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Abstract—Virtual Reality (VR) is an emerging technique that 

has been applied to more and more areas such as gaming, 

remote conference, and education. Since VR user interface has 

very different characteristics compared with traditional graphic 

user interface (GUI), VR applications also require new testing 

techniques for quality assurance. Recently, some frameworks 

(e.g., VRTest) have been proposed to automate VR user interface 

testing by automatically controlling the player camera. However, 

their testing strategies are not able to address VR-specific testing 

challenges such as object occlusion and movement. In this paper, 

we propose a novel testing technique called VRGuide to explore 

VR scenes more efficiently. In particular, VRGuide adapts a 

computer geometry technique called Cut Extension to optimize 

the camera routes for covering all interact-able objects. We 

compared the testing strategy with VRTest on eight top VR 

software projects with scenes. The results show that VRGuide is 

able to achieve higher test coverage upon testing timeout in two 

of the projects, and achieve saturation coverage with averagely 

31% less testing time than VRTest on the remaining six projects. 

Furthermore, VRGuide detected and reported four unknown 

bugs confirmed by developers, only one of which is also detected 

by VRTest. 
Index Terms—Software Testing, Virtual Reality, Scene Explo- 

ration 

I. INTRODUCTION 

Virtual Reality (VR) is a technique [1] to simulate user 

experience similar or completely different from the real world. 

Its applications include gaming, virtual exhibition and tour, 

training, education, product design, and remote communica- 

tion. According to a recent market report [2], the VR market is 

emerging and its total market value has reached $11.52 billion 

in 2019, and is expected to grow at a high rate of 48.7% per 

year in the following five years. The pandemic of COVID- 

19 virus further triggered the requirement and accelerated the 

adoption of VR techniques. VR software is an indispensable 

part of VR techniques, and its market value has also reached 

$1.9 billion in 2019 [3]. In year 2020, thousands of apps were 

uploaded to Google Play [4], Apple Store [5], and Oculus 

Market [6], and these apps have been downloaded by more 

than 171 million users [7]. 

VR applications also need testing to validate their quality, 

but they raise new challenges for automatic testing techniques. 

Although VR scenes can still be considered as a type of 

Graphic User Interface (GUI), existing 2D GUI testing tech- 

niques can hardly be applied because users typically observe 

VR scenes through a player camera and only a small portion of 

the scenes can be observed and interacted with. Furthermore, 

the exploration of the scene and the whole user interface is 

mainly done by moving and rotating the camera rather than 

clicking buttons. 

Most recently, researchers have developed novel techniques 

to test VR applications by automatically moving and rotating 

cameras. Autowalker [8] is a tool that automatically drives the 

player camera to randomly explore a VR scene. VRTest [9] 

further monitors the positions of all virtual objects and drives 

the player camera toward the nearest interactable objects 

that have not been triggered yet. However, although these 

techniques addressed challenges caused by new exploration 

patterns in VR scenes (camera movement vs. mouse clicks), 

their exploration strategies are not optimized because they did 

not consider the following major characteristics of VR scenes: 

• Object Occlusion. In traditional 2D GUI, all GUI con- 

trols in the current window show up on the screen, and 

a test driver can directly trigger any interactable control 

given its coordinates. If a GUI control is occluded by 

another GUI control, it is typically considered a bug, and 

the user (or test driver) will not be able to trigger the 

occluded GUI control at all. However, in VR scenes, due 

to relative positions of objects and view angles of the 

camera, interactable objects are often occluded by other 

interactable or non-interactable objects and the camera 

needs to be moved and rotated properly to make the 

occluded objects become visible and interactable. 

• Object Location Affects Testing Efficiency. Since ac- 

cessing an interactable object requires camera actions 

and thus will take time, testing efficiency can be largely 

affected by the order (and route) of visiting different 

interactable objects. Theoretically, if the test driver can 

find a shortest route for the user camera driver to visit 

the objects to be interacted, the testing efficiency can 

be optimized. However, this is a well known NP-hard 

problem. The run-time creation as well as movement of 

objects and their ability to occlude each other make the 

problem even more complicated. This is a unique factor to 

be considered in determining camera movement / rotation 

strategy for testing VR scenes. 

2643-1572/23/$31.00 ©2023 IEEE 951 

2
0

2
3

 3
8

th
 IE

EE
/A

C
M

 In
te

rn
at

io
n

al
 C

o
n

fe
re

n
ce

 o
n

 A
u

to
m

at
ed

 S
o

ft
w

ar
e 

En
gi

n
ee

ri
n

g 
(A

SE
) |

 9
7

9-
8

-3
5

0
3-

2
9

96
-4

/2
3

/$
3

1
.0

0
 ©

2
02

3
 IE

EE
 |

 D
O

I:
 1

0.
11

09
/A

SE
56

22
9.

20
23

.0
01

97
 

mailto:xiaoyin.wang@utsa.edu
mailto:md.tahmidulislam.raﬁ@utsa.edu
mailto:nm8247@vt.edu


952 

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply. 

 

• Huge Input Space. VR software provides an immersive 

experience for users, so typically a user is allowed to 

move in the scene and change watching angle freely 

(sometimes within a scope) within the virtual space. 

Therefore, each camera state corresponds to six float 

values (three dimensions of position coordinates and three 

dimensions of watching angle). These dimensions form 

a very large input space, making efficient strategy of 

moving / rotating the player camera very important. 

