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Abstract

We propose an algorithm to solve convex and concave fractional programs and
their stochastic counterparts in a common framework. Our approach is based on
a novel reformulation that involves differences of square terms in the constraints,
and subsequent employment of piecewise-linear approximations of the concave
terms. Using the branch-and-bound (B&B) framework, our algorithm adap-
tively refines the piecewise-linear approximations and iteratively solves convex
approximation problems. The convergence analysis provides a bound on the
optimality gap as a function of approximation errors. Based on this bound,
we prove that the proposed B&B algorithm terminates in a finite number of
iterations and the worst-case bound to obtain an e-optimal solution recipro-
cally depends on the square root of e. Numerical experiments on Cobb-Douglas
production efficiency and equitable resource allocation problems support that
the algorithm efficiently finds a highly accurate solution while significantly out-
performing the benchmark algorithms for all the small size problem instances
solved. A modified branching strategy that takes the advantage of non-linearity
in convex functions further improves the performance. Results are also discussed

when solving a dual reformulation and using a cutting surface algorithm to solve
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distributionally robust counterpart of the Cobb-Douglas example models.
Keywords: Fractional programming, Second order cone approximation,
Branch and bound algorithm, Stochastic production efficiency problem,

Equitable resource allocation

1. Introduction

Let us consider fractional optimization models of the form
K
min
r€EX ; Pk

where X C R™ and p; > 0 for every k € [K] := {1,2,---,K}. If the vector

fi(2)

pE ]Rf satisfies Zszl pr = 1, the model can be viewed as a stochastic fractional
program with finite support. Moreover, by taking pr = 1/K the model can
be understood as a sample average approximation of a stochastic fractional

program:

veX g(x)

where the expectation is defined using a measure from the probability space

min  h(z) := Ep lf(x)l : (2)

(©2,%8,P), and f (), g(+) denote functions with random parameters following a
probability distribution P.

We study two optimization models of (1). In the first model, fj are convex
and g are concave, and fi(z) > 0 and gx(x) > 0 for all x € X and k € [K].

This model is called the convex fractional program. The second model is the

fr(z)
g;.(x)

[}, are concave and gj, are convex, and f;(x) > 0 and g} (x) > 0 for all z € X

concave fractional program, which has the form of max ¢y Zﬁil Dk where
and k € [K]. Converting it to a minimization problem, we can represent this
model in the form of (1). These two models have been studied independently
in the literature. In this work, we provide a unified framework that covers not
only the convex and concave fractional programs but also their distributionally

robust counterparts. We give two motivating examples below.
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1.1. Motivating Examples

Our consideration of (1) is motivated from the following two applications.
The first one is the stochastic version of the equitable resource allocation prob-
lem, which aims to allocate resources to entities in an equitable manner. This
allocation model is useful when the available resources from the suppliers are in
short supply. The second application model is a stochastic generalization of the

classical Cobb-Douglas model for measuring production efficiency.

1.1.1. Stochastic Equitable Resource Allocation Problem
Suppose that we have m suppliers and n customers. Let r; be the amount
of resources supplier ¢ can provide and d; be the requirement of customer j.
Let b;; be the benefit each unit resource from supplier ¢ brings to customer
j. The decision variable x;; allocates resources from supplier ¢ to customer j.
A classical model, without equity considerations, maximizes total benefits by
solving
m n
f* := max Z Z bijxij
i=1 j=1 3)

n m
s.t. Z.Tij S Ty Zbijxij S d]‘7 il?ij Z 0, 1 E [m], ] € [’I’L]
j=1 =1

However, a solution to (3) may lead to unfair allocation of available resources to
the customers. An equitable resource allocation model balances benefit maxi-
mization with allocation equity. The objective function in the equitable resource
allocation model minimizes an equity-based objective function, while ensuring
that the total benefits from the allocation do not fall below a certain threshold

06*, where ¢ € [0,1] and 6* is the maximum value in (3). With this considera-



tion, the equitable resource allocation problem is formulated as

n
~ D imq biji 1
min STST oz on
1| 2wi=1 2uj=1Yi %5 T

s.t. inj < 7, Zbijxij <dj, w; 20,4 € [m], j € [n], (4)
=1 i=1

m n

i=1 j=1

This model allocates the resources so that each customer achieves a nearly
equal share of the total benefit. In problem (4), f(z) = >°7_, [ >, bijwi; —
0 Doy i bijwigl/noand g(z) = | 307, 300 byl 200 D05, biwiy > 0
holds for all z > 0, since b;; > 0, thus g(z) := Zi:l ijl bijx;; is a linear

function and the model in (4) is a convex fractional program.
In the above model if parameters b, r, d are random and they follow a discrete
probability distribution, we have the stochastic equitable resource allocation

s problem:

: Zz 1 b”.’L‘” 1
min Dk I
Z Z Zz 1 Z] 1 Zj‘rl] n

Jj=

s.t. Zmij <rF bejxij < d;?, zi; > 0,1 € [m], j€n], ke [K] (5)

j=1 i=1
K m
Zpkz Z bwmw > 50"
=1 j=1

where K is the total number of scenarios, py > 0 is the probability of scenario
k, Zszl pr = 1, all scenario specific parameters are superscripted with k,
has the same interpretation as in (4) and " is the optimal value to stochastic

variant of (3) as follows:

K m n
7 = max Zpkz Z by i Tij (6)

i=1 j=1

s.t. wa<r1,Zb @iy <dV, x> 0,0 € [m), j € n], ke [K]
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1.1.2. Stochastic Cobb-Douglas Production Efficiency Problem

The Cobb-Douglas production function (Cobb & Douglas, 1928) aggregates
economy-wide information. Historically, it was the first production function
that was estimated and used for analysis. The analysis of this function re-
sulted in a landmark step in modeling macroeconomics from the microeconomics
perspective (Filipe & Adams, 2005). The Cobb-Douglas model in (Bradley &
Frey Jr, 1974) uses the profit function of a firm as f(z) = ao [, 2 where
x; are production factors, and ai,as, - ,a, are nonnegative parameters such
that > ;a; = 1. Due to this constraint on aj,as,--- ,a,, the function f
is concave in x. The set X € R’ describes the domain of production fac-
tors. The total cost is a linear function of production factors and it is given by
g(x) =Y, ¢ixi + co. The production efficiency problem is formulated as

n a;

ao [Ti— =3
max —p,——".
TeEX Zi:l CiT; + Co

(7)
In this model, we may assume that the parameters follow a probability dis-
tribution P. This results in the stochastic programming generalization of the
Cobb-Douglas model. More generally, assuming that the model parameters a
and c follow an unknown probability distribution P, which is contained in a set
of probability distributions, called an ambiguity set, D, a distributionally robust
Cobb-Douglas production efficiency model can be formulated as:

ao [T, a5’

~—n ~ |, ~
> ie1 Cii + Co

(8)

max min  E; 5~
z€X PED (@,e)~P l

The model (8) specializes to a concave fractional program if the set D is a

singleton and its element P has finite support.

1.1.8. Other Applications

While the development of solution approaches in this paper is motivated from
(4) and (8), the developed methodology can be applied to other applications
such as those arising in information theory (Meister & Oettli, 1967; Aggarwal
& Sharma, 1970), cluster analysis (Rao, 1971), portfolio investment problems
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(Ziemba et al., 2013) and inventory problems (Hodgson & Lowe, 1982). For

more applications, see Stancu-Minasian (1997).

1.2. Contributions

This paper studies convex and concave fractional programming problems and
their stochastic counterparts in a common framework. This is a non-convex
optimization problem. We reformulate the problem through piecewise linear
approximation by using the concept introduced in Kim & Mehrotra (2021) for
stochastic fractional linear programs. We show that the sample average approx-
imation (SAA) of stochastic convex and concave fractional programs converge
to its true optima with increasing sample size, and also provide a result sim-
ilar to the central limit theorem. An algorithm is developed that adaptively
refines this piecewise-linear approximation by dividing a hyper-rectangle and
solving a convex approximation problem for each sub-hyper-rectangle to update
the lower bound and the incumbent solution. The basic idea of approximating
the difference of quadratic functions using a piecewise-linear approximation was
introduced in Kim & Mehrotra (2021) in the context of linear fractional pro-
gramming and its stochastic counterparts. This work generalizes its applicability
to a much broader setting. A convergence analysis shows that the algorithm
attains an e-optimal solution after a finite number of iterations. Specifically,
the worst-case bound for the number of iterations is in the order of O(1/4/€).
This is an improvement of O(1/+/€) over the previous results, and indicates its
efficiency in finding a more accurate solution.

The experimental results show that with a 12-hour time limit the pro-
posed branch-and-bound algorithm outperforms benchmark algorithms on test
instances for both problems. For 10-scenario stochastic resource allocation prob-
lem, the proposed algorithm achieves given relative optimality gap within the
time limit for majority of the instances. Two to four digit accuracy is achieved
in the remaining instances. However, previously known benchmark algorithms
cannot achieve any digit accuracy. For the Cobb-Douglas instances of dimension

up to 15, the proposed algorithm attains the desired solution accuracy for all
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cases while benchmark algorithms never attain this accuracy when used with
a 12 hour time limit. A novel LP-relaxation based branching strategy further
improves the efficiency by about 50% on average.

