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Abstract

We propose an algorithm to solve convex and concave fractional programs and

their stochastic counterparts in a common framework. Our approach is based on

a novel reformulation that involves differences of square terms in the constraints,

and subsequent employment of piecewise-linear approximations of the concave

terms. Using the branch-and-bound (B&B) framework, our algorithm adap-

tively refines the piecewise-linear approximations and iteratively solves convex

approximation problems. The convergence analysis provides a bound on the

optimality gap as a function of approximation errors. Based on this bound,

we prove that the proposed B&B algorithm terminates in a finite number of

iterations and the worst-case bound to obtain an ϵ-optimal solution recipro-

cally depends on the square root of ϵ. Numerical experiments on Cobb-Douglas

production efficiency and equitable resource allocation problems support that

the algorithm efficiently finds a highly accurate solution while significantly out-

performing the benchmark algorithms for all the small size problem instances

solved. A modified branching strategy that takes the advantage of non-linearity

in convex functions further improves the performance. Results are also discussed

when solving a dual reformulation and using a cutting surface algorithm to solve
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distributionally robust counterpart of the Cobb-Douglas example models.

Keywords: Fractional programming, Second order cone approximation,
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1. Introduction

Let us consider fractional optimization models of the form

min
x∈X

K∑
k=1

pk
fk(x)

gk(x)
, (1)

where X ⊆ Rn and pk ≥ 0 for every k ∈ [K] := {1, 2, · · · ,K}. If the vector

p ∈ RK+ satisfies
∑K
k=1 pk = 1, the model can be viewed as a stochastic fractional

program with finite support. Moreover, by taking pk = 1/K the model can

be understood as a sample average approximation of a stochastic fractional5

program:

min
x∈X

h̄(x) := EP

[
f̃(x)

g̃(x)

]
, (2)

where the expectation is defined using a measure from the probability space

(Ω,B,P), and f̃(·), g̃(·) denote functions with random parameters following a

probability distribution P.

We study two optimization models of (1). In the first model, fk are convex10

and gk are concave, and fk(x) > 0 and gk(x) > 0 for all x ∈ X and k ∈ [K].

This model is called the convex fractional program. The second model is the

concave fractional program, which has the form of maxx∈X
∑K
k=1 pk

f ′
k(x)
g′k(x)

where

f ′k are concave and g′k are convex, and f ′k(x) > 0 and g′k(x) > 0 for all x ∈ X

and k ∈ [K]. Converting it to a minimization problem, we can represent this15

model in the form of (1). These two models have been studied independently

in the literature. In this work, we provide a unified framework that covers not

only the convex and concave fractional programs but also their distributionally

robust counterparts. We give two motivating examples below.
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1.1. Motivating Examples20

Our consideration of (1) is motivated from the following two applications.

The first one is the stochastic version of the equitable resource allocation prob-

lem, which aims to allocate resources to entities in an equitable manner. This

allocation model is useful when the available resources from the suppliers are in

short supply. The second application model is a stochastic generalization of the25

classical Cobb-Douglas model for measuring production efficiency.

1.1.1. Stochastic Equitable Resource Allocation Problem

Suppose that we have m suppliers and n customers. Let ri be the amount

of resources supplier i can provide and dj be the requirement of customer j.

Let bij be the benefit each unit resource from supplier i brings to customer

j. The decision variable xij allocates resources from supplier i to customer j.

A classical model, without equity considerations, maximizes total benefits by

solving

θ∗ := max
m∑
i=1

n∑
j=1

bijxij

s.t.
n∑
j=1

xij ≤ ri,
m∑
i=1

bijxij ≤ dj , xij ≥ 0, i ∈ [m], j ∈ [n].

(3)

However, a solution to (3) may lead to unfair allocation of available resources to

the customers. An equitable resource allocation model balances benefit maxi-

mization with allocation equity. The objective function in the equitable resource

allocation model minimizes an equity-based objective function, while ensuring

that the total benefits from the allocation do not fall below a certain threshold

δθ∗, where δ ∈ [0, 1] and θ∗ is the maximum value in (3). With this considera-

3



tion, the equitable resource allocation problem is formulated as

min
n∑
j=1

∣∣∣∣∣
∑m
i=1 bijxij∑m

i=1

∑n
j=1 bijxij

− 1

n

∣∣∣∣∣
s.t.

n∑
j=1

xij ≤ ri,
m∑
i=1

bijxij ≤ dj , xij ≥ 0, i ∈ [m], j ∈ [n],

m∑
i=1

n∑
j=1

bijxij ≥ δθ∗.

(4)

This model allocates the resources so that each customer achieves a nearly

equal share of the total benefit. In problem (4), f(x) =
∑n
j=1 |

∑m
i=1 bijxij −∑m

i=1

∑n
j=1 bijxij |/n and g(x) = |

∑m
i=1

∑n
j=1 bijxij |.

∑m
i=1

∑n
j=1 bijxij ≥ 030

holds for all x ≥ 0, since bij ≥ 0, thus g(x) :=
∑m
i=1

∑n
j=1 bijxij is a linear

function and the model in (4) is a convex fractional program.

In the above model if parameters b, r, d are random and they follow a discrete

probability distribution, we have the stochastic equitable resource allocation

problem:35

min

K∑
k=1

pk

n∑
j=1

∣∣∣∣∣
∑m
i=1 b

k
ijxij∑m

i=1

∑n
j=1 b

k
ijxij

− 1

n

∣∣∣∣∣
s.t.

n∑
j=1

xij ≤ rki ,
m∑
i=1

bkijxij ≤ dkj , xij ≥ 0, i ∈ [m], j ∈ [n], k ∈ [K]

K∑
k=1

pk

m∑
i=1

n∑
j=1

bkijxij ≥ δθ
∗
.

(5)

where K is the total number of scenarios, pk ≥ 0 is the probability of scenario

k,
∑K
k=1 pk = 1, all scenario specific parameters are superscripted with k, δ

has the same interpretation as in (4) and θ
∗

is the optimal value to stochastic

variant of (3) as follows:

θ
∗
:= max

K∑
k=1

pk

m∑
i=1

n∑
j=1

bkijxij (6)

s.t.
n∑
j=1

xij ≤ rki ,
m∑
i=1

bkijxij ≤ dkj , xij ≥ 0, i ∈ [m], j ∈ [n], k ∈ [K].
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1.1.2. Stochastic Cobb-Douglas Production Efficiency Problem

The Cobb-Douglas production function (Cobb & Douglas, 1928) aggregates

economy-wide information. Historically, it was the first production function

that was estimated and used for analysis. The analysis of this function re-

sulted in a landmark step in modeling macroeconomics from the microeconomics

perspective (Filipe & Adams, 2005). The Cobb-Douglas model in (Bradley &

Frey Jr, 1974) uses the profit function of a firm as f(x) = a0
∏n
i=1 x

ai
i where

xj are production factors, and a1, a2, · · · , an are nonnegative parameters such

that
∑n
i=1 ai = 1. Due to this constraint on a1, a2, · · · , an, the function f

is concave in x. The set X ∈ Rn++ describes the domain of production fac-

tors. The total cost is a linear function of production factors and it is given by

g(x) =
∑n
i=1 cixi + c0. The production efficiency problem is formulated as

max
x∈X

a0
∏n
i=1 x

ai
i∑n

i=1 cixi + c0
. (7)

In this model, we may assume that the parameters follow a probability dis-

tribution P. This results in the stochastic programming generalization of the

Cobb-Douglas model. More generally, assuming that the model parameters a

and c follow an unknown probability distribution P, which is contained in a set

of probability distributions, called an ambiguity set, D, a distributionally robust

Cobb-Douglas production efficiency model can be formulated as:

max
x∈X

min
P∈D

E(ã,c̃)∼P

[
ã0
∏n
i=1 x

ãi
j∑n

i=1 c̃ixi + c̃0

]
. (8)

The model (8) specializes to a concave fractional program if the set D is a

singleton and its element P has finite support.

1.1.3. Other Applications

While the development of solution approaches in this paper is motivated from40

(4) and (8), the developed methodology can be applied to other applications

such as those arising in information theory (Meister & Oettli, 1967; Aggarwal

& Sharma, 1970), cluster analysis (Rao, 1971), portfolio investment problems
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(Ziemba et al., 2013) and inventory problems (Hodgson & Lowe, 1982). For

more applications, see Stancu-Minasian (1997).45

1.2. Contributions

This paper studies convex and concave fractional programming problems and

their stochastic counterparts in a common framework. This is a non-convex

optimization problem. We reformulate the problem through piecewise linear

approximation by using the concept introduced in Kim & Mehrotra (2021) for50

stochastic fractional linear programs. We show that the sample average approx-

imation (SAA) of stochastic convex and concave fractional programs converge

to its true optima with increasing sample size, and also provide a result sim-

ilar to the central limit theorem. An algorithm is developed that adaptively

refines this piecewise-linear approximation by dividing a hyper-rectangle and55

solving a convex approximation problem for each sub-hyper-rectangle to update

the lower bound and the incumbent solution. The basic idea of approximating

the difference of quadratic functions using a piecewise-linear approximation was

introduced in Kim & Mehrotra (2021) in the context of linear fractional pro-

gramming and its stochastic counterparts. This work generalizes its applicability60

to a much broader setting. A convergence analysis shows that the algorithm

attains an ϵ-optimal solution after a finite number of iterations. Specifically,

the worst-case bound for the number of iterations is in the order of O(1/
√
ϵ).

This is an improvement of O(1/
√
ϵ) over the previous results, and indicates its

efficiency in finding a more accurate solution.65

The experimental results show that with a 12-hour time limit the pro-

posed branch-and-bound algorithm outperforms benchmark algorithms on test

instances for both problems. For 10-scenario stochastic resource allocation prob-

lem, the proposed algorithm achieves given relative optimality gap within the

time limit for majority of the instances. Two to four digit accuracy is achieved70

in the remaining instances. However, previously known benchmark algorithms

cannot achieve any digit accuracy. For the Cobb-Douglas instances of dimension

up to 15, the proposed algorithm attains the desired solution accuracy for all
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cases while benchmark algorithms never attain this accuracy when used with

a 12 hour time limit. A novel LP-relaxation based branching strategy further75

improves the efficiency by about 50% on average.

