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Abstract— Hyperdimensional computing (HDC) has been
assumed to be attractive for time-series classification. These
classifiers are ideal for one or few-shot learning and require less
resources. These classifiers have been demonstrated to be useful
in seizure detection. This paper investigates seizure prediction
using HDC from intracranial electroencephalogram (iEEG)
from the publicly available Kaggle dataset. In comparison
to seizure detection (interictal vs. ictal), seizure prediction
(interictal vs. preictal) is a more challenging problem. Two
HDC-based encoding strategies are explored: local binary
pattern (LBP) and power spectral density (PSD). The aver-
age performance of HDC classifiers using the two encoding
approaches is computed using the leave-one-seizure-out cross-
validation method. Experimental results show that the PSD
method using a small number of features selected by the
minimum redundancy maximum relevance (mRMR) achieves
better seizure prediction performance than the LBP method on
the training and validation data.

Index Terms— Hyperdimensional computing (HDC), local
binary pattern (LBP), power spectral density (PSD), minimum
redundancy maximum relevance (mRMR), and seizure predic-
tion.

I. INTRODUCTION

In recent years, there has been a surge of interest in
hyperdimensional computing (HDC) since it was proposed
in 1988 [1]. As a brain-inspired computing paradigm, HDC
manipulates its unique data points, which are referred to
as hypervectors for data representation, transformation, and
interpretation. The dimensionality d of these hypervectors is
typically in thousands of bits, e.g., d=10,000 bits. Though
still in its infancy, HDC has been widely studied to demon-
strate its potential: comparable performance to traditional
machine learning techniques, high energy efficiency, high
noise tolerance, massive parallelism, and ideal realization in
nanoelectronics. Applications of HDC include but are not
limited to: language recognition [2], image classification [3],
bio-signal classification [4, 5, 6], etc.

Numerous prior studies have addressed seizure detection
(interictal vs. ictal) [7, 8, 9, 10, 11, 12, 13] and seizure
prediction (interictal vs. preictal) [14, 15, 16]. Among these
prior studies, the HDC-based local binary pattern (LBP)
method, proposed in [8], can achieve 99.36% sensitivity and
95.67% specificity for seizure detection over the SWEC-
ETHZ iEEG database [17]. In [11], the applicability of
seizure detection using the HDC approach with frequency
spectrum features is proven for the CHB-MIT dataset [18].
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Additionally, the power spectral density (PSD) method using
traditional support vector machines (SVMs) can achieve high
performance for both seizure detection and prediction.

Though [10] has studied the applicability of HDC using
both LBP and PSD methods for seizure detection, whether
these two HDC-based strategies are suitable for seizure
prediction has not been investigated. This paper applies
these two HDC-based encoding approaches for subject-
specific seizure prediction using the publicly available Kag-
gle dataset. The LBP strategy extracts the features from the
time domain, whereas the PSD method uses the frequency-
domain information. Experimental results indicate that the
features generated by the aforementioned two methods are
not suitable for an HDC classifier for seizure prediction for
this dataset. It has been believed that HDC is applicable to
most time-series classification problems. In this paper, we
show that HDC classifiers using the PSD method with a
small number of features achieve better performance on the
training and validation data as compared to the LBP method.

This paper is organized as follows. Section II presents
the classification overview for HDC. Section III elaborates
the two HDC-based encoding strategies: LBP and PSD.
The corresponding results are summarized and discussed in
Section IV. Section V finally concludes this paper.

II. PRELIMINARIES
A. Basics of HDC

Starting with the seed hypervectors, HDC maps the origi-
nal data into the hyperdimensional space. With an encoding
approach, those seed hypervectors are manipulated to form a
compound hypervector, which corresponds to the input data.
Typically, three point-wise operations are involved: addition
(+), multiplication (¥), and permutation (p).
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Fig. 1: Classification overview with HDC [19].

Take a k-class classification problem as an example. As
shown in Fig. 1, during the training phase, k different class
hypervectors are generated by encoding the training data.