In this paper, to efficiently test virtual reality scenes with 

consideration of the above three characteristics, we propose an 

automatic testing technique VRGuide. In particular, VRGuide 

takes into consideration the information of the entire VR scene 

(i.e., locations of all objects) to calculate interaction values of 

locations (measured by how many interactable objects can be 

triggered at the location), and move the camera towards the 

locations with highest interaction values. The basic intuition 

behind VRGuide strategy is that a user camera does not need 

to move to an object’s exact location to access it, but it may 

access the object at a distance as long as the object is in 

its view and is not occluded by other objects. Therefore, 

there may exist some locations where multiple interactable 

objects are visible, and it is more efficient for the user camera 

to move to those locations if they are close. To guide the 

camera toward a more efficient route in a VR scene to be 

tested, we leverage a technique called Cut Extension from 

computer geometry, and adapt it as Dynamic Cut Extension to 

handle moving and dynamically created objects in VR scenes. 

We evaluated VRGuide on the four software projects used in 

VRTest [9] evaluation, and four other top Unity VR software 

projects (based on number of stars) from Github. Although 

our evaluation focuses on Unity-based software, we believe 

this scope of subject selection is reasonable because Unity 

dominates VR software development with over 60% market 

share according to multiple sources [10], [11], and Unity 

integrates with almost all existing VR / AR platforms, includ- 

ing Apple ARKit [12], Android Daydream / Cardboard [13], 

[14], Google ARCore [15], Steam VR [16], Windows Mixed 

Reality (Hololens) [17], etc., so the testing technique can be 

largely generalized. The evaluation results show that VRGuide 

achieved higher object coverage and higher method coverage 

compared with VRTest (VRGreed stategy) in two out of the 

eight projects upon testing timeout. For the remaining six 

projects, VRGuide uses 31% less time to reach coverage satu- 

ration compared with VRTest (VRGreed stategy). VRGuide 

also detected four previously unknown bugs confirmed by 

developers (only one of them is also detected by VRTest) in 

real-world projects. 

To sum up, this paper makes the following contributions. 

• We explore and summarize the major challenges in effi- 

ciently testing VR scenes. 

• We propose a novel testing strategy called VRGuide, 

which performs dynamic cut extension based on infor- 

mation of objects in the scene collected at run time. 

• We perform an evaluation to compare the efficiency of 

VRGuide with VRTest on eight top VR software projects, 

and the results show that VRGuide achieves higher testing 

efficiency in seven out of eight projects, and higher 

coverage upon testing timeout in two out of eight projects. 

The remaining of this paper is organized as follows. In 

Section II, we will introduce some background knowledge 

about VR scenes. Then we will introduce cut theory as the 

preliminary knowledge in Section III. We will describe the 

details of our proposed testing technique in Section IV, and 

present the evaluation setup and results in Section V. After 

that, we will discuss some important issues in Section VI and 

related research efforts in Section VII. Before we conclude 

in Section IX, we point to several research directions where 

some future research efforts can be made. 

II. BACKGROUND 

In this section, we introduce some background knowledge 

of VR scenes and event triggers. 

A. VR Scenes 

In VR software, all virtual objects are organized inside a 

virtual space called a VR scene. These objects can be either 

static (indicating that they are not moving during software 

execution) or dynamic (indicating that they may move during 

software execution). Typically, a user is initially placed at a 

location inside the VR scene, and a user camera is attached 

to the user so that the user can watch a portion of the virtual 

space based on the watching angle of the camera. A portion 

of these objects can be interactable, indicating that they can 

receive events triggered by the user. The remaining of these 

objects are not interactable, but they may limit the user’s 

movement through collision and block the user camera’s view. 

Therefore, intuitively exploration testing of a virtual software 

can be viewed as moving / rotating the user camera so that 

it can see all the interactable virtual objects (while avoiding 

all other virtual objects on its way and blocking its view) and 

interact with them. 

B. Event Triggers 

Virtual objects can be interacted with if they have event 

triggers registered with them. The interaction types vary in 

different VR hardware devices. However, the most commonly 

used type of interaction is pointer click. Pointer clicks are 

based on a white pointer at the focus of a user’s view. When 

a user turns her head to move the white pointer toward an 

interactable virtual object, the pointer will become a small 

circle. If the user keeps the pointer inside the range of the 

object for certain amount of time, the pointer click event will 

be triggered. For some VR devices where a clicker is provided, 

the user can simply click the button on the clicker when the 

pointer is changed to a circle, and then the pointer click will 

be triggered. 

In Figure 1, we show an exemplar scene and a point click 

event being triggered. In particular, the virtual space simulates 

an apartment room, in which several objects (the door, the 

printer, the TV, etc.) are interactable. When a pointer click 
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Fig. 1. An Exemplar VR Scene and Pointer Click Event 

 

 

event is triggered on the printer, a virtual paper object will 

be created from the printer’s location, and fall down to the 

ground. 

While there are also some other types of interactions such as 

object grabbing, they are not supported commonly by existing 

VR devices so they are also rarely used in existing open 

source VR software projects. Based on these observations, our 

VRGuide framework focuses on pointer click events. It should 

be noted that adding a new type of interaction event to our 

VRGuide framework just requires additionally instrumentation 

of a new type of event handler, so it is straightforward in 

general. 

III. PRELIMINARY 

A. The Watchman Route Problem 

The cut coverage theory origins from the art gallery prob- 

lem or museum problem, which is a well-known visibility 

problem in computational geometry. The problem asks how 

to select a set of fewest points P in a simple polygon so that 

for each point q in the polygon, there exists a point p in P , and 

line segment pq is inside the polygon (i.e., point q is visible 

from at least one point in set P ). Its corresponding real-world 

problem is guarding an art gallery with the minimum number 

of watchmen who together can observe the whole gallery. 