We discuss two solution approaches for the distributionally robust formula-
tions. They are based on a dual reformulation and the cutting surface algorithm
in Section 6. The dual approach is applicable when it is possible to dualize the
ambiguity set D without an optimality gap and the introduction of dual vari-
ables do not change the structure of the model formulation, as in the case when
D has a polyhedral description. The cutting surface approach allows the use
of a general convex set when specifying D. For distributionally robust Cobb-
Douglas production efficiency problems, these solution approaches attain the
desired solution accuracy with a little extra computation if nominal data is uni-
formly distributed. However, the problems become more challenging to solve if

the nominal data follows a skewed distribution.

2. Literature Review

2.1. Algorithms for Convex Fractional Program

Konno et al. (1994) considers a generalized convex multiplicative program-
ming problem which minimizes r(z) + Zszl fr(x)hg(z) subject to a compact
and convex set X where fi(x) > 0, hi(x) > 0, k € [K] and r(z) are convex func-
tions. This optimization problem specializes to the convex-concave fractional
program when 7(z) = 0 and hy(x) = 1/gx(x) for concave gi. This work presents
an outer approximation algorithm that solves a sequence of approximation prob-
lems. The approximation problems are concave minimization problems and the
feasible region is successively refined through linear cuts. The algorithm attains
e-optimal solution after a finite number of iterations.

Freund & Jarre (2001) and Benson (2001) present branch and bound al-
gorithms to solve the convex-concave fractional program. In Freund & Jarre
(2001), a K-dimensional hyper-rectangle containing the Cartesian product of

the ranges of g, are branched. For each hyper-rectangle, they solve a convex
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optimization problem using an interior point method, and use the resulting La-
grange multipliers to obtain a linear function, which results in lower bounds
for two sub-hyper-rectangles. On the other hand, Benson (2001) branches a
2K -dimensional hyper-rectangle, which contains the Cartesian product of the
ranges of fr and gx. For each hyper-rectangle, it solves two different convex op-
timization problems to obtain a lower bound. The branch-and-bound algorithm
in Benson (2001) is shown to obtain an e-optimal solution in a finite number of

iterations.

2.2. Algorithms for Concave Fractional Program

Dur et al. (2001), Benson (2002a), and Benson (2002b) present branch and
bound algorithms to solve the concave-convex fractional program. Dur et al.
(2001) introduces K auxiliary variables for fractional terms, and successively
branches them and solves convex approximation problems in a branch-and-
bound framework. In Benson (2002a), K auxiliary variables are introduced for
reciprocals of gi. By branching them and solving convex approximation prob-
lems, it finds an e-optimal solution. The convergence result states that either
the algorithm terminates after a finite number of iterations or every accumula-
tion point of a sequence of incumbent solutions is an optimal solution. On the
other hand, Benson (2002b) introduces 2K auxiliary variables for fx and g.
K auxiliary variables for g; are branched and convex relaxation problems are
derived using the McCormick envelope (McCormick, 1976). The convergence
result in Benson (2002b) is similar to the one given for the algorithm in Benson
(2002a).

In additional literature, Gruzdeva & Strekalovsky (2018) developed a solu-
tion approach for general functions in the fractional form. This approach can be
adapted to convex-concave fractional programs. However, it does not provide
a convergence and performance guarantee. The algorithm in Jiao & Liu (2017)
for the sum of ratios problem is limited to quadratic functions in the numerator
and denominator. Hu et al. (2019) propose an incremental quasi-subgradient

method to solve the sum of convex-concave ratio problem. A variant of their
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method randomly chooses an element from the summation terms. This algo-
rithm is shown to probabilistically converge. However, the analysis makes a
strong homogeneity assumption that all the fractional terms in the objective, if
optimized individually, have at least one common optimal point.

We also observe that the Cobb-Douglas production efficiency problem can
be treated as a variant of a general geometric program. Algorithms for general
geometric programming that are developed in the recent literature such as Wang

& Liang (2005) can thus also be leveraged to solve this specific problem.

3. Convex Approximations

In this section, we propose a general framework that covers convex and
concave fractional programs and their stochastic counterparts as special cases.
We introduce a reformulation that involves difference-of-convex constraints and

present the idea of piecewise-linear approximation.

3.1. A General Framework

Let us consider a fractional program of the form

min 0
0,z,c,d,y,m

5.1 fe(@) < ok < ak, 0k < odi < gila), i <, k € [K],

T <0, H'n>~, Py<0l;,2€ X,0cR, veRE, reRE,

(9)
where z € R", X C R", and f; and gy are numerator and denominator func-
tions, respectively. The functions fj and g, are bounded by variables ¢ and dy,
which have an upper bound through constants oy and Si. The fractional terms
¢k /dy, are the only non-convex terms in this model. The vector « affects the
objective value @ through either f77 < 6, H'n > v or Py < 61 ; where .J is the
number of rows of probability matrix P. In stochastic programs (1), it is only

a row vector of py,pa,...,pk. For distributionally robust counterpart, if the
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cutting surface method is used, matrix P represents the set of probability dis-
tributions generated in the algorithm from sequentially adding the probability
cuts as row vectors to the matrix (see Section 6.2 for details).

We make the following assumptions throughout the paper.

Al) X C R™ is a non-empty compact and convex set.

A2

(A1)

(A2) fi are convex functions and g, are concave functions.
(A3) P is a non-negative matrix in R7*¥.
(A4)

A4) P:={p|Hp= f,p >0} is a non-empty polytope in R¥.

(A5) For ¢ = 1 we assume that 0 < fp(z) < oo and 0 < §; < gr(x) < oo for
some positive constant d, for all z € X, k € [K]. maxzex fi(z) < ap < 00

and 0 < By < mingex gix(x) for all k € [K].

(A6) For 0 = —1 we assume that —oco < fi(z) < 0 and —oo < g(x) < —d, <0
for some positive constant 4 for all z € X and k € [K]; maxyex fr(z) <

ar <0 and maxzexy —gr(r) < B < oo for all k € [K].

8.1.1. Convex Fractional Program

Let o = maxgex fx(z), Br = mingex gr(x). Since fx(z) > 0, gr(x) > 0 for
all z € X and k € [K], we can write the convex fractional program as
min 0
s.t. fe(@) <cp < ag, Br < dp < gr(z), 2—2 <, kelK], (10)
pTy <0, xe X, R, veRE.

This has the form of (9) with ¢ = 1. The constants oy are computed in a

preprocessing step. It is problem specific, and discussed further in Sections 7.

8.1.2. Concave Fractional Program

AE))
95,(@)
;. are concave and g, are convex for k € [K], and f;(z) > 0 and g () > 0 for

where

The concave fractional program has the form of max, ¢y Zle Dk

all z € X and k € [K]. Let ap = max,cx —f1.(z), B = max,cx g (x). Since

10
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fi.(z) > 0 and g (z) > 0 for all z € X and k € [K], we can write it as

min 0

ply <0, zeX, R, veRE,

Note that the concave fractional program (11) is a special case of (9) with

g = 717fk = 7f]:;vgk = 7g;<:

3.1.3. Distributionally Robust Fractional Program
If the ambiguity set is polyhedral or convex, we can write a reformulation or
a subproblem of a distributionally robust convex or concave fractional program

in the form of (9) (see Section 6).

8.2. Convergence of SAA of Stochastic Fractional Program

We use the general theory from Shapiro (1991) to give a convergence result
of SAA in our case. The SAA convergence results in Shapiro (1991) rely on
certain assumptions on a function parameterized by random parameters. We

state these results below.

Theorem 3.1. [Theorem 3.2, Shapiro (1991)] Let X be compact, {hx} be a
sequence of random elements in Banach Space B(X), h € B(X) and X*(h)
is the set of minimizer of h(x) over X. Suppose that VK (hyx — h) converges
in distribution to a random element Z of B(X). Let ¢* := mingex h(z) and
q[A)K be the objective value of a sample average approzimation problem from K
samples. Then VK (o — ¢*) EEN ming e y-p) Z(x) too. In particular, if h(z)
attains its minimum over X at a unique point x* then \/E(QASK — ¢*) converges

in distribution to Z(x*).

Theorem 3.2. [Theorem 3.3, Shapiro (1991)]. Suppose that h(x) has a unique
minimizer r* over X. Assume that the following three conditions are satis-
fied: (a) the function h(x,-) is measurable for every x € X, (b) the expecta-

tion E [h(m,w)2] is finite for some point x* € X, (c) there exists a function

11
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L :Q — R such that E [L(w)?] is finite and that |h(z,w) — h(y,w)| < L(w) ||z —
yl|l Vz,y € X. Then VK (o5 — ¢*) N N(0,0) with 0* = E [h(z*,w)?] —
(E [a(z*, w)])*.

