ Adtemp[adtemp13] 
11:  Adtemp[adtemp59] ← Adtemp[adtemp40] ⊕ 

Adtemp[adtemp27] ⊕ Adtemp[adtemp25] 

12: Adtemp[adtemp60] ← Adtemp[adtemp9] ⊕ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  i-th iteration of TinyJAMBU’s associated data processing. 

 

 

CAN IDs. A total of 55 bits were extracted from CAN IDs fields 

from the five most recent CAN data frames. Bits are randomized 

via the application of several bitwise xor operations with bit 

permutation and bitwise rotation. Since we randomize the bits 

of each computed 64-bit associated data string, every CAN frame 

should have a different associated data string. A 64-bit nonlinear 

feedback shift register is implemented to support the establish- 

ment of associated data strings. After the initialization step, the 

state’s bits s36, s37, and s38 are bitwise xored with bits [0,1], 

and 1 respectively. Contents of the state are then bit permutated 

by employing 640 rounds of keyed permutation function. After 

permutating the state’s bits, 32-bit of the associated data string 

is xored with the state. The processing of associated data is 

presented in Fig. 6. 

5) Data Encryption Module: CAN data of length 64-bit is 

encrypted via the TinyJAMBU data encryption algorithm. After 

randomizing the content of the state during the associated data 

13: 

14: 

Adtemp[adtemp31] ⊕ Adtemp[adtemp20] 
Adtemp[adtemp61] ← Adtemp[adtemp21] ⊕ 
Adtemp[adtemp39] ⊕ Adtemp[adtemp44] 
Adtemp[adtemp62] ← Adtemp[adtemp49] ⊕ 
Adtemp[adtemp29] ⊕ Adtemp[adtemp5] 

processing module and initialization module, 64-bit CAN data is 

passed to the data encryption module. During the data encryption 

step, the state’s bits s36,s37, s38 are xored with bits [1,0,1] 

respectively. State bits are manipulated using 640 rounds of 

15:  Adtemp[adtemp63] ← Adtemp[adtemp15] ⊕ 
Adtemp[adtemp11] ⊕ Adtemp[adtemp19] 

16: for j ← 0 to 63 do: 

17: Adi [j+1] ← Adtemp[j] 
18: end for: 

19: Adi [0] ← Adtemp[63] 
20: for j ← 0 to 63 do: 
21: Adtemp[j] ← Adi [j] 
22: end for: 
23: end for: 

 24: end of AssociatedDataGeneration  

randomly computed 64-bit associated data. Existing implemen- 

tation of TinyJAMBU-128 enables the processing of 64-bit asso- 

ciated data strings and plaintext data as input parameters to the 

encryption/decryption algorithms. In this research, associated 

data strings are constructed by concatenating multiple 11-bit 

the keyed permutation function. State’s bits {s96, …,s127}are 

updated by xoring the current state bits {s96, …,s127}with CAN 

message plaintext’s bits {m32i, …,m32i+31}. The final cipher- 

text’s bits are computed by xoring state’s bits {s64, …,s95} with 

the plaintext’s bits {m32i, …,m32i+31}. 

6) Authentication Tag Processing Module: Authenticated 
encryption is supported by TinyJAMBU-128 [32] by generat- 

ing a 64-bit authentication tag τMi for CAN message Mi.The 

authentication tag is transmitted with the encrypted CAN data 

frame. In the proposed system, computed authentication tags are 

transmitted over the CAN bus using a single CAN frame with a 

predefined ID (2047). For ECUs to be able to recognize that a 

CAN frame contains an authentication tag and not a payload, a 

special CAN ID is assigned. If an ECU received a CAN frame 

with ID 2047, the ECU will be able to recognize and process it 

accordingly as an authentication tag. Authentication tags were 
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Algorithm 3: Data Encryption Module. 

Input: keylen ← 128 //length of the key 

Mlen gth ← 64 //length of CAN message 

K [keylen]← [k0, k1,..., k127] 

S [keylen] ← [s0, s1,. ..... , s127] //updated during 
the associated data processing step 

M [mlength]←[m0, m1, . . . ,  m63] 

Output: C [c0,. .... , c63] //ciphertext 
Data Encryption (S, K, M): 

1: for j ← 0 to l mlen ⊕ do: 

2: s36 ← s36 ⊕ 1 

3: s37 ← s37 ⊕ 0 

4: s38 ← s38 ⊕ 1 
5: TinyJAMBUStateUpdate (S, K, 1024) 
6: S [s96, s97, …, 

s127]← S [s96, s97, . . . ,  s127]⊕m[m32j, …, 
m32j+31] 

7: C [c32i, c32i+1, …, 

c32i+31]← S [s64, s65, . . . ,  s95]⊕m[m32j, …, 
m32j+31] 

8: return C 

9: end for 

10: end of Data encryption 

Algorithm 5: Data Decryption Module. 
 