One of the problem generalized from the art gallery problem 

is called watchman route problem. In this problem, there 

exists only one watchman, but he will patrol from a starting 

point in the polygon. The goal is to find the shortest route 

the watchman needs to follow so that he can observe the 

whole polygon along the route. See Figure 2 for two exemplar 

watchman routes of a polygon from starting points S1, and S2, 

respectively. We can see that the goal to efficiently observe 

all the interactable objects in VR testing (if not considering 

the run-time creation and movement of objects) is actually a 

simplified version of the watchman route problem, where not 

the whole scene, but only the interactable objects need to be 

observed. The watchman route problem also has several well 

known variants such as the zookeeper route problem where 

 

ǆ͛ 

Ƶ͛ 

 
 
 

 
Fig. 2. Illustration of the cut theory 

 

 

the watchman needs to reach all the cages (nested polygons) 

without going into them. 

B. The Cut Theory 

The Cut Theory is a basic technique to solve the watchman 

route problem [18]. In a n-sided polygon P , a vertex is called 

a convex if its internal angle is strictly larger than its external 

angle (i.e., its internal angle is strictly larger than 180 degree). 

For example, in Figure 2, vertexes u, v, w, and x are the four 

convexes in the polygon. From each convex, we can extend 

any one of its two adjacent edges back to the polygon, until 

the extended line reaches an edge of the polygon. Clearly, 

the generated line segment will split the polygon into two 

pieces, so the line segment is referred as a cut of the polygon. 

For example, line segments uuι, vvι, wwι, and xxι are four 

different cuts of the polygon. 

In the two pieces of polygon split by a cut C, the piece 

that does not contain the original edge before extension is 

called the essential piece of the cut, denoted as P (C). A 

more intuitive explanation of the essential piece is that, if 

the watchman is in the essential piece of a cut, then he must 

reach the cut to see the original edge. For example, the piece of 

polygon to the right of vvι is the essential piece of vvι, because 

the original edge ax is not in the piece, and a watchman in 

this essential piece must reach vvι to see ax (or the non- 

essential piece of cut vvι). A cut C is called an essential cut, 

if its essential piece is not fully contained by the essential 

piece of any other cut Cι. Otherwise, if there exists a cut 

Cι whose essential piece fully contains C’s essential piece, 

we say Cι dominates C. The intuition explanation is that, if 

the essential piece P (C1) of cut C1 is fully contained by the 

essential piece P (C2) of cut C2, a watchman in P (C1) must 

reach C2 to observe the non-essential piece of C2. In such 

a scenario, he will inevitably go across C1 on his route to 

C2 because P (C2) fully contains P (C1). So, C1 is no longer 

important in determining the shortest route. Note that if the 

watchman is not in P (C1), then he automatically sees the 

non-essential piece of C1, and does not need to reach C1 at 
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all. As an example, uuι is not an essential cut, because its 

essential piece P (uuι) (shadowed part) is fully contained by 

the essential piece of wwι (the whole area to the left of wwι). 

If a watchman is in P (uuι), he needs to reach wwι anyway 

and does not need to worry about the requirement of reaching 

uuι. Otherwise, he does not need to reach uuι at all. 

In the exemplar polygon, cuts vvι, wwι, and xxι are three 

essential cuts. Although an essential cut is not dominated by 

any other cut, it can still be dominated by a set of other 

essential cuts. For example, as shown in Figure 2, the essential 

pieces of cuts vvι and wwι contains the essential piece of 

xxι (actually they combined to form the whole polygon). 

So, a watchman no longer needs to reach xxι if he reached 

both vvι and wwι. A subset of essential cuts that dominates 

the whole set of essential cuts is called a watchman cut set 

(e.g., vvι, wwι ), and now the original problem of shortest 

watchman route is reduced to finding the shortest route to 

cover any of the watchman cut sets. To solve this problem, 

we can draw perpendicular lines from the starting point to 

all the cuts in the watchman cut sets, and concatenate the 

intersection points one by one (from the nearest to the farthest) 

to form a polygonal chain. Then we can shorten this line- 

segment sequence by sliding its intersection points with each 

cut along the cut. Some more efficient algorithms have been 

proposed recently by researchers. 

For briefness, we will not introduce these algorithms be- 

cause their goal is to find a globally optimal route for a static 

polygon, while in VR testing scenario we have to focus on 

dynamically optimizing the route to local cuts (i.e., the cuts 

close to the camera) at run time. Since the global layout of 

the scene is not static and is always changing, it does not 

make much sense to explore the globally optimized route for 

the camera in advance. Therefore, the basic notions of the cut 

theory will be sufficient to understand our approach. 

IV. APPROACH 

In Section III, we show that the cut theory can be applied 

to find the shortest watchman route in a static VR scene 

(i.e., occluding objects can be viewed as holes in a polygon). 

However, since the objects can be created and moving in the 

scene, it would not be helpful to calculate a global shortest 

route at the starting point of the scene or at run time, because 

when the camera follows the route, the objects may already 

leave their original locations. 

Therefore, our approach VRGuide does not consider the 

global and static coverage of cuts, but focuses on covering 

local cuts (i.e., cuts from interactable objects close to the 

player camera) and uses information of local cuts to guide 

the next step of the player camera. As an overview, VRGuide 

will calculate a distance value for each neighboring positions 

of the player camera, and guide the camera to the position with 

lowest distance value. The distance value of a specific position 

will be calculated by combining its distance to multiple closest 

cuts. Once the player camera reaches a new position, VRGuide 

will find out which objects are visible from the position, and 

rotate the camera to interact with them. 