We make the following additional assumptions for our SAA convergence
analysis of the stochastic convex fractional program (2) (¢ = 1 case). Analogous
assumptions can be made to develop a similar proof for the stochastic concave

fractional programs (o = —1).

(A7) The sample space 2 is compact.

(A8) For all w € Q, the functions f(z,w), ¢g(x,w) are bounded, and 0 <
09 < g(x,w). They satisfy |f(z,w) — f(y,w)| < Ly(w) [l =yl l9(z,w) -
9y, w)| < Ly(w) lz =yl Va,y € X, Vw € Q, for some Lg(-), Ly() : @ —

R. Moreover, My := max,cq Lf(w), My := max,ecq Lg(w) exist.

A consequence of Assumption A7 is that f(z,w), and g(x,w) are Lo Lebesgue
integrable! for all x € X. Moreover, L(w), Ly(w) are also Lo-Lebesgue inte-
grable for all z € X. The following lemma is needed to use Theorems 3.2-3.2 in
our context. It shows that under Assumptions A7 and A8 sufficient conditions

in Theorems 3.2-3.2 are satisfied.

Lemma 3.1. Let h(z,w) = f(z,w)/g(z,w). Then under Assumptions (A7)-
(A8) the following holds:

a) h(z,w) is Lo Lebesgue integrable for some x° € X, i.e., E[h(2° w)?] < oco.

b) There exists a Lipschitz function Ly(-) : @ — R such that E[Ly(w)?] is
finite and |h(z,w)—h(y,w)| < Lp(w)||lx—yll, Ln(w) is finite for all z,y € X
and w € Q.

Proof. Part (a) follows because E[h(z°,w)?] = E[ggigg;j] < ]E[f(f;’wm, dg > 0,

E[f(2°, w)?] is finite for all w € Q (Assumption A8). We prove part (b) by

contradiction. The claim in part (b) can fail in two ways: (i) 7 finite Ly (@)

1 A measurable function f : Q — R is called L2-Lebesgue integrable if fQ |fI2 dP < oo.

12



such that [h(2,0) — h(g,w)| < Li(©)[|# — || holds for some w € Q, &, € X; or
(i) although (i) holds but E[Lj,(w)?] is not finite. Assume that (i) fails to hold.
It implies that for & # gy € X

1 . oo
f(iv’iu) — f(?{’iu) is unbounded above
I =9l l9(z,0)  g(g,@)
1 AN s AN pla AN (n A
> |f(x,w)g(y,Aw)A fA( :w)g(;mw) is unbounded above
& =9l 9(2,@)g(3, @)
1
= |f(Z,0)g(y,&) — f(§,w)g9(&,@)| is unbounded above since g(-,w) > 64 > 0.
7
(12)
We now construct a Lj(w) that bounds (12). We consider four cases. Case
L f(2,0) = f(§,9), 9(&,0) = g(§,@); Case II: f(&,0) = f(§,0), 9(2,@) <
9(9,0); Case II: f(z,w) < f(§,0), 9(&,0) > g(g,); and Case IV: f(&,) <
F(§,@), 9(2,&) < g(§,@). In Case Iwe write f(2,0) = f(§, @)+ Ls (2, @) ]2 —
and g( (’:}) - g(ﬁ,d)) + L9(£7w)”‘i - :’9”7 where Lf(i’,(,:}) S Lf(d))v Lg(j:vdj) S
Ly(&) are the smallest value of Lipschitz constants for which these equalities

hold. Therefore, upon substitution, we have

Ly(@)lg(,@)| + Lg(@)If (5, @)] < M(Ly(@) + Lg(@)), M = max{f(§, ), 9(§. &)}

where M is a constant due to the boundedness assumption (Assumption AS).
In Case II we use f(Z,w) = f(y,&) + Ly (Z,@)||Z — 9| and g(&,0) = g(9,w) —
Ly(g,@)||Z — g, where Ly(g,w) is the smallest value of the Lipschitz constant
for which the second equality holds. Therefore,

Ly(@)lg(,@)| + Lg(@)If (9, @)] < M(Ly(@) + Lg(@)), M = max{f(§, @), 9(§ &)}

Cases III and IV are similar, and consequently, we have
1

F—3 |f(@,@)g(5, @) — £(§,0)9(2,@)] < M(Ly(@) + Ly(&)).

ol
By letting, Ly (®) = M(L;(@) 4+ Ly(©)), we have a contradiction. Now since

13
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L¢(w) < My, Ly(w) < M, (Assumption A8), Ly (w) < M(My+ M,). Therefore,
E[Ln(w)?] < M*(Mj + My)*. O

Our next result (Theorem 3.3) states the convergence of bx to ¢* in dis-
tribution under some regularity conditions. It is a direct consequence of the

Theorems 3.1 and 3.2 from Shapiro (1991) and Lemma 3.1.

Theorem 3.3. Let X*(h) be the set of minimizer of h(z) over X and Z(x) is a
random element in Banach space for v € X*(h). Then under Assumptions (A7)-
(A8), VK (¢ —¢*) converges in distribution to ming, ey« p) Z (). In particular,
if X*(h) = {a*}, i.e., the minimizer is unique, then VK (¢r — ¢*) N N(0,0)
with 0 = E [h(z*,w)?] — (B [h(z*, w)])*.

Proof. Recall that Lo space is an example of Banach space B(X). Under As-

sumptions A7 and A8, the sufficient conditions of Theorems 3.1 and 3.2 are

satisfied due to Lemma 3.1. O

Next we provide a convergence result for the reformulated problem (10).

Similar result can also be established for (11).

Theorem 3.4. Let Assumptions (A1)-(A8) hold and problem (10) has opti-
mal value (;AS% for some finite K. Assume that x* is the unique minimizer
to the problem mingcy E[;EZ:’?} Then VK (¢ — ¢*) L, N(0,0) with o =

E [h(z*, w)?] — (E[h(z*,w)])>.

Proof. Let (x = VK (¢x — ¢*) and Cr = \/E(QAS% — ¢*). Then from Theo-
rem 3.3, Cie = N(0,0) with 02 = E [h(z*,w)2] — (E[h(z*,w)])*. Let ®,(-) be
the CDF of M (0,0). For any € > 0,

O,(a—e€) < lim Pr(x <a)<P,(a+e¢) (13)

K—oo

For any finite K, optimal value ¢ = ¢x (see Proposition (3.1)). Hence,

D, (a—e€) < lim Pr(x <a)<P,(a+e¢) (14)

K—o0
Since @, (a) is continuous at every a, both ®,(a—¢), ®,(a+€) converge to P, (a)

as e — 0T, O

14



200 3.3. Reformulation of General Convex-Concave Fractional Program Framework

In formulation (9), we have dr > 0 (see Proof of Proposition 3.1 in Ap-
pendix A for details). Multiplying dj to ¢x/di < g, we obtain ¢, < diy, for

all k € [K]. Let

d —d
wk::’)’k; k, vk::%2 k. (15)

Using dpve = w,% — U,%, we represent the constraints as ci —|—v,§ < w,% for k € [K].
This is a non-convex constraint due to the square term on the right-hand side

of the inequality. Using a convex set

fu(@) <cp < ag, 06k < odi, < gi(x), k € [K],
Vi + di = 2wy, i — di = 2ug, k € [K],
S=1(r,e,d,0,v,m,w,v) | fln <0 H'nw >~ Py<01l, )
reX, ccRE dcRK §eR,

v e RE, 1 ¢ RE,w € RE, v € RE.

we obtain an alternative optimization problem of the form

9 := min 60
(17)
s.t. cr +vi <wi, k€K, (z,¢d,0,y,m,wv) €S.

Proposition 3.1. Two optimization problems (9) and (17) are equivalent:

o If (z*,c*,d*, 0%, ~* m*) is an optimal solution to (9), then the solution
(x*, ¢, d, 0%, 4, T, W, 0) such that
k. :%-f-czk 5 :'AYk_CZk

&k = fe(z*), dy, = oge(z®), A1 = di’ Wy, 5 Ok 7

for all k € [K] is an optimal solution to (17).

o If (a*,c*,d*, 0% ~v*, m*, w*,v*) is an optimal solution to (17), the solution

(x*,c*,d*, 0%, v*,7) is an optimal solution to (9).