 

Input: keylen ← 128 //length of the key 

Clength ← 64 //length of the ciphertext 

K [keylen]← [k0, k1 , . . . ,  k127] 

S [keylen] ← [s0, s1,. ..... , s127] //updated during 
the associated data processing step 

C [Clength]←[c0, c1, . . . ,  c63] 

Output: M [m0,. .... , m63] // plaintext CAN message 
Data Decryption (S, K, C): 

1: for j ← 0 to l mlen ⊕ do: 

2: s36 ← s36 ⊕ 1 

3: s37 ← s37 ⊕ 0 

4: s38 ← s38 ⊕ 1 
5: TinyJAMBUStateUpdate (S, K, 1024) 
6: M [m32i, m32i+1, …, 

m32i+31]← S [s64, s65, . . . ,  s95]⊕C[c32j, …, 
c32j+31] 

7: S [s96, s97, …, 

s127]← S [s96, s97, . . . ,  s127]⊕M [m32j, …, 
m32j+31] 

8: return M 

9: end for: 

10: end of Data Decryption 
 

  

 

 

 
Algorithm 4: Authentication Tag Processing Module. 

Input: K [128]← [k0, k1,..., k127] 

S [keylen] ← [s0, s1,. ..... , s127] //updated during 
the encryption step 

Output: τMi [64]←[τ0, τ1, . . . ,  τ63] 
Authentication tag processing (S, K): 

7) Data Decryption Module: During the data decryption 

step, initialization and associated data processing modules are 

instantiated to update the state of TinyJAMBU-128 [32]. Similar 

to data encryption, a 3-bit value of 101 is xored with the state’s 

bits s36, s37, and s38 and the contents of these bits are updated 

accordingly to the results of the xor operation. Then, 1024 rounds 

of the keyed permutation step are applied to the state. During the 

first iteration of the data decryption module, bits {m0,..., m31} 

are computed by xoring ciphertext bits {c0,..., c31}with state’s 

bits {s64,..., s95}. The state’s bits {s96,..., s127} are updated 

by xoring the current state’s bits contents {s96,..., s127} with 

the computed plaintext bits {m0,..., m31}. Similarly, plaintext 

bits {m32,..., m63} is computed by xoring these bits with the 

state’s bits s64,..., s95 and then use the generated plaintext bits 

to modify the current content of the state’s bits {s96,..., s127}. 

The following provides a detailed implementation of the decryp- 

tion module. 

8) The Verification Module: During the verification step, a 

CAN data message Mi can be authenticated by computing a 
64-bit authentication tag τ t 

i 
and compare it with the received 

not encrypted. They were transmitted over CAN bus in plaintext authentication tag τM . If τ t = τM  the message is authenti- 
i Mi i 

messages. 

Authentication codes are computed based on applying multi- 

ple keyed permutations on the state. The first 32 bits of the au- 

thentication code are generated by updating the state’s bits using 

1024-keyed permutation rounds. The rest of the authentication 

code bits {τ32, …, τ63} is established through the employment 

of 640 keyed permutation rounds on the state’s bits. Algorithm 3 

introduces the Authentication tag processing. 

cated and accepted, otherwise, the received message is rejected. 

Algorithm 7 provides a full implementation for the verification 

module. In the case of miss verification, an error counter is 

incremented for each miss verification. We also keep a record 

of the CAN frame ID. If the error counter exceeds a predefined 

threshold value, the system will send an alert message to all 

ECUs connected to the CAN bus. CAN messages that are not 

verified will be ignored. 

1: s36 ← s36 ⊕ 1 

2: s37 ← s37 ⊕ 1 

3: s38 ← s38 ⊕ 1 

4: TinyJAMBUStateUpdate (S, K, 1024) 

5: τMi [τ0, τ1, …, τ31]← S [s64, s65, . . . ,  s95] 

6: s36 ← s36 ⊕ 1 

7: s37 ← s37 ⊕ 1 

8: s38 ← s38 ⊕ 1 

9: TinyJAMBUStateUpdate (S, K, 640) 

10: τMi [τ32, τ33, …, τ63]← S [s64, s65, . . . ,  s95] 

11: return τMi 

12: end of Authentication tag processing 
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Algorithm 6: Verification Module. 

