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Abstract 

 Single-atom alloys form an important class of material that has shown great potential in 
maximizing the use of rare and expensive metals in catalysis due to their high catalytic 
performance, robustness, tunability and unique structure. Single-atom alloys present particular 
challenges for screening as they can deviate from some traditional catalyst design frameworks. 
While machine learning (ML) can be quite useful in accelerating catalyst design, most traditional 
ML methods require relatively large datasets and/or high-level, expensive featurization. 
Additionally, most of these ML methods are incapable of handling multiple objectives and 
constraints over the intended search space. In this work, we leverage Bayesian optimization (BO) 
to guide our search for high-performing catalysts. We show that our BO workflow can be 
initialized with as few as 2 to 8 data points, and often identifies the optimal single-atom alloy 
surface in just a few iterations. Our workflow was used to efficiently search across multiple 
adsorption systems and datasets and significantly outperformed a random search method, using 
simple, off-the-shelf features. For applications, we used BO to identify potential high-performing 
catalysts for alkane transformations, CO2 reduction, and hydrogen evolution. Our BO workflow 
identified Hf1Cu for alkane transformations; Y1Au, Y1Cu and Y1Ag for CO2 reduction; and an Ag-
Ir bimetallic alloy for hydrogen evolution. Simple stability tests indicate all three single-atom 
alloys for CO2 reduction are stable and most likely synthesizable. The workflow developed here 
can also be used for experiments or high-level theory calculations as well as other classes of 
materials. 

 

 

 

 

 

 

 



 

1 Introduction 

In the past decade, single-atom alloys (SAAs) have emerged as a new frontier in catalysis 

and materials science more generally.1–7 This is largely due to their unique structure, high atom 

utilization efficiency and distinctive interfacial sites.1,5,8 SAAs have also been shown to break the 

constraint of scaling relations, which can result in high catalytic performance.9,10 They have also 

been shown to be highly robust, stable and tunable, allowing for high activity and selectivity.1,3–

5,8,11 SAAs are created when small amounts of a metal (usually an active metal) is atomically 

dispersed into the surface layer of another metal (usually a coinage metal) resulting in a unique, 

well-defined, single-site structure. The dispersed metal can serve as an active site for catalytic 

reactions, allowing for precise control over the reaction pathways and enhancing catalytic 

performance.1,12 

As with traditional alloys, machine learning (ML) models have also been used in the 

rational design of SAAs. This is due to the large compositional space of alloys as well as the cost 

associated with experiments and high-level theory calculations. For instance, ML has been used to 

screen SAAs for acetylene semi-hydrogenation,13 and identified 5 SAAs with high predicted 

selectivity and activity. In another study, ML was used to predict oxygen and carbon adsorption 

energies to screen for ethanol dehydrogenation performance.14 Other studies show ML being used 

to predict SAA properties such as stability and segregation energies.15–18 Overall, these studies 

demonstrate the utility of ML in the rapid screening of SAAs for different applications. However, 

for SAAs (or other SACs), it would be desirable to have a ML method that efficiently screens 

smaller design spaces, in contrast to most ML methods that require a relatively large dataset. For 

example, for a given host metal there are less than 30 possible transition-metal dopants; this is a 

relatively small search space. Also, the uncertainty of most ML methods is not well quantified, 



which can result in inaccurate predictions of high performance or missing out on truly high-

performing candidates. Furthermore, many ML approaches require high-level featurization,19–21 

which sometimes requires additional experiments or quantum calculations. There is therefore a 

need for efficient search techniques that can comb through both small and large spaces effectively 

and without significant feature engineering, thus minimizing the amount of computational time 

and researcher effort. This is useful not only in accelerating standard DFT-based screening but is 

crucial in cases where generating data is more difficult or expensive, such as experiments or high-

level calculations such as the random-phase approximation. 