25 Proof. See Appendix A O
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8.8.1. Piecewise-Linear Approzximations

The reformulated problem (17) has K non-convex constraints of the form
cx +vi < w? for k € [K]. To relax these non-convex constraints, we consider
piecewise-linear approximation of w,%. Let Wy := (W%C, e Wk *) be a set of
points such that W,l€ < oo < whVeand 1 < j < Ng. The slope of a line
passing through two points (wi,(wk) ) and (w ]+1,(wj+1)2) on the (wg,w?)
curve is ((w])? — (wit)?)/(w] — wlt") = (w] +w]™"). The intercept of the
line with the vertical axis is (w])? — (wi 4+ wl ™" )wl = wlw]*". Therefore, the

equation of the line passing through consecutive points of Wy, is u(wg; Wy) =

(wi 4w, w,—wliwl ™, 1 < j < Ni. Thus we define a piecewise-linear function
as

;W) = N wy, — whw 18

u(we; W) 123}12@(“] + Wy, )wg — Wi wy, (18)

Proposition 3.2. For wy € [wk,wk |, let j be an index such that wj <wg <
with. Then, we have w? < (wi +wi wy, — wiwl ™ < u(wy; Wy). Moreover,

we have

2
wl —wit!
(Wk + WJH)wk Wkwffl wi < <k2k . (19)

Proof. We obtain the desired result by observing that (Wk+WJ HYwg— Wj W, i+

w? = —(wy, —wi, +wi T /2)2 4 (wl, — wit!/2)2 > 0 for any wy, € [wj, wj1]. O
Using the piecewise-linear function (18) to approximate the square term w,%

n (17), we obtain an approximation problem of the form
Wy, -, Wg) = min 6
st o+l <ulw; Wy), wi < wy, < wfka, k € [K],

(z,c,d,0,~,mw,v) €S.
(20)

The following proposition states that J(Wy,--- , W},) serves as a lower bound of
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¥ (Wi, -+ ,Wy) defined as

9*(Wy, -+, Wg) = min 6
st op+of <wi, wi <wy, <wpt, ke (K], (21)
(z,c,d,0,v,m,w,v) €S.

Proposition 3.3. Every feasible solution to (21) is also feasible to (20). There-
fOTC, 1§(W1, ce ,Wk) < 19*(W1, ce ,Wk).

Proof. 1t follows using Proposition 3.2. U

In order to model the piecewise linear function u(wg; W), we can use binary
variables with SOS2 constraints. However, in our experience solving this mixed
binary convex approximation problem is computationally costly especially when
Ny is large. Instead of solving this mixed binary convex program, we develop
a spatial branch-and-bound algorithm which adaptively refines piecewise linear
approximations by dividing the space of (w1, ws, -+, wk) into small hyper-

rectangles and solves convex approximation problems for sub-hyper-rectangles.

4. An Adaptive Branch-and-Bound Algorithm

Using the idea of piecewise-linear approximations, we introduce a spatial
branch-and-bound algorithm to obtain an e-optimal solution to (17). Starting
with an initial hyper-rectangle, the algorithm successively breaks it into smaller
hyper-rectangles and solves a convex approximation problem for each sub-hyper-
rectangle to update the lower bound and the incumbent solution. The algorithm

repeats this until the optimality gap becomes smaller than a tolerance level e.

4.1. Initial Hyper-Rectangle

To construct an initial hyper-rectangle, we consider lower and upper bounds
of wy,. Let v and v be lower and upper bounds of fi(z)/gx(x) subject to z €
X for each k € [K]. Since gi(z) # 0 for all x € X and X is a compact set, such
bounds are well-defined for every k € [K|. Using the definition of wy in (15),

we compute wi and w using the bounds of v and dj, as wi* = 4" + d}* and
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W,i‘/[ = 'y,?/[ —l—dkM where di* and d,y are lower and upper bounds of |gi ()| subject

to x € X for k € [K]. Using the bounds on wy, we construct the initial hyper-
rectangle By := [wi', wi] x [wit, wd] x - x [wi, wi]. If g is linear, we can
compute tight bounds of dj* and dkM by solving linear programming problems.
For some applications such as equitable resource allocation and Cobb-Doglous
production efficiency problems, we are also able to compute tight bounds of ;"
or v using the Charnes-Cooper transformation (Charnes & Cooper, 1962) as

illustrated in Section 7.

4.2. Approximation Problem

Let B := [w{, w}] x [w§,w5] x - - - x [w%, wh] be a hyper-rectangle such that
B C By. For each k € [K], we use the line passing through (w¢, (w%)?) and
(wh, (w?)?) to approximate w? in the interval of [w{, w}]. By Proposition 3.2,
for wy, € [w¢,wh], we have w? < (w¢ + w})wy, — wiw?. Using this inequality,
we obtain a convex approximation problem of the form

Y(B) :=min 6
st o+ vd < (WE A whw — wiwh, wl <wp < wh, k€ [K], (22)
(x,¢,d,0,v,m,w,v) €S.

Let ¥*(B) be the optimal objective value of (21) with additional box constraints
wé < wy < wh for k € [K]. Then we have J(B) < 9*(B) by Proposition 3.3.

4.3. Fvaluation Problem

Let (z(B),&(B),d(B),0(B),5(B),#(B),w(B),v(B)) be an optimal solution
to approximation problem (22). Since §(B) serves as a lower bound of ¥*(B)
for all B C By, taking the minimum of f(B) for all sub-hyper-rectangles B that
partition By, we are able to compute a lower bound of ¥* in (17). In order to

compute an upper bound of ¥*, we solve a linear programming problem, which

18



285

290

returns the best objective value attainable at Z(B) as

Y(Z(B)) ;== min 0

fr(Z(B))
gr(Z(B))

ffn<6,H'n >~ Py<61;,0 cR,vecRE reRL

5.t <y k€ [K], (23)

I

For any = € X, 9(x) serves as an upper bound of 9¥* since the solution of
Y(z), (0(x),v(x), m(x)), forms a feasible solution to (9) with (x, ¢(z), d(z)) where
ek = fi(z),dr = fi(z) for all k € [K]. Therefore, we compute ¢(Z(B)) each

time we obtain Z(B) and update the incumbent solution if needed.

4.4. Main Algorithm

After constructing the initial hyper-rectangle By, we solve the convex ap-
proximation problem (22) with B = By to obtain (Z(By),J(By)) and com-
pute ¥(Z(By)) by solving the evaluation problem (23). Then, we initialize the
incumbent solution, the iteration counter, and the branch-and-bound tree as

(285, 025) + (Z(Bo), ¥(Z(Bo))), t 0, and Ty < {Bo, F(Bo)}-

19



Algorithm 1 SOC-B

1: optimality tolerance: € > 0

2: compute bounds on wg, di and construct an initial hyper-rectangle By
3: solve (22) with B = By and obtain (z(By),9(By))

4: compute ¥(Z(By)) by (23) and let (225,0%3) < (Z(Bo), ¥ (Z(Bo)))

5: let Whp < 0%g, t < 0, To < {(Bo, ¥(Bo))}

6: while true do

7. find B, such that ¥(B;) = min g j(g))er, 9(B) and let 9"  J(B;)

8 if (Vhg — 9')/|9Lg| < € then

9: return zlty and 0.,

10:  else

11: let (20,008 ) (G, 06p)

12: find k¢ = arg max;¢ g (wZ’t —wi)2/dy and let By, B as (24), (25)
13: for B € {B},B}/} do

14: solve (22) with B to obtain (z(B),d(B)) and (23) for v(z(B))
15: if ¥(z(B)) < 65 then

16 update (e, 055) + (2(B), w(@(B))); 0L « 05

17: end if

18: end for

19: Tivr < T\ {(B, 9(B))} U{(B;,9(By)) } U{(B/,9(BY))}
20: end if
21: t+t+1

22: end while

At each iteration ¢, we let By := [wi', wh] x [wat, wh'] 5 - x [wht, whi]

such that J(B;) = min g jpyer, 9(B) and 9 + 9(By). Note that J* is the
best lower bound until time ¢ since our optimization problem is a minimization
problem. If the relative optimality gap, (V45 — 9)/[95g|, is smaller than a

tolerance level €, we terminate with an e-optimal solution (zkg, 0&). Otherwise,
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let k; = arg max, (WZ’t —wi)2/dy and split By into B and B} as

& b, i b, b, + b
B; = [w] t,wlt] X oo X [(Wztt erk:)/Q,Wk:} X e X [W‘;(t,wKt], (24)
By = [wi wy] o [wit, (wint w2 o Wi wi] (25)

For B € {Bj, B/}, we solve the convex approximation problem (22) with B to
obtain (Z(B),9(B)) and compute 1 (Z(B)) by solving the evaluation problem
(23). Comparing ¢(z(B)) with the current best upper bound 9%, we update
the incumbent solution if needed.

Lastly, we update the branch-and-bound tree as

Tp1 < T\ {(Be, 0(B1))} U{(By, 9(By))} U{(BY, 9(BY))}-

The above procedure is repeated until the relative optimality gap becomes
smaller than e. A complete summary of the proposed method is given in Algo-

rithm 1.

5. Convergence Analysis

In this section, we provide a convergence analysis for Algorithm 1. Specif-
ically, we provide a bound on the optimality gap Jhg — 9" = 0Lz — 6* < € as
a function of approximation errors at (z,&,d*, 07!, 7t w!, v*), which is an
optimal solution to (22) with B = B;. Using this bound, we prove the finite
convergence of the algorithm. Furthermore, we derive a worst-case bound for
the number of iterations to obtain an e-optimal solution.