Input: Taglength ← 64 //length of the authentication tag 

K [128]← [k0, k1,..., k127] 

S [keylen] ← [s0, s1,. ..... , s127] 
// updated during the initialization step τMi 

[Taglength]←[τ0, τ1, . . . ,  τ63] 
Output: return true if the received tag matches the 

computed tag, otherwise return false. 

Verification (S, K, τMi ): 

1: s36 ← s36 ⊕ 1 

2: s37 ← s37 ⊕ 1 

3: s38 ← s38 ⊕ 1 
4: TinyJAMBUStateUpdate (S, K, 1024) 
5: τ 

t  
[τ , τ , . . . ,  τ ] ← S [s , s , …, s ] 

have applied a random process to inject replay attack messages 

into the CAN bus network at various injection rates (2% - 

50%). Simulated CAN message replay attacks were tested on 

a real testbed that is comprised of three ECUs attached to 

CAN. Two of the three nodes were considered benign, while 

the third unit was acting as an adversary. Replay attacks were 

conducted on the proposed testbed with transmitted CAN data 

frames being encrypted and authenticated via TinyJAMBU-128. 

During simulation, malicious node continuously sniffs CAN 

messages from the bus and retransmits these messages during a 

different time interval. Since authenticated encryption provides 

zero resiliency against replay threats, we have developed a 

technique that extends the security features of TinyJAMBU-128 

to support dynamic detection capability against CAN message 
Mi  0 1 31 6: 64 65 95 replay attacks. 
s36 ← s36 ⊕ 1 

7: s37 ← s37 ⊕ 1 

8: s38 ← s38 ⊕ 1 
9: TinyJAMBUStateUpdate (S, K, 640) 

 

B. Countermeasure Mechanism Against Replay Threats 

Dynamic detection of CAN message replay attacks was 
10: τ 

t  
[τ , τ , . . . ,  τ ] ← S [s , s , …, s ] implemented via the integration of CAN message context 

Mi  32 1 63 64 65 95 

11: if τMi 12: = = τMi
 return true awareness capability. Based on the type of event, different CAN 

data frames are computed and disseminated over the network. In 
end of Verification 

 

 

 
Fig. 7.  CAN message replay threat modeling. 

 

VI. CAN REPLAY ATTACK AND THE PROPOSED 

COUNTERMEASURE MECHANISM 

In this research, we have considered the development of a 

countermeasure mechanism against replay attacks on CAN. The 

proposed mechanism enables ECUs of detecting the presence of 

replay threats occurring on CAN. The following provides full 

descriptions of CAN replay threat modeling and its counter- 

measurement approach. 

 

A. CAN Message Replay Threat Modeling 

We have considered the implementation of simulated CAN 

message replay attacks through the deployment of a malicious 

ECU that is capable of capturing every CAN data frame sent over 

the bus and replaying them at different times (see Fig. 7). We 

the proposed approach, we assumed that each transmitted CAN 

message is associated with a single context. A message context is 

established by using a sequence of k historical CAN data frames. 

By observing the state of the CAN channel during the last k 

active transmissions, communicating ECUs will be capable of 

constructing a common 64-bit binary string that could be used to 

represent the context of the next transmitted CAN data frame. In 

the proposed approach, a message context is constructed based 

on the CAN IDs of the last k-data frames transmitted over the 

bus. To send the next CAN data frame, a message context is 

computed first by the sender and encoded into a 64-bit associated 

data string. Which is hence used to encrypt/decrypt CAN data 

frames. Similarly, the message context presented by the 64-bit 

associated data string is computed on the receiving node and 

used during message authentication and data decryption. Our 

proposed technique enables the establishment of secured bonds 

between every CAN data frame and the contexts in which these 

data frames were transmitted. Since every encrypted CAN data 

frame is securely bounded into its message context, encrypted 

CAN frames transmitted during different contexts will be de- 

tected as CAN message replay threats. The following provides 

a high-level implementation of how a message context is com- 

puted: 

 

C. Establishment of Message Context Between Two ECUs 

CAN message context computation was integrated into the 

TinyJAMBU-128 encryption/decryption engine. Each CAN 

data frame is bounded into a single message context prior to 

transmitting the frames over the CAN channel. When a CAN 

frame is transmitted over the CAN bus, a CAN message context 

is constructed. The CAN frame’s message context is estab- 

lished by using a sequence of k historical CAN data frames. 

By observing the state of the CAN channel during the last k 

active transmissions, all communicating ECUs will be capable 

of constructing a common 64-bit binary string that could be used 
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Fig. 8.  Message context computation. 

 

to represent the context of the next transmitted CAN data frame. 

For ECU nodes to be able to establish the first CAN message 

context, initially, all ECUs are preloaded with the same orphan 

block. 

Through the employment of 64-bits associated data strings 

within the TinyJAMBU-128 engine, a common message con- 

text can be easily computed by every ECUs on the network. 

A receiver node can leverage message context information to 

determine whether the received CAN data frame is generated 

due to a replay attack or due to an actual event. For example, 

two ECUs nodes, node A and node B, where node A is acting 

as a sender and node B as a receiver. Prior to any data transmis- 

sion, both sender and receiver nodes are required to compute 

a common 64-bit message context string ctxi. The computed 

context message will be encoded into an associated data string 

that will be utilized by the TinyJAMBU-128 crypto engine to en- 

crypt/decrypt the CAN data frame Mi. The following protocol’s 

steps are required during a CAN message context computation 

process (see Fig. 8). 
1) CAN messages IDs of the last k transmitted data frames 

{IDi−1, . . . ,  IDi−5} are recorded by all ECUs including 

nodes A & B. 

2) Both sender and receiver copy the recorded CAN mes- 

sages IDs into bit 0 through bit 54 of the message context 

string ctxi. 

3) Bit 55 through bit 63 of the message context ctxi will be 

computed by applying multiple bitwise xor operations on 

the content of ctxi. 
4) A nonlinear shift register is employed on the content of 

ctxi to randomize its bits. 

5) CAN message context ctxi is encoded into a 64-bit 

associated data string by the sender and fed into the 

TinyJAMBU-128 crypto engine. 

6) The sender encrypts the CAN data frame by applying 

TinyJAMBU-128 with the computed message context and 

transmits the encrypted data frame over the CAN channel. 

7) TinyJAMBU-128 will be executed on the receiver with the 

computed associated data string to decipher the received 

message. 

 

VII. DATA TRACEABILITY VIA BLOCK CHAINING 

AND HASH COMPUTATION 

Data traceability capability was supported by the proposed 

scheme via the employment of a block-chaining approach. En- 

crypted and authenticated CAN data frames received by ECU 

nodes are encoded into data blocks. Since the CAN bus is a 

broadcast medium, for every CAN data frame sent over the bus, 

each ECU node computes its copy of the data block. Data blocks 

are chained together to form a common blockchain. Copies of 

the computed blockchain are stored at every ECU node attached 

to the CAN bus. The final block in the chain serves as an integrity 

check for all previous data blocks. Data tracing and data integrity 

were supported via blockchain data validation. Blockchain data 

stored in ECU nodes can be utilized by the system control 

unit to identify (i) abnormal behaviors occurring during system 

operations. For example, a malfunctioning ECU node injects 

faulty data into the system bus. (ii) anomalous CAN data frames 

injected by a malicious ECU node. The proposed block-chaining 

protocol is based on a two-step process (see Fig. 9). 

 

A. Data Blocks Construction Scheme 

During system operation, when a CAN data frame Di with 

id, IDi received by ECU nodes {ECU1, ECU2, …, ECUn}. 

Every ECU node processes the received data frame as follows: 
• Each node computes a hash value on the CAN data frame 

Di, H(Di II H(bli−1) II TIDi II Ti), where H(bli−1) 

represents the hash of the previous block, TIDi is the 
transaction id for block i, and Ti is data transmission 

timestamp. If i = 0, the hash of the previous block H(bl0) 

will be set to the initialization vector which is called the 

orphan block. 
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Fig. 9. Block chaining in CAN bus for supporting data integrity and secure 
data traceability. 

 

 

 

• CAN data frame Di along with the computed data block 
bli is saved in every ECU node. 

• The final block (leaf block) will be used to provide secure 

data traceability validation and data integrity checks for 

every data frame transmitted over the bus. 

Algorithm 7: BlockChaining Verification. 
 

 

Inputs: i ← 0 //Current data block index. Initially 

thisvalue is set to zero to represent an orphan block 

bl0 Di //Current CAN data fame transmitted over 

the bus and received by all ECUs 

Ti // Timestamp of current CAN data frame Di 

IDi // Id of the current CAN data frame Di 
H’(bli) // block i computed by the sender ECU and trans 

mitted along CAN data frame Di and its 

timestamp data Ti 

H(bl0) // Hash value computed on the orphan block 

bl0.H(bl0). is preloaded into every ECU connected to the 

CAN bus 

Outputs: return true for successful verification and false 

for missed verification 

BlockChainingVerification (i, Di, Ti, IDi, 

Ht(bli) :  

1: if (i = = 0): 

// ECUj←0, ECU j←1,..., ECUj←n recompute their 

first blocks 

in the chain by applying the preloaded orphan block 

H(bl0). Computed block values are stored internally. 

 
B. Blockchain Validation Scheme 

2: H (bl1)ECU 

H(bl1)ECU 

 

j←0 
← H(D0||H(bl0)||ID0||T0) 
← H(D0||H(bl0)||ID0||T0) 

CAN data frames transmitted over the bus are captured and 

encoded into a single blockchain. The computed blockchain 

is shared and stored at every ECU node communicated over 

 

 

H (bl1)ECU // Every 

j←1 

.· 

. 

← H(D0||H(bl0)||ID0||T0) 

the bus. Our proposed system offers full resiliency against data ECUj←x will compare it computed block 

modification and data injection attacks via block validation of H(bl1)ECU 
 
j←x with the received block Ht(bl0) 

the final block in the chain. Due to the blockchain computing 3: If (H(bl1)ECU 
 
j←x /= Ht(bl1)) return false 

characteristic, a successful data injection attack requires full 

modification of the current data block including all subsequent 

data blocks, which makes such attacks infeasible. Finally, the 

final block in the chain can be used to verify the integrity of 

every CAN data frame transmitted over the bus. In the case of a 

malfunctioning CAN-enable system, blockchain data collected 

from different ECUs can be used to recompute the final block 

// If one ECU invalidates the received block, it broadcast 

an alert message over the CAN bus. ECUs that received 

the first alert message will suspend its processing 

for the current block. 

4: end if: 

5: else: 

// ECUj←0, ECU j←1,..., ECUj←n recompute the 
t 
Final ). The recomputed final block H(blt ) is then current block in the chain by applying the previous 

compared with the content of the stored final block H(blF inal). 

If the two final blocks match, then the integrity of the data trace 

is verified, and the collected CAN data can be used for further 

analysis. Our proposed system offers full resiliency against data 

modification and data injection attacks via block validation of 

the final block in the chain. Due to the blockchain computing 

characteristic, a successful data injection attack requires full 

modification of the current data block including all subsequent 

H(bli−1) and store the computed values in their 

internal memory. 

6: H(bli)ECU ← H(Di||H(bli−1)||IDi||Ti), 

H(bli)ECUj←1 

←  H(Di||H(bli−1)||IDi||Ti), 

.· 

. 

H(bli)ECUj←n 
← H(Di||H(bli−1)||IDi||Ti) 

// Every ECUj←x will compare it computed block 

data blocks, which makes such attacks infeasible. Finally, the H(bli)ECU 
 
j←x with the received block Ht(bli) 

final block in the chain can be used to verify the integrity of 

every CAN data frame transmitted over the bus. In the case of a 

7: If (H(bli)ECU 

ECU 

 

j←x 
/= Ht(bli)) return false //If one 

malfunctioning CAN-enable system, blockchain data collected 

from different ECUs can be used to recompute the final block 

validates a received block, it broadcast an alert message 

over the CAN bus. ECU received the first alert message 
t 
Final ). The recomputed final block H(blt ) is then and will suspend processing the current block. 

compared with the content of the stored final block H(blF inal). 

If the two final blocks match, then the integrity of the data trace 

is verified, and the collected CAN data can be used for further 

analysis. 

8: end else 

9: return true 

10: end of the BlockChainingVerification 
 

 

j←n 

H(bl 

H(bl 
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VIII. SECURITY ANALYSIS 

Inspired by the works of Ding Wang [41], Qingxuan [42], and 

Neal Koblitz [43], we have followed a similar approach in ana- 

lyzing the security properties of the modified TinyJAMBU-128 

against CAN message replay attacks. However, cryptoanalysis 

based on “provable security” has been exploited in the original 

work of TinyJAMBU-128 [32], it is limited to two adversary 

models (i) nonce-respecting attacks on TinyJAMBU-128 pri- 

vacy (ii) nonce-reuse attacks on TinyJamu-128 authenticity. As 

suggested in the works of Ding Wang and Qingxuan [41], [42], 

[43], security protocols that are provably secure under some 

cryptographic assumptions imposed by the designer usually fail 

to capture all the different aspects of an adversary model. For 

example, CAN replay attacks cannot be captured by exiting 

adversarial models presented in TinyJAMBU-128. Also, as we 

change the usage dynamic of TinyJAMBU-128 from securing 

data in a constrained environment to authenticating and encrypt- 

ing messages over CAN bus network, a new systematical secu- 

rity assessment methodology with various system performance 

metrics has been developed in this work. Our threat analysis was 

not based on a formal probabilistic attack modeling technique, 

rather it involves the deployment of real adversarial ECU that 

inject CAN replay messages over the bus with varying injection 

rates. Using a real CAN-enable testbed, we have analyzed the 

modified TinyJAMBU-128 based on data privacy, authenticity, 

and resiliency against CAN replay attacks. 

 

IX. PERFORMANCE ANALYSIS 

CAN data frames are usually transmitted over the bus at 

the rate of 10 msec to 500 msec. Based on the underlying 

system, processing times for CAN frames are highly dependent 

on the underlying processing power of each ECU. ECUs that 

handle time-critical tasks are often integrated with a high-end 

processer capable of processing messages at the rate of 0.1 msec. 

Meanwhile, ECUs that handle non-time-sensitive data usually 

have a data processing time of 100 msec to 500 msec. In our 

system simulation, we have considered the employment of ECUs 

with low-end processor power capability. The proposed security 

system offers a tradeoff between reliable data security with 

traceability and message delivery time. This section presents 

performance analysis of TinyJAMBU-128 lightweight authen- 

ticated encryption, AES-128, AES-192, AES-256 [44], ARIA- 

128, ARIA-192, ARIA-256 [45], Camellia-128, Camellia-192, 

and Camellia-256 [46]. For AES [44], ARIA [45], and Camellia 

[46], message authentication was incorporated into these crypto 

engines via the full employment of SHA-512. 

To compare the performance of modified TinyJAMBU-128 

against similar symmetric block cipher encryption schemes, 

processing time and message overhead for AES, ARIA, and 

CAMELLIA data encryption schemes have been captured and 

analyzed during this effort. Since modified TinyJAMBU-128 

supports authenticated encryption inherently, data authentica- 

tion capability for CAN messages encrypted by AES, ARIA, or 

CAMELLIA schemes has been achieved via the employment of 

SHA-512. AES is based on substitution-permutation network, it 

supports different numbers of rounds. AES-128 uses 10 rounds, 

AES-192 involves 12 operational rounds, meanwhile, data en- 

crypted with AES-256 requires 14 rounds. During each round, 

different operations are involved which include, byte substi- 

tution, shift-rows permutation, mixcolumns, and addroundkey. 

ARIA uses similar technique for enciphering data, it uses a 

substitution-network based on AES [44]. ARIA [45] is capable 

of supporting three modes of encryptions with different key 

sizes, 128, 192, and 256 bits. Depending on the key size, data 

encrypted/decrypted by ARIA requires 12 rounds, 14 rounds, 

or 16 rounds. ARIA’s main encryption/decryption engine is 

comprised of two submodules (i) key scheduling and (ii) data 

randomizing. CAMELLIA [46] is another Feistel cipher, the 

algorithm performs 18 rounds when a 128-bit key is used for 

encryption data. Meanwhile, data encrypted using CAMELLIA- 

192 or CAMELLIA-256 only require 24 rounds. The main 

design of CAMELLIA includes the “F-function” and the “FL- 

function”. The F-function takes 128-bit inputs and mixes them 

with the round key. During the F-function call, a single block 

is computed. For every six-round block, the algorithm calls the 

FL-function where a logical transformation is applied. 

For all tested encryption/decryption algorithms, message au- 

thentication data were pushed into the CAN bus as separate CAN 

data frames. In the proposed testbed, data frames authenticated 

via SHA-512 were fragmented into 8 data frames. Since each 

CAN data frame can only support a data length of bytes per 

frame, each CAN data will require 8 data frames for authenti- 

cation to enable authenticated encryption on AES, ARIA, and 

Camellia. Meanwhile, TinyJAMBU-128 supports data authen- 

tication via a single 64-bit authentication tag. A data frame 

encrypted via TinyJAMBU-128 requires only a single CAN data 

frame to achieve message authentication. Our simulation results 

were based on the observation of all CAN data frames including 

authentication tags transmitted over the network. 

During this work, we investigated CAN bus load percentage, 

data processing time, and message overhead for each of the 

deployed crypto algorithms. In our experiment, CAN bus ef- 

ficiency based on bus load and message overhead was estimated 

under various CAN data transmission rates and a 300KHz CAN 

frequency. CAN bus load measurements and message over- 

head were captured for TinyJAMBU-128, AES-128, AES-192, 

AES-256, ARIA-128, ARIA-192, ARIA-256, Camellia-128, 

Camellia-192, and Camellia-256 under continuous data trans- 

mission, 1msec, and 10msec CAN data frames transmission 

rates. 

Fig. 10 shows CAN bus load percentages for TinyJAMBU- 

128, AES, ARIA, and Camellia under continuous data trans- 

mission. Based on our simulation results, the AES encryption 

variant achieved the highest bus load percentages compared 

to other data-authenticated encryption modules. The average 

CAN bus load measured across the three AES variants was 

approximately 880.415% as compared to ARIA, and Camellia 

variants which achieved average CAN busloads of 743.38% and 

779.211% respectively. Meanwhile, the CAN bus load reached 

0.42195% while running TinyJAMBU-128. Similarly, Figs. 11 

and 12 illustrate the network performance in terms of bus load 

percentages computed at 1 msec and 10 msec data transmission 

rates respectively. CAN bus load measurements were collected 
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Fig. 10. Percentage of CAN bus load captured under various data encryption 
with continuous data transmission. 

 

 
Fig. 11. Percentage of CAN bus load captured under various encryption 
algorithms with 1 data frame sent every 1 msec. 

 

 

 
Fig. 12. Percentage of CAN bus load captured under various encryption 
schemes with 1 data frame sent every 10 msec. 

Fig. 13. Processing time for various encryption techniques tested on CAN- 
enabled devices. 

 

 

while running the proposed modified TinyJAMBU-128 encryp- 

tion. It shows that our CAN network testbed exhibited minimal 

bus load as compared to AES, ARIA, and Camellia. Higher 

CAN bus loads were recorded while running AES, ARIA, or 

Camellia data. Every CAN frame required 8 additional CAN 

frames for authentication. In the case of TinyJAMBU-128, each 

CAN frame requires only one additional authentication frame. 

Data processing for each encryption scheme has been mea- 

sured. Processing time was measured based on how much time 

is required to encrypt or decrypt a single CAN data frame on 

the hardware. As shown in Fig. 13, AES variants have the best 

processing time compared to other encryption schemes. Due to 

a large number of encryption rounds, TinyJAMBU-128 has the 

highest computation time. With a processing time of 50 msec 

per CAN data frame encryption, TinyJAMBU-128 remains a 

feasible encryption solution for most of today’s CAN bus-based 

network systems. 

Average CAN bus message overheads were computed during 

the execution of AES, ARIA, Camellia, and TinyJAMBU-128. A 

total of 500 randomly generated messages were transmitted over 

the CAN bus. Three data transmission rates were tested. Fig. 14 

presents message overhead observed during continuous data 

transmission. It shows that AES, ARIA, and Camellia introduce 

an average CAN bus message overhead of approximately 13.67. 

As we lower the data transmission rate from continuous to 1 msec 

(see Figs. 15 & 16), the average message overhead reduces to 

approximately 12.3 for AES, ARIA, and Camellia. In the case of 

a 10 msec data transmission rate, message overheads reach 10.98 

when running AES, ARIA, or Camellia on the CAN network. For 

the various data transmission rates, TinyJAMBU-128 introduces 

the lowest message overhead. We have observed 2.15 message 

overhead under continuous data transmission, 2.14 and 2.062 

under 1msec and 10msec data transmission rates respectively. 

Finally, we have analyzed the sensitivity of the proposed 

countermeasure scheme against replay attacks. True Positive 

Rate (TPR) and False Positive Rate (FPR) of the anti-replay 

attacks model has been computed and presented in Figs. 17 and 

18. To simulate a replay attack, we considered the deployment 
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Fig. 14.  Average CAN bus overhead captured under various encryption algo- 
rithms with continuous data transmission. 

 

 
Fig. 15. Average CAN bus overhead captured under various encryption en- 
gines with 1 CAN frame sent every 1 msec. 

 

 
Fig. 16.  Average CAN bus overhead captured under various encryption algo- 
rithms with a single CAN data frame transmitted every 10 msc. 

Fig. 17. CAN network’s True Positive Rate (TPR) was collected under various 
percentages of replay attack messages. 

 

 

 
Fig. 18. CAN network’s False Positive Rate (FPR) was collected under various 
percentages of replay attack messages. 

 

 

of a malicious node. The attacking node sniffs CAN data frames 

from the bus and arbitrarily send replay messages over the 

bus. Fig. 17 shows the TPR of the proposed technique under 

various injection rates. With injection rates between 2% and 

20%, our proposed scheme achieved TPR between 0.99 and 

0.97. As we increase the injection rate from 20% to 50%, TPR 

decreases to 0.92. Fig. 18 shows the FPR of our anti-replay 

attack mechanism. Our performance results show that when the 

injection rate is lower than 10%, FPR was estimated as zero, as 

we increase the injection rate from 10% to 50%, FPR increases 

to 0.076. Based on the performance analysis of the proposed 

anti-replay attack model, the model established superiority in 

replay message detection. 

 

X. THE PROPOSED TESTBED 

To test the feasibility of the proposed CAN security subsys- 

tem, we proposed the development of a system that is comprised 

of three ECU development platforms with CAN capability. The 

three ECU nodes are based on the STM32 Nucleo board. The 

three ECU nodes are based on the STM32 Nucleo board. Each 

development board is equipped with the ARM 32-bit Cortex 
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M4 processor, an adaptive real-time accelerator, 80MHz max- 

imum CPU frequency, 1MB flash programable memory, 128 

KB SRAM, random number generator (TNG for HW entropy), 

multiple digital timers, three SPI, two I2C, two UART, 3 USART, 

and one CAN interface. We have employed the high-speed CAN 

transceiver MCP2551 to facilitate CAN data communication 

between the ECU nodes. MCP2551 supports a 1Mb/s trans- 

fer rate. It is implemented with ISO-11898 standard physical 

layer requirements. It supports a system with up to 112 nodes 

connected to the bus. Cryptographic algorithms that include 

AES, Camellia, Aria, modified TinyJAMBU-128, SHA512, and 

the replay attacks countermeasure mechanism were developed 

based on utilizing Mbed os API [48] and Mbed TLS library 

[49]. AES, Camellia, Aria, and SHA512 were supported by 

the Mbed TLS library. Meanwhile, the modified version of 

TinyJAMBU-128 and the countermeasure mechanism against 

replay attacks were fully implemented using Mbed os API. CAN 

data frames were created and pushed into the bus via CAN API. 

 

XI. CONCLUSION 

This article proposed the development and integration of 

a crypto-based engine that supports lightweight authenticated 

data encryption and secure data traceability capabilities for 

systems communicating over the CAN bus network. As opposed 

to classical encryption/decryption schemes that require heavy 

computation and high communication overheads for supporting 

authenticated encryption. Our proposed scheme is based on 

TinyJAMBU-128 authenticated data encryption. It maintains 

low memory usage and minimal communication overhead which 

makes it suitable for securing data on power-limited devices. 

Meanwhile, TinyJAMBU-192 and TinyJAMBU-256 modes re- 

quire an encryption key size of 192 bits and 256 bits respec- 

tively. Due to their large key sizes, they often consume extra 

processing time as compared to TinyJAMBU-128. Therefore, in 

this research, we have only considered TinyJAMBU-128 during 

testing. Another alternative for improving processing time is to 

lower the number of rounds require for updating TinyJAMBU’s 

internal state. Although lowering the number of permutation 

rounds might improve the algorithm’s processing time, it could 

impact the resiliency of the system against data breaches. As this 

modification required further security analysis which we will 

be considering during our future works. Yet to our knowledge, 

our work provides a base ground for exploring a lightweight 

authenticated encryption scheme for securing data over CAN 

bus network with data traceability support and full resiliency 

against CAN message replay attacks. 

In this article, a modified version of TinyJAMBU-128 was 

fully implemented and deployed on multiple CAN-enabled 

development boards. Data communicated over the CAN bus 

were encrypted and authenticated using TinyJAMBU-128. We 

have analyzed the performance of TinyJAMBU-128 in terms of 

CAN bus load, processing time, and average message commu- 

nication overheads and compared the results against traditional 

cryptosystems, such as AES, ARIA, and Camellia. Message 

authentication on the classical cryptosystems was established 

via the employment of SHA-512. Based on our simulation, 

TinyJAMBU-128 outperformed AES, ARIA, and Camellia with 

respect to CAN bus load and average CAN data frame overhead. 

Since only one data frame is required to authenticate a data 

block. In contrast, cryptosystems that relied on SHA-512 for data 

authentication took 8 CAN data frames. Finally, an anti-replay 

attack model was fully developed and deployed on the proposed 

testbed. The proposed model was validated based on various 

injection rates. We were able to achieve a TPR between 0.99 

and 0.97 for replay attack injection rates between 2% and 20% 

respectively. As more replay messages injected on the bus, TRP 

decreases to 0.92 with 50% of the transmitted messages were 

considered malicious. 
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