We discuss two solution approaches for the distributionally robust formula-

tions. They are based on a dual reformulation and the cutting surface algorithm

in Section 6. The dual approach is applicable when it is possible to dualize the

ambiguity set D without an optimality gap and the introduction of dual vari-80

ables do not change the structure of the model formulation, as in the case when

D has a polyhedral description. The cutting surface approach allows the use

of a general convex set when specifying D. For distributionally robust Cobb-

Douglas production efficiency problems, these solution approaches attain the

desired solution accuracy with a little extra computation if nominal data is uni-85

formly distributed. However, the problems become more challenging to solve if

the nominal data follows a skewed distribution.

2. Literature Review

2.1. Algorithms for Convex Fractional Program

Konno et al. (1994) considers a generalized convex multiplicative program-90

ming problem which minimizes r(x) +
∑K
k=1 fk(x)hk(x) subject to a compact

and convex set X where fk(x) > 0, hk(x) > 0, k ∈ [K] and r(x) are convex func-

tions. This optimization problem specializes to the convex-concave fractional

program when r(x) = 0 and hk(x) = 1/gk(x) for concave gk. This work presents

an outer approximation algorithm that solves a sequence of approximation prob-95

lems. The approximation problems are concave minimization problems and the

feasible region is successively refined through linear cuts. The algorithm attains

ϵ-optimal solution after a finite number of iterations.

Freund & Jarre (2001) and Benson (2001) present branch and bound al-

gorithms to solve the convex-concave fractional program. In Freund & Jarre100

(2001), a K-dimensional hyper-rectangle containing the Cartesian product of

the ranges of gk are branched. For each hyper-rectangle, they solve a convex
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optimization problem using an interior point method, and use the resulting La-

grange multipliers to obtain a linear function, which results in lower bounds

for two sub-hyper-rectangles. On the other hand, Benson (2001) branches a105

2K-dimensional hyper-rectangle, which contains the Cartesian product of the

ranges of fk and gk. For each hyper-rectangle, it solves two different convex op-

timization problems to obtain a lower bound. The branch-and-bound algorithm

in Benson (2001) is shown to obtain an ϵ-optimal solution in a finite number of

iterations.110

2.2. Algorithms for Concave Fractional Program

Dur et al. (2001), Benson (2002a), and Benson (2002b) present branch and

bound algorithms to solve the concave-convex fractional program. Dur et al.

(2001) introduces K auxiliary variables for fractional terms, and successively

branches them and solves convex approximation problems in a branch-and-115

bound framework. In Benson (2002a), K auxiliary variables are introduced for

reciprocals of gk. By branching them and solving convex approximation prob-

lems, it finds an ϵ-optimal solution. The convergence result states that either

the algorithm terminates after a finite number of iterations or every accumula-

tion point of a sequence of incumbent solutions is an optimal solution. On the120

other hand, Benson (2002b) introduces 2K auxiliary variables for fk and gk.

K auxiliary variables for gk are branched and convex relaxation problems are

derived using the McCormick envelope (McCormick, 1976). The convergence

result in Benson (2002b) is similar to the one given for the algorithm in Benson

(2002a).125

In additional literature, Gruzdeva & Strekalovsky (2018) developed a solu-

tion approach for general functions in the fractional form. This approach can be

adapted to convex-concave fractional programs. However, it does not provide

a convergence and performance guarantee. The algorithm in Jiao & Liu (2017)

for the sum of ratios problem is limited to quadratic functions in the numerator130

and denominator. Hu et al. (2019) propose an incremental quasi-subgradient

method to solve the sum of convex-concave ratio problem. A variant of their
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method randomly chooses an element from the summation terms. This algo-

rithm is shown to probabilistically converge. However, the analysis makes a

strong homogeneity assumption that all the fractional terms in the objective, if135

optimized individually, have at least one common optimal point.

We also observe that the Cobb-Douglas production efficiency problem can

be treated as a variant of a general geometric program. Algorithms for general

geometric programming that are developed in the recent literature such as Wang

& Liang (2005) can thus also be leveraged to solve this specific problem.140

3. Convex Approximations

In this section, we propose a general framework that covers convex and

concave fractional programs and their stochastic counterparts as special cases.

We introduce a reformulation that involves difference-of-convex constraints and

present the idea of piecewise-linear approximation.145

3.1. A General Framework

Let us consider a fractional program of the form

min
θ,x,c,d,γ,π

θ

s.t. fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K],

fTπ ≤ θ, HTπ ≥ γ, Pγ ≤ θ1J , x ∈ X , θ ∈ R, γ ∈ RK , π ∈ RL,
(9)

where x ∈ Rn, X ⊆ Rn, and fk and gk are numerator and denominator func-

tions, respectively. The functions fk and gk are bounded by variables ck and dk,

which have an upper bound through constants αk and βk. The fractional terms

ck/dk, are the only non-convex terms in this model. The vector γ affects the150

objective value θ through either fTπ ≤ θ, HTπ ≥ γ or Pγ ≤ θ1J where J is the

number of rows of probability matrix P . In stochastic programs (1), it is only

a row vector of p1, p2, . . . , pK . For distributionally robust counterpart, if the
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cutting surface method is used, matrix P represents the set of probability dis-

tributions generated in the algorithm from sequentially adding the probability155

cuts as row vectors to the matrix (see Section 6.2 for details).

We make the following assumptions throughout the paper.

(A1) X ⊂ Rn is a non-empty compact and convex set.

(A2) fk are convex functions and gk are concave functions.

(A3) P is a non-negative matrix in RJ×K .160

(A4) P := {p |Hp = f, p ≥ 0} is a non-empty polytope in RK .

(A5) For σ = 1 we assume that 0 < fk(x) < ∞ and 0 < δg ≤ gk(x) < ∞ for

some positive constant δg for all x ∈ X , k ∈ [K]. maxx∈X fk(x) ≤ αk <∞

and 0 < βk ≤ minx∈X gk(x) for all k ∈ [K].

(A6) For σ = −1 we assume that −∞ < fk(x) < 0 and −∞ < gk(x) ≤ −δg < 0165

for some positive constant δg for all x ∈ X and k ∈ [K]; maxx∈X fk(x) ≤

αk ≤ 0 and maxx∈X −gk(x) ≤ βk <∞ for all k ∈ [K].

3.1.1. Convex Fractional Program

Let αk = maxx∈X fk(x), βk = minx∈X gk(x). Since fk(x) > 0, gk(x) > 0 for

all x ∈ X and k ∈ [K], we can write the convex fractional program as

min θ

s.t. fk(x) ≤ ck ≤ αk, βk ≤ dk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K],

pT γ ≤ θ, x ∈ X , θ ∈ R, γ ∈ RK .

(10)

This has the form of (9) with σ = 1. The constants αk are computed in a

preprocessing step. It is problem specific, and discussed further in Sections 7.170

3.1.2. Concave Fractional Program

The concave fractional program has the form of maxx∈X
∑K
k=1 pk

f ′
k(x)
g′k(x)

where

f ′k are concave and g′k are convex for k ∈ [K], and f ′k(x) > 0 and g′k(x) > 0 for

all x ∈ X and k ∈ [K]. Let αk = maxx∈X −f ′k(x), βk = maxx∈X g′k(x). Since
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f ′k(x) > 0 and g′k(x) > 0 for all x ∈ X and k ∈ [K], we can write it as

min θ

s.t. − f ′k(x) ≤ ck ≤ αk, g′k(x) ≤ dk ≤ βk,
ck
dk
≤ γk, k ∈ [K],

pT γ ≤ θ, x ∈ X , θ ∈ R, γ ∈ RK .

(11)

Note that the concave fractional program (11) is a special case of (9) with

σ := −1, fk := −f ′k, gk := −g′k.

3.1.3. Distributionally Robust Fractional Program

If the ambiguity set is polyhedral or convex, we can write a reformulation or175

a subproblem of a distributionally robust convex or concave fractional program

in the form of (9) (see Section 6).

3.2. Convergence of SAA of Stochastic Fractional Program

We use the general theory from Shapiro (1991) to give a convergence result

of SAA in our case. The SAA convergence results in Shapiro (1991) rely on180

certain assumptions on a function parameterized by random parameters. We

state these results below.

Theorem 3.1. [Theorem 3.2, Shapiro (1991)] Let X be compact, {hK} be a

sequence of random elements in Banach Space B(X ), h̄ ∈ B(X ) and X ∗(h̄)

is the set of minimizer of h̄(x) over X . Suppose that
√
K(hK − h̄) converges185

in distribution to a random element Z of B(X ). Let ϕ∗ := minx∈X h̄(x) and

ϕ̂K be the objective value of a sample average approximation problem from K

samples. Then
√
K (ϕ̂K − ϕ∗)

D−→ minx∈X∗(h̄) Z(x) too. In particular, if h̄(x)

attains its minimum over X at a unique point x∗ then
√
K (ϕ̂K −ϕ∗) converges

in distribution to Z(x∗).190

Theorem 3.2. [Theorem 3.3, Shapiro (1991)]. Suppose that h̄(x) has a unique

minimizer x∗ over X . Assume that the following three conditions are satis-

fied: (a) the function h(x, ·) is measurable for every x ∈ X , (b) the expecta-

tion E
[
h(x,w)2

]
is finite for some point x∗ ∈ X , (c) there exists a function
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L : Ω→ R such that E
[
L(w)2

]
is finite and that |h(x, ω)−h(y, ω)| ≤ L(ω) ∥x−195

y∥ ∀x, y ∈ X . Then
√
K (ϕ̂K − ϕ∗)

D−→ N (0, σ) with σ2 = E
[
h(x∗, w)2

]
−

(E [h(x∗, w)])
2.

We make the following additional assumptions for our SAA convergence

analysis of the stochastic convex fractional program (2) (σ = 1 case). Analogous

assumptions can be made to develop a similar proof for the stochastic concave200

fractional programs (σ = −1).

(A7) The sample space Ω is compact.

(A8) For all ω ∈ Ω, the functions f(x, ω), g(x, ω) are bounded, and 0 <

δg ≤ g(x, ω). They satisfy |f(x, ω) − f(y, ω)| ≤ Lf (ω) ∥x − y∥, |g(x, ω) −

g(y, ω)| ≤ Lg(ω) ∥x− y∥ ∀x, y ∈ X , ∀ω ∈ Ω, for some Lf (·), Lg(·) : Ω→205

R. Moreover, Mf := maxω∈Ω Lf (ω),Mg := maxω∈Ω Lg(ω) exist.

A consequence of Assumption A7 is that f(x, ω), and g(x, ω) are L2 Lebesgue

integrable1 for all x ∈ X . Moreover, Lf (ω), Lg(ω) are also L2-Lebesgue inte-

grable for all x ∈ X . The following lemma is needed to use Theorems 3.2-3.2 in

our context. It shows that under Assumptions A7 and A8 sufficient conditions210

in Theorems 3.2-3.2 are satisfied.