 

 
 

Fig. 3. Bounding Boxes of Virtual Objects from developer.mozilla.org 

 

In the following subsections, we will introduce in more 

details how we calculate dynamic cuts for interactable objects, 

how we calculate distance value of a position given multiple 

dynamic cuts, and the VRGuide algorithm. 

A. Dynamic Cuts of interactable Objects 

In the original watchman route problem, a cut is defined as 

the extension of a convex’s adjacent edge, because a watchman 

needs to observe the whole area beyond the convex. However, 

this is not required in VR testing where the player camera 

needs to see only the interactable objects. Therefore, in VR 

guide, we define a dynamic cut of an interactable object as 

follows (we first define and illustrate concepts in 2D scenarios 

and then generalize them to 3D scenarios). 

It should be noted that in VRGuide, all objects are approxi- 

mated by their minimal enclosing boxes (see Figure 3), so they 

can all be viewed as rectangular cuboids. This approximation 

is safe for all obstacles because it enlarges their range in the 

space. However, it is not safe for the interactable object to be 

interacted with, because seeing part of the object’s enclosing 

box may not guarantee that the object is actually visible from 

the camera. Therefore, to make sure the interactable object is 

visible, it is approximated as a point (i.e., the geometric center 

of the object). 

Definition 1: In a 2D scenario, when concatenating the 

player camera C and an interactable object O with a line L, L 

may intersect with edges of multiple objects. The edge closest 

to O is defined as O’s facing edge, and the object the edge 

belongs to is defined as O’s facing object. 

Figure 4 shows interactable objects in different 2D scenar- 

ios. In the top case, Edge BD is the facing edge, and in the 

bottom case, Edge AB is the facing edge. In both cases, the 

object ABCD is the facing object. 

Definition 2: Draw a line segment from an interactable 

object O to an end point of its facing edge and try to extend 

the line. If the extended line does not intersect with O’s facing 

object, it is defined as a dynamic cut of object O. 

To illustrate, we show dynamic cuts in both cases in figure 4. 

Generalizing the definition to 3D, the facing edge will become 

the facing surface, with four edges, and concatenating the 
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Fig. 4. Examples of Dynamic Cuts 

 

 

interactable object to the four edges will form at most four 

cutting surfaces. The definitions are as follows. 

Definition 3: In a 3D scenario, when concatenating the 

player camera C and an interactable object O with a line L. 

L may intersect with surfaces of multiple objects. The surface 

closest to O is defined as O’s facing surface. 

Definition 4: There exist a surface containing both the 

interactable object O and one edge of its facing surface. If 

the extended plane from the surface does not intersect with 

O’s facing object, the surface is defined as a dynamic cut of 

object O. 

B. Distance Value Calculation 

We assume the coordinates of the interactable object are 

(x0, y0, z0). An edge of the facing surface in parallel with 

y-axis can be represented as equations x = x1, z = z1 . It 

should be noted that the edges of an object’s enclosing box 

are always in parallel with one of the coordination axis. If 

the edge is in parallel with another axis, the equations will be 

in a similar form, just replacing x, and z with x and y or y 

and z. Then we can calculate the dynamic cut as a plane with 

equation below. 

guide the player camera towards the neighboring position that 

has shortest distance to its closest dynamic cut. As illustrated 

in the simplified two-dimensional scene in Figure 5, this 

strategy can be more efficient than the existing strategy in 

VRTest [9] which is based on the distance between the player 

camera and the object to be interacted. When the user camera 

is at the solid black point, it needs to trigger pointer-click 

events on the two interactable objects on the left side and 

right side, respectively. Following VRTest’s strategy, it will 

first move towards the object on the right and reach position 

A, and then go back to position B to trigger the event on the 

object on the left. However, VRGuide will direct the player 

camera to position C and then position D, which is a much 

shorter route. 

We take advantage of the existing VRTest framework [9] 

to implement VRGuide. In particular, VRTest provides in- 

formation (positions and sizes of enclosing boxes) about all 

objects in a VR scene, and table recording which objects have 

been interacted with. It also provides two interface procedures 

for implementing new testing strategies: Move and Rotate. 

The framework will execute procedures Move and Rotate 

in sequence for each testing step (by default 1 second or 30 

frames under 30 fps). So, we insert our VRGuide algorithm 

as implementations of these two procedures. 

Algorithm  1  shows  the  pseudo  code  of 

Rotate  and  Move  procedures  of  VRGuide. 

The methods getPossibleRotations() and 

getPossibleMoves() return all the possible rotations 

and moves. In particular, if the action granularity is 1 meter 

for move, for the original position (0, 0, 0), all possible 

moves (without considering configuration) will be the set of 

(0, 0, 1), (0, 0 , -1), (0, 1, 0), (0, -1, 0), (1, 0, 0), and (-1, 0, 

0). If the configuration sets the lower-bound of all dimensions 

to 0 and does not allow movement in Z-axis, then the only 

possible moves (returned by getPossibleMoves()) will 

be (1, 0, 0) and (0, 1, 0). Similarly, if the current rotation of 

the user camera is (90, 0, 0), then the only possible rotation 

returned by getPossibleRotations() will be (80, 0, 

0). The reasons are (1) the upper-bound of X-axis rotation 

(up and down) is 90, so X-axis rotation cannot go to 100; 

(2) no Z-axis rotation is allowed, and (3) Y -axis rotation 

is meaningless if the X-axis rotation is at 90 degree (i.e., 

turning east and west does not make sense at the North Pole). 

