
DOI 10.1109/ASE56229.2023.00197
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

VRGuide: Efficient Testing of Virtual Reality

Scenes via Dynamic Cut Coverage

Xiaoyin Wang and Tahmid Rafi

Department of Computer Science

University of Texas at San Antonio

San Antonio, USA

xiaoyin.wang@utsa.edu, md.tahmidulislam.rafi@utsa.edu

Na Meng

Department of Computer Science

Virginia Tech

Blacksburg, USA

nm8247@vt.edu

Abstract—Virtual Reality (VR) is an emerging technique that

has been applied to more and more areas such as gaming,

remote conference, and education. Since VR user interface has

very different characteristics compared with traditional graphic

user interface (GUI), VR applications also require new testing

techniques for quality assurance. Recently, some frameworks

(e.g., VRTest) have been proposed to automate VR user interface

testing by automatically controlling the player camera. However,

their testing strategies are not able to address VR-specific testing

challenges such as object occlusion and movement. In this paper,

we propose a novel testing technique called VRGuide to explore

VR scenes more efficiently. In particular, VRGuide adapts a

computer geometry technique called Cut Extension to optimize

the camera routes for covering all interact-able objects. We

compared the testing strategy with VRTest on eight top VR

software projects with scenes. The results show that VRGuide is

able to achieve higher test coverage upon testing timeout in two

of the projects, and achieve saturation coverage with averagely

31% less testing time than VRTest on the remaining six projects.

Furthermore, VRGuide detected and reported four unknown

bugs confirmed by developers, only one of which is also detected

by VRTest.
Index Terms—Software Testing, Virtual Reality, Scene Explo-

ration

I. INTRODUCTION

Virtual Reality (VR) is a technique [1] to simulate user

experience similar or completely different from the real world.

Its applications include gaming, virtual exhibition and tour,

training, education, product design, and remote communica-

tion. According to a recent market report [2], the VR market is

emerging and its total market value has reached $11.52 billion

in 2019, and is expected to grow at a high rate of 48.7% per

year in the following five years. The pandemic of COVID-

19 virus further triggered the requirement and accelerated the

adoption of VR techniques. VR software is an indispensable

part of VR techniques, and its market value has also reached

$1.9 billion in 2019 [3]. In year 2020, thousands of apps were

uploaded to Google Play [4], Apple Store [5], and Oculus

Market [6], and these apps have been downloaded by more

than 171 million users [7].

VR applications also need testing to validate their quality,

but they raise new challenges for automatic testing techniques.

Although VR scenes can still be considered as a type of

Graphic User Interface (GUI), existing 2D GUI testing tech-

niques can hardly be applied because users typically observe

VR scenes through a player camera and only a small portion of

the scenes can be observed and interacted with. Furthermore,

the exploration of the scene and the whole user interface is

mainly done by moving and rotating the camera rather than

clicking buttons.

Most recently, researchers have developed novel techniques

to test VR applications by automatically moving and rotating

cameras. Autowalker [8] is a tool that automatically drives the

player camera to randomly explore a VR scene. VRTest [9]

further monitors the positions of all virtual objects and drives

the player camera toward the nearest interactable objects

that have not been triggered yet. However, although these

techniques addressed challenges caused by new exploration

patterns in VR scenes (camera movement vs. mouse clicks),

their exploration strategies are not optimized because they did

not consider the following major characteristics of VR scenes:

• Object Occlusion. In traditional 2D GUI, all GUI con-

trols in the current window show up on the screen, and

a test driver can directly trigger any interactable control

given its coordinates. If a GUI control is occluded by

another GUI control, it is typically considered a bug, and

the user (or test driver) will not be able to trigger the

occluded GUI control at all. However, in VR scenes, due

to relative positions of objects and view angles of the

camera, interactable objects are often occluded by other

interactable or non-interactable objects and the camera

needs to be moved and rotated properly to make the

occluded objects become visible and interactable.

• Object Location Affects Testing Efficiency. Since ac-

cessing an interactable object requires camera actions

and thus will take time, testing efficiency can be largely

affected by the order (and route) of visiting different

interactable objects. Theoretically, if the test driver can

find a shortest route for the user camera driver to visit

the objects to be interacted, the testing efficiency can

be optimized. However, this is a well known NP-hard

problem. The run-time creation as well as movement of

objects and their ability to occlude each other make the

problem even more complicated. This is a unique factor to

be considered in determining camera movement / rotation

strategy for testing VR scenes.

2643-1572/23/$31.00 ©2023 IEEE 951

2
0

2
3

 3
8

th
 IE

EE
/A

C
M

 In
te

rn
at

io
n

al
 C

o
n

fe
re

n
ce

 o
n

 A
u

to
m

at
ed

 S
o

ft
w

ar
e

En
gi

n
ee

ri
n

g
(A

SE
) |

 9
7

9-
8

-3
5

0
3-

2
9

96
-4

/2
3

/$
3

1
.0

0
 ©

2
02

3
 IE

EE
 |

 D
O

I:
 1

0.
11

09
/A

SE
56

22
9.

20
23

.0
01

97

mailto:xiaoyin.wang@utsa.edu
mailto:md.tahmidulislam.raﬁ@utsa.edu
mailto:nm8247@vt.edu

952

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

• Huge Input Space. VR software provides an immersive

experience for users, so typically a user is allowed to

move in the scene and change watching angle freely

(sometimes within a scope) within the virtual space.

Therefore, each camera state corresponds to six float

values (three dimensions of position coordinates and three

dimensions of watching angle). These dimensions form

a very large input space, making efficient strategy of

moving / rotating the player camera very important.

In this paper, to efficiently test virtual reality scenes with

consideration of the above three characteristics, we propose an

automatic testing technique VRGuide. In particular, VRGuide

takes into consideration the information of the entire VR scene

(i.e., locations of all objects) to calculate interaction values of

locations (measured by how many interactable objects can be

triggered at the location), and move the camera towards the

locations with highest interaction values. The basic intuition

behind VRGuide strategy is that a user camera does not need

to move to an object’s exact location to access it, but it may

access the object at a distance as long as the object is in

its view and is not occluded by other objects. Therefore,

there may exist some locations where multiple interactable

objects are visible, and it is more efficient for the user camera

to move to those locations if they are close. To guide the

camera toward a more efficient route in a VR scene to be

tested, we leverage a technique called Cut Extension from

computer geometry, and adapt it as Dynamic Cut Extension to

handle moving and dynamically created objects in VR scenes.

We evaluated VRGuide on the four software projects used in

VRTest [9] evaluation, and four other top Unity VR software

projects (based on number of stars) from Github. Although

our evaluation focuses on Unity-based software, we believe

this scope of subject selection is reasonable because Unity

dominates VR software development with over 60% market

share according to multiple sources [10], [11], and Unity

integrates with almost all existing VR / AR platforms, includ-

ing Apple ARKit [12], Android Daydream / Cardboard [13],

[14], Google ARCore [15], Steam VR [16], Windows Mixed

Reality (Hololens) [17], etc., so the testing technique can be

largely generalized. The evaluation results show that VRGuide

achieved higher object coverage and higher method coverage

compared with VRTest (VRGreed stategy) in two out of the

eight projects upon testing timeout. For the remaining six

projects, VRGuide uses 31% less time to reach coverage satu-

ration compared with VRTest (VRGreed stategy). VRGuide

also detected four previously unknown bugs confirmed by

developers (only one of them is also detected by VRTest) in

real-world projects.