Lemma 3.1. Let h(x, ω) = f(x, ω)/g(x, ω). Then under Assumptions (A7)-

(A8) the following holds:

a) h(x, ω) is L2 Lebesgue integrable for some x0 ∈ X , i.e., E[h(x0, ω)2] <∞.

b) There exists a Lipschitz function Lh(·) : Ω → R such that E[Lh(ω)2] is215

finite and |h(x, ω)−h(y, ω)| ≤ Lh(ω)∥x−y∥, Lh(ω) is finite for all x, y ∈ X

and ω ∈ Ω.

Proof. Part (a) follows because E[h(x0, ω)2] = E[ f(x
0,ω)2

g(x0,ω)2 ] ≤
E[f(x0,ω)2]

δ2g
, δg > 0,

E[f(x0, ω)2] is finite for all ω ∈ Ω (Assumption A8). We prove part (b) by

contradiction. The claim in part (b) can fail in two ways: (i) ∄ finite Lh(ω̂)

1 A measurable function f : Ω → R is called L2-Lebesgue integrable if
∫
Ω |f |2 dP < ∞.
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such that |h(x̂, ω̂)− h(ŷ, ω̂)| ≤ Lh(ω̂)∥x̂− ŷ∥ holds for some ω̂ ∈ Ω, x̂, ŷ ∈ X ; or

(ii) although (i) holds but E[Lh(ω)2] is not finite. Assume that (i) fails to hold.

It implies that for x̂ ̸= ŷ ∈ X

1

∥x̂− ŷ∥

∣∣∣∣f(x̂, ω̂)g(x̂, ω̂)
− f(ŷ, ω̂)

g(ŷ, ω̂)

∣∣∣∣ is unbounded above

⇒ 1

∥x̂− ŷ∥
∣∣f(x̂, ω̂)g(ŷ, ω̂)− f(ŷ, ω̂)g(x̂, ω̂)

g(x̂, ω̂)g(ŷ, ω̂)

∣∣∣∣ is unbounded above

⇒ 1

∥x̂− ŷ∥
|f(x̂, ω̂)g(ŷ, ω̂)− f(ŷ, ω̂)g(x̂, ω̂)| is unbounded above since g(·, ω̂) ≥ δg > 0.

(12)

We now construct a Lh(ω̂) that bounds (12). We consider four cases. Case

I: f(x̂, ω̂) ≥ f(ŷ, ω̂), g(x̂, ω̂) ≥ g(ŷ, ω̂); Case II: f(x̂, ω̂) ≥ f(ŷ, ω̂), g(x̂, ω̂) ≤

g(ŷ, ω̂); Case III: f(x̂, ω̂) ≤ f(ŷ, ω̂), g(x̂, ω̂) ≥ g(ŷ, ω̂); and Case IV: f(x̂, ω̂) ≤

f(ŷ, ω̂), g(x̂, ω̂) ≤ g(ŷ, ω̂). In Case I we write f(x̂, ω̂) = f(ŷ, ω̂)+Lf (x̂, ω̂)∥x̂− ŷ∥

and g(x̂, ω̂) = g(ŷ, ω̂) + Lg(x̂, ω̂)∥x̂ − ŷ∥, where Lf (x̂, ω̂) ≤ Lf (ω̂), Lg(x̂, ω̂) ≤

Lg(ω̂) are the smallest value of Lipschitz constants for which these equalities

hold. Therefore, upon substitution, we have

1

∥x̂− ŷ∥
|f(x̂, ω̂)g(ŷ, ω̂)− f(ŷ, ω̂)g(x̂, ω̂)| = |Lf (x̂, ω̂)g(ŷ, ω̂)− Lg(x̂, ω̂)f(ŷ, ω̂)| ≤

Lf (ω̂)|g(ŷ, ω̂)|+ Lg(ω̂)|f(ŷ, ω̂)| ≤ M̄(Lf (ω̂) + Lg(ω̂)), M̄ = max{f(ŷ, ω̂), g(ŷ, ω̂)}

where M̄ is a constant due to the boundedness assumption (Assumption A8).

In Case II we use f(x̂, ω̂) = f(ŷ, ω̂) + Lf (x̂, ω̂)∥x̂ − ŷ∥ and g(x̂, ω̂) = g(ŷ, ω̂) −

Lg(ŷ, ω̂)∥x̂ − ŷ∥, where Lg(ŷ, ω̂) is the smallest value of the Lipschitz constant

for which the second equality holds. Therefore,

1

∥x̂− ŷ∥
|f(x̂, ω̂)g(ŷ, ω̂)− f(ŷ, ω̂)g(x̂, ω̂)| = |Lf (x̂, ω̂)g(ŷ, ω̂) + Lg(ŷ, ω̂)f(ŷ, ω̂)| ≤

Lf (ω̂)|g(ŷ, ω̂)|+ Lg(ω̂)|f(ŷ, ω̂)| ≤ M̄(Lf (ω̂) + Lg(ω̂)), M̄ = max{f(ŷ, ω̂), g(ŷ, ω̂)}

Cases III and IV are similar, and consequently, we have

1

∥x̂− ŷ∥
|f(x̂, ω̂)g(ŷ, ω̂)− f(ŷ, ω̂)g(x̂, ω̂)| ≤ M̄(Lf (ω̂) + Lg(ω̂)).

By letting, Lh(ω̂) = M̄(Lf (ω̂) + Lg(ω̂)), we have a contradiction. Now since
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Lf (ω) ≤Mf , Lg(ω) ≤Mg (Assumption A8), Lh(ω) ≤ M̄(Mf+Mg). Therefore,

E[Lh(ω)2] ≤ M̄2(Mf +Mg)
2.220

Our next result (Theorem 3.3) states the convergence of ϕ̂K to ϕ∗ in dis-

tribution under some regularity conditions. It is a direct consequence of the

Theorems 3.1 and 3.2 from Shapiro (1991) and Lemma 3.1.

Theorem 3.3. Let X ∗(h̄) be the set of minimizer of h̄(x) over X and Z(x) is a

random element in Banach space for x ∈ X ∗(h̄). Then under Assumptions (A7)-225

(A8),
√
K (ϕ̂K−ϕ∗) converges in distribution to minx∈X∗(h̄) Z(x). In particular,

if X ∗(h̄) = {x∗}, i.e., the minimizer is unique, then
√
K (ϕ̂K − ϕ∗)

D−→ N (0, σ)

with σ2 = E
[
h(x∗, w)2

]
− (E [h(x∗, w)])

2.

Proof. Recall that L2 space is an example of Banach space B(X ). Under As-

sumptions A7 and A8, the sufficient conditions of Theorems 3.1 and 3.2 are230

satisfied due to Lemma 3.1.

Next we provide a convergence result for the reformulated problem (10).

Similar result can also be established for (11).

Theorem 3.4. Let Assumptions (A1)-(A8) hold and problem (10) has opti-

mal value ϕ̂rK for some finite K. Assume that x∗ is the unique minimizer235

to the problem minx∈X E[ f(x,ω)g(x,ω) ]. Then
√
K (ϕ̂rK − ϕ∗)

D−→ N (0, σ) with σ2 =

E
[
h(x∗, w)2

]
− (E [h(x∗, w)])

2.

Proof. Let ζK =
√
K (ϕ̂K − ϕ∗) and ζrK =

√
K (ϕ̂rK − ϕ∗). Then from Theo-

rem 3.3, ζK
D−→ N (0, σ) with σ2 = E

[
h(x∗, w)2

]
− (E [h(x∗, w)])

2. Let Φσ(·) be

the CDF of N (0, σ). For any ϵ > 0,

Φσ(a− ϵ) ≤ lim
K→∞

Pr(ζK ≤ a) ≤ Φσ(a+ ϵ) (13)

For any finite K, optimal value ϕ̂rK = ϕ̂K (see Proposition (3.1)). Hence,

Φσ(a− ϵ) ≤ lim
K→∞

Pr(ζrK ≤ a) ≤ Φσ(a+ ϵ) (14)

Since Φσ(a) is continuous at every a, both Φσ(a−ϵ),Φσ(a+ϵ) converge to Φσ(a)

as ϵ→ 0+.
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3.3. Reformulation of General Convex-Concave Fractional Program Framework240

In formulation (9), we have dk > 0 (see Proof of Proposition 3.1 in Ap-

pendix A for details). Multiplying dk to ck/dk ≤ γk, we obtain ck ≤ dkγk for

all k ∈ [K]. Let

wk :=
γk + dk

2
, vk :=

γk − dk
2

. (15)

Using dkγk = w2
k− v2k, we represent the constraints as ck+ v2k ≤ w2

k for k ∈ [K].

This is a non-convex constraint due to the square term on the right-hand side

of the inequality. Using a convex set

S =


(x, c, d, θ, γ, π, w, v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x), k ∈ [K],

γk + dk = 2wk, γk − dk = 2vk, k ∈ [K],

fTπ ≤ θ,HTπ ≥ γ, Pγ ≤ θ1J
x ∈ X , c ∈ RK , d ∈ RK , θ ∈ R,

γ ∈ RK , π ∈ RL, w ∈ RK , v ∈ RK .


,

(16)

we obtain an alternative optimization problem of the form

ϑ∗ := min θ

s.t. ck + v2k ≤ w2
k, k ∈ [K], (x, c, d, θ, γ, π, w, v) ∈ S.

(17)

Proposition 3.1. Two optimization problems (9) and (17) are equivalent:

• If (x∗, c∗, d∗, θ∗, γ∗, π∗) is an optimal solution to (9), then the solution

(x∗, ĉ, d̂, θ∗, γ̂, π∗, ŵ, v̂) such that

ĉk = fk(x
∗), d̂k = σgk(x

∗), γ̂k =
ĉk

d̂k
, ŵk =

γ̂k + d̂k
2

, v̂k =
γ̂k − d̂k

2
,

for all k ∈ [K] is an optimal solution to (17).

• If (x∗, c∗, d∗, θ∗, γ∗, π∗, w∗, v∗) is an optimal solution to (17), the solution

(x∗, c∗, d∗, θ∗, γ∗, π∗) is an optimal solution to (9).