Bayesian optimization (BO) is one such technique. BO is particularly useful because it 

efficiently samples a given search space, eliminating the need for a priori generation of a large 

number of experiments or DFT calculations. The central idea behind BO is the use of a prior 

distribution in acquiring a posterior distribution and subsequently selecting the next point(s) of 

evaluation from the posterior distribution by use of an acquisition function. By intelligently 

choosing points of evaluation, BO can often achieve its objective in fewer iterations in comparison 

to other optimization techniques. This makes BO ideal in the evaluation of expensive objective 

functions. BO has excelled in many domains22–24 and is one of the underlying technologies behind 

most self-driving labs.25–27  One major advantage of BO over traditional ML algorithms for catalyst 

discovery is its capacity to handle multiple objectives and constraints over the search space. 

Additionally, because BO is a form of active learning, it does not necessarily require a high form 

of featurization to perform effectively. Some studies have used BO for material discoveries in 

computational chemistry; however, only few of these studies use BO for adaptive experimental 

design. Also, there are relatively few studies that involve search spaces with discrete quantities28 

as opposed to continuous functions. Other Bayesian techniques such as the Bayesian information 



criterion29 and Bayesian model averaging30 have been employed by previous studies;31 however, 

these techniques are used to aid in creating models on an existing dataset rather than for 

recommending new data points (i.e., adaptive experimental design), which is the main purpose of 

BO. 

In this work, we leveraged BO for adaptive experimental design in the theoretical discovery 

of SAAs. Our results show that our BO workflow can efficiently search for materials with target 

adsorption energies through multiple types of adsorption systems and datasets. Our BO workflow 

outperformed a random search method, confirming its efficiency for material discovery. We also 

show that our BO framework works well with simple, off-the-shelf features, eliminating the need 

for high-level featurization. We applied our BO workflow to efficiently identify potential high-

performing catalysts for alkane transformations, CO2 reduction, and hydrogen evolution. Within a 

few iterations, our BO workflow identified Hf1Cu as a promising candidate for alkane 

transformations. For CO2 reduction, Y1Au, Y1Cu and Y1Ag were identified, and a subsequent 

simple stability test for these three candidates suggests that they are stable and are likely to be 

synthesizable. To demonstrate our BO workflow is quite efficient even with a relatively large 

design space, we employed it in the search for promising bimetallics for the hydrogen evolution 

reaction (HER). Our BO workflow identified an Ag-Ir bimetallic alloy as a promising candidate 

with high predicted performance. In general, we showcase the efficiency of BO for adaptive 

experimental design in materials discovery, particularly for SAAs. 

2 Datasets 

The adsorption energy datasets used in this work were taken from previous studies, with 

the partial exception of the CO adsorption energy dataset where the initial data was taken from 

previous work but new calculations were performed as part of the BO search. The first dataset 



(methane-intermediate dataset)32 contains adsorption energies of methane decomposition 

intermediates (C, H, CH, CH2, CH3) on Cu-based SAAs. This dataset was generated from DFT 

calculations using the VASP software with the Perdew-Burke-Ernzerhof (PBE) functional33,34 and 

the project-augmented wave (PAW) potential.35,36 The SAAs were constructed using a 4-layer 

Cu(111) 3 x 3 supercell, with the bottom two layers fixed. One atom on the surface layer of this 

slab was then substituted with 47 metals ranging from Li (atomic number 3) to Bi (atomic number 

81). The adsorption energies of C, H, CH, CH2, and CH3 were then computed on each surface by 

taking the difference between the total energy of the slab-adsorbate system and the sum of the total 

energies of the bare slab and the geometrically relaxed adsorbate. Broadly, the methane-

intermediate dataset represents adsorption energies from the same host metal, but different 

adsorbates. 