To sum up, this paper makes the following contributions.

• We explore and summarize the major challenges in effi-

ciently testing VR scenes.

• We propose a novel testing strategy called VRGuide,

which performs dynamic cut extension based on infor-

mation of objects in the scene collected at run time.

• We perform an evaluation to compare the efficiency of

VRGuide with VRTest on eight top VR software projects,

and the results show that VRGuide achieves higher testing

efficiency in seven out of eight projects, and higher

coverage upon testing timeout in two out of eight projects.

The remaining of this paper is organized as follows. In

Section II, we will introduce some background knowledge

about VR scenes. Then we will introduce cut theory as the

preliminary knowledge in Section III. We will describe the

details of our proposed testing technique in Section IV, and

present the evaluation setup and results in Section V. After

that, we will discuss some important issues in Section VI and

related research efforts in Section VII. Before we conclude

in Section IX, we point to several research directions where

some future research efforts can be made.

II. BACKGROUND

In this section, we introduce some background knowledge

of VR scenes and event triggers.

A. VR Scenes

In VR software, all virtual objects are organized inside a

virtual space called a VR scene. These objects can be either

static (indicating that they are not moving during software

execution) or dynamic (indicating that they may move during

software execution). Typically, a user is initially placed at a

location inside the VR scene, and a user camera is attached

to the user so that the user can watch a portion of the virtual

space based on the watching angle of the camera. A portion

of these objects can be interactable, indicating that they can

receive events triggered by the user. The remaining of these

objects are not interactable, but they may limit the user’s

movement through collision and block the user camera’s view.

Therefore, intuitively exploration testing of a virtual software

can be viewed as moving / rotating the user camera so that

it can see all the interactable virtual objects (while avoiding

all other virtual objects on its way and blocking its view) and

interact with them.

B. Event Triggers

Virtual objects can be interacted with if they have event

triggers registered with them. The interaction types vary in

different VR hardware devices. However, the most commonly

used type of interaction is pointer click. Pointer clicks are

based on a white pointer at the focus of a user’s view. When

a user turns her head to move the white pointer toward an

interactable virtual object, the pointer will become a small

circle. If the user keeps the pointer inside the range of the

object for certain amount of time, the pointer click event will

be triggered. For some VR devices where a clicker is provided,

the user can simply click the button on the clicker when the

pointer is changed to a circle, and then the pointer click will

be triggered.

In Figure 1, we show an exemplar scene and a point click

event being triggered. In particular, the virtual space simulates

an apartment room, in which several objects (the door, the

printer, the TV, etc.) are interactable. When a pointer click

953

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. An Exemplar VR Scene and Pointer Click Event

event is triggered on the printer, a virtual paper object will

be created from the printer’s location, and fall down to the

ground.

While there are also some other types of interactions such as

object grabbing, they are not supported commonly by existing

VR devices so they are also rarely used in existing open

source VR software projects. Based on these observations, our

VRGuide framework focuses on pointer click events. It should

be noted that adding a new type of interaction event to our

VRGuide framework just requires additionally instrumentation

of a new type of event handler, so it is straightforward in

general.

III. PRELIMINARY

A. The Watchman Route Problem

The cut coverage theory origins from the art gallery prob-

lem or museum problem, which is a well-known visibility

problem in computational geometry. The problem asks how

to select a set of fewest points P in a simple polygon so that

for each point q in the polygon, there exists a point p in P , and

line segment pq is inside the polygon (i.e., point q is visible

from at least one point in set P). Its corresponding real-world

problem is guarding an art gallery with the minimum number

of watchmen who together can observe the whole gallery.

One of the problem generalized from the art gallery problem

is called watchman route problem. In this problem, there

exists only one watchman, but he will patrol from a starting

point in the polygon. The goal is to find the shortest route

the watchman needs to follow so that he can observe the

whole polygon along the route. See Figure 2 for two exemplar

watchman routes of a polygon from starting points S1, and S2,

respectively. We can see that the goal to efficiently observe

all the interactable objects in VR testing (if not considering

the run-time creation and movement of objects) is actually a

simplified version of the watchman route problem, where not

the whole scene, but only the interactable objects need to be

observed. The watchman route problem also has several well

known variants such as the zookeeper route problem where

ǆ͛

Ƶ͛

Fig. 2. Illustration of the cut theory

the watchman needs to reach all the cages (nested polygons)

without going into them.

B. The Cut Theory

The Cut Theory is a basic technique to solve the watchman

route problem [18]. In a n-sided polygon P , a vertex is called

a convex if its internal angle is strictly larger than its external

angle (i.e., its internal angle is strictly larger than 180 degree).

For example, in Figure 2, vertexes u, v, w, and x are the four

convexes in the polygon. From each convex, we can extend

any one of its two adjacent edges back to the polygon, until

the extended line reaches an edge of the polygon. Clearly,

the generated line segment will split the polygon into two

pieces, so the line segment is referred as a cut of the polygon.

For example, line segments uuι, vvι, wwι, and xxι are four

different cuts of the polygon.

In the two pieces of polygon split by a cut C, the piece

that does not contain the original edge before extension is

called the essential piece of the cut, denoted as P (C). A

more intuitive explanation of the essential piece is that, if

the watchman is in the essential piece of a cut, then he must

reach the cut to see the original edge. For example, the piece of

polygon to the right of vvι is the essential piece of vvι, because

the original edge ax is not in the piece, and a watchman in

this essential piece must reach vvι to see ax (or the non-

essential piece of cut vvι). A cut C is called an essential cut,

if its essential piece is not fully contained by the essential

piece of any other cut Cι. Otherwise, if there exists a cut

Cι whose essential piece fully contains C’s essential piece,

we say Cι dominates C. The intuition explanation is that, if

the essential piece P (C1) of cut C1 is fully contained by the

essential piece P (C2) of cut C2, a watchman in P (C1) must

reach C2 to observe the non-essential piece of C2. In such

a scenario, he will inevitably go across C1 on his route to

C2 because P (C2) fully contains P (C1). So, C1 is no longer

important in determining the shortest route. Note that if the

watchman is not in P (C1), then he automatically sees the

non-essential piece of C1, and does not need to reach C1 at

ƐϮ

Ɛϭ

954

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

{ }

all. As an example, uuι is not an essential cut, because its

essential piece P (uuι) (shadowed part) is fully contained by

the essential piece of wwι (the whole area to the left of wwι).

If a watchman is in P (uuι), he needs to reach wwι anyway

and does not need to worry about the requirement of reaching

uuι. Otherwise, he does not need to reach uuι at all.