Proof. See Appendix A245
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3.3.1. Piecewise-Linear Approximations

The reformulated problem (17) has K non-convex constraints of the form

ck + v2k ≤ w2
k for k ∈ [K]. To relax these non-convex constraints, we consider

piecewise-linear approximation of w2
k. Let Wk := (w1

k, · · · ,w
Nk

k ) be a set of

points such that w1
k ≤ · · · ≤ wNk and 1 ≤ j < Nk. The slope of a line

passing through two points
(
wjk, (w

j
k)

2
)

and
(
wj+1
k , (wj+1

k )2
)

on the (wk, w
2
k)

curve is
(
(wjk)

2 − (wj+1
k )2

)
/(wjk − w

j+1
k ) = (wjk + wj+1

k ). The intercept of the

line with the vertical axis is (wjk)
2 − (wjk + wj+1

k )wjk = wjkw
j+1
k . Therefore, the

equation of the line passing through consecutive points of Wk is u(wk;Wk) =

(wjk+wj+1
k )wk−wjkw

j+1
k , 1 ≤ j < Nk. Thus we define a piecewise-linear function

as

u(wk;Wk) := max
1≤j<Nk

(wjk + wj+1
k )wk − wjkw

j+1
k . (18)

Proposition 3.2. For wk ∈ [w1
k,w

Nk

k ], let j be an index such that wjk ≤ wk ≤

wj+1
k . Then, we have w2

k ≤ (wjk + wj+1
k )wk − wjkw

j+1
k ≤ u(wk;Wk). Moreover,

we have

(wjk + wj+1
k )wk − wjkw

j+1
k − w2

k ≤

(
wjk − wj+1

k

2

)2

. (19)

Proof. We obtain the desired result by observing that (wjk+wj+1
k )wk−wjkw

j+1
k −

w2
k = −(wk−wjk + wj+1

k /2)2+(wjk − wj+1
k /2)2 ≥ 0 for any wk ∈ [wj ,wj+1].

Using the piecewise-linear function (18) to approximate the square term w2
k

in (17), we obtain an approximation problem of the form

ϑ̄(W1, · · · ,Wk) := min θ

s.t. ck + v2k ≤ u(wk;Wk), w1
k ≤ wk ≤ wNk

k , k ∈ [K],

(x, c, d, θ, γ, π, w, v) ∈ S.
(20)

The following proposition states that ϑ̄(W1, · · · ,Wk) serves as a lower bound of
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ϑ∗(W1, · · · ,Wk) defined as

ϑ∗(W1, · · · ,Wk) := min θ

s.t. ck + v2k ≤ w2
k, w1

k ≤ wk ≤ wNk

k , k ∈ [K],

(x, c, d, θ, γ, π, w, v) ∈ S.

(21)

Proposition 3.3. Every feasible solution to (21) is also feasible to (20). There-

fore, ϑ̄(W1, · · · ,Wk) ≤ ϑ∗(W1, · · · ,Wk).250

Proof. It follows using Proposition 3.2.

In order to model the piecewise linear function u(wk;Wk), we can use binary

variables with SOS2 constraints. However, in our experience solving this mixed

binary convex approximation problem is computationally costly especially when

Nk is large. Instead of solving this mixed binary convex program, we develop255

a spatial branch-and-bound algorithm which adaptively refines piecewise linear

approximations by dividing the space of (w1, w2, · · · , wK) into small hyper-

rectangles and solves convex approximation problems for sub-hyper-rectangles.

4. An Adaptive Branch-and-Bound Algorithm

Using the idea of piecewise-linear approximations, we introduce a spatial260

branch-and-bound algorithm to obtain an ϵ-optimal solution to (17). Starting

with an initial hyper-rectangle, the algorithm successively breaks it into smaller

hyper-rectangles and solves a convex approximation problem for each sub-hyper-

rectangle to update the lower bound and the incumbent solution. The algorithm

repeats this until the optimality gap becomes smaller than a tolerance level ϵ.265

4.1. Initial Hyper-Rectangle

To construct an initial hyper-rectangle, we consider lower and upper bounds

of wk. Let γmk and γMk be lower and upper bounds of fk(x)/gk(x) subject to x ∈

X for each k ∈ [K]. Since gk(x) ̸= 0 for all x ∈ X and X is a compact set, such

bounds are well-defined for every k ∈ [K]. Using the definition of wk in (15),270

we compute wmk and wMk using the bounds of γk and dk as wmk = γmk + dmk and
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wMk = γMk +dMk where dmk and dMk are lower and upper bounds of |gk(x)| subject

to x ∈ X for k ∈ [K]. Using the bounds on wk, we construct the initial hyper-

rectangle B0 := [wm1 ,wM1 ]× [wm2 ,wM2 ]× · · · × [wmK ,w
M
K ]. If gk is linear, we can

compute tight bounds of dmk and dMk by solving linear programming problems.275

For some applications such as equitable resource allocation and Cobb-Doglous

production efficiency problems, we are also able to compute tight bounds of γmk
or γMk using the Charnes-Cooper transformation (Charnes & Cooper, 1962) as

illustrated in Section 7.

4.2. Approximation Problem280

Let B := [wa1 ,wb1]× [wa2 ,wb2]× · · · × [waK ,w
b
K ] be a hyper-rectangle such that

B ⊂ B0. For each k ∈ [K], we use the line passing through (wak, (w
a
k)

2) and

(wbk, (w
b
k)

2) to approximate w2
k in the interval of [wak,w

b
k]. By Proposition 3.2,

for wk ∈ [wak,w
b
k], we have w2

k ≤ (wak + wbk)wk − wakw
b
k. Using this inequality,

we obtain a convex approximation problem of the form

ϑ̄(B) :=min θ

s.t. ck + v2k ≤ (wak + wbk)wk − wakw
b
k, wak ≤ wk ≤ wbk, k ∈ [K],

(x, c, d, θ, γ, π, w, v) ∈ S.

(22)

Let ϑ∗(B) be the optimal objective value of (21) with additional box constraints

wak ≤ wk ≤ wbk for k ∈ [K]. Then we have ϑ̄(B) ≤ ϑ∗(B) by Proposition 3.3.

4.3. Evaluation Problem

Let (x̄(B), c̄(B), d̄(B), θ̄(B), γ̄(B), π̄(B), w̄(B), v̄(B)) be an optimal solution

to approximation problem (22). Since θ̄(B) serves as a lower bound of ϑ∗(B)

for all B ⊂ B0, taking the minimum of θ̄(B) for all sub-hyper-rectangles B that

partition B0, we are able to compute a lower bound of ϑ∗ in (17). In order to

compute an upper bound of ϑ∗, we solve a linear programming problem, which
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returns the best objective value attainable at x̄(B) as

ψ(x̄(B)) := min θ

s.t.
fk(x̄(B))

gk(x̄(B))
≤ γk, k ∈ [K],

fTπ ≤ θ,HTπ ≥ γ, Pγ ≤ θ1J , θ ∈ R, γ ∈ RK , π ∈ RL.

(23)

For any x ∈ X , ψ(x) serves as an upper bound of ϑ∗ since the solution of

ψ(x), (θ(x), γ(x), π(x)), forms a feasible solution to (9) with (x, c(x), d(x)) where285

ck = fk(x), dk = fk(x) for all k ∈ [K]. Therefore, we compute ψ(x̄(B)) each

time we obtain x̄(B) and update the incumbent solution if needed.

4.4. Main Algorithm

After constructing the initial hyper-rectangle B0, we solve the convex ap-

proximation problem (22) with B = B0 to obtain (x̄(B0), ϑ̄(B0)) and com-290

pute ψ(x̄(B0)) by solving the evaluation problem (23). Then, we initialize the

incumbent solution, the iteration counter, and the branch-and-bound tree as

(x0CB, θ
0
CB)← (x̄(B0), ψ(x̄(B0))), t← 0, and T0 ← {B0, ϑ̄(B0)}.
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Algorithm 1 SOC-B
1: optimality tolerance: ϵ > 0

2: compute bounds on wk, dk and construct an initial hyper-rectangle B0

3: solve (22) with B = B0 and obtain (x̄(B0), ϑ̄(B0))

4: compute ψ(x̄(B0)) by (23) and let (x0CB, θ
0
CB)← (x̄(B0), ψ(x̄(B0)))

5: let ϑtCB ← θ0CB, t← 0, T0 ← {(B0, ϑ̄(B0))}

6: while true do

7: find Bt such that ϑ̄(Bt) = min(B,ϑ̄(B))∈Tt
ϑ(B) and let ϑ̄t ← ϑ̄(Bt)

8: if (ϑtCB − ϑ̄t)/|ϑtCB| < ϵ then

9: return xtCB and θtCB

10: else

11: let (xt+1
CB , θ

t+1
CB )← (xtCB, θ

t
CB)

12: find kt = arg maxk∈[K] (w
b,t
k − wa,tk )2/dmk and let B′t, B′′t as (24), (25)

13: for B ∈ {B′t, B′′t } do

14: solve (22) with B to obtain (x̄(B), ϑ̄(B)) and (23) for ψ(x̄(B))

15: if ψ(x̄(B)) < θt+1
CB then

16: update (xt+1
CB , θ

t+1
CB )← (x̄(B), ψ(x̄(B))); ϑt+1

CB ← θt+1
CB

17: end if

18: end for

19: Tt+1 ← Tt \ {(Bt, ϑ̄(Bt))} ∪ {(B′t, ϑ̄(B′t))} ∪ {(B′′t , ϑ̄(B′′t ))}

20: end if

21: t← t+ 1

22: end while

At each iteration t, we let Bt := [wa,t1 ,wb,t1 ] × [wa,t2 ,wb,t2 ] × · · · × [wa,tK ,wb,tK ]

such that ϑ̄(Bt) = min(B,ϑ̄(B))∈Tt

¯ϑ(B) and ϑ̄t ← ϑ̄(Bt). Note that ϑ̄t is the

best lower bound until time t since our optimization problem is a minimization

problem. If the relative optimality gap, (ϑtCB − ϑ̄t)/|ϑtCB|, is smaller than a

tolerance level ϵ, we terminate with an ϵ-optimal solution (xtCB, θ
t
CB). Otherwise,
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let kt = arg maxk (w
b,t
k − wa,tk )2/dmk and split Bt into B′t and B′′t as

B′t := [wa,t1 ,wb,t1 ]× · · · × [(wa,tkt + wb,tkt )/2,w
b,t
kt
]× · · · × [wa,tK ,wb,tK ], (24)

B′′t := [wa,t1 ,wb,t1 ]× · · · × [wa,tkt , (w
a,t
kt

+ wb,tkt )/2]× · · · × [wa,tK ,wb,tK ]. (25)

For B ∈ {B′t, B′′t }, we solve the convex approximation problem (22) with B to

obtain (x̄(B), ϑ̄(B)) and compute ψ(x̄(B)) by solving the evaluation problem295

(23). Comparing ψ(x̄(B)) with the current best upper bound ϑtCB, we update

the incumbent solution if needed.