In contrast to the previous dataset, the second dataset (H dataset)37 represents adsorption 

energies from different host metals, but with the same adsorbate. This dataset contains H 

adsorption energies on Cu-based, Ag-based and Au-based SAAs. The adsorption energies in this 

dataset were also calculated using the VASP software, but in this case the Perdew-Burke-

Ernzerhof (PBE) functional together with the Tkatchenko–Scheffler method38 for van der Waals 

interactions were used. Also, all calculations were spin-polarized, and the adsorption energies were 

calculated relative to gas-phase H2. In total, there were 21 Cu-based, 22 Ag-based and 21 Au-

based adsorption energies. We also used a bimetallic dataset31 consisting of 2934 H adsorption 

energies adsorbed on different sites. Top, bridge, fcc-hollow, and hcp-hollow sites were all present 

for each bimetallic in this dataset. 

The last dataset (CO dataset)39 contains a total of 22 CO adsorption energies on 10 Cu-

based, 8 Ag-based and 4 Au-based SAAs. The computational setup used here was identical to that 



used for the H dataset. This setup was also used for the additional DFT calculations we performed 

in this work for CO adsorption energies and SAA stabilities. 

3 Results and Discussion 

3.1 Workflow for Bayesian Optimization 

 

Figure 1: BO workflow for optimizing the reactivity of single atom alloys. 

Our BO workflow for SAA catalyst discovery is shown in Figure 1. The objective of this 

workflow is to identify a SAA that has an adsorption energy that falls near a target value. First, we 

chose the search space and collected the initial set of DFT calculations, which was then used to 

construct the initial surrogate model. In this case, we used the standard Gaussian process regressor 

(GPR) as our surrogate model. GPR is a probabilistic model used to predict the distribution of the 

objective function across the search space. It is commonly used for BO due to its ability to generate 

uncertainties over predicted values. In constructing the GPR model, we used a new feature 

combination composed of elemental data taken from literature. Due to its convenience and 

effectiveness, this approach of using existing elemental data is very common among ML-based 



screening studies.14,40  Our feature set included the group number (G)40, period number (P)40, 

coupling matrix element (Vad2)9,41,42, and oxygen adsorption energy on a pure surface composed 

of the dopant metal (Oads). We found that including Oads (taken from literature41) somewhat 

improved the efficiency of our searches; however, we also found that BO is still reasonably 

efficient when Oads is not used (we discuss this further in the next section). Next, we computed the 

acquisition function using the distribution and uncertainties generated from the GPR model. For 

our acquisition function, we used the expected improvement, which is widely recognized as the 

standard choice. The acquisition function was then used to generate the next recommendation. 

Specifically, the workflow recommends the SAA with the maximum expected improvement. 

Afterwards, we performed the DFT calculations for the recommended SAA (or, in most cases, 

pulled them from the existing database) and checked if the stopping criteria were met. If not, the 

training set was augmented with the recommendation and steps 3-6 were repeated until the 

stopping criteria was met. We have two stopping criteria: The loop ends (1) if the adsorption 

energy of the recommendation falls within 2% of the target adsorption energy; or (2) if after 14 

DFT calculations, the target adsorption energy does not fall within the uncertainty region of the 

unexplored SAAs. 14 was chosen as an arbitrary threshold. We also employ contextual 

improvement43 to control the exploration vs. exploitation trade-off. This allows the BO framework 

to dynamically choose what the exploration factor should be after each iteration based on prior 

information. This approach has been shown in previous work43 to be quite efficient. 

To concretely demonstrate our workflow, we considered an example where the goal was 

to identify a dopant for a Cu-based SAA with an overall carbon adsorption energy of -6.23 eV, 

±2%. First, we selected the initial set of calculations by choosing 8 Cu-based SAAs (see 