In the exemplar polygon, cuts vvι, wwι, and xxι are three

essential cuts. Although an essential cut is not dominated by

any other cut, it can still be dominated by a set of other

essential cuts. For example, as shown in Figure 2, the essential

pieces of cuts vvι and wwι contains the essential piece of

xxι (actually they combined to form the whole polygon).

So, a watchman no longer needs to reach xxι if he reached

both vvι and wwι. A subset of essential cuts that dominates

the whole set of essential cuts is called a watchman cut set

(e.g., vvι, wwι), and now the original problem of shortest

watchman route is reduced to finding the shortest route to

cover any of the watchman cut sets. To solve this problem,

we can draw perpendicular lines from the starting point to

all the cuts in the watchman cut sets, and concatenate the

intersection points one by one (from the nearest to the farthest)

to form a polygonal chain. Then we can shorten this line-

segment sequence by sliding its intersection points with each

cut along the cut. Some more efficient algorithms have been

proposed recently by researchers.

For briefness, we will not introduce these algorithms be-

cause their goal is to find a globally optimal route for a static

polygon, while in VR testing scenario we have to focus on

dynamically optimizing the route to local cuts (i.e., the cuts

close to the camera) at run time. Since the global layout of

the scene is not static and is always changing, it does not

make much sense to explore the globally optimized route for

the camera in advance. Therefore, the basic notions of the cut

theory will be sufficient to understand our approach.

IV. APPROACH

In Section III, we show that the cut theory can be applied

to find the shortest watchman route in a static VR scene

(i.e., occluding objects can be viewed as holes in a polygon).

However, since the objects can be created and moving in the

scene, it would not be helpful to calculate a global shortest

route at the starting point of the scene or at run time, because

when the camera follows the route, the objects may already

leave their original locations.

Therefore, our approach VRGuide does not consider the

global and static coverage of cuts, but focuses on covering

local cuts (i.e., cuts from interactable objects close to the

player camera) and uses information of local cuts to guide

the next step of the player camera. As an overview, VRGuide

will calculate a distance value for each neighboring positions

of the player camera, and guide the camera to the position with

lowest distance value. The distance value of a specific position

will be calculated by combining its distance to multiple closest

cuts. Once the player camera reaches a new position, VRGuide

will find out which objects are visible from the position, and

rotate the camera to interact with them.

Fig. 3. Bounding Boxes of Virtual Objects from developer.mozilla.org

In the following subsections, we will introduce in more

details how we calculate dynamic cuts for interactable objects,

how we calculate distance value of a position given multiple

dynamic cuts, and the VRGuide algorithm.

A. Dynamic Cuts of interactable Objects

In the original watchman route problem, a cut is defined as

the extension of a convex’s adjacent edge, because a watchman

needs to observe the whole area beyond the convex. However,

this is not required in VR testing where the player camera

needs to see only the interactable objects. Therefore, in VR

guide, we define a dynamic cut of an interactable object as

follows (we first define and illustrate concepts in 2D scenarios

and then generalize them to 3D scenarios).

It should be noted that in VRGuide, all objects are approxi-

mated by their minimal enclosing boxes (see Figure 3), so they

can all be viewed as rectangular cuboids. This approximation

is safe for all obstacles because it enlarges their range in the

space. However, it is not safe for the interactable object to be

interacted with, because seeing part of the object’s enclosing

box may not guarantee that the object is actually visible from

the camera. Therefore, to make sure the interactable object is

visible, it is approximated as a point (i.e., the geometric center

of the object).

Definition 1: In a 2D scenario, when concatenating the

player camera C and an interactable object O with a line L, L

may intersect with edges of multiple objects. The edge closest

to O is defined as O’s facing edge, and the object the edge

belongs to is defined as O’s facing object.

Figure 4 shows interactable objects in different 2D scenar-

ios. In the top case, Edge BD is the facing edge, and in the

bottom case, Edge AB is the facing edge. In both cases, the

object ABCD is the facing object.

Definition 2: Draw a line segment from an interactable

object O to an end point of its facing edge and try to extend

the line. If the extended line does not intersect with O’s facing

object, it is defined as a dynamic cut of object O.

To illustrate, we show dynamic cuts in both cases in figure 4.

Generalizing the definition to 3D, the facing edge will become

the facing surface, with four edges, and concatenating the

955

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

{ }

√ (2)

Fig. 4. Examples of Dynamic Cuts

interactable object to the four edges will form at most four

cutting surfaces. The definitions are as follows.

Definition 3: In a 3D scenario, when concatenating the

player camera C and an interactable object O with a line L.

L may intersect with surfaces of multiple objects. The surface

closest to O is defined as O’s facing surface.

Definition 4: There exist a surface containing both the

interactable object O and one edge of its facing surface. If

the extended plane from the surface does not intersect with

O’s facing object, the surface is defined as a dynamic cut of

object O.

B. Distance Value Calculation

We assume the coordinates of the interactable object are

(x0, y0, z0). An edge of the facing surface in parallel with

y-axis can be represented as equations x = x1, z = z1 . It

should be noted that the edges of an object’s enclosing box

are always in parallel with one of the coordination axis. If

the edge is in parallel with another axis, the equations will be

in a similar form, just replacing x, and z with x and y or y

and z. Then we can calculate the dynamic cut as a plane with

equation below.

guide the player camera towards the neighboring position that

has shortest distance to its closest dynamic cut. As illustrated

in the simplified two-dimensional scene in Figure 5, this

strategy can be more efficient than the existing strategy in

VRTest [9] which is based on the distance between the player

camera and the object to be interacted. When the user camera

is at the solid black point, it needs to trigger pointer-click

events on the two interactable objects on the left side and

right side, respectively. Following VRTest’s strategy, it will

first move towards the object on the right and reach position

A, and then go back to position B to trigger the event on the

object on the left. However, VRGuide will direct the player

camera to position C and then position D, which is a much

shorter route.

We take advantage of the existing VRTest framework [9]

to implement VRGuide. In particular, VRTest provides in-

formation (positions and sizes of enclosing boxes) about all

objects in a VR scene, and table recording which objects have

been interacted with. It also provides two interface procedures

for implementing new testing strategies: Move and Rotate.

The framework will execute procedures Move and Rotate

in sequence for each testing step (by default 1 second or 30

frames under 30 fps). So, we insert our VRGuide algorithm

as implementations of these two procedures.

Algorithm 1 shows the pseudo code of

Rotate and Move procedures of VRGuide.