Since X is a non-empty compact set, (17) has an finite optimum. Let
(z*, c*, d*, 6%, v*, 7", w*,v*) be an optimal solution to (17) and M be the max
of ||Pllsc = max; » ;| P;| and max {[[p|l1|p € P}. We present the bound on
the optimality gap in the first part of the following theorem and the worst-case

bound of iteration in its second part.
Theorem 5.1. (a) Let (z',&,d", 0", 5", 7, w",v") and I' be an optimal solu-

tion and the objective value to (22) with B = By. Then, we have

_ A
O —9* < V%p— 0" < M max —

R I (26)

21



315

where Ay == (wi' + whhol — witwh — (@h)?, ke[K].  (27)
(b) For any e >0, let n = Zszl ny where

M (wi! —wit)

2
ng = lrlogg sy “ , ke[K]. (28)

Algorithm 1 (SOC-B) terminates within 2™ iterations.

Proof. Observe that in (9), ¢k, dy are linear terms. Hence, convex-concave/concave-
convex fractional program involves linear fractional constraints cg/dy < v and
convex constraints from numerator and denominator. All subsequent piecewise
linear approximation reformulations are based on these linear fractional con-
straints only and do not affect convex constraints. Hence this theorem can
be proved following the steps in the proof of Theorem 5.1 in Kim & Mehrotra
(2021). Specifically when we construct a feasible solution (2, &, dt, 6%, 4, &, ', o)

to (17) from (7, ¢, dt, 0, 4, 7t, wt, vt) as

it =5 (20 s auta)) ok - ~aa)) frke K] (29

2 \ gr(2") g (7")
T A
' =0"+M grel% T 7' € argmin f77 subject to H 7 > 4%,
k

those proof steps can be used since 4% < f.(z)/gr(z?) < & /ds.
Proof of part (b) also follows from the steps in Kim & Mehrotra (2021)
(Theorem 5.2) that uses part (a) and the pigeonhole principle. O

Note that 2™ is in the order of O(1/4/€). This demonstrates the efficiency
of SOC-B in achieving solution accuracy.
6. Distributionally Robust Optimization

In this section, we introduce two solution approaches to solve a distribution-

ally robust convex or concave fractional program with finite support.

22



330

335

6.1. Dual Reformulation

We first consider the case where the ambiguity set is polyhedral. Let P be a
polyhedral ambiguity set as defined in (A4). Then, the distributionally robust
convex or concave fractional program with finite support is formulated as
min 6
st fu(@) <k <o,y 0By < ody < gi(2), Cch <, k€ [K], (30)

E
re X, ply<0,¥{pecRE|Hp=f,p>0},0 e R, ce RX deRE e RK

Using the linear programming duality, we can reformulate (30) as follows.

Proposition 6.1. Optimization problem (30) is equivalent to

min 6

st fi(@) <o < ag, 0By < odi < gi(w), % <, k€ [K], (31)

ffrn<0,H'n >~y zecX,0cR,cecRE deRE v e RE 7 e RE
Proof. This follows from the linear programming duality. O

Since the above reformulated problem (31) is an instance of (9), we can
use SOC-B to solve it. Note that many finitely supported ambiguity sets are
polyhedral. For the dualized reformulations with polyhedral ambiguity sets, see
Kim & Mehrotra (2021) and Luo & Mehrotra (2020).

6.2. Cutting Surface Algorithm

Next, we introduce an iterative approach to solve a distributionally robust

fractional program in the form

min 0
C
s.t. fr(@) <cp <o, 0Bk < odi < gr(x), i <, k€ [K], (32)

ply <60, VpelC ze€X, R, ceRE, deRE, v e RE,
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where C is any convex ambiguity set. Problem (32) is a semi-infinite program
due to the presence of constraints p”~v < 6, Vp € C. In the special case when
C is an ellipsoid we can replace {maxpec pTy < 0} with an explicit expression
for the optimal value. For more general convex ambiguity sets, many works
(Wiesemann et al., 2014; Bertsimas et al., 2010; Delage & Ye, 2010) dualize
this problem under the assumptions allowing for strong duality. However, un-
like the case with polyhedral ambiguity sets, strong duality does not necessarily
hold for convex ambiguity sets if the regularity conditions are not satisfied and
it may not be always possible to check the regularity conditions. Thus to de-
velop an algorithm applicable in a general setting, we discuss an alternative
approach based on the cutting surface algorithm (Mehrotra & Papp, 2014; Luo
& Mehrotra, 2019) below. The cutting surface algorithm assumes that an oracle
is available to generate a separating probability cut.

To solve the semi-infinite problem (32), we consider a sequence of problems

of the form
min 0
s.t. fre(@) < e < ap, of < odi < gi(), Z—Z <, ke[K], (33)
Pin<01;, ze X, 0eR, ce RE, deRE, ~eRE,

where each row of P! is an element of a finite set C* := {p°,pt,--- ,p'} C C and
p° is an empirical distribution. Let (2t 0, ¢!, d*,+*) be an optimal solution to
(33) at iteration t and p**! be an €/2-optimal solution to the separation problem
max,cc pl oyt If (pPT1)Tyt — 0% < €/2 holds, the algorithm terminates with the
solution (zf, 0%, ct,dt,~*). Otherwise, we add a probability cut p!*! to C* and

repeat the above process. Please see Algorithm 2 for a summary of the cutting

surface algorithm.
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Algorithm 2 A cutting surface algorithm for (32)

1: Input: optimality tolerance e > 0, empirical distribution p°.

2: Step 1: C° « {p°}, t < 0.

3: Step 2: Find an optimal solution (2!, 0%, ct, dt, +*) of (33) with C.

4: Step 3: Find an €/2-optimal solution p'*! of the problem maXpec pTAt.

5: Step 4: If (ptt1)Tyt — 0% < ¢/2, stop and return (zf, 0%, ct, d*,~*);
otherwise C'T1 «— Ct U {p!™1}, t <t + 1, and go to Step 2.

Let OM .= maxpe[k] M and T = {(2,0,¢,d,7)]| fr(z) < cx < o, 0Bk <
odp < gp(x), cx/dr < e < ’y,i”,pT’y <Oh<OM zreX 6ecRceRE de
RE v € RE}.

Theorem 6.1. Suppose that C is a compact set such that Zszl pr = 1 and
p >0 for allp € C. Then, Algorithm 2 returns an e-optimal solution in a finite

number of iterations.

Proof. By Proposition 3.1, without loss of generality, we can assume that v <
7t < VM. Since (32) minimizes 6, there exists some 0 < j < ¢ such that
(p) T+t = 6. From Z,}::l pl, = 1 and p/ > 0, we have § < §M. Therefore,
(2t,0%, ct,dt,~*) € T holds for all ¢ > 0.

Since T is closed and bounded, T" is compact. Also, since C is compact, so is
I' x C. From that g(z,0,¢,d,7) := vI'p — 6 is continuous on I' x C, by (Luo &
Mehrotra, 2019, Theorem 3.2), we obtain the desired result. O

7. Computational Performance

The algorithm presented so far is called SOC-B. In Section 7.1, we propose
a modified branching strategy for SOC-B that can make SOC-B more efficient.
We next discuss implementation details for the algorithms implemented. Sub-
sequently, we discuss the computational results for the two models introduced

in Section 1.1.
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7.1. Modification of SOC-B

In this section, we present a modification to SOC-B (Algorithm 3 in Ap-
pendix B). It has a branching strategy based on an LP relaxation of the convex
constraints from the functions such as fi(z) < ¢, dr < gi(z), k € [K] arising
in the model.

In comparison to Algorithm 1, Algorithm 3 executes several new commands
throughout lines 10-17, 24, 26-30. Recall that the former solves the sub-problems
for every hyper-rectangles {Bj, B’} partitioned from the current active hyper-
rectangle B;. However, the latter does so in lines 31-37 only when both LP
relaxation-based conditions in Lines 27 and 29 fail. Under first condition at
Line 27, if any objective value from relaxed subproblem corresponding to B €
{Bj, B;'} is greater than the current globally valid upper bound 0?‘5, we can
fathom that hyper-rectangle. Second condition (Line 29) only works for second
hyper-rectangle By’ (partitioned from By) if (i) we already fathomed its compan-
ion hyper-rectangle B; but failed to fathom it by line 27, and (ii) length of the
currently considered edge k; (chosen as per line 23) is smaller than a threshold.

When conditions at line 29 are satisfied, instead of immediately evaluating
the corresponding subproblem, we keep them on hold and record those hyper-
rectangles via a set T'. By doing so we are just changing the priority rule for their
evaluation as there is less chance to get e—optimal solution from such a hyper-
rectangle By. We may already have achieved e—optimality from some other
more competitive hyper-rectangle before revisiting them (via line 11-16). Even
when we require to further branch the hyper-rectangles from 7', some of them
become fathomable because of the updated global upper bound (Line 12). We
do such priority based ordering only once as indicated by a switching variable
tree2. In particular, once we start evaluating those sorted subproblems, we do
not further sort them. Note that finite convergence criteria remains unaffected
due to this modifications as termination happens only when relative optimality

gap is below a given tolerance.
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7.2. Implementation Details

All the computations are performed using a 64-core server with Xeon 2.20
GHz CPUs and 128 GB RAM. For each problem size, we generate multiple
instances. For solving each of these instances, only one core is used. The code
is written using Python programming language, particularly, python 3.7. We use
the following python packages: numpy, copy, math, queue, time, cyipopt. We
also use dictionary and PriorityQueue data structure in our implementation.
We use GUROBI and IPOPT to solve optimization problems arising in our
implementation.