Lastly, we update the branch-and-bound tree as

Tt+1 ← Tt \ {(Bt, ϑ̄(Bt))} ∪ {(B′t, ϑ̄(B′t))} ∪ {(B′′t , ϑ̄(B′′t ))}.

The above procedure is repeated until the relative optimality gap becomes

smaller than ϵ. A complete summary of the proposed method is given in Algo-

rithm 1.300

5. Convergence Analysis

In this section, we provide a convergence analysis for Algorithm 1. Specif-

ically, we provide a bound on the optimality gap ϑtCB − ϑ∗ = θtCB − θ∗ < ϵ as

a function of approximation errors at (x̄t, c̄t, d̄t, θ̄t, γ̄t, π̄t, w̄t, v̄t), which is an

optimal solution to (22) with B = Bt. Using this bound, we prove the finite305

convergence of the algorithm. Furthermore, we derive a worst-case bound for

the number of iterations to obtain an ϵ-optimal solution.

Since X is a non-empty compact set, (17) has an finite optimum. Let

(x∗, c∗, d∗, θ∗, γ∗, π∗, w∗, v∗) be an optimal solution to (17) and M be the max

of ∥P∥∞ := maxi
∑
j |Pij | and max {∥p∥1 | p ∈ P}. We present the bound on310

the optimality gap in the first part of the following theorem and the worst-case

bound of iteration in its second part.

Theorem 5.1. (a) Let (x̄t, c̄t, d̄t, θ̄t, γ̄t, π̄t, w̄t, v̄t) and ϑ̄t be an optimal solu-

tion and the objective value to (22) with B = Bt. Then, we have

ϑtCB − ϑ∗ ≤ ϑtCB − ϑ̄t ≤M max
k∈[K]

∆k

dmk
, (26)
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where ∆k := (wa,tk + wb,tk )w̄tk − wa,tk wb,tk − (w̄tk)
2, k ∈ [K]. (27)

(b) For any ϵ > 0, let n =
∑K
k=1 nk where

nk =

⌈
log2

√
M(wMk − wmk )2

4ϵdmk

⌉
, k ∈ [K]. (28)

Algorithm 1 (SOC-B) terminates within 2n iterations.

Proof. Observe that in (9), ck, dk are linear terms. Hence, convex-concave/concave-

convex fractional program involves linear fractional constraints ck/dk ≤ γk and315

convex constraints from numerator and denominator. All subsequent piecewise

linear approximation reformulations are based on these linear fractional con-

straints only and do not affect convex constraints. Hence this theorem can

be proved following the steps in the proof of Theorem 5.1 in Kim & Mehrotra

(2021). Specifically when we construct a feasible solution (x̂t, ĉt, d̂t, θ̂t, γ̂t, π̂t, ŵt, v̂t)320

to (17) from (x̄t, c̄t, d̄t, θ̄t, γ̄t, π̄t, w̄t, v̄t) as

x̂t = x̄t, ĉtk = fk(x̄
t), d̂tk = gk(x̄

t), γ̂tk =
fk(x̄

t)

gk(x̄t)
,

ŵtk =
1

2

(
fk(x̄

t)

gk(x̄t)
+ gk(x̄

t)

)
, v̂tk =

1

2

(
fk(x̄

t)

gk(x̄t)
− gk(x̄t)

)
for k ∈ [K] (29)

θ̂t = θ̄t +M max
k∈[K]

∆k

d̄tk
, π̂t ∈ argmin fTπ subject to HTπ ≥ γ̂t,

those proof steps can be used since γ̂tk ≤ fk(x̄t)/gk(x̄t) ≤ c̄tk/d̄tk.

Proof of part (b) also follows from the steps in Kim & Mehrotra (2021)

(Theorem 5.2) that uses part (a) and the pigeonhole principle.

Note that 2nk is in the order of O(1/
√
ϵ). This demonstrates the efficiency325

of SOC-B in achieving solution accuracy.

6. Distributionally Robust Optimization

In this section, we introduce two solution approaches to solve a distribution-

ally robust convex or concave fractional program with finite support.
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6.1. Dual Reformulation330

We first consider the case where the ambiguity set is polyhedral. Let P be a

polyhedral ambiguity set as defined in (A4). Then, the distributionally robust

convex or concave fractional program with finite support is formulated as

min θ

s.t. fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K], (30)

x ∈ X , pT γ ≤ θ, ∀{p ∈ RK |Hp = f, p ≥ 0}, θ ∈ R, c ∈ RK , d ∈ RK , γ ∈ RK

Using the linear programming duality, we can reformulate (30) as follows.

Proposition 6.1. Optimization problem (30) is equivalent to

min θ

s.t. fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K], (31)

fTπ ≤ θ,HTπ ≥ γ, x ∈ X , θ ∈ R, c ∈ RK , d ∈ RK , γ ∈ RK , π ∈ RL

Proof. This follows from the linear programming duality.

Since the above reformulated problem (31) is an instance of (9), we can

use SOC-B to solve it. Note that many finitely supported ambiguity sets are335

polyhedral. For the dualized reformulations with polyhedral ambiguity sets, see

Kim & Mehrotra (2021) and Luo & Mehrotra (2020).

6.2. Cutting Surface Algorithm

Next, we introduce an iterative approach to solve a distributionally robust

fractional program in the form

min θ

s.t. fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K],

pT γ ≤ θ, ∀ p ∈ C, x ∈ X , θ ∈ R, c ∈ RK , d ∈ RK , γ ∈ RK ,

(32)
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where C is any convex ambiguity set. Problem (32) is a semi-infinite program

due to the presence of constraints pT γ ≤ θ, ∀ p ∈ C. In the special case when340

C is an ellipsoid we can replace
{
maxp∈C p

T γ ≤ θ
}

with an explicit expression

for the optimal value. For more general convex ambiguity sets, many works

(Wiesemann et al., 2014; Bertsimas et al., 2010; Delage & Ye, 2010) dualize

this problem under the assumptions allowing for strong duality. However, un-

like the case with polyhedral ambiguity sets, strong duality does not necessarily345

hold for convex ambiguity sets if the regularity conditions are not satisfied and

it may not be always possible to check the regularity conditions. Thus to de-

velop an algorithm applicable in a general setting, we discuss an alternative

approach based on the cutting surface algorithm (Mehrotra & Papp, 2014; Luo

& Mehrotra, 2019) below. The cutting surface algorithm assumes that an oracle350

is available to generate a separating probability cut.

To solve the semi-infinite problem (32), we consider a sequence of problems

of the form

min θ

s.t. fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K],

P tγ ≤ θ1t, x ∈ X , θ ∈ R, c ∈ RK , d ∈ RK , γ ∈ RK ,

(33)

where each row of P t is an element of a finite set Ct := {p0, p1, · · · , pt} ⊂ C and

p0 is an empirical distribution. Let (xt, θt, ct, dt, γt) be an optimal solution to

(33) at iteration t and pt+1 be an ϵ/2-optimal solution to the separation problem

maxp∈C p
T γt. If (pt+1)T γt − θt ≤ ϵ/2 holds, the algorithm terminates with the355

solution (xt, θt, ct, dt, γt). Otherwise, we add a probability cut pt+1 to Ct and

repeat the above process. Please see Algorithm 2 for a summary of the cutting

surface algorithm.
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Algorithm 2 A cutting surface algorithm for (32)

1: Input: optimality tolerance ϵ > 0, empirical distribution p0.

2: Step 1: C0 ← {p0}, t← 0.

3: Step 2: Find an optimal solution (xt, θt, ct, dt, γt) of (33) with Ct.

4: Step 3: Find an ϵ/2-optimal solution pt+1 of the problem maxp∈C p
T γt.

5: Step 4: If (pt+1)T γt − θt ≤ ϵ/2, stop and return (xt, θt, ct, dt, γt);

otherwise Ct+1 ← Ct ∪ {pt+1}, t← t+ 1, and go to Step 2.

Let θM := maxk∈[K] γ
M
k and Γ := {(x, θ, c, d, γ) | fk(x) ≤ ck ≤ αk, σβk ≤

σdk ≤ gk(x), ck/dk ≤ γk ≤ γMk , p
T γ ≤ θ ≤ θM , x ∈ X , θ ∈ R, c ∈ RK , d ∈360

RK , γ ∈ RK}.

Theorem 6.1. Suppose that C is a compact set such that
∑K
k=1 pk = 1 and

p ≥ 0 for all p ∈ C. Then, Algorithm 2 returns an ϵ-optimal solution in a finite

number of iterations.

Proof. By Proposition 3.1, without loss of generality, we can assume that γm ≤365

γt ≤ γM . Since (32) minimizes θ, there exists some 0 ≤ j ≤ t such that

(pj)T γt = θ. From
∑K
k=1 p

j
k = 1 and pj ≥ 0, we have θ ≤ θM . Therefore,

(xt, θt, ct, dt, γt) ∈ Γ holds for all t ≥ 0.

Since Γ is closed and bounded, Γ is compact. Also, since C is compact, so is

Γ × C. From that g(x, θ, c, d, γ) := γT p − θ is continuous on Γ × C, by (Luo &370

Mehrotra, 2019, Theorem 3.2), we obtain the desired result.

7. Computational Performance

The algorithm presented so far is called SOC-B. In Section 7.1, we propose

a modified branching strategy for SOC-B that can make SOC-B more efficient.

We next discuss implementation details for the algorithms implemented. Sub-375

sequently, we discuss the computational results for the two models introduced

in Section 1.1.
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7.1. Modification of SOC-B

In this section, we present a modification to SOC-B (Algorithm 3 in Ap-

pendix B). It has a branching strategy based on an LP relaxation of the convex380

constraints from the functions such as fk(x) ≤ ck, dk ≤ gk(x), k ∈ [K] arising

in the model.

In comparison to Algorithm 1, Algorithm 3 executes several new commands

throughout lines 10-17, 24, 26-30. Recall that the former solves the sub-problems

for every hyper-rectangles {B′t, B′′t } partitioned from the current active hyper-385

rectangle Bt. However, the latter does so in lines 31-37 only when both LP

relaxation-based conditions in Lines 27 and 29 fail. Under first condition at

Line 27, if any objective value from relaxed subproblem corresponding to B ∈

{B′t, B′′t } is greater than the current globally valid upper bound θt+1
CB , we can

fathom that hyper-rectangle. Second condition (Line 29) only works for second390

hyper-rectangle B′′t (partitioned from Bt) if (i) we already fathomed its compan-

ion hyper-rectangle B′t but failed to fathom it by line 27, and (ii) length of the

currently considered edge kt (chosen as per line 23) is smaller than a threshold.