z − z1 = 
(z2 − z1)(x − x1) 

(x2 − x1) 
(1) 

We have Obj as a global variable to share information 

between Rotate and Move. Obj stores all the interactable 

Once we acquired the equation of a dynamic cut (denoted 

as Ax + By + Cz + D = 0), we can calculate the distance 

from a specific position (x2, y2, z2) in the scene to the cut 

using the following formula. 

virtual objects visible at the current position. As long as Obj is 

not empty (Line 2), the Rotate procedure will rotate towards 

the virtual object in Obj whose direction is closest to the 

camera’s current facing direction (Line 4). Otherwise, it will 

return CurrentRotation indicating not to rotate and wait for 

 

 

 

C. VRGuide 

Dist = 
|Ax2 + By2 + Cz2 + D| 

 

A2 + B2 + C2 

Move procedure to find more visible objects. 

The Move procedure first checks whether there are still cur- 

rently visible objects have not been interacted using function 

Reachable provided by VRTest (Line 11). If so, the camera 

Once we are able to calculate the distance from the player 

camera’s neighboring positions to the dynamic cuts, we can 

will stay at the current position (Line 17). Otherwise, it will 

fetch all neighbor positions that the player camera can move 
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A. Evaluation Setup 

1) Research Questions: 

• RQ1: How VRGuide compares with existing approach 

on the efficiency to cover different interactable objects in 

a VR scene? 

• RQ2: How VRGuide compares with existing approach 

on the efficiency to cover methods in VR software code? 

• RQ3: How VRGuide compares with existing approach 

on the detection of bugs in VR software? 

2) The Compared Technique: We compare VRGuide with 

VRTest [9], a state-of-the-art VR test framework. Since the 

implementation of VRGuide is based on VRTest framework, 

& the difference is only on the testing strategy, so we believe the 
' comparison with VRTest can fairly reveal the effectiveness of 

VRGuide. VRTest supports two testing strategies: VRMonkey, 

which is similar to Monkey in mobile testing and randomly 
Fig. 5. A Simplified Two Dimensional Scene 

 

 

to in the next step (Line 13), and find the position that has 

shortest distance to its closest dynamic cut (Line 14). Then, the 

Move procedure will return that position to guide the camera’s 

following movement. 

 

Algorithm 1 VRGuide Algorithm   

1: procedure ROTATE() r> Objs is a global variable. 

2:   if Objs is not Empty then 

3: Opts  getPossibleRotations() 

4: Opt FetchClosest(Opts, Objs) 

5: Return Opt 

6: else 

7: Return CurrentRotation 

8: end if 

9: end procedure 

10: procedure MOVE() 

11: Objs Reachable(); 

12: if Objs is empty then 

13: Opts getPossibleMoves() 

14: Opt BestNeighbor(Opts) 

15: Return Opt 

16: else 

17: Return CurrentPosition 

18: end if 

19: end procedure 
 

 

 

V. EVALUATION 
 

To evaluate our approach, we compare VRGuide and 

VRTest on eight VR software projects on their object coverage, 

method coverage, as well as detected bugs. The implementa- 

tion of VRGuide and the dataset used in our evaluation is 

available on our project website1. 

 
1https://sites.google.com/view/vrguide2023 

move and rotate the player camera to interact with interactable 

objects, and VRGreed, which uses greed algorithm to approach 

the closest interactable objects one by one. Although VRGreed 

has been shown to be superior than VRMonkey in earlier stud- 

ies [9], we still ran VRMonkey in our evaluation and include 

its results for reference. Note that we use the average results 

of five executions for VRMonkey due to the randomness in 

the technique. 

3) Evaluation Subjects: In our evaluation, we reuse four 

out of five VR software projects from the original evaluation 

subject set of VRTest2: UnityVR, UnityVREscapeRoom, 

Unity-vr-maze, and Unity-vr-cave-puzzle. We 

did not use the remaining VRND_Night_at_the_Museum 

because it is no longer compatible with updated version of 

Unity. 

Besides the four subjects from VRTest’s original subject set, 

we further collected four more open source VR projects from 

Github. In particular, we searched for keywords “Unity” and 

“VR”, and ranked the retrieved projects by the number of stars. 

We considered only VR software projects consisting of VR 

scenes, so we skipped the VR development libraries and tools 

such as XRTK and Google VR Unity SDK. Furthermore, 

we considered only projects with at least one virtual object 

with at least one event triggers. 

The basic information of the eight subject projects in our 

evaluation is presented in Table I. In the table, we present 

the number of source files, the number of lines of code, and 

the number of static virtual objects / prefabs (dynamic virtual 

objects are typically created by cloning static virtual objects / 

prefabs), respectively. 

4) Testing Environment: To perform the evaluation, we 

use Unity version 2021.3 LTS with Visual Studio 2017 (for 

compilation of C# source code) and run the experiment on a 

computer with Intel Core i7-6500U CPU, 8GB of memory, and 

Intel HD 520 Graphics card. We set a timeout of 300 seconds, 

which is the default timeout value of VRTest. Testing of most 

subjects saturate before 300 seconds. 