Package ‘numpy’ is used for random data generation of the instances. Pack-
age ‘scikit-learn’ is used for parameter normalization in Cobb-Douglas problem.
Linear and mixed integer linear bound computation problems in equitable re-
source allocation problem are solved using GUROBI. On the other hand, the
bound providing nonlinear convex problems in Cobb-Douglas problem are solved
using IPOPT solver of the cyipopt package. In branch-and-bound type al-
gorithm implementation, data structure ‘PriorityQueue’ from python package
‘queue’ is used so that the leaf node information having least objective value
can easily be accessed. Additionally, a package called ‘time’ is used to keep
track of computation time. GUROBI is used for solving the linear optimization
problems arising in the branch-and-bound tree. IPOPT is used to solve convex
optimization problems. Since IPOPT uses a starting solution as an input, the
optimal solution to a current subproblem is utilized later as the starting point

for its two branch subproblems.

7.8. Equitable Resource Allocation Problem

7.3.1. Data Generation

The instances of the equitable resource allocation problem (4) were created
as follows for each scenario k € [K]. For each supplier i € [m], we generated
the amount of available resource r* ~ Uniform(0,n). For each customer j €
[n], we generated the demand d¥ ~ Uniform(0,m). For each i € [m] and

J € [n], we let bfj ~ Uniform(0, 1) which is the benefit each unit resource from
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supplier ¢ brings to customer j. For data dimensions, we consider n = 15,m €
{5,10,15} while number of scenarios k € {5,10}. Thus under each scenario
the largest instance has 225 decision variables. We generated five instances for
each dimension combination. For the first part of the experiments, we use the

allocation threshold parameter § = 0.8.

7.3.2. Bounds Computation

In (5), we have fi(z) = Y, | S0, a3, Y by |/m and g (x) =
DIED D) b¥,x;;]. By data generation, ;" > b¥,x;; > 0 holds for all fea-
sible z for all k. Observe that optimal value to (3) satisfies 8* > 0. If 6* = 0,
then the equity model is not of interest. Hence, without loss of generality we
assume that 6* > 0, and thus Assumption (A5) holds because X' is a non-
empty compact set. Moreover, 3 " | >0 bjjai; > 06" is valid for all ¢ € [0, 1].
Therefore, considering linearity of gx(x) we can compute d* and d¥ by solv-
ing linear programming problems. Also, we let v;* = 0 since fx(z) > 0 for
all feasible z. To compute an upper bound ’y,i” , we use the Charnes-Cooper
transformation (Charnes & Cooper, 1962) as v} = max i 122 by —
Dt 2 b¥;yij| /n subject to D1 Y <1 itoie [m], 0L Wiy < dft, g €
[n], >, ZJ 1 b”y” > 60k, S ZJ 1 buylj 1,t>0andy; >0, ¢
[m], j € [n]. Since the problem is non-convex, we solve its mixed-binary refor-

mulation using the Big-M technique. This technique is also used for computing

o = max,c . fi(a)

7.53.3. Ezxperimental Results

For each problem size (m,n, k), we run the algorithms with a 12-hour time
limit. Multiple (five) instances for each problem size were generated to see the
variability in computation time. We report computation times on Table 1 when
desired five-digit optimality gap is achieved.

Table 1 shows that SOC-B attains the relative optimality tolerance of ¢ =
1075 for most of the instances except few K = 10 instances. Benson’s algorithm

does not attain desired five-digit optimality gap for any of K = 5 and K =
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Table 1: Solution time (s) of SOC-B to attain ¢ = 107> optimality gap for the stochastic

equitable resource allocation problem. No value is reported if the solution time exceeded 12

hours.
Problems Size SOC-B
k m | Inst. =1 2 3 4 5
5 202 281 113 446 410
5 10 728 291 125 283 478
15 806 457 529 628 1249
5 6034 7147 13285 11434 6373
10 10 25485 31839 12378
15 30152 15840

10 instances within the time limit. In fact, using Benson Algorithm, most
K =5 instances attain no digit accuracy was achieved, except in two instances
that achieved one digit accuracy. None of K = 10 instances achieved one-digit
accuracy. Overall, the optimality gap attained by Benson’s algorithm ranges
between 5.96 x 1072 and 8.01 x 10~!. On the other hand, this gap for SOC-B
ranges from 3.99 x 107> ~ 3.62 x 10~ for the instances where five-digit accuracy
was not attained. These results clearly demonstrate the efficiency of SOC-B for

solving convex fractional programs.

7.8.4. Equity-Efficiency Analysis

Table 2 reports average objective values for the allocation threshold param-
eter § € {0.6,0.7,0.8,0.9,1.0}. The standard error ranges from 0.016 to 0.115.
The case with no equity consideration corresponds to § = 1 while the case with
full equity consideration corresponds to § = 0, completely ignoring the optimal
objective value obtained from the benefit maximization model. As expected,
the objective value (unfairness) increases as equity considerations reduce (¢ in-
crease). Compared to the worst case (§ = 1), about 66% to 84% improvement

in fairness is achieved when ensuring at least 80% of the maximum benefit

(6=0.8).
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Table 2: Sensitivity analysis of the effect of § on fairness. For each problem instance, we run
SOC-B algorithm on five instances and report the average objective values and

corresponding standard errors in parentheses.

Problem Size 0
m k 0.6 0.7 0.8 0.9 1.0
5 0.18997 (0.04836) | 0.21683 (0. 05032) 0.27018 (0.05269) | 0.46846 (0.08327) | 1.10960 (U 08278)
5 10 0.19424 (0.05036) | 0.22166 (0.05803) | 0.26535 (0.06032) | 0.39030 (0.06313) | 0.98559 (0.09089)
15 0.07286 (0.01755) | 0.09170 (0.01952) | 0.11760 (0.02238) | 0.2103 (0.02937) | 0.77537 (0.04703)
5 0.27877 (0.03275) | 0.30971 (0.03635) | 0.34698 (0.03777) | 0.50834 (0.05389) | 1.04873 (0.05270)
10 10 0.14869 (0.01627) | 0.17821 (0.01997) | 0.21434 (0.02246) | 0.31869 (0.03438) | 0.82300 (0.11581)
15 0.14162 (0.03094) | 0.16534 (0.03077) | 0.19617 (0.02981) | 0.30798 (0.05059) | 0.92582 (0.06196)

7.4. Stochastic Cobb-Douglas Production Efficiency Problem

In this section we consider the stochastic and distributionally robust Cobb-
Douglas production efficiency problem (8) with finite support. The sample

average formulation of the problem is given as follows:

K n Ak
1 Hj:l Ako L j !
max E —

0 34
zeEX Pt Zj:l CkjTj + Cro ( )

Let X := {z| Az < b,z > 0}. The distributionally robust variant using the

finitely supported Wasserstein ambiguity set is discussed in Section 7.5.

7.4.1. Data Generation
Let A;; be the element in the i*" row and the j'* column of matrix A. For
each i € [m] and j € [n], we let A;; ~ Uniform(0,1) and b; = n for all i € [m].
On the other hand, for each scenario k € [K], we generate cpg ~ Uniform(1,2)
and ¢x; ~ Uniform(0, 1) for each j € [n]. For the Cobb-Douglas functions, we let
ago ~ Uniform(1, 2) and a; ~ Uniform(0,1). Then, we divide ax; by Z?Zl Ak
so that 377 ag; = 1 holds for all k € [K]. For data dimensions, we consider
€ [5,10,20], K € [5,10], and m = [n/2]. For each dimension, we generate

five instances to have an insight in the computational performance differences.

7.4.2. Bounds Computation
Putting (34) in the form of (9), we have fi () = —[[}_; aro 2" and gi(z) =

— Z?Zl CkjTj+cgo with o = —1. We compute dj* and déw by solving linear pro-
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gramming problems. For ;" and 'y,i‘/[ , we compute ;" using the Charnes-Cooper

transformation (Charnes & Cooper, 1962) as ;" := —max H;;l ako y;-l’“j sub-
ject to Ay < bt, y > 0, and Z?Zl crjy; + cko = 1. We let ¥M = 0, and set

ap =0 and B = dY in (9).

7.4.8. Computational Experience with Stochastic Cobb-Douglas Model

For our computational comparison, we implemented SOC-B (Algorithm 1)
along with two benchmark algorithms (B-G (Benson, 2002b), B-J (Benson,
2002a)). For each problem size (n, K), we run the algorithms on five instances
with a 12-hour time limit and an optimality tolerance of 10~°. We report com-
putation times for SOC-B and relative optimality gaps upon termination for the
other algorithms in Table 3.