Supporting information) from the same-host dataset, as shown in Figure 2a (green). This initial set 



was chosen by hand to sample across the periodic table; as we demonstrate below the average 

efficiency is not greatly sensitive to the attributes of the initial set. The search space consists of an 

additional 26 Cu-based SAAs (see Supporting information). Next, we constructed the GPR model 

using the initial set of calculations and their features. We then predicted the distribution and 

uncertainties over the search space using the constructed model. This distribution was then used 

to compute the acquisition function, and this function’s maximum was identified to generate the 

first recommendation, which was Mn (Figure 2a, blue). Mn1Cu gave a carbon adsorption energy 

of -7.17 eV (see Figure 2b). At this point, neither of the two stopping criteria is met, so the loop 

continues. The second recommendation was Os (Figure 2a, blue), with a carbon adsorption energy 

of -7.50 eV, and the third recommendation was Sc (Figure 2a, blue and red) with a carbon 

adsorption energy of -6.17 eV. Because Sc1Cu has a carbon adsorption energy within 2% of the 

target energy (-6.23 eV), the loop ends. Thus, it took just 3 additional DFT calculations to achieve 

our objective in this case. If no valid solution existed in the search space, the second stopping 

criterion would be invoked after 14 DFT calculations (arbitrary threshold) if none of the untested 

SAAs had uncertainties that overlap with the target space.  



 

Figure 2: Example BO test: The goal is to identify a Cu-based SAA that gives an overall carbon 
adsorption energy of -6.23 eV ± 2%. (a) Periodic table showing the initial set of calculations and 
each recommendation in order. (b) Carbon adsorption energy of each recommendation. Sc1Cu with 
a carbon adsorption of -6.17 eV was identified after 3 DFT calculations. 

 

3.2 BO Tests 

The example discussed in the previous section showcases the utility of our BO workflow 

in guiding searches by providing intelligent recommendations. To more broadly demonstrate our 

workflow, we performed a series of search campaigns across multiple datasets involving randomly 

generated target energies.  

First, we considered 5 search campaigns for each of the adsorbates (C, H, CH, CH2, and 

CH3) in the methane-intermediate dataset (same host metal, various adsorbates). The goal of these 

campaigns was to identify Cu-based SAAs that fall with ± 2% of their respective target energies. 

The 8 initial calculations and 26 additional candidates in the search space were the same as in 



Figure 2. Figure 3a shows the average number of DFT calculations and the standard deviations 

across all 5 campaigns for each of the adsorbates. An average of number of 3.2, 4, 3, 4.2, and 6.4 

additional DFT calculations were required for C, H, CH, CH2, and CH3 respectively. This set of 

campaigns have thus shown our BO workflow to be quite efficient, identifying target SAAs with 

a relatively small number of DFT calculations. 

Next, we evaluated how well our BO workflow performed in searching across various 

dopants for each host metal. Similar to the previous set of search campaigns, we considered 5 

campaigns for each host metal (Cu, Ag, Au) in the H dataset (same adsorbate, various host metals). 

The goal was again to identify SAAs that fall with ± 2% of their respective target energies. In this 

case, the initial set of calculations contained 6 SAAs for both Ag- and Au-based SAAs and 5 for 

the Cu-based SAAs (see Supporting information). The search space for this set of campaigns had 

16 Ag-based SAAs, 15 Au-based SAAs and 16 Cu-based SAAs (see Supporting information). The 

average additional DFT calculations (Figure 3b) needed for Ag, Au and Cu were 4, 4.4 and 3.4 

respectively.  

Further, we considered a combination of Au-based, Ag-based and Cu-based SAAs from 

the previous campaign (Figure 3b). We combined all the initial calculations from the previous Au, 

Ag and Cu search campaigns together to serve as our initial set for this campaign, for a total of 17 

SAAs. Afterwards, we combined the search space for all 3 hosts from the previous search 

campaigns together, totaling 47 SAAs for these campaigns. The targets were also randomly 

chosen, and a dummy feature was added to the feature set to represent the 3 different host metals. 

In this case, an average of 4.4 DFT calculations were required to achieve the targets (Figure 3c, 

green). 



To further test the efficiency of our BO workflow, we compared it to a random search 

method. The random search method arbitrarily chooses a recommendation from the search space 

until the target energy is acquired