During the inference phase, a query hypervector, correspond-
ing to an unknown test data, is encoded. To predict this test
data, a similarity measurement is computed between the pre-
trained class hypervectors and the query hypervector. The
label is determined by the class which shows the highest
similarity with the query one. In terms of the similarity
measurement, since the employed seed hypervectors are
composed of binary values (€ {0,1}9), the experimental
results throughout this paper are measured by Hamming
distance as calculated in (1), where d is the dimensionality of
the two hypervectors A and B. Note that we use d=10, 000
for the hypervectors in this paper.

d
1
Ham(A,B) = ~ > Law#Ba)- (1)
i=1

In this paper, the seed hypervectors are either random or
level hypervectors. To put it simply, /). random hypervectors
are quasi-orthogonal to each other and are mainly employed
to represent the independently categorical data, e.g., 256
pixel values; 2). level hypervectors are usually linearly
correlated and are used to represent the sub-intervals of a
given range, e.g., the quantized magnitude of a given time
series. The reader is referred to [19, 20] for more details.

B. Seizure Prediction Dataset

The term “ictal” refers to the period when the subject has
a seizure. “Interictal” and “preictal”, respectively, represent
the time period at baseline and just before the onset of the
seizure. Preictal often refers to the period an hour before the
seizure with a 5-minute offset, i.e., the 5-minute period just
before the seizure onset is not considered preictal.

The dataset considered in this paper is publicly available as
part of the Kaggle seizure prediction contest [21]. Such data
are provided as 10-min interictal and preictal clips. In total
seven subjects are involved: five dogs and two humans. Table
I lists the basic dataset information, including the number of
interictal-, preictal-, and test-clips, the number of channels
for the iEEG recordings, and the sampling frequency f;.
Each clip is a 10-min iEEG recording. For more detailed
data description, interested readers are referred to [22].

TABLE I: Dataset Information

Subject #interictal ~ #preictal  #test #ch  fs (Hz)
Dog_1 480 24 502 16 400
Dog_2 500 42 1000 16 400
Dog_3 1440 72 907 16 400
Dog4 804 97 990 16 400
Dog_5 450 30 191 15 400
Patient_1 50 18 195 15 5000
Patient_2 42 18 150 24 5000

One thing that should be emphasized is that the seizure
prediction in this paper is a binary classification problem,
which identifies the preictal clips among a large number of
interictal clips. Ictal clips, which represent the iEEG during
the seizure period, are not analyzed. The goal of predicting
the preictal clips is to provide sufficient time for warning or
prevention before the actual seizure occurs.

C. Flow Chart of the Employed Approaches

Figure 2 shows the flow chart of the employed HDC-
based approaches for seizure prediction. For the given multi-
channel iEEG recordings, two different types of features
are investigated as the input for the HDC classifier: LBP
and PSD. To be more specific, the LBP method essentially
extracts the time-domain information, whereas the PSD
features reflect the frequency-domain information. Note that,
there are three types of PSD features: absolute power spectral
density (ASP), relative power spectral density (RSP), and
the ratio of two ASPs [16]. Finally, after encoding the
input features (LBP codes or PSD values), an HDC-based
classification is performed for this dataset.
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Fig. 2: Flow chart of the employed approaches.

D. Training and Test Workflow

We conduct the leave-one-seizure-out cross-validation
over this seizure prediction dataset. This Kaggle dataset
mentioned earlier comes with pre-specified training and test
data. Thus the original given training data are separated
into the training and validation sets. Note the validation
sets are not used for updating the learned HDC model but
for evaluating the generalizability of the trained model. To
elaborate further, based on the number of seizures (.5), the
original training data are divided into S folds. Within each
fold, both the interictal and preictal clips are split into S
groups. To be more specific, the preictal clips belonging
to the same single seizure form one group, whereas the
interictal clips are nearly equally distributed among all S
groups. After the data are split, we learn from (S—1) groups,
validate the trained model on the remaining one group, and
test the model over the given test data. The final performance
is the average of the results for all S folds.

III. METHODOLOGY
A. LBP Method

This work employs the HDC-based LBP method, which
is originally proposed in [8] for seizure detection using the
SWEC-ETHZ iEEG database [17]. Given the raw iEEG
data, LBP codes are extracted as the features, which reflect
the time-domain information and are then fed to the HDC
classifier.

To extract the LBP codes, consecutive iEEG samples are
converted into a bit stream whose components are determined
by the sign of the temporal difference of the two adjacent
samples. If the difference is positive, then the LBP code is



set to be “1”; otherwise it is assigned as “0”. Generally,
the length of LBP code [ should be specified. To obtain
a length-I (I-bit) LBP code, (I 4+ 1) consecutive time-series
data are required. Equations (2a)-(2e) describe how the class
hypervector is generated for either the preictal or interictal
class. The parameters, [, N, W, P, K, respectively, represent
the length of LBP code, the number of channels, the number
of samples within a window, the number of windows, and
the number of clips for a single class.

h_VLBPchj‘,- € {hvispy,- - ,hvipa} (22)
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Fig. 3: HDC classification using LBP method.