Our experimental results show that B-G and B-J generally fail to achieve
five digits of accuracy in 12 hours. However, SOC-B attains this accuracy for
all instances of any problem size. Moderate size models such that (n,K) €
{(5,5), (5,10), (10,5), (10, 10), (15, 5) } are mostly solved within two hours. These
results clearly demonstrate that SOC-B achieves a significant reduction in com-
putational time in solving stochastic concave fractional programs. However, the
difficulty in finding a solution with the desired level of accuracy increases with

increase in the problem dimension and the number of scenarios.

7.4.4. Efficient implementation of SOC-B for Stochastic Cobb-Douglas Model
Since numerators in stochastic Cobb-Douglas fractional problem are nonlin-
ear, we used the modified algorithm outlined in Section 7.1 for all the instances
stochastic of Cobb Douglas problem and reported them in Table 3 under SOC-B
(efficient). Numerical findings show that, in comparison to the original algo-
rithm, the average reduction in computational time is about 47.8%. Maximum
improvement is 89.8% while 16 instances out of 30 instances exhibit more than

40% improvement.

31



Table 3: Experimental results for stochastic Cobb-Douglas production efficiency problem.

n 5 10 15
Problem
K 5 10 5 10 5 10
1 29 1073 135 4288 353 30000
2 30 1599 208 6948 278 24771
SOC-B (Algorithm 1) Time (s) 3 17 797 109 9790 199 34693
4 25 1012 102 4017 299 21181
5 23 785 125 7546 308 16489
1 23 231 65 2160 186 15732
2 20 320 151 4553 177 19579
SOC-B (Algorithm 3) Time (s) 3 3 195 39 5290 128 11062
4 11 103 89 1292 205 16684
5 6 266 90 4929 233 11916

1 | 1.21E-04 | 2.09E-03 | 2.27E-04 | 2.60E-03 | 2.88E-04 | 5.32E-03
2 | 1.26E-04 | 3.62E-03 | 3.23E-04 | 8.37E-03 | 3.88E-04 | 6.01E-03
B-G Opt. Gap (rel) | 3 | 1.96E-05 | 1.23E-03 | 1.44E-04 | 6.17E-03 | 2.34E-04 | 2.96E-03
4 | 6.02E-05 | 2.51E-03 | 1.22E-04 | 2.24E-03 | 3.16E-04 | 8.66E-03
5 | 4.15E-05 | 1.78E-03 | 2.62E-04 | 4.62E-03 | 4.71E-04 | 6.30E-03

4.10E-04 | 9.59E-03 | 7.18E-04 | 1.45E-02 | 7.84E-04 | 1.91E-02
4.83E-04 | 1.14E-02 | 9.24E-04 | 2.09E-02 | 9.56E-04 | 2.42E-02
7.53E-05 | 4.18E-03 | 4.59E-04 | 2.24E-02 | 6.91E-04 | 1.64E-02
1.69E-04 | 7.64E-03 | 3.67E-04 | 1.46E-02 | 1.12E-03 | 2.23E-02
1.40E-04 | 1.02E-02 | 7.40E-04 | 1.94E-02 | 1.38E-03 | 2.33E-02

B-J Opt. Gap (rel)

e e |

@

7.5. Distributionally Robust Cobb-Douglas Production Efficiency Problem

We next present experimental results for the proposed solution approach for
solving distributionally robust Cobb-Douglas production efficiency problems.
In these experiments we use the dual formulation (DUAL) based approach and
the cutting-surface algorithm (CUT). Here our interest is also to study the

performance of the algorithms with increasing ambiguity.

7.5.1. Data Generation

For each (n,K) € {(5,5),(5,10),(10,5),(10,10), (15,5), (15,10)}, we con-
sider three types of underlying distributions to investigate the performance of
DUAL and CUT algorithms. For k,j € [K], we sample axo, arj, Cro, Ckj ac-
cording to the following probability distributions:

e Uniform: agg, cxo ~ Uniform(1,2), ax;, ck; ~ Uniform(0, 1).

o Left-Skewed: ago, cro ~ 1+ Beta(5,2), ax;, ck; ~ Beta(5,2).

o Right-Skewed: aro,cko ~ 1+ Beta(2,5), ax;, cx; ~ Beta(2,5).
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sao  After generating a1, , ag,, we divide ax; by 2?21 ay; so that Z;’:l ag; =1
holds for all k € [K]. On the other hand, we sample A and b according to the

procedure in Section 7.4.1 and use the same one for all three instances.

7.5.2. Dual Formulation with Wasserstein Ambiguity Set
Let A™® bhe the maximum Wasserstein distance from the nominal (empiri-
sas cal) probability distribution p° computed as the max of Zfil Zjil qi;d(&i, &)
subject to Zf:l i = pii € K], i qij = P9, j € [K], Sk =1, >
0,k € [K], qij >0,14,j € [K]. d(&,&;) is the Euclidean distance between two
vectors & and &;. Note that p) = 1/K for all j € [K] in (34). We use the Wasser-
stein radius of A := pA™2* where p € {0.01,0.05,0.1}. Thus the ambiguity set
sso {p € RE|Hp = f, p>0}in (30) is given as:

quRfXK :

Yoy 4 —pi = 0Vi € [K], 15 45 = p) Vj € [K]

Dy = peRE - (35)
dok—1Pk =1, ppr > 0Vk € [K], qi;j > 0,Vi, j € [K]
Y Zle qijd(&i, &) < pAMmEX
The corresponding dual formulation is stated as:
K
min 7Zp0tkal/+§
k=1
s.t. —Hakox?“ <c¢p <0, chja:j+ck0§dk§d£/[, k€ [K],
=1 =t (36)
Ch
=Sk mb S Z Y oo < k€ (K]
k

zeX,seRE teR¥ reRE, ceR, v <0, A e REXE,
7.5.8. Computational Experience with Distributionally Robust Cobb-Douglas Model
Table 4 summarizes the experimental results for distributionally robust Cobb-

Douglas production efficiency problem. For each problem size and probability

distribution, we generate a problem instance and run the algorithms for three
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Table 4: Experimental results of distributionally robust Cobb-Douglas production model.

Distribution Uniform Left-Skewed Right-Skewed
Problem DUAL cuT DUAL cuT DUAL cuT
n | K| p || Obj Val | Time(s) | Time(s) | Cuts || Obj. Val | Time(s) | Time(s) | Cuts | Obj. Val | Time(s) | Time(s) | Cuts
0.01 || 0.1902 48 47 1 0.06340 17 79 1 0.02575 6 73 1
5005 | 01846 59 50 1| 0.06198 84 49 1 || 0.02487 6 78 1
i 0.1 | 01776 51 50 1| 0.06023 18 84 1| 0.02382 6 77 1
? 0.01 || 0.2210 706 971 1 0.08587 | 271 190 1 0.04292 | 1976 1849 1
10 | 0.05 | 0.2109 702 1933 2 | 0.08307 71 536 1 || 003973 | 1815 3729 2
0.1 | 0.1997 835 4589 2 | 007981 | 4482 2264 1 || 003576 | 1966 4316 2
0.01 || 0.1148 94 127 1| 0.03321 103 317 1 0.01362 | 2124 2969 1
5005 | 01108 119 152 1| 0.03241 194 336 1 || 001270 | 3197 3100 1
0.1 | 0.1061 122 153 1| 003142 | 168 338 1 || 001166 | 2217 3193 1
v 001 | 01133 | 3744 5831 2 | 0.03419 | 27383 | 30377 1 0.02105 | 199514 | 160505 | 1
10 | 0.05 | 0.1098 | 3379 6242 2 | 003200 | 40001 | 39928 | 1 | 001970 | 240094 | 157936 | 1
0.1 | 01054 | 3442 | 17239 | 3 | 0.03149 | 79311 | 88858 | 1 || 0.01818 | 249672 | 170508 | 1
0.01 || 0.07796 | 202 321 1| 003642 | 337 588 1 || 0.006737 | 12092 | 23769 | 1
51005 | 007653 | 176 314 1| 003607 | 384 606 1 || 0006133 | 19007 | 28340 | 1
i 0.1 | 0.07491 157 524 2 | 003565 | 339 646 1 || 0005417 | 26816 | 35249 | 1
L’ 0.01 | 0.07506 | 26969 | 30066 1 0.02620 | 122126 | 159051 | 1 0.01569 | 439119 | 507505 | 1
10 | 0.05 | 007269 | 26388 | 38480 | 1 [ 0.02525 | 147633 | 136761 | 1 || 0.01475 | 413556 | 507311 | 1
0.1 | 007055 | 52908 | 301819 | 3 | 0.02439 | 170839 | 144876 | 1 || 0.01363 | 550554 | 561600 | 1

different values of p. We run the dual (DUAL) formulation and cutting sur-
face (CUT) solution approaches until they attain the relative optimality gap of
1075, For both approaches, we incorporated the efficient strategy proposed in
Algorithm 3. We report objective values, computation times and the number
of probability cuts needed in the cutting surface algorithm. In these experi-
ments we did not impose a time limit, allowing us to make a more complete
comparison.