The methods getPossibleRotations() and

getPossibleMoves() return all the possible rotations

and moves. In particular, if the action granularity is 1 meter

for move, for the original position (0, 0, 0), all possible

moves (without considering configuration) will be the set of

(0, 0, 1), (0, 0 , -1), (0, 1, 0), (0, -1, 0), (1, 0, 0), and (-1, 0,

0). If the configuration sets the lower-bound of all dimensions

to 0 and does not allow movement in Z-axis, then the only

possible moves (returned by getPossibleMoves()) will

be (1, 0, 0) and (0, 1, 0). Similarly, if the current rotation of

the user camera is (90, 0, 0), then the only possible rotation

returned by getPossibleRotations() will be (80, 0,

0). The reasons are (1) the upper-bound of X-axis rotation

(up and down) is 90, so X-axis rotation cannot go to 100;

(2) no Z-axis rotation is allowed, and (3) Y -axis rotation

is meaningless if the X-axis rotation is at 90 degree (i.e.,

turning east and west does not make sense at the North Pole).

z − z1 =
(z2 − z1)(x − x1)

(x2 − x1)
(1)

We have Obj as a global variable to share information

between Rotate and Move. Obj stores all the interactable

Once we acquired the equation of a dynamic cut (denoted

as Ax + By + Cz + D = 0), we can calculate the distance

from a specific position (x2, y2, z2) in the scene to the cut

using the following formula.

virtual objects visible at the current position. As long as Obj is

not empty (Line 2), the Rotate procedure will rotate towards

the virtual object in Obj whose direction is closest to the

camera’s current facing direction (Line 4). Otherwise, it will

return CurrentRotation indicating not to rotate and wait for

C. VRGuide

Dist =
|Ax2 + By2 + Cz2 + D|

A2 + B2 + C2

Move procedure to find more visible objects.

The Move procedure first checks whether there are still cur-

rently visible objects have not been interacted using function

Reachable provided by VRTest (Line 11). If so, the camera

Once we are able to calculate the distance from the player

camera’s neighboring positions to the dynamic cuts, we can

will stay at the current position (Line 17). Otherwise, it will

fetch all neighbor positions that the player camera can move

956

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

←

←

←

←

←

,QWHUDFW DEOH

2EMHFW1

2EVWDFOH

% $

&DPHUD

,QWHUDFW DEOH

2EMHFW2

A. Evaluation Setup

1) Research Questions:

• RQ1: How VRGuide compares with existing approach

on the efficiency to cover different interactable objects in

a VR scene?

• RQ2: How VRGuide compares with existing approach

on the efficiency to cover methods in VR software code?

• RQ3: How VRGuide compares with existing approach

on the detection of bugs in VR software?

2) The Compared Technique: We compare VRGuide with

VRTest [9], a state-of-the-art VR test framework. Since the

implementation of VRGuide is based on VRTest framework,

& the difference is only on the testing strategy, so we believe the
' comparison with VRTest can fairly reveal the effectiveness of

VRGuide. VRTest supports two testing strategies: VRMonkey,

which is similar to Monkey in mobile testing and randomly
Fig. 5. A Simplified Two Dimensional Scene

to in the next step (Line 13), and find the position that has

shortest distance to its closest dynamic cut (Line 14). Then, the

Move procedure will return that position to guide the camera’s

following movement.

Algorithm 1 VRGuide Algorithm

1: procedure ROTATE() r> Objs is a global variable.

2: if Objs is not Empty then

3: Opts getPossibleRotations()

4: Opt FetchClosest(Opts, Objs)

5: Return Opt

6: else

7: Return CurrentRotation

8: end if

9: end procedure

10: procedure MOVE()

11: Objs Reachable();

12: if Objs is empty then

13: Opts getPossibleMoves()

14: Opt BestNeighbor(Opts)

15: Return Opt

16: else

17: Return CurrentPosition

18: end if

19: end procedure

V. EVALUATION

To evaluate our approach, we compare VRGuide and

VRTest on eight VR software projects on their object coverage,

method coverage, as well as detected bugs. The implementa-

tion of VRGuide and the dataset used in our evaluation is

available on our project website1.

1https://sites.google.com/view/vrguide2023

move and rotate the player camera to interact with interactable

objects, and VRGreed, which uses greed algorithm to approach

the closest interactable objects one by one. Although VRGreed

has been shown to be superior than VRMonkey in earlier stud-

ies [9], we still ran VRMonkey in our evaluation and include

its results for reference. Note that we use the average results

of five executions for VRMonkey due to the randomness in

the technique.

3) Evaluation Subjects: In our evaluation, we reuse four

out of five VR software projects from the original evaluation

subject set of VRTest2: UnityVR, UnityVREscapeRoom,

Unity-vr-maze, and Unity-vr-cave-puzzle. We

did not use the remaining VRND_Night_at_the_Museum

because it is no longer compatible with updated version of

Unity.

Besides the four subjects from VRTest’s original subject set,

we further collected four more open source VR projects from

Github. In particular, we searched for keywords “Unity” and

“VR”, and ranked the retrieved projects by the number of stars.

We considered only VR software projects consisting of VR

scenes, so we skipped the VR development libraries and tools

such as XRTK and Google VR Unity SDK. Furthermore,

we considered only projects with at least one virtual object

with at least one event triggers.

The basic information of the eight subject projects in our

evaluation is presented in Table I. In the table, we present

the number of source files, the number of lines of code, and

the number of static virtual objects / prefabs (dynamic virtual

objects are typically created by cloning static virtual objects /

prefabs), respectively.

4) Testing Environment: To perform the evaluation, we

use Unity version 2021.3 LTS with Visual Studio 2017 (for

compilation of C# source code) and run the experiment on a

computer with Intel Core i7-6500U CPU, 8GB of memory, and

Intel HD 520 Graphics card. We set a timeout of 300 seconds,

which is the default timeout value of VRTest. Testing of most

subjects saturate before 300 seconds.

2Downloaded from https://sites.google.com/view/vrtest2021

957

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

hŶŝƚǇsZ hŶŝƚǇsZEƐĐĂƉĞZŽŽŵ hŶŝƚǇͲǀƌͲŵĂǌĞ

hŶŝƚǇͲǀƌͲĐĂǀĞͲƉƵǌǌůĞ hŶŝƚǇZĂŶĚŽŵ >ŽĐŬ hŶŝƚǇƌŽůůŝŶŐsZ

hŶŝƚǇ ŝƚǇsŝĞǁ sZͲ&ŽƌĞƐƚ ǀĞƌĂŐĞ

Fig. 6. interactable Objects Coverage of Different Testing Techniques

TABLE I

BASIC INFORMATION OF EVALUATION SUBJECTS

Name #Source

Files

LOC #Virtual

Objects

UnityVR 129 25.6K 36

UnityVREscapeRoom 207 31.2K 109

unity-vr-maze 7 503 26

unity-vr-cave-puzzler 7 8.0K 27

UnityRandomBlocks 144 15.3k 32

UnityrollingVR 136 12.2k 22

UnityCityView 176 19.0k 26

VR-Forest 422 41.1k 43

5) Testing Configuration: When performing VR testing

using VRTest, we need to configure three major parameters:

the rotation scope that limits the user camera’s watching angle,

the moving/rotating speed defines the speed of moving and

rotating the user camera, and the Moving Granularity that

determines the maximal distance to be covered in one move

action.