When conditions at line 29 are satisfied, instead of immediately evaluating

the corresponding subproblem, we keep them on hold and record those hyper-395

rectangles via a set T̃ . By doing so we are just changing the priority rule for their

evaluation as there is less chance to get ϵ−optimal solution from such a hyper-

rectangle B′′t . We may already have achieved ϵ−optimality from some other

more competitive hyper-rectangle before revisiting them (via line 11-16). Even

when we require to further branch the hyper-rectangles from T̃ , some of them400

become fathomable because of the updated global upper bound (Line 12). We

do such priority based ordering only once as indicated by a switching variable

tree2. In particular, once we start evaluating those sorted subproblems, we do

not further sort them. Note that finite convergence criteria remains unaffected

due to this modifications as termination happens only when relative optimality405

gap is below a given tolerance.
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7.2. Implementation Details

All the computations are performed using a 64-core server with Xeon 2.20

GHz CPUs and 128 GB RAM. For each problem size, we generate multiple

instances. For solving each of these instances, only one core is used. The code410

is written using Python programming language, particularly, python 3.7. We use

the following python packages: numpy, copy, math, queue, time, cyipopt. We

also use dictionary and PriorityQueue data structure in our implementation.

We use GUROBI and IPOPT to solve optimization problems arising in our

implementation.415

Package ‘numpy’ is used for random data generation of the instances. Pack-

age ‘scikit-learn’ is used for parameter normalization in Cobb-Douglas problem.

Linear and mixed integer linear bound computation problems in equitable re-

source allocation problem are solved using GUROBI. On the other hand, the

bound providing nonlinear convex problems in Cobb-Douglas problem are solved420

using IPOPT solver of the cyipopt package. In branch-and-bound type al-

gorithm implementation, data structure ‘PriorityQueue’ from python package

‘queue’ is used so that the leaf node information having least objective value

can easily be accessed. Additionally, a package called ‘time’ is used to keep

track of computation time. GUROBI is used for solving the linear optimization425

problems arising in the branch-and-bound tree. IPOPT is used to solve convex

optimization problems. Since IPOPT uses a starting solution as an input, the

optimal solution to a current subproblem is utilized later as the starting point

for its two branch subproblems.

7.3. Equitable Resource Allocation Problem430

7.3.1. Data Generation

The instances of the equitable resource allocation problem (4) were created

as follows for each scenario k ∈ [K]. For each supplier i ∈ [m], we generated

the amount of available resource rki ∼ Uniform(0, n). For each customer j ∈

[n], we generated the demand dkj ∼ Uniform(0,m). For each i ∈ [m] and435

j ∈ [n], we let bkij ∼ Uniform(0, 1) which is the benefit each unit resource from
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supplier i brings to customer j. For data dimensions, we consider n = 15,m ∈

{5, 10, 15} while number of scenarios k ∈ {5, 10}. Thus under each scenario

the largest instance has 225 decision variables. We generated five instances for

each dimension combination. For the first part of the experiments, we use the440

allocation threshold parameter δ = 0.8.

7.3.2. Bounds Computation

In (5), we have fk(x) =
∑n
j=1 |

∑m
i=1 b

k
ijxij−

∑m
i=1

∑n
j=1 b

k
ijxij |/n and gk(x) =

|
∑m
i=1

∑n
j=1 b

k
ijxij |. By data generation,

∑m
i=1

∑n
j=1 b

k
ijxij ≥ 0 holds for all fea-

sible x for all k. Observe that optimal value to (3) satisfies θ∗ ≥ 0. If θ∗ = 0,445

then the equity model is not of interest. Hence, without loss of generality we

assume that θ∗ > 0, and thus Assumption (A5) holds because X is a non-

empty compact set. Moreover,
∑m
i=1

∑n
j=1 bijxij ≥ δθ∗ is valid for all δ ∈ [0, 1].

Therefore, considering linearity of gk(x) we can compute dmk and dMk by solv-

ing linear programming problems. Also, we let γmk = 0 since fk(x) ≥ 0 for450

all feasible x. To compute an upper bound γMk , we use the Charnes-Cooper

transformation (Charnes & Cooper, 1962) as γMk = max
∑n
j=1 |

∑m
i=1 b

k
ijyij −∑m

i=1

∑n
j=1 b

k
ijyij |/n subject to

∑n
j=1 yij ≤ rki t, i ∈ [m],

∑m
i=1 b

k
ijyij ≤ dkj t, j ∈

[n],
∑m
i=1

∑n
j=1 bkijyij ≥ δθk∗t,

∑m
i=1

∑n
j=1 b

k
ijyij = 1, t ≥ 0 and yij ≥ 0, i ∈

[m], j ∈ [n]. Since the problem is non-convex, we solve its mixed-binary refor-455

mulation using the Big-M technique. This technique is also used for computing

αMk = maxx∈Xk fk(x).

7.3.3. Experimental Results

For each problem size (m,n, k), we run the algorithms with a 12-hour time

limit. Multiple (five) instances for each problem size were generated to see the460

variability in computation time. We report computation times on Table 1 when

desired five-digit optimality gap is achieved.

Table 1 shows that SOC-B attains the relative optimality tolerance of ϵ =

10−5 for most of the instances except few K = 10 instances. Benson’s algorithm

does not attain desired five-digit optimality gap for any of K = 5 and K =465
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Table 1: Solution time (s) of SOC-B to attain ϵ = 10−5 optimality gap for the stochastic

equitable resource allocation problem. No value is reported if the solution time exceeded 12

hours.

Problems Size SOC-B

k m Inst. = 1 2 3 4 5

5

5 202 281 113 446 410

10 728 291 125 283 478

15 806 457 529 628 1249

10

5 6034 7147 13285 11434 6373

10 25485 31839 12378

15 30152 15840

10 instances within the time limit. In fact, using Benson Algorithm, most

K = 5 instances attain no digit accuracy was achieved, except in two instances

that achieved one digit accuracy. None of K = 10 instances achieved one-digit

accuracy. Overall, the optimality gap attained by Benson’s algorithm ranges

between 5.96× 10−2 and 8.01× 10−1. On the other hand, this gap for SOC-B470

ranges from 3.99×10−5 ∼ 3.62×10−3 for the instances where five-digit accuracy

was not attained. These results clearly demonstrate the efficiency of SOC-B for

solving convex fractional programs.

7.3.4. Equity-Efficiency Analysis

Table 2 reports average objective values for the allocation threshold param-475

eter δ ∈ {0.6, 0.7, 0.8, 0.9, 1.0}. The standard error ranges from 0.016 to 0.115.

The case with no equity consideration corresponds to δ = 1 while the case with

full equity consideration corresponds to δ = 0, completely ignoring the optimal

objective value obtained from the benefit maximization model. As expected,

the objective value (unfairness) increases as equity considerations reduce (δ in-480

crease). Compared to the worst case (δ = 1), about 66% to 84% improvement

in fairness is achieved when ensuring at least 80% of the maximum benefit

(δ = 0.8).
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Table 2: Sensitivity analysis of the effect of δ on fairness. For each problem instance, we run

SOC-B algorithm on five instances and report the average objective values and

corresponding standard errors in parentheses.

Problem Size δ

m k 0.6 0.7 0.8 0.9 1.0

5

5 0.18997 (0.04836) 0.21683 (0.05032) 0.27018 (0.05269) 0.46846 (0.08327) 1.10960 (0.08278)

10 0.19424 (0.05036) 0.22166 (0.05803) 0.26535 (0.06032) 0.39030 (0.06313) 0.98559 (0.09089)

15 0.07286 (0.01755) 0.09170 (0.01952) 0.11760 (0.02238) 0.2103 (0.02937) 0.77537 (0.04703)

10

5 0.27877 (0.03275) 0.30971 (0.03635) 0.34698 (0.03777) 0.50834 (0.05389) 1.04873 (0.05270)

10 0.14869 (0.01627) 0.17821 (0.01997) 0.21434 (0.02246) 0.31869 (0.03438) 0.82300 (0.11581)

15 0.14162 (0.03094) 0.16534 (0.03077) 0.19617 (0.02981) 0.30798 (0.05059) 0.92582 (0.06196)

7.4. Stochastic Cobb-Douglas Production Efficiency Problem

In this section we consider the stochastic and distributionally robust Cobb-

Douglas production efficiency problem (8) with finite support. The sample

average formulation of the problem is given as follows:

max
x∈X

K∑
k=1

1

K

[ ∏n
j=1 ak0 x

akj

j∑n
j=1 ckjxj + ck0

]
. (34)

Let X := {x |Ax ≤ b, x ≥ 0}. The distributionally robust variant using the485

finitely supported Wasserstein ambiguity set is discussed in Section 7.5.

7.4.1. Data Generation

Let Aij be the element in the ith row and the jth column of matrix A. For

each i ∈ [m] and j ∈ [n], we let Aij ∼ Uniform(0, 1) and bi = n for all i ∈ [m].

On the other hand, for each scenario k ∈ [K], we generate ck0 ∼ Uniform(1, 2)490

and ckj ∼ Uniform(0, 1) for each j ∈ [n]. For the Cobb-Douglas functions, we let

ak0 ∼ Uniform(1, 2) and akj ∼ Uniform(0, 1). Then, we divide akj by
∑n
j=1 akj

so that
∑n
j=1 akj = 1 holds for all k ∈ [K]. For data dimensions, we consider

n ∈ [5, 10, 20], K ∈ [5, 10], and m = ⌈n/2⌉. For each dimension, we generate

five instances to have an insight in the computational performance differences.495

7.4.2. Bounds Computation

Putting (34) in the form of (9), we have fk(x) = −
∏n
j=1 ak0 x

akj

j and gk(x) =

−
∑n
j=1 ckjxj+ck0 with σ = −1. We compute dmj and dMj by solving linear pro-
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gramming problems. For γmk and γMk , we compute γmk using the Charnes-Cooper

transformation (Charnes & Cooper, 1962) as γmk := −max
∏n
j=1 ak0 y

akj

j sub-500

ject to Ay ≤ bt, y ≥ 0, and
∑n
j=1 ckjyj + ck0 = 1. We let γMk = 0, and set

αk = 0 and βk = dMk in (9).