 
2Downloaded from https://sites.google.com/view/vrtest2021 
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Fig. 6. interactable Objects Coverage of Different Testing Techniques 

 

TABLE I 

BASIC INFORMATION OF EVALUATION SUBJECTS 

 
Name #Source 

Files 

LOC #Virtual 

Objects 

UnityVR 129 25.6K 36 

UnityVREscapeRoom 207 31.2K 109 

unity-vr-maze 7 503 26 

unity-vr-cave-puzzler 7 8.0K 27 

UnityRandomBlocks 144 15.3k 32 

UnityrollingVR 136 12.2k 22 

UnityCityView 176 19.0k 26 

VR-Forest 422 41.1k 43 

 

 

 

5) Testing Configuration: When performing VR testing 

using VRTest, we need to configure three major parameters: 

the rotation scope that limits the user camera’s watching angle, 

the moving/rotating speed defines the speed of moving and 

rotating the user camera, and the Moving Granularity that 

determines the maximal distance to be covered in one move 

action. 

In our evaluation, we follow the default values of VRtest 

for all of the four parameters to make sure we have a fair 

comparison with VRTest. In particular, we set the rotation 

scope with X-axis rotation between -90 degree and 90 degree, 

Y -axis rotation between -180 degree and 180 degree, and no 

rotation for Z-axis. We use 1 meter per second (1 unit in 

Unity-based VR scene represents 1 meter) as the moving speed 

and 10 degree per second as the rotation speed. For action 

granularity, we use 1 meter and 10 degree as the elementary 

step of movement and rotation. 

B. Evaluation Results 

In our evaluation, we measure the effectiveness of testing 

by the interactable object coverage and method coverage. For 

interactable object coverage, we count objects of the same 

type as one because they are attached with the same set of 

listeners and scripts. The evaluation results on interactable 

object coverage is presented in Figure 6. The figure consists 

of nine sub-charts. In each sub-chart, the x-axis denotes the 

amount of testing time passed (in minutes). The y-axis denotes 

the interactable object coverage. The first eight sub-charts 

present the results for eight subject projects, respectively, and 

the last sub-chart presents the average results of eight subject 

projects. 

From Figure 6, we have the following major observations. 

First of all, both VRGreed and VRGuide achieved much higher 

interactable object coverage than VRMonkey, reaffirming that 
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purely random testing strategy does not work well in VR 

software (which is different from the case in Android test- 

ing). This is perhaps due the huge input space and sparsity 

of interactable objects in a VR scene. Second, VRGuide 

is more efficient than VRGreed in seven out of eight VR 

projects, and in the only remaining project UnityVR both 

strategies have the same efficiency. The major reason is that 

UnityVR does not have any obstacle and all virtual objects 

are visible at the beginning of the scene. Third, in projects 

UnityrollingVR and UnityRandomBlocks, VRGuide 

achieves higher coverage when the five minute time out is 

reached. The reason may be that these projects involve many 

moving virtual objects. For the other projects, VRGuide is 

able to achieve a coverage saturation using 31% less than time 

VRGreed. 

The evaluation results on method coverage is presented in 

Figure 8. The figure is organized the same way as Figure 6. 

From the figure, we can observe a trend similar to that for 

interactable object coverage in Figure 6. The major difference 

is that, because VR software typically contains a lot of 

code in life-cycle methods (e.g., start(), update()) for 

animation rendering, such code will always be executed as 

long as the VR scene is initialized and executed. Therefore, 

even VRMonkey achieved a not-to-bad coverage between 35% 

and 45%. However, VRGuide still achieves higher testing 

efficiency in seven out of eight projects, and higher coverage 

upon testing timeout in two out of eight projects. 

C. Bug Detection 

The ultimate goal of testing is to detect bugs in software. 

Therefore, we further investigate whether our technique is 

able to detect real bugs and how it compares with VRTest. 

During the testing process, we detected five bugs from 

three projects UnityRandomBlocks, UnityrollingVR 

and UnityCityView. Four of the five bugs3 have been 

confirmed and fixed by the developers. It should be noted 

that without automatic oracle, unhandled exceptions are the 

only type of bugs we can automatically report. Among 

the five bugs, VRTest is able to detect the bug in 

UnityCityView (not confirmed yet), and one of the bugs 

in UnityRandomBlocks (confirmed and fixed), but missed 

the remaining three bugs because those bugs all require the 

interaction within time limit or with moving objects which 

will be destroyed after a while, and VRTest is not able to 

interact with the object in time. 

Figure 7 shows the screenshot of one of the bugs we 

detected in UnityRandomBlocks. In particular, the blue 

ball is dynamically placed and moving in a scene with many 

obstacles. It is supposed to stop when caught by the pointer 

clicker. A rigid body is required to be attached to the ball when 

a force is applied to it. However, the developer forgot to attach 

a rigid body to the object, so an exception was thrown. Our 

3https://github.com/hfzhg/UnityRandomBlocks/issues/1, 

https://github.com/hfzhg/UnityRandomBlocks/issues/2, 

https://github.com/spcover/UnityrollingVR/issues/9, 

https://github.com/spcover/UnityrollingVR/issues/10 

 

 
 

Fig. 7. A Detected Bug in UnityRandomBlocks 

 

 

bug detection results show that although VRGuide performs 

just moderately better than VRTest on the final method / object 

coverage, it is more likely to detect real bugs. We believe that 

VRGuide’s ability to achieve high coverage within shorter time 

allows it to detect time-sensitive bugs that are more difficult 

to detect with manual testing. And that is the reason why 

VRGuide is able to find more real-world bugs than VRTest. 

D. Threats to Validity 

The major threat to our construction validity is whether our 

experiment setup is the same as the actual usage scenario 

of VR testing. Since VRGuide is fully automatic, the only 

potential issue is whether the configuration is reasonable. To 

reduce this threat, we followed VRTest with all their configura- 

tions. We believe the default configuration of VRTest should 

provide a fair environment for comparing testing strategies. 