In our evaluation, we follow the default values of VRtest

for all of the four parameters to make sure we have a fair

comparison with VRTest. In particular, we set the rotation

scope with X-axis rotation between -90 degree and 90 degree,

Y -axis rotation between -180 degree and 180 degree, and no

rotation for Z-axis. We use 1 meter per second (1 unit in

Unity-based VR scene represents 1 meter) as the moving speed

and 10 degree per second as the rotation speed. For action

granularity, we use 1 meter and 10 degree as the elementary

step of movement and rotation.

B. Evaluation Results

In our evaluation, we measure the effectiveness of testing

by the interactable object coverage and method coverage. For

interactable object coverage, we count objects of the same

type as one because they are attached with the same set of

listeners and scripts. The evaluation results on interactable

object coverage is presented in Figure 6. The figure consists

of nine sub-charts. In each sub-chart, the x-axis denotes the

amount of testing time passed (in minutes). The y-axis denotes

the interactable object coverage. The first eight sub-charts

present the results for eight subject projects, respectively, and

the last sub-chart presents the average results of eight subject

projects.

From Figure 6, we have the following major observations.

First of all, both VRGreed and VRGuide achieved much higher

interactable object coverage than VRMonkey, reaffirming that

958

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

purely random testing strategy does not work well in VR

software (which is different from the case in Android test-

ing). This is perhaps due the huge input space and sparsity

of interactable objects in a VR scene. Second, VRGuide

is more efficient than VRGreed in seven out of eight VR

projects, and in the only remaining project UnityVR both

strategies have the same efficiency. The major reason is that

UnityVR does not have any obstacle and all virtual objects

are visible at the beginning of the scene. Third, in projects

UnityrollingVR and UnityRandomBlocks, VRGuide

achieves higher coverage when the five minute time out is

reached. The reason may be that these projects involve many

moving virtual objects. For the other projects, VRGuide is

able to achieve a coverage saturation using 31% less than time

VRGreed.

The evaluation results on method coverage is presented in

Figure 8. The figure is organized the same way as Figure 6.

From the figure, we can observe a trend similar to that for

interactable object coverage in Figure 6. The major difference

is that, because VR software typically contains a lot of

code in life-cycle methods (e.g., start(), update()) for

animation rendering, such code will always be executed as

long as the VR scene is initialized and executed. Therefore,

even VRMonkey achieved a not-to-bad coverage between 35%

and 45%. However, VRGuide still achieves higher testing

efficiency in seven out of eight projects, and higher coverage

upon testing timeout in two out of eight projects.

C. Bug Detection

The ultimate goal of testing is to detect bugs in software.

Therefore, we further investigate whether our technique is

able to detect real bugs and how it compares with VRTest.

During the testing process, we detected five bugs from

three projects UnityRandomBlocks, UnityrollingVR

and UnityCityView. Four of the five bugs3 have been

confirmed and fixed by the developers. It should be noted

that without automatic oracle, unhandled exceptions are the

only type of bugs we can automatically report. Among

the five bugs, VRTest is able to detect the bug in

UnityCityView (not confirmed yet), and one of the bugs

in UnityRandomBlocks (confirmed and fixed), but missed

the remaining three bugs because those bugs all require the

interaction within time limit or with moving objects which

will be destroyed after a while, and VRTest is not able to

interact with the object in time.

Figure 7 shows the screenshot of one of the bugs we

detected in UnityRandomBlocks. In particular, the blue

ball is dynamically placed and moving in a scene with many

obstacles. It is supposed to stop when caught by the pointer

clicker. A rigid body is required to be attached to the ball when

a force is applied to it. However, the developer forgot to attach

a rigid body to the object, so an exception was thrown. Our

3https://github.com/hfzhg/UnityRandomBlocks/issues/1,

https://github.com/hfzhg/UnityRandomBlocks/issues/2,

https://github.com/spcover/UnityrollingVR/issues/9,

https://github.com/spcover/UnityrollingVR/issues/10

Fig. 7. A Detected Bug in UnityRandomBlocks

bug detection results show that although VRGuide performs

just moderately better than VRTest on the final method / object

coverage, it is more likely to detect real bugs. We believe that

VRGuide’s ability to achieve high coverage within shorter time

allows it to detect time-sensitive bugs that are more difficult

to detect with manual testing. And that is the reason why

VRGuide is able to find more real-world bugs than VRTest.

D. Threats to Validity

The major threat to our construction validity is whether our

experiment setup is the same as the actual usage scenario

of VR testing. Since VRGuide is fully automatic, the only

potential issue is whether the configuration is reasonable. To

reduce this threat, we followed VRTest with all their configura-

tions. We believe the default configuration of VRTest should

provide a fair environment for comparing testing strategies.

The major internal threat to our evaluation is the potential bugs

and errors in our implementation of VRGuide. To reduce this

threat, we carefully reviewed the code of VRGuide, and tested

it with multiple artificial testing projects. The major external

threat to our evaluation is that our results may be specific to

the subject projects we used, or Unity-based VR projects. To

reduce this threat, we collected eight top subject projects with

different features from UnityList and Github. Also, we believe

that Unity-based projects are representative given that Unity is

dominating the VR software development market. To further

reduce this threat in the future, we plan to perform evaluation

more subjects and projects based on a different framework.

VI. DISCUSSION

A. More Event Types

Our VRGuide currently focuses on the pointer click event

type as it is the most commonly supported event type. There

are some other event types supported by certain devices, such

as the grabbing event which allows a user to grab certain

virtual object with their virtual hand, and the colliding event

that allows a user to push or collect certain virtual objects

when the user camera is at the same position or close to an

existing virtual object. Since these events are mainly contact-

based events (i.e., the user camera needs to be very close to the

virtual object to trigger the event), they are less complicated

959

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

hŶŝƚǇsZ hŶŝƚǇsZEƐĐĂƉĞZŽŽŵ hŶŝƚǇͲǀƌͲŵĂǌĞ

hŶŝƚǇͲǀƌͲĐĂǀĞͲƉƵǌǌůĞ hŶŝƚǇZĂŶĚŽŵ >ŽĐŬ hŶŝƚǇƌŽůůŝŶŐsZ

hŶŝƚǇ ŝƚǇsŝĞǁ sZͲ&ŽƌĞƐƚ ǀĞƌĂŐĞ

Fig. 8. Method Coverage of Different Testing Techniques

to trigger compared with pointer clicks as we do not need to

consider scenarios such as object occluding. Meanwhile, when

considering all types of events, we can measure the interaction

value of a position inside the virtual scene by combining

the number of visible interactable objects (receiving pointer

click events) and the distance from the position to interactable

objects which receive contact-based events.

B. Event Constraints

Similar to GUI software where clicking a button may lead

the user to a new window or make other controls available,

there are also event constraints in VR software where trig-

gering an event on a virtual object leads to the creation /

destroy / movement of virtual objects and even scene switch.