Computational results suggest that when compared to the performance re-
ported in Table 3 the DUAL algorithm takes two to three times more compu-
tation time than the time required to solve the underlying stochastic programs.
While the CUT algorithm mostly required only one or two probability cut for
our test instances, the DUAL algorithm still tends to be more efficient than the
CUT algorithm. We also observe that the computation times of DUAL algo-
rithm remains similar for different values of A. However, the time required by
the CUT algorithm increases with A, as more probability cuts are required in
this case. This is because a new non-convex optimization problem is solved after

the addition of a probability cut. Even though the new problem is solved with
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the initial point obtained using the strategy mentioned in Section 7.2, the time
required to solve multiple problems with sufficient accuracy is not offset despite
it being in a lower dimension. Lastly, computation times vary widely across
parameter distributions. It takes less time to solve problem instances from
the uniform distribution than those from the skewed distributions. Among the
skewed distributions, larger size instances generated from the right-skewed dis-
tribution take substantially more computation time than those generated from

the left-skewed distribution. The reasons for this phenomenon are unclear.

8. Concluding Remarks

We studied convex and concave fractional programs as well as their stochastic
counterparts in a common framework. The proposed branch-and-bound algo-
rithm efficiently finds a highly accuracy solution to moderate size stochastic eq-
uitable resource allocation and Cobb-Douglas problem instances. Although the
problem difficulty does grow rapidly with number of scenarios and variables in
the problem, the algorithm developed in this paper is a significant advancement
over previously known algorithms that can be used for solving such problems.

The distributionally robust problems were studied under the finite support
assumption. This can be extended to the compact continuous support counter-
part. To see this, let us consider a compact continuous support = for random
parameter £ and [; —Wasserstein distance-based ambiguity set for the unknown
distribution P € M(Z). Additionally assume Q is the nominal distribution
available on finite support =% = {¢},¢2,... €5} ie., Q € M(E%) and for
each of the support it takes equal probability 1/S. Then, corresponding con-
tinuously supported distributionally-robust convex-concave fractional problem

(CS-DR-CCFP) is given as:

min max f(z,¢)
2€X PED Jecz g(2, &)

dP(¢), (CS-DR-CCFP)

where
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I e J(ExES5)

S s s
D: PGM(E) 6 lf'“”gig H H(€7£ )dSST , (Wass)
JoTU(E,€%)de = &, s €S]

Dosers (€, €%) = dP(§) VE€E

Now if h(x,§) = f(;” 8 and h(-,-) is bounded on compact space X X Z,

by Theorem 3.1 of Luo & Mehrotra (2019) strong duality holds for the inner

maximization problem. Thus, (CS-DR-CCFP) can equivalently be written as

s€[S] (37)
s.t. I?eagh(x@) —plle =€, <v® VselS]
where for each s € [S], left hand side of the constraint can be treated as a

subproblem.

8.1. Cutting-Surface Algorithm for CS-DR-CCFP

Algorithm 2 can be leveraged to optimally solve (37) using a cutting surface
algorithm such as the one developed in Luo & Mehrotra (2019). This algorithm
solves a master problem with a fnite number of cuts, and uses a cut generation
oracle. Let ¢ be the master iteration number, Z¢ C = be a discrete set containing

t previously generated elements and &% € =t for k € [t]. The master problem is:

min  Tu+ — Z Vs
ok se[S]

Ik — €l i+ v > i, €8, Vi € ] 5 € [9] )
reX, u>0

Master problems (38) can be solved using Algorithm 1. Let (2%, u* v¥) be

the solution of the master problem at the kth iteration. The cut generation

subproblem for the finite resource allocation and Cobb-Douglas subproblems

are as follows.

36



615

620

625

630

Equitable Resource Allocation Oracle

. D Eijx?j 1 ki|(i
max — — = = p7[(b,d) — (b°,d%)] (39)
(b,d)eE ; D1 D1 bijxi‘cj " 1

Cobb-Douglas Oracle

~ n k?a’i
ap Hi=1 Ly

i m + 1@, ) — (a*, ), (40)

We note that S such oracle generation subproblems are solved at each mas-
ter iteration. Using the solution of these problems we add at most S cuts
h(z, 1) — p||€0F — €%]], — vs < 0,8 € [S]. Such a cutting surface algorithm
can be used to generate an e-optimal solution. This result follows from Theo-
rem 6.1 of Luo & Mehrotra (2019) assuming that the oracle problems are solved
to €/2-optimality. Note that h(x, ) is continuous and thus the assumptions of
Theorem 6.1 of Luo & Mehrotra (2019) are satisfied. We, however, point out
that the oracle generation subproblems in the resource allocation and Cobb-

Douglas cases have a mixed fractional-convex structure, and the development

of efficient algorithms for solving such problems requires additional research.
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Appendix A. Proofs

Proof. of the Proposition 3.1: Let us consider the first case. If 0 = 1, we have 0 < dr
by (A5). For o = —1, from gx(z*) < 0, we have 0 < dy. Therefore, regardless of the
value of 0, 0 < czk holds. Based on the construction, since 4 +Jk = 2wy, 'Aykfczk = 20,
and ¢, + ﬁz < 11)1% which indicate ¢, < cik’yk, we have ék/cZk < Ak due to dk > 0.

Also, if 0 = 1, we have 4% = fi(2*)/gx(z*) < ¢i/di, = vi due to fr(z*) > 0 and
gr(z™) > 0. On the other hand, for ¢ = —1, we obtain 4, = fr(z*)/ — gr(z") <
fe(x®)/dy, < cp/di, = i since fr(z*) < 0 and 0 < —gg(z*) < dj. Since 4% < i, we
have H'7* > 4, and P¥ < 6*1; due to P > 0. Therefore, (z*,¢, J,@*,’y,ﬂ*,u},ﬁ) is
feasible to (17).

Suppose that (z*,¢, d, 0,4, 7", ,0) is not an optimal solution to (17). Let an
optimal solution to (17) instead be (Z, ¢, d,

0
i + dp = 20k, Yk — drx = 20, and & +

40



715 0< B <dpifoc=1andd; >0dueto0< —gr(Z) < dy if 0 = —1, we obtain
¢x/dr < 7. Therefore, (z,¢,d,0,7,7) is feasible to (9) with the objective value of
0 < 6%, which contradicts the fact that (z*,c*,d*,0*,v*,7*) is an optimal solution to

(9). Thus, (z*,é, d, 0,4, 7", , ) is optimal to (17).
To prove the second statement, suppose that (z*,c*,d*,0*,v*,7") is not an op-
720 timal solution to (9). Let (%,¢,d,0,7,7) be an optimal solution to (9) such that
6 < 0*. Then, by the first part of the above argument, we can construct a feasible
solution to (17), which has the objective value of . This contradicts the fact that
(z*,c*,d*,0",v",7") is an optimal solution to (9). Therefore, (z*,c*,d",0%,v",7")

should be optimal to (9) O
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72s Appendix B. Modified Adaptive Branch-and-Bound Algorithm

Algorithm 3 SOC-B-Efficient

1: optimality tolerance: € > 0
2: compute bounds on wyg, di and construct an initial hyper-rectangle Bg
3: solve (22) with B = By and obtain (Z(Bo), 9(Bo))
4: compute ¥ (Z(Bo)) by (23) and let (235, 025) + (Z(Bo), ¥(Z(Bo)))
5: let 9 + 025, t < 0, To < {(Bo, 9(Bo))}, tree2 + 0; ¢ + 0.3
6: while true do
7: if T, # 0 then
8: find By such that 9(B;) = min g §(p)er, 9(B) and let 9+ 9(By)
9: Tyy1 < T \ {(B:,9(Bt))}
10: else if T #( then
11: for (B,9(B)) € T do
12: if 9(B) < 0y then
13: Tyy1 < (B,9(B))
14: end if
15: end for
16: tree2 < 1; t<«t+1
17: Go to next iteration if Line 19 is False
18: end if
19: if 95 — 9'/|9Eg| < € then
20: return zip and 65
21: else
22: let (z55', 055" + (zbp, 06p)
23: find ky = arg max,¢ ) (Wi — wi'*)?/d7 and let B}, By as (24), (25)
24: flag =0
25: for B € {B;,B,'} do
26: Solve LP relaxation of (22) with B to obtain (z“F(B), 9“F(B))
27: if 055 < 9VF(B) then
28: fathom B; flag < flag+1
29: else if 05 > 97 (B) & flag is 1 & wyp! — (wi' +wp')/2 < ¢{witl — (Wit +
WZ':)/Q} & tree2is 0 then
30: T (B!, 3(B/)}
31: else
32: Solve (22) with B to obtain (Z(B),d(B)) and (23) for ¥ (z(B))
33: if ¥(Z(B)) < 055 then
34: update (25, 055") « (Z(B), ¥(Z(B))); 955 « 055"
35: end if
36: Tiy1 < Tep1 U {(B,9(B))}
37: end if
38: end for
39: end if

40: t<+—t+1
41: end while
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