The major internal threat to our evaluation is the potential bugs 

and errors in our implementation of VRGuide. To reduce this 

threat, we carefully reviewed the code of VRGuide, and tested 

it with multiple artificial testing projects. The major external 

threat to our evaluation is that our results may be specific to 

the subject projects we used, or Unity-based VR projects. To 

reduce this threat, we collected eight top subject projects with 

different features from UnityList and Github. Also, we believe 

that Unity-based projects are representative given that Unity is 

dominating the VR software development market. To further 

reduce this threat in the future, we plan to perform evaluation 

more subjects and projects based on a different framework. 

VI. DISCUSSION 

A. More Event Types 

Our VRGuide currently focuses on the pointer click event 

type as it is the most commonly supported event type. There 

are some other event types supported by certain devices, such 

as the grabbing event which allows a user to grab certain 

virtual object with their virtual hand, and the colliding event 

that allows a user to push or collect certain virtual objects 

when the user camera is at the same position or close to an 

existing virtual object. Since these events are mainly contact- 

based events (i.e., the user camera needs to be very close to the 

virtual object to trigger the event), they are less complicated 
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Fig. 8. Method Coverage of Different Testing Techniques 

to trigger compared with pointer clicks as we do not need to 

consider scenarios such as object occluding. Meanwhile, when 

considering all types of events, we can measure the interaction 

value of a position inside the virtual scene by combining 

the number of visible interactable objects (receiving pointer 

click events) and the distance from the position to interactable 

objects which receive contact-based events. 

B. Event Constraints 

Similar to GUI software where clicking a button may lead 

the user to a new window or make other controls available, 

there are also event constraints in VR software where trig- 

gering an event on a virtual object leads to the creation / 

destroy / movement of virtual objects and even scene switch. 

In VRTest, such dynamic objects are currently handled by 

periodically retrieving the states of the VR scene (through the 

VR Scene Monitor). A more complicated case is when the 

virtual objects must be interacted in certain order to lead to 

an outcome. None of our three testing techniques intentionally 

handle such interaction orders, so whether the outcome can be 

triggered may largely rely on repetitive triggering of events 

on interactable virtual objects when the methods associated 

with them are still not covered. In the future, we plan to 

use static analysis to identify the dependencies between event 

handlers. Based on the dependencies, VRGuide would be able 

to trigger events in more proper order to expose more software 

behaviors. 

C. Testing Metrics 

In our paper, we use method coverage and interactable 

coverage to measure the test effectiveness of our framework 

and tools. It is arguable whether these testing metrics are 

effective for VR testing because VR software focus more on 

user experience. There exist many VR software projects which 

do not have much interactions and just have the user to view 

the VR scene. For such software, it may be more important 

for the testing process to explore the VR scene as much as 

possible instead of trying to trigger as many events as possible. 

So a different type of test coverage, such as scene coverage, 

which measures how much portion of the VR scene has been 

observed, may be also suitable for certain types of VR software 

projects. 

VII. RELATED WORKS 

A. Testing and Studies of VR Software 

There have been some test frameworks that facilitate au- 

tomating VR software testing such as VRTest [9], which we 

compare with in our paper, and AutoWalker [8], which is 
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similar to VRMonkey and randomly guides the player camera 

in the VR scene. Gil et al. [19] and Souza el al. [20] proposed 

approaches to model AR applications and cover the model 

nodes and edges using automatic test cases. However, their 

models are at higher level focusing on covering scenes and 

their transitions instead of the automatic exploration of VR 

scenes. Harms [21] proposed guidelines for the usability eval- 

uation of AR applications and categorizes usability issues. Rafi 

et al. [22] proposed Predart, which automatically evaluates 

realisticness of VR object placement as test oracles and can 

be applied to automatic VR and AR testing. Very recently, 

Rzig et al. [23] studied the characteristics of unit tests in 

VR applications and found they were of lower quality than 

their counterparts in other applications. Compared with these 

efforts, VRGuide focuses on scene exploration, which is a core 

component of VR software testing and none of the existing 

works cover it. 

There are also some works on game testing which is related 

to VR testing. Wuji [24] is a framework to automatically test 

games based on evolutionary algorithms and reinforcement 

learning. It explores the game spaces and branches as well as 

making progress by passing stages. Zhao et al. [25] proposed 

an approach to enhancing playing tactics in game testing by 

learning from player action sequences. Bergdahl et al. [26] 

proposed an approach to augment existing manually written 

test scripts with reinforcement learning. However, all of the 

above approaches mainly focus on game tactics and are 

designed for 2D games, so when applied to 3D software they 

still face the challenge of flexible camera movement/rotation 

and accessing out-of-view and occluded objects, which are the 

focuses of this paper. 

There also have been some empirical studies on VR 

software and video game software. Murphy-Hill et al. [27] 

performed a study on video game developers to understand 

the challenges in video game development and how they are 

different from traditional software development. Washburn et 

al. [28] studied failed game projects to find out the major 

pitfalls in game development. Lin et al. [29] studied the 

common updates in steam platform to understand the prior- 

ity of game updates. Rodriguez and Wang. [30] performed 

an empirical study on open source virtual reality software 

projects to understand their popularity and common structures. 

Pascarella et al. [31] studied open source video game projects 

to understand their characteristics and the difference between 

game and non-game development. Zhang et al. [32] studied 

possible solutions to detect potential privacy leaks in mobile 

augmented reality apps. Nusrat et al. [33] studied performance 

issues in VR applications from performance repair logs and 

identified the major reasons for performance downgrades in 

VR applications. Molina et al. [34] developed a novel tech- 

nique to extract code dependencies [35] in VR applications 

and studied the types of dependencies. From these studies, 

we gain knowledge on the characteristics of VR software 

projects, which help us to understand VR-specific challenges 

when designing VRGuide. 

B. GUI Testing 

Our VRGuide framework includes a lot of new designs 

to address special challenges in VR software testing, but 

in general, our research is also related to GUI testing and 

more advanced GUI testing strategies can be combined with 

VRGuide to better unleash its full power. GUI testing is an 

extensively studied research area. Some representative techni- 

cal solutions include random techniques, model-based tech- 

niques, symbolic-execution-based techniques, search-based 

techniques, and learning-based techniques. 

Random techniques. Monkey [36], DynoDroid [37], 

DroidFuzzer [38], are random-search-based approaches that 

randomly explore GUI windows. In particular, DynoDroid [37] 

instruments the Android framework and allows sending se- 

quential and interleaving events. It further allows human 

testers to provide input for input boxes. DroidFuzzer [38] 

automatically generates random MIME messages on top of 

GUI events. Mimic [39] uses random strategy to detect in- 

compatibilities [40] in GUI among different mobile devices. 

Model-based techniques. Model-based techniques use 

static analysis or dynamic analysis to generate a GUI explo- 

ration model and then explore the GUI according to the model. 

Examples include GUIRipper [41] and its later extension 

MobiGUITAR [42]. A3E [43] and SwiftHand [44] also build 

finite state models for UI and generate events to explore states 

in the model systematically. 

Symbolic-execution-based techniques. The symbolic- 

execution-based techniques use static or dynamic symbolic 

execution to generate test input that leads control flow to un- 

covered code. ACTEve [45] first applied concolic testing to the 

exploration of Android apps. It alleviates path explosion by de- 

tecting program executions that identify subsumption between 

different event sequences. JPF-Android [46], an extension of 

JPF (Java Path Finder) [47], uses static symbolic execution 

to find all feasible execution paths in an Android app and 

generate test inputs to cover them. 

Search-based techniques. A representative tool for search- 

based testing for Android is EvoDroid [48], which boosts 

searching efficiency by considering the constraint of Android 

development framework. A more recent work, FuzzDroid [49], 

focuses on generating the execution environments (e.g., phone 

settings of country or language, other apps installed) by 

combining static and dynamic analyses through a search-based 

algorithm that steers the app toward a configurable target 

location. Sapienz [50] combines pre-defined GUI interaction 

patterns with a genetic algorithm to evolve from seed input 

sequences and search for the optimized exploration sequences 

containing short input sequences while maximizing test cov- 

erage and fault revelation. Stoat [51] is a UI test generation 

tool combining model-based testing and evolutionary testing. 

It first constructs a probabilistic state-transition model via 

dynamic exploration and optional static analysis, and then 

evolves the model to search for the optimized model with re- 

gard to comprehensive fitness scores involving Code coverage, 

model coverage, and test-suite diversity. 
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Learning-based approaches. Researchers have proposed 

testing techniques based on learning from the testing process. 

Most recently, He et al. [52] proposed a feedback-driven text 

input exerciser, which tries to meet the input constrains by 

analyzing the hint of the text fields. Pan et al. [53] proposed to 

use text similarity in NLP as a guidance to train a model which 

generates the test that leads to the state with highest difference. 

This approach requires large training set from open-source 

apps. Liu et al. [54] proposed to use training apps and human 

testers to train a model which can be used to automatically 

generate meaningful input for Android apps. Mariani et al. [55] 

developed Augusto, which provide high-level testing rules for 

three common app functions (i.e., log-in, create-read-update- 

delete, save) to guide the model exploration. Qin et al. [56] 

proposed to use event sequence mapping to migrate event 

sequences from iOS tests to the Android version of the same 

app. Behrang and Orso’s recent work [57] further learns test 

oracles from existing tests. 

 

VIII. FUTURE WORKS 
 

In the future, we plan to work on the following directions. 

First of all, for the testing framework, we plan to extend 

it to support more types of events such as grabbing events 

and colliding events. Second, our VRGuide testing strategy, 

although considering more global information in the VR scene, 

is still a greedy-algorithm-based approach, so we plan to fur- 

ther enhance it by using AI-based or search-based techniques 

which have been shown effective in GUI testing to acquire 

a globally optimized route. Third, we plan to evaluate our 

framework with more subjects and software projects that are 

not based on Unity. Fourth, certain software behavior may be 

exposed only when events are triggered in certain order, so we 

plan to use static analysis to identify the dependencies between 

event handlers. Based on the dependencies, VRGuide would 

be able to trigger events in a certain order to expose more 

software behaviors. 

 

IX. CONCLUSION 
 

In this paper, we propose a novel testing strategy called 

VRGuide to automatically test VR software. The VRGuide 

testing strategy is based on the cut theory from computer 

geometry and it takes advantage of the intuition that in VR 

testing, the player camera can typically interact with an object 

as long as the object is within the field of view. The VRGuide 

testing strategy involves three major steps: the calculation 

of dynamic cuts from interactable objects to their facing 

surfaces, the calculation of distances from the player camera’s 

neighboring positions to the dynamic cuts, and guiding the 

player camera toward the neighboring point that has shortest 

distance to its nearest dynamic cut. We evaluated VRGuide 

on eight top VR projects from UnityList and Github, and 

the evaluation result shows that VRGuide is able to achieve 

higher test efficiency and coverage than existing approaches 

(i.e., VRTest), and detect unknown bugs in real world projects. 
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