In VRTest, such dynamic objects are currently handled by

periodically retrieving the states of the VR scene (through the

VR Scene Monitor). A more complicated case is when the

virtual objects must be interacted in certain order to lead to

an outcome. None of our three testing techniques intentionally

handle such interaction orders, so whether the outcome can be

triggered may largely rely on repetitive triggering of events

on interactable virtual objects when the methods associated

with them are still not covered. In the future, we plan to

use static analysis to identify the dependencies between event

handlers. Based on the dependencies, VRGuide would be able

to trigger events in more proper order to expose more software

behaviors.

C. Testing Metrics

In our paper, we use method coverage and interactable

coverage to measure the test effectiveness of our framework

and tools. It is arguable whether these testing metrics are

effective for VR testing because VR software focus more on

user experience. There exist many VR software projects which

do not have much interactions and just have the user to view

the VR scene. For such software, it may be more important

for the testing process to explore the VR scene as much as

possible instead of trying to trigger as many events as possible.

So a different type of test coverage, such as scene coverage,

which measures how much portion of the VR scene has been

observed, may be also suitable for certain types of VR software

projects.

VII. RELATED WORKS

A. Testing and Studies of VR Software

There have been some test frameworks that facilitate au-

tomating VR software testing such as VRTest [9], which we

compare with in our paper, and AutoWalker [8], which is

960

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

similar to VRMonkey and randomly guides the player camera

in the VR scene. Gil et al. [19] and Souza el al. [20] proposed

approaches to model AR applications and cover the model

nodes and edges using automatic test cases. However, their

models are at higher level focusing on covering scenes and

their transitions instead of the automatic exploration of VR

scenes. Harms [21] proposed guidelines for the usability eval-

uation of AR applications and categorizes usability issues. Rafi

et al. [22] proposed Predart, which automatically evaluates

realisticness of VR object placement as test oracles and can

be applied to automatic VR and AR testing. Very recently,

Rzig et al. [23] studied the characteristics of unit tests in

VR applications and found they were of lower quality than

their counterparts in other applications. Compared with these

efforts, VRGuide focuses on scene exploration, which is a core

component of VR software testing and none of the existing

works cover it.

There are also some works on game testing which is related

to VR testing. Wuji [24] is a framework to automatically test

games based on evolutionary algorithms and reinforcement

learning. It explores the game spaces and branches as well as

making progress by passing stages. Zhao et al. [25] proposed

an approach to enhancing playing tactics in game testing by

learning from player action sequences. Bergdahl et al. [26]

proposed an approach to augment existing manually written

test scripts with reinforcement learning. However, all of the

above approaches mainly focus on game tactics and are

designed for 2D games, so when applied to 3D software they

still face the challenge of flexible camera movement/rotation

and accessing out-of-view and occluded objects, which are the

focuses of this paper.

There also have been some empirical studies on VR

software and video game software. Murphy-Hill et al. [27]

performed a study on video game developers to understand

the challenges in video game development and how they are

different from traditional software development. Washburn et

al. [28] studied failed game projects to find out the major

pitfalls in game development. Lin et al. [29] studied the

common updates in steam platform to understand the prior-

ity of game updates. Rodriguez and Wang. [30] performed

an empirical study on open source virtual reality software

projects to understand their popularity and common structures.

Pascarella et al. [31] studied open source video game projects

to understand their characteristics and the difference between

game and non-game development. Zhang et al. [32] studied

possible solutions to detect potential privacy leaks in mobile

augmented reality apps. Nusrat et al. [33] studied performance

issues in VR applications from performance repair logs and

identified the major reasons for performance downgrades in

VR applications. Molina et al. [34] developed a novel tech-

nique to extract code dependencies [35] in VR applications

and studied the types of dependencies. From these studies,

we gain knowledge on the characteristics of VR software

projects, which help us to understand VR-specific challenges

when designing VRGuide.

B. GUI Testing

Our VRGuide framework includes a lot of new designs

to address special challenges in VR software testing, but

in general, our research is also related to GUI testing and

more advanced GUI testing strategies can be combined with

VRGuide to better unleash its full power. GUI testing is an

extensively studied research area. Some representative techni-

cal solutions include random techniques, model-based tech-

niques, symbolic-execution-based techniques, search-based

techniques, and learning-based techniques.

Random techniques. Monkey [36], DynoDroid [37],

DroidFuzzer [38], are random-search-based approaches that

randomly explore GUI windows. In particular, DynoDroid [37]

instruments the Android framework and allows sending se-

quential and interleaving events. It further allows human

testers to provide input for input boxes. DroidFuzzer [38]

automatically generates random MIME messages on top of

GUI events. Mimic [39] uses random strategy to detect in-

compatibilities [40] in GUI among different mobile devices.

Model-based techniques. Model-based techniques use

static analysis or dynamic analysis to generate a GUI explo-

ration model and then explore the GUI according to the model.

Examples include GUIRipper [41] and its later extension

MobiGUITAR [42]. A3E [43] and SwiftHand [44] also build

finite state models for UI and generate events to explore states

in the model systematically.

Symbolic-execution-based techniques. The symbolic-

execution-based techniques use static or dynamic symbolic

execution to generate test input that leads control flow to un-

covered code. ACTEve [45] first applied concolic testing to the

exploration of Android apps. It alleviates path explosion by de-

tecting program executions that identify subsumption between

different event sequences. JPF-Android [46], an extension of

JPF (Java Path Finder) [47], uses static symbolic execution

to find all feasible execution paths in an Android app and

generate test inputs to cover them.

Search-based techniques. A representative tool for search-

based testing for Android is EvoDroid [48], which boosts

searching efficiency by considering the constraint of Android

development framework. A more recent work, FuzzDroid [49],

focuses on generating the execution environments (e.g., phone

settings of country or language, other apps installed) by

combining static and dynamic analyses through a search-based

algorithm that steers the app toward a configurable target

location. Sapienz [50] combines pre-defined GUI interaction

patterns with a genetic algorithm to evolve from seed input

sequences and search for the optimized exploration sequences

containing short input sequences while maximizing test cov-

erage and fault revelation. Stoat [51] is a UI test generation

tool combining model-based testing and evolutionary testing.

It first constructs a probabilistic state-transition model via

dynamic exploration and optional static analysis, and then

evolves the model to search for the optimized model with re-

gard to comprehensive fitness scores involving Code coverage,

model coverage, and test-suite diversity.

961

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

Learning-based approaches. Researchers have proposed

testing techniques based on learning from the testing process.

Most recently, He et al. [52] proposed a feedback-driven text

input exerciser, which tries to meet the input constrains by

analyzing the hint of the text fields. Pan et al. [53] proposed to

use text similarity in NLP as a guidance to train a model which

generates the test that leads to the state with highest difference.

This approach requires large training set from open-source

apps. Liu et al. [54] proposed to use training apps and human

testers to train a model which can be used to automatically

generate meaningful input for Android apps. Mariani et al. [55]

developed Augusto, which provide high-level testing rules for

three common app functions (i.e., log-in, create-read-update-

delete, save) to guide the model exploration. Qin et al. [56]

proposed to use event sequence mapping to migrate event

sequences from iOS tests to the Android version of the same

app. Behrang and Orso’s recent work [57] further learns test

oracles from existing tests.