7.4.3. Computational Experience with Stochastic Cobb-Douglas Model

For our computational comparison, we implemented SOC-B (Algorithm 1)

along with two benchmark algorithms (B-G (Benson, 2002b), B-J (Benson,505

2002a)). For each problem size (n,K), we run the algorithms on five instances

with a 12-hour time limit and an optimality tolerance of 10−5. We report com-

putation times for SOC-B and relative optimality gaps upon termination for the

other algorithms in Table 3.

Our experimental results show that B-G and B-J generally fail to achieve510

five digits of accuracy in 12 hours. However, SOC-B attains this accuracy for

all instances of any problem size. Moderate size models such that (n,K) ∈

{(5, 5), (5, 10), (10, 5), (10, 10), (15, 5)} are mostly solved within two hours. These

results clearly demonstrate that SOC-B achieves a significant reduction in com-

putational time in solving stochastic concave fractional programs. However, the515

difficulty in finding a solution with the desired level of accuracy increases with

increase in the problem dimension and the number of scenarios.

7.4.4. Efficient implementation of SOC-B for Stochastic Cobb-Douglas Model

Since numerators in stochastic Cobb-Douglas fractional problem are nonlin-

ear, we used the modified algorithm outlined in Section 7.1 for all the instances520

stochastic of Cobb Douglas problem and reported them in Table 3 under SOC-B

(efficient). Numerical findings show that, in comparison to the original algo-

rithm, the average reduction in computational time is about 47.8%. Maximum

improvement is 89.8% while 16 instances out of 30 instances exhibit more than

40% improvement.525
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Table 3: Experimental results for stochastic Cobb-Douglas production efficiency problem.

Problem
n 5 10 15

K 5 10 5 10 5 10

SOC-B (Algorithm 1) Time (s)

1 29 1073 135 4288 353 30000

2 30 1599 208 6948 278 24771

3 17 797 109 9790 199 34693

4 25 1012 102 4017 299 21181

5 23 785 125 7546 308 16489

SOC-B (Algorithm 3) Time (s)

1 23 231 65 2160 186 15732

2 20 320 151 4553 177 19579

3 3 195 39 5290 128 11062

4 11 103 89 1292 205 16684

5 6 266 90 4929 233 11916

B-G Opt. Gap (rel)

1 1.21E-04 2.09E-03 2.27E-04 2.60E-03 2.88E-04 5.32E-03

2 1.26E-04 3.62E-03 3.23E-04 8.37E-03 3.88E-04 6.01E-03

3 1.96E-05 1.23E-03 1.44E-04 6.17E-03 2.34E-04 2.96E-03

4 6.02E-05 2.51E-03 1.22E-04 2.24E-03 3.16E-04 8.66E-03

5 4.15E-05 1.78E-03 2.62E-04 4.62E-03 4.71E-04 6.30E-03

B-J Opt. Gap (rel)

1 4.10E-04 9.59E-03 7.18E-04 1.45E-02 7.84E-04 1.91E-02

2 4.83E-04 1.14E-02 9.24E-04 2.09E-02 9.56E-04 2.42E-02

3 7.53E-05 4.18E-03 4.59E-04 2.24E-02 6.91E-04 1.64E-02

4 1.69E-04 7.64E-03 3.67E-04 1.46E-02 1.12E-03 2.23E-02

5 1.40E-04 1.02E-02 7.40E-04 1.94E-02 1.38E-03 2.33E-02

7.5. Distributionally Robust Cobb-Douglas Production Efficiency Problem

We next present experimental results for the proposed solution approach for

solving distributionally robust Cobb-Douglas production efficiency problems.

In these experiments we use the dual formulation (DUAL) based approach and

the cutting-surface algorithm (CUT). Here our interest is also to study the530

performance of the algorithms with increasing ambiguity.

7.5.1. Data Generation

For each (n,K) ∈ {(5, 5), (5, 10), (10, 5), (10, 10), (15, 5), (15, 10)}, we con-

sider three types of underlying distributions to investigate the performance of

DUAL and CUT algorithms. For k, j ∈ [K], we sample ak0, akj , ck0, ckj ac-535

cording to the following probability distributions:

• Uniform: ak0, ck0 ∼ Uniform(1, 2), akj , ckj ∼ Uniform(0, 1).

• Left-Skewed: ak0, ck0 ∼ 1 + Beta(5, 2), akj , ckj ∼ Beta(5, 2).

• Right-Skewed: ak0, ck0 ∼ 1 + Beta(2, 5), akj , ckj ∼ Beta(2, 5).
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After generating ak1, · · · , akn, we divide akj by
∑n
j=1 akj so that

∑n
j=1 akj = 1540

holds for all k ∈ [K]. On the other hand, we sample A and b according to the

procedure in Section 7.4.1 and use the same one for all three instances.

7.5.2. Dual Formulation with Wasserstein Ambiguity Set

Let ∆max be the maximum Wasserstein distance from the nominal (empiri-

cal) probability distribution p0 computed as the max of
∑K
i=1

∑K
j=1 qijd(ξi, ξj)545

subject to
∑K
j=1 qij = pi, i ∈ [K],

∑K
i=1 qij = p0j , j ∈ [K],

∑K
k=1 pk = 1, pk ≥

0, k ∈ [K], qij ≥ 0, i, j ∈ [K]. d(ξi, ξj) is the Euclidean distance between two

vectors ξi and ξj . Note that p0j = 1/K for all j ∈ [K] in (34). We use the Wasser-

stein radius of ∆ := ρ∆max where ρ ∈ {0.01, 0.05, 0.1}. Thus the ambiguity set

{p ∈ RK |Hp = f, p ≥ 0} in (30) is given as:550

DW =


p ∈ RK+

∣∣∣∣∣∣∣∣∣∣∣∣

∃ q ∈ RK×K+ :∑K
j=1 qij − pi = 0 ∀i ∈ [K],

∑K
i=1 qij = p0j ∀j ∈ [K]∑K

k=1 pk = 1, pk ≥ 0 ∀k ∈ [K], qij ≥ 0, ∀i, j ∈ [k]∑K
i=1

∑K
j=1 qijd(ξi, ξj) ≤ ρ∆max


(35)

The corresponding dual formulation is stated as:

min −
K∑
k=1

p0tk −∆ν + ς

s.t. −
n∏
j=1

ak0 x
akj

j ≤ ck ≤ 0,

n∑
j=1

ckjxj + ck0 ≤ dk ≤ dMk , k ∈ [K],

− sk − rk + ς ≥ γk,
ck
dk
≤ γk, k ∈ [K],

− si + tj + d(ξi, ξj)ν + λij ≤ 0, i, j ∈ [K],

x ∈ X , s ∈ RK , t ∈ RK , r ∈ RK+ , ς ∈ R, ν ≤ 0, λ ∈ RK×K+ .

(36)

7.5.3. Computational Experience with Distributionally Robust Cobb-Douglas Model

Table 4 summarizes the experimental results for distributionally robust Cobb-

Douglas production efficiency problem. For each problem size and probability

distribution, we generate a problem instance and run the algorithms for three

33



Table 4: Experimental results of distributionally robust Cobb-Douglas production model.

Distribution Uniform Left-Skewed Right-Skewed

Problem DUAL CUT DUAL CUT DUAL CUT

n K ρ Obj. Val Time(s) Time(s) Cuts Obj. Val Time(s) Time(s) Cuts Obj. Val Time(s) Time(s) Cuts

5

5

0.01 0.1902 48 47 1 0.06340 17 79 1 0.02575 6 73 1

0.05 0.1846 59 50 1 0.06198 84 49 1 0.02487 6 78 1

0.1 0.1776 51 50 1 0.06023 18 84 1 0.02382 6 77 1

10

0.01 0.2210 706 971 1 0.08587 271 190 1 0.04292 1976 1849 1

0.05 0.2109 702 1933 2 0.08307 71 536 1 0.03973 1815 3729 2

0.1 0.1997 835 4589 2 0.07981 4482 2264 1 0.03576 1966 4316 2

10

5

0.01 0.1148 94 127 1 0.03321 103 317 1 0.01362 2124 2969 1

0.05 0.1108 119 152 1 0.03241 194 336 1 0.01270 3197 3100 1

0.1 0.1061 122 153 1 0.03142 168 338 1 0.01166 2217 3193 1

10

0.01 0.1133 3744 5831 2 0.03419 27383 30377 1 0.02105 199514 160505 1

0.05 0.1098 3379 6242 2 0.03290 40001 39928 1 0.01970 240094 157936 1

0.1 0.1054 3442 17239 3 0.03149 79311 88858 1 0.01818 249672 170508 1

15

5

0.01 0.07796 202 321 1 0.03642 337 588 1 0.006737 12092 23769 1

0.05 0.07653 176 314 1 0.03607 384 606 1 0.006133 19007 28340 1

0.1 0.07491 157 524 2 0.03565 339 646 1 0.005417 26816 35249 1

10

0.01 0.07506 26969 30066 1 0.02620 122126 159051 1 0.01569 439119 507505 1

0.05 0.07269 26388 38480 1 0.02525 147633 136761 1 0.01475 413556 507311 1

0.1 0.07055 52908 301819 3 0.02439 170839 144876 1 0.01363 550554 561600 1

different values of ρ. We run the dual (DUAL) formulation and cutting sur-555

face (CUT) solution approaches until they attain the relative optimality gap of

10−5. For both approaches, we incorporated the efficient strategy proposed in

Algorithm 3. We report objective values, computation times and the number

of probability cuts needed in the cutting surface algorithm. In these experi-

ments we did not impose a time limit, allowing us to make a more complete560

comparison.

Computational results suggest that when compared to the performance re-

ported in Table 3 the DUAL algorithm takes two to three times more compu-

tation time than the time required to solve the underlying stochastic programs.

While the CUT algorithm mostly required only one or two probability cut for565

our test instances, the DUAL algorithm still tends to be more efficient than the

CUT algorithm. We also observe that the computation times of DUAL algo-

rithm remains similar for different values of ∆. However, the time required by

the CUT algorithm increases with ∆, as more probability cuts are required in

this case. This is because a new non-convex optimization problem is solved after570

the addition of a probability cut. Even though the new problem is solved with
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the initial point obtained using the strategy mentioned in Section 7.2, the time

required to solve multiple problems with sufficient accuracy is not offset despite

it being in a lower dimension. Lastly, computation times vary widely across

parameter distributions. It takes less time to solve problem instances from575

the uniform distribution than those from the skewed distributions. Among the

skewed distributions, larger size instances generated from the right-skewed dis-

tribution take substantially more computation time than those generated from

the left-skewed distribution. The reasons for this phenomenon are unclear.