Figure 3 illustrates the HDC-based LBP method for
seizure prediction. To begin with, we generate the
seed hypervectors {hvigp;,hvreps, - ,hvigpx} and
{Ch;,Chy, - ,Chy} to represent all the 2! LBP code
patterns and N channel indices, respectively. Both of these
two sets of hypervectors are random hypervectors. /). Within
each window, the temporal iEEG data are converted into LBP
codes hvisp,, ;, where Ch; specifies the channel informa-
tion and i indicates the temporal index. These hypervectors
are selected from the seed hypervectors according to their
code patterns (see (2a)). 2). Computed by (2b), the spatial
information across all N channels is encoded by hvgpatial,,
which associates the LBP code patterns with the specific
channel. 3). Since there are W samples within a window, the
entire window information is represented by hvyi,,, which
is calculated by (2c) 4). Afterwards, hv;p, represents a 10-
min data as computed in (2d). 5). The final class hvjass iS

generated by summing up its constituent clips (as shown in
(2e)). For this seizure dataset, we use a 1s-window for each
10-min clip.
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Fig. 4: HDC-based PSD method for seizure prediction.

B. PSD Method

PSD features manifest the frequency-domain information.
Unlike [15], where only RSP and ratio of spectral powers
are considered, this paper employs one more type of PSD
features—ASP. How these three PSD features are computed
is described in [23] (see page 2).

We follow the same sub-band split for the PSD feature
extraction as described in [15], whose classifier is polynomial
SVM. ). For dogs, the frequency band is divided into 10
sub-bands (Hz): 3-8, 8-13, 13-30, 30-55, 55-80, 80-105, 105-
130, 130-150, 150-170, 170-200. 2). For human patients, two
more sub-bands are included: 200-225 and 225-250. Note
that the power line noise at 60 Hz and its harmonics should
be eliminated. The reader is referred to Sec.I.C of [15] for
more details. In this paper, we have 65(= 10 + 10 + (120))
PSD features for dogs and 90(= 12+ 12+ (7)) for human
patients. Equations (3a)-(3c) describe how the class hyper-
vector is generated for the PSD method. The parameters,
q, K, M, respectively, represent the quantization level, the
number of clips for a single class, and the number of selected
features.

hveiip,j € {L1,L2, -+ ,L,}, where k € [1,K], (3a)
K
theaturej = [Zkzl thlipk,j] ) (3b)
M
hvclass = [ijl hvfeaturej @ ID]] . (3C)

We employ the record-based encoding (summarized in
[19] and is the “Approach 3” in [10]) using a small num-
ber of features that are selected by minimum redundancy
maximum relevance (mRMR). After calculating PSD values
for each feature, we concatenate the corresponding interictal
and preictal categories of the training data together and
normalize them into the range of [0,1]. Then use the training
information to scale both the validation and test data. Figure



TABLE II: Experimental Results For LBP Method With The Code Length | = 6

Training Data

Patient ACC Sen. Spec. AUC | ACC

Validation Data Test Data
Sen. Spec. AUC | ACC  Sen. Spec. AUC

Dog_1 6733 59.72 67771 0.64 | 64.29
Dog2 70.13  67.46 7036 0.69 | 69.02
Dog_3 66.41 69.19 6627 0.68 | 63.43
Dog_4 69.84 74.04 6933 0.72 | 68.76
Dog_5 68.07 69.17 68.00 0.69 | 67.08
Patient_1 | 63.64 77.78 5833  0.68 | 27.27
Patient2 | 77.50 66.67 82.14 0.74 | 56.67

833 67.08 0.38 5872 39.58 59.68  0.50
66.67 69.22  0.68 58.41 40.63 60.17 0.50
54.17 63.89  0.59 63.51 2341 6545 044
73.53 6834 0.71 68.50 67.39 6856  0.68
66.67 67.11  0.67 3770 833  39.66 0.24
11.11 3333 022 | 4427 8056 41.89 0.6]
38.890 6429 052 | 4778 38.10 48.77 043

mean 68.99 69.15 6888 0.69 | 59.50

45.62 61.89 054 | 54.13 4257 5489  0.49

TABLE III: Experimental Results For PSD Method With The Quantization Level ¢ = 21

Training Data

Patient ACC Sen. Spec, AUC ACC

Validation Data Test Data
Sen. Spec. AUC | ACC  Sen. Spec. AUC

Dog-1 91.53 3333 9444 0.64 | 90.48
Dog2 89.39 6468 91.438 0.78 88.13
Dog_3 95.01 3485  98.02 0.66 | 94.51
Dog_4 86.83 3484 93.14 0.64 85.96
Dog_5 9594 65.83  97.94 0.82 | 95.83
Patient_1 | 92.42 7222 100.00 0.86 83.33
Patient 2 | 90.00 66.67 100.00  0.83 51.67

0.00 95.00 0.48 87.00 1146  90.79 0.51
47.62 9155 0.70 | 65.83 33.02  69.07 0.51
3056  97.71  0.64 | 81.25 16.67  84.38 0.51
26.08 9324 0.60 [ 93.04 8.77 98.18 0.53
66.67 97.78 0.82 | 93.72  0.00 100.00  0.50
4444 9792 0.71 63.59 4444  64.85 0.55
16.67 66.67 042 | 6222 19.05 66.67 0.43

mean 91.59 5320 96.43 0.75 84.27

33.15 9141 0.62 | 78.09 19.06 81.99 0.51

4 shows the HDC-based classification for seizure prediction
using PSD features. First, seed hypervectors are generated
{ID¢,IDgy,--- ,IDy/} and {L;,Ls,---,L,} to represent
the feature identifiers and the quantized PSD values, re-
spectively. Note that the feature identifier hypervectors are
random hypervectors, whereas the quantization hypervectors
are level hypervectors. The class hypervectors are generated
following these steps: I). According to the quantized PSD
values, hypervectors hvcyp, ; are selected from the seed
hypervectors, where “clip,, j” specifies that this PSD value
is calculated from the clip, to form the feature j (as
shown in (3a)). 2). As described in (3b), for the feature
J» the corresponding hvfeature; hypervector is obtained by
adding all its constituent K clip hypervectors. 3). The class
hypervector hv j,ss is generated as shown in (3c). 4). Similar
to [15], we use a 2s-window with 50% overlap to generate
the PSD feature values for each 10-min clip.

IV. EXPERIMENTAL RESULTS

Using the aforementioned LBP and PSD methods, the cor-
responding experimental results are reported in Tables II and
III, respectively. We can observe from these two tables that:
1). the LBP method achieves the on average 0.69 training
AUC, 0.54 validation AUC, and 0.49 test AUC (Table II),
whereas the PSD method leads to 0.75 training AUC, 0.62
validation AUC, and 0.51 test AUC (Table III). Therefore, the
PSD method performs better than the LBP method for seizure
prediction on the training and validation data. However, both
methods perform no better than a random guess for the
test data. 2). The HDC-based LBP method achieves 99.36%
sensitivity and 95.67% specificity for seizure detection in
[8]. However, this method does not perform well in seizure
prediction. The LBP method could be suitable for Dog_4
since it achieves 0.72, 0.71, and 0.68 AUC for training,
validation, and test data. The best result using the LBP
method is achieved for Dog 4. 3). The PSD method can

achieve 0.98 validation AUC in [15] using polynomial SVM.
However, only 0.64 validation AUC is achieved by the HDC-
based PSD method in this paper. Note that, the HDC-based
PSD method has been investigated in [10] to demonstrate
that HDC is suitable for seizure detection. However, the PSD
features cannot always predict seizures using HDC for the
test data in this dataset.

The results of the top ten competitors from the Kaggle
seizure prediction contest have been summarized in [22],
where the test AUC scores range from 0.82 to 0.86 (see
Table 2 in [22]). None of them is based on HDC, which can
be beneficial for lightweight classifiers and wearable devices.

V. CONCLUSIONS

The HDC PSD method works well for the two human
subjects and two dogs for the training data. Generally, the
PSD method achieves better performance than LBP using
HDC; however, neither of them is practically applicable for
seizure prediction by testing over the Kaggle dataset. Signif-
icant portions of the test samples in the Kaggle dataset are
from out-of-distribution data as reported in [22]. Predicting
seizures is a hard problem due to the highly non-stationary
nature of brain signals. Thus, further research needs to be di-
rected towards the development of HDC approaches that are
robust to classifying out-of-distribution data. Although the
LBP approach exploits some aspects of temporal properties,
the PSD method does not. Future work should, therefore, be
directed towards exploiting temporal properties in the context
of PSD features. In addition, new encoding approaches that
can take advantage of temporal properties in the context of
HDC classifiers could be explored. Features could also be
generated by neural networks such as autoencoders.
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