VIII. FUTURE WORKS

In the future, we plan to work on the following directions.

First of all, for the testing framework, we plan to extend

it to support more types of events such as grabbing events

and colliding events. Second, our VRGuide testing strategy,

although considering more global information in the VR scene,

is still a greedy-algorithm-based approach, so we plan to fur-

ther enhance it by using AI-based or search-based techniques

which have been shown effective in GUI testing to acquire

a globally optimized route. Third, we plan to evaluate our

framework with more subjects and software projects that are

not based on Unity. Fourth, certain software behavior may be

exposed only when events are triggered in certain order, so we

plan to use static analysis to identify the dependencies between

event handlers. Based on the dependencies, VRGuide would

be able to trigger events in a certain order to expose more

software behaviors.

IX. CONCLUSION

In this paper, we propose a novel testing strategy called

VRGuide to automatically test VR software. The VRGuide

testing strategy is based on the cut theory from computer

geometry and it takes advantage of the intuition that in VR

testing, the player camera can typically interact with an object

as long as the object is within the field of view. The VRGuide

testing strategy involves three major steps: the calculation

of dynamic cuts from interactable objects to their facing

surfaces, the calculation of distances from the player camera’s

neighboring positions to the dynamic cuts, and guiding the

player camera toward the neighboring point that has shortest

distance to its nearest dynamic cut. We evaluated VRGuide

on eight top VR projects from UnityList and Github, and

the evaluation result shows that VRGuide is able to achieve

higher test efficiency and coverage than existing approaches

(i.e., VRTest), and detect unknown bugs in real world projects.

ACKNOWLEDGMENT

The UTSA authors are supported in part by NSF

Grants CNS-1736209, SHF-1846467, SHF-2007718, and

CNS-2221843. The Virginia Tech author is supported in part

by NSF Grants SHF-1845446 and SHF-2006278.

REFERENCES

[1] L. P. Berg and J. M. Vance, “Industry use of virtual reality in product

design and manufacturing: a survey,” Virtual reality, vol. 21, no. 1, pp.

1–17, 2017.

[2] “Mordor intelligence report on virtual reality market,”

https://www.mordorintelligence.com/industry-reports/virtual-reality-

market, 2020, accessed: 2020-06-30.

[3] “Statistica report on virtual reality software market,”

https://www.statista.com/statistics/550474/virtual-reality-software-

market-size-worldwide/, 2020, accessed: 2020-06-30.

[4] “Google play,” https://play.google.com/store, 2020, accessed: 2020-06-

30.

[5] “Apple app store,” https://www.apple.com/ios/app-store/, 2020, ac-

cessed: 2020-06-30.

[6] “Oculus app store,” https://www.oculus.com/experiences/quest/, 2020,

accessed: 2020-06-30.

[7] “Vr user statistics,” https://techjury.net/blog/virtual-reality-statistics/gref,

2020, accessed: 2020-06-30.

[8] (2022) Auto walk unity. https://github.com/onelei/auto-walk-unity.

[9] X. Wang, “Vrtest: An extensible framework for automatic testing of

virtual reality scenes,” in Tool Demo, 2022 IEEE/ACM International

Conference on Software Engineering Companion (ICSE-C). IEEE,

2022, pp. 392–397.

[10] “Unity engine: A unicorn powering the video game and vr/ar

economy,” https://digital.hbs.edu/platform-digit/submission/unity-

engine-a-unicorn-powering-the-video-game-and-vr-ar-economy/, 2020,

accessed: 2020-12-30.

[11] “Unity ipo aims to fuel growth across gaming and beyond,”

https://techcrunch.com/2020/09/10/how-unity-built-a-gaming-engine- for-

the-future/, 2020, accessed: 2020-12-30.

[12] “Apple arkit,” https://developer.apple.com/augmented-reality/, 2020, ac-

cessed: 2020-12-30.

[13] “Google daydream,” https://arvr.google.com/daydream/, 2020, accessed:

2020-12-30.

[14] “Google cardboard,” https://arvr.google.com/cardboard/, 2020, accessed:

2020-12-30.

[15] “Google arcore,” https://developers.google.com/ar, 2020, accessed:

2020-12-30.

[16] “Steam vr,” https://store.steampowered.com/steamvr, 2020, accessed:

2020-12-30.

[17] “Microsoft hololens,” https://www.microsoft.com/en-us/hololens, 2020,

accessed: 2020-12-30.

[18] P. Wang, R. Krishnamurti, and K. Gupta, “Generalized watchman route

problem with discrete view cost,” International Journal of Computa-

tional Geometry & Applications, vol. 20, no. 02, pp. 119–146, 2010.

[19] A. Gil, T. Figueira, E. Ribeiro, A. Costa, and P. Quiroga, “Automated test

of vr applications,” in HCI International 2020–Late Breaking Posters:

22nd International Conference, HCII 2020, Copenhagen, Denmark, July

19–24, 2020, Proceedings, Part II 22. Springer, 2020, pp. 145–149.

[20] A. C. Correa Souza, F. L. Nunes, and M. E. Delamaro, “An automated

functional testing approach for virtual reality applications,” Software

Testing, Verification and Reliability, vol. 28, no. 8, p. e1690, 2018.

[21] P. Harms, “Automated usability evaluation of virtual reality applica-

tions,” ACM Transactions on Computer-Human Interaction (TOCHI),

vol. 26, no. 3, pp. 1–36, 2019.

[22] T. Rafi, X. Zhang, and X. Wang, “Predart: Towards automatic oracle

prediction of object placements in augmented reality testing,” in Pro-

ceedings of the 37th IEEE/ACM International Conference on Automated

Software Engineering, 2022, pp. 1–13.

[23] D. E. Rzig, N. Iqbal, I. Attisano, X. Qin, and F. Hassan, “Virtual reality

(vr) automated testing in the wild: A case study on unity-based vr

applications,” in Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2023, pp. 1269–1281.

http://www.mordorintelligence.com/industry-reports/virtual-reality-
http://www.statista.com/statistics/550474/virtual-reality-software-
http://www.apple.com/ios/app-store/
http://www.oculus.com/experiences/quest/
http://www.microsoft.com/en-us/hololens

962

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 01,2024 at 21:35:27 UTC from IEEE Xplore. Restrictions apply.

[24] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,

Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using

evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE).

IEEE, 2019, pp. 772–784.

[25] Y. Zhao, W. Zhang, E. Tang, H. Cai, X. Guo, and N. Meng,

“A lightweight approach of human-like playtesting,” arXiv preprint

arXiv:2102.13026, 2021.

[26] J. Bergdahl, C. Gordillo, K. Tollmar, and L. Gissle´n, “Augmenting

automated game testing with deep reinforcement learning,” in 2020 IEEE

Conference on Games (CoG). IEEE, 2020, pp. 600–603.

[27] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys, ankle

sprains, and keepers of quality: How is video game development

different from software development?” in Proceedings of the 36th

International Conference on Software Engineering, 2014, pp. 1–11.

[28] M. Washburn, P. Sathiyanarayanan, M. Nagappan, T. Zimmermann,

and C. Bird, “What went right and what went wrong: An analysis

of 155 postmortems from game development,” in Proceedings of the

38th International Conference on Software Engineering Companion, ser.

ICSE ’16, 2016, p. 280–289.

[29] D. Lin, C.-P. Bezemer, and A. E. Hassan, “Studying the urgent updates of

popular games on the steam platform,” Empirical Software Engineering,

vol. 22, no. 4, pp. 2095–2126, 2017.

[30] I. Rodriguez and X. Wang, “An empirical study of open source virtual

reality software projects,” in 2017 ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement (ESEM). IEEE,

2017, pp. 474–475.

[31] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli, “How is

video game development different from software development in open

source?” in 2018 IEEE/ACM 15th International Conference on Mining

Software Repositories (MSR). IEEE, 2018, pp. 392–402.

[32] X. Zhang, R. Slavin, X. Wang, and J. Niu, “Privacy assurance for android

augmented reality apps,” in 2019 IEEE 24th Pacific Rim International

Symposium on Dependable Computing (PRDC). IEEE, 2019, pp. 114–

1141.

[33] F. Nusrat, F. Hassan, H. Zhong, and X. Wang, “How developers

optimize virtual reality applications: A study of optimization commits

in open source unity projects,” in 2021 IEEE/ACM 43rd International

Conference on Software Engineering (ICSE). IEEE, 2021, pp. 473–485.

[34] J. Molina, X. Qin, and X. Wang, “Automatic extraction of code depen-

dency in virtual reality software,” in 2021 IEEE/ACM 29th International

Conference on Program Comprehension (ICPC). IEEE, 2021, pp. 381–

385.

[35] H. Zhong and X. Wang, “Boosting complete-code tool for partial pro-

gram,” in 2017 32nd IEEE/ACM International Conference on Automated

Software Engineering (ASE). IEEE, pp. 671–681.

[36] AOSP, “Android Monkey,” https://developer.android.com/stud-

io/test/monkey, 2007.

[37] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input

generation system for android apps,” in Proceedings of the 2013 9th

Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE

2013. New York, NY, USA: ACM, 2013, pp. 224–234. [Online].

Available: http://doi.acm.org/10.1145/2491411.2491450

[38] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the

android apps with intent-filter tag,” in Proceedings of International

Conference on Advances in Mobile Computing & Multimedia, ser.

MoMM ’13. New York, NY, USA: ACM, 2013, pp. 68:68–68:74.

[Online]. Available: http://doi.acm.org/10.1145/2536853.2536881

[39] T. Ki, C. M. Park, K. Dantu, S. Y. Ko, and L. Ziarek, “Mimic: Ui

compatibility testing system for android apps,” in 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE). IEEE, 2019,

pp. 246–256.

[40] L. Chen, F. Hassan, X. Wang, and L. Zhang, “Taming behavioral

backward incompatibilities via cross-project testing and analysis,” in

Proceedings of the ACM/IEEE 42nd International Conference on Soft-

ware Engineering, 2020, pp. 112–124.

[41] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android

applications,” in Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering. ACM, 2012, pp. 258–

261.

[42] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.

Memon, “Mobiguitar: Automated model-based testing of mobile apps,”

IEEE software, vol. 32, no. 5, pp. 53–59, 2015.
[43] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for

systematic testing of android apps,” in Acm Sigplan Notices, vol. 48,

no. 10. ACM, 2013, pp. 641–660.

[44] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps

with minimal restart and approximate learning,” in Acm Sigplan Notices,

vol. 48, no. 10. ACM, 2013, pp. 623–640.

[45] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic

testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering.

ACM, 2012, p. 59.

[46] H. van der Merwe, B. van der Merwe, and W. Visser, “Execution and

property specifications for jpf-android,” SIGSOFT Softw. Eng. Notes,

vol. 39, no. 1, pp. 1–5, Feb. 2014.

[47] “Jpf,” http://javapathfinder.sourceforge.net/.

[48] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-

lutionary testing of android apps,” in Proceedings of the 22Nd ACM

SIGSOFT International Symposium on Foundations of Software Engi-

neering, 2014, pp. 599–609.

[49] S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making malory behave

maliciously: Targeted fuzzing of android execution environments,” in

2017 IEEE/ACM 39th International Conference on Software Engineer-

ing (ICSE), 2017, pp. 300–311.

[50] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated

testing for android applications,” in Proceedings of the 25th International

Symposium on Software Testing and Analysis, ser. ISSTA 2016. New

York, NY, USA: Association for Computing Machinery, 2016, p. 94–

105. [Online]. Available: https://doi.org/10.1145/2931037.2931054

[51] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,

and Z. Su, “Guided, stochastic model-based gui testing of android

apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA:

Association for Computing Machinery, 2017, p. 245–256. [Online].

Available: https://doi.org/10.1145/3106237.3106298

[52] Y. He, L. Zhang, Z. Yang, Y. Cao, K. Lian, S. Li, W. Yang, Z. Zhang,

M. Yang, Y. Zhang, and H. Duan, “Textexerciser: Feedback-driven text

input exercising for android applications,” in 2020 IEEE Symposium on

Security and Privacy (SP), 2020, pp. 1071–1087.

[53] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement

learning based curiosity-driven testing of android applications,” in

Proceedings of the 29th ACM SIGSOFT International Symposium on

Software Testing and Analysis, ser. ISSTA 2020. New York, NY, USA:

Association for Computing Machinery, 2020, p. 153–164. [Online].

Available: https://doi.org/10.1145/3395363.3397354

[54] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng,

“Automatic text input generation for mobile testing,” in Proceedings

of the 39th International Conference on Software Engineering, ICSE

2017, Buenos Aires, Argentina, May 20-28, 2017, 2017, pp. 643–653.

[Online]. Available: https://doi.org/10.1109/ICSE.2017.65

[55] L. Mariani, M. Pezze`, and D. Zuddas, “Augusto: Exploiting popular

functionalities for the generation of semantic gui tests with oracles,” in

2018 IEEE/ACM 40th International Conference on Software Engineer-

ing (ICSE). IEEE, 2018, pp. 280–290.

[56] X. Qin, H. Zhong, and X. Wang, “Testmig: Migrating gui test cases from

ios to android,” in Proceedings of the 28th ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2019, p. 284–295.

[57] F. Behrang and A. Orso, “Test migration between mobile apps with

similar functionality,” in 2019 34th IEEE/ACM International Conference

on Automated Software Engineering (ASE), 2019, pp. 54–65.

http://doi.acm.org/10.1145/2491411.2491450
http://doi.acm.org/10.1145/2536853.2536881
http://javapathfinder.sourceforge.net/