8. Concluding Remarks580

We studied convex and concave fractional programs as well as their stochastic

counterparts in a common framework. The proposed branch-and-bound algo-

rithm efficiently finds a highly accuracy solution to moderate size stochastic eq-

uitable resource allocation and Cobb-Douglas problem instances. Although the

problem difficulty does grow rapidly with number of scenarios and variables in585

the problem, the algorithm developed in this paper is a significant advancement

over previously known algorithms that can be used for solving such problems.

The distributionally robust problems were studied under the finite support

assumption. This can be extended to the compact continuous support counter-

part. To see this, let us consider a compact continuous support Ξ for random590

parameter ξ and l1−Wasserstein distance-based ambiguity set for the unknown

distribution P ∈ M(Ξ). Additionally assume Q is the nominal distribution

available on finite support ΞS = {ξ1, ξ2, · · · , ξS}, i.e., Q ∈ M(ΞS) and for

each of the support it takes equal probability 1/S. Then, corresponding con-

tinuously supported distributionally-robust convex-concave fractional problem595

(CS-DR-CCFP) is given as:

min
x∈X

max
P∈D

∫
ξ∈Ξ

f(x, ξ)

g(x, ξ)
dP(ξ), (CS-DR-CCFP)

where
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D =


P ∈M(Ξ)

∣∣∣∣∣∣∣∣∣∣∣∣

∃ Π ∈ J (Ξ× ΞS) :∑S
s=1

∫
Ξ
||ξ − ξs||1Π(ξ, ξs)dξ ≤ τ∫

Ξ
Π(ξ, ξs)dξ = 1

S , s ∈ [S]∑
s∈[S] Π(ξ, ξs) = dP(ξ) ∀ξ ∈ Ξ


, (Wass)

Now if h(x, ξ) = f(x,ξ)
g(x,ξ) and h(·, ·) is bounded on compact space X × Ξ,

by Theorem 3.1 of Luo & Mehrotra (2019) strong duality holds for the inner

maximization problem. Thus, (CS-DR-CCFP) can equivalently be written as600

min
x∈X ,µ≥0

τµ+
1

S

∑
s∈[S]

νs

s.t. max
ξ∈Ξ

h(x, ξ)− µ||ξ − ξs||
1
≤ νs ∀s ∈ [S]

(37)

where for each s ∈ [S], left hand side of the constraint can be treated as a

subproblem.

8.1. Cutting-Surface Algorithm for CS-DR-CCFP

Algorithm 2 can be leveraged to optimally solve (37) using a cutting surface

algorithm such as the one developed in Luo & Mehrotra (2019). This algorithm605

solves a master problem with a fnite number of cuts, and uses a cut generation

oracle. Let t be the master iteration number, Ξt ⊆ Ξ be a discrete set containing

t previously generated elements and ξk ∈ Ξt for k ∈ [t]. The master problem is:

min
x,ν,µ

τµ+
1

S

∑
s∈[S]

νs

||ξk − ξs||1µ+ νs ≥ h(x, ξk), ∀k ∈ [t], s ∈ [S]

x ∈ X , µ ≥ 0

(38)

Master problems (38) can be solved using Algorithm 1. Let (xk, µk, νks ) be

the solution of the master problem at the kth iteration. The cut generation610

subproblem for the finite resource allocation and Cobb-Douglas subproblems

are as follows.
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Equitable Resource Allocation Oracle

max
(b̃,d̃)∈Ξ

n∑
j=1

∣∣∣∣∣
∑m
i=1 b̃ijx

k
ij∑m

i=1

∑n
j=1 b̃ijx

k
ij

− 1

n

∣∣∣∣∣− µk||(b̃, d̃)− (bs, ds)||1 (39)

Cobb-Douglas Oracle

min
ã,c̃∈Ξ

ã0
∏n
i=1 x

k
i
ãi∑n

i=1 c̃ix
k
i + c̃0

+ µk||(ã, c̃)− (as, cs)||
1
. (40)

We note that S such oracle generation subproblems are solved at each mas-

ter iteration. Using the solution of these problems we add at most S cuts

h(x, ξt+1) − µ||ξt+1 − ξs||
1
− νs ≤ 0, s ∈ [S]. Such a cutting surface algorithm615

can be used to generate an ϵ-optimal solution. This result follows from Theo-

rem 6.1 of Luo & Mehrotra (2019) assuming that the oracle problems are solved

to ϵ/2-optimality. Note that h(x, ξ) is continuous and thus the assumptions of

Theorem 6.1 of Luo & Mehrotra (2019) are satisfied. We, however, point out

that the oracle generation subproblems in the resource allocation and Cobb-620

Douglas cases have a mixed fractional-convex structure, and the development

of efficient algorithms for solving such problems requires additional research.
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Appendix A. Proofs

Proof. of the Proposition 3.1 : Let us consider the first case. If σ = 1, we have 0 < d̂k

by (A5). For σ = −1, from gk(x
∗) < 0, we have 0 < d̂k. Therefore, regardless of the

value of σ, 0 < d̂k holds. Based on the construction, since γ̂k+d̂k = 2ŵk, γ̂k−d̂k = 2v̂k,705

and ĉk + v̂2k ≤ ŵ2
k which indicate ĉk ≤ d̂kγ̂k, we have ĉk/d̂k ≤ γ̂k due to d̂k > 0.

Also, if σ = 1, we have γ̂k = fk(x
∗)/gk(x

∗) ≤ c∗k/d
∗
k = γ∗

k due to fk(x
∗) > 0 and

gk(x
∗) > 0. On the other hand, for σ = −1, we obtain γ̂k = fk(x

∗)/ − gk(x
∗) ≤

fk(x
∗)/d∗k ≤ c∗k/d

∗
k = γ∗

k since fk(x
∗) < 0 and 0 < −gk(x

∗) ≤ d∗k. Since γ̂k ≤ γ∗
k , we

have HTπ∗ ≥ γ̂k and P γ̂ ≤ θ∗1J due to P ≥ 0. Therefore, (x∗, ĉ, d̂, θ∗, γ̂, π∗, ŵ, v̂) is710

feasible to (17).

Suppose that (x∗, ĉ, d̂, θ∗, γ̂, π∗, ŵ, v̂) is not an optimal solution to (17). Let an

optimal solution to (17) instead be (x̄, c̄, d̄, θ̄, γ̄, π̄, w̄, v̄) such that θ̄ < θ∗. From that

γ̄k + d̄k = 2w̄k, γ̄k − d̄k = 2v̄k, and c̄k + v̄2k ≤ w̄2
k, we have c̄k ≤ d̄kγ̄k. Since

40



0 < βk ≤ d̄k if σ = 1 and d̄k > 0 due to 0 < −gk(x̄) ≤ d̄k if σ = −1, we obtain715

c̄k/d̄k ≤ γ̄k. Therefore, (x̄, c̄, d̄, θ̄, γ̄, π̄) is feasible to (9) with the objective value of

θ̄ < θ∗, which contradicts the fact that (x∗, c∗, d∗, θ∗, γ∗, π∗) is an optimal solution to

(9). Thus, (x∗, ĉ, d̂, θ∗, γ̂, π∗, ŵ, v̂) is optimal to (17).

To prove the second statement, suppose that (x∗, c∗, d∗, θ∗, γ∗, π∗) is not an op-

timal solution to (9). Let (x̄, c̄, d̄, θ̄, γ̄, π̄) be an optimal solution to (9) such that720

θ̄ < θ∗. Then, by the first part of the above argument, we can construct a feasible

solution to (17), which has the objective value of θ̄. This contradicts the fact that

(x∗, c∗, d∗, θ∗, γ∗, π∗) is an optimal solution to (9). Therefore, (x∗, c∗, d∗, θ∗, γ∗, π∗)

should be optimal to (9)
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Appendix B. Modified Adaptive Branch-and-Bound Algorithm725

Algorithm 3 SOC-B-Efficient
1: optimality tolerance: ϵ > 0

2: compute bounds on wk, dk and construct an initial hyper-rectangle B0

3: solve (22) with B = B0 and obtain (x̄(B0), ϑ̄(B0))

4: compute ψ(x̄(B0)) by (23) and let (x0
CB, θ

0
CB)← (x̄(B0), ψ(x̄(B0)))

5: let ϑt
CB ← θ0CB, t← 0, T0 ← {(B0, ϑ̄(B0))}, tree2← 0; ζ ← 0.3

6: while true do

7: if Tt ̸= ∅ then

8: find Bt such that ϑ̄(Bt) = min(B,ϑ̄(B))∈Tt
ϑ(B) and let ϑ̄t ← ϑ̄(Bt)

9: Tt+1 ← Tt \ {(Bt, ϑ̄(Bt))}

10: else if T̃ ̸= ∅ then

11: for (B, ϑ̄(B)) ∈ T̃ do

12: if ϑ̄(B) ≤ θtCB then

13: Tt+1 ← (B, ϑ̄(B))

14: end if

15: end for

16: tree2← 1; t← t+ 1

17: Go to next iteration if Line 19 is False

18: end if

19: if ϑt
CB − ϑ̄

t/|ϑt
CB| < ϵ then

20: return xt
CB and θtCB

21: else

22: let (xt+1
CB , θ

t+1
CB )← (xt

CB, θ
t
CB)

23: find kt = arg maxk∈[K] (w
b,t
k − wa,t

k )2/dmk and let B′
t, B

′′
t as (24), (25)

24: flag = 0

25: for B ∈ {B′
t, B

′′
t } do

26: Solve LP relaxation of (22) with B to obtain (x̄LP(B), ϑ̄LP(B))

27: if θt+1
CB < ϑ̄LP(B) then

28: fathom B; flag ← flag + 1

29: else if θt+1
CB ≥ ϑ̄LP(B) & flag is 1 & wb,t

kt
− (wa,t

kt
+ wb,t

kt
)/2 ≤ ζ{wM

kt
− (wm

kt
+

wb,t
kt

)/2} & tree2 is 0 then

30: T̃ ← {(B′′
t , ϑ̄(B

′′
t ))}

31: else

32: Solve (22) with B to obtain (x̄(B), ϑ̄(B)) and (23) for ψ(x̄(B))

33: if ψ(x̄(B)) < θt+1
CB then

34: update (xt+1
CB , θ

t+1
CB )← (x̄(B), ψ(x̄(B))); ϑt+1

CB ← θt+1
CB

35: end if

36: Tt+1 ← Tt+1 ∪ {(B, ϑ̄(B))}

37: end if

38: end for

39: end if

40: t← t+ 1

41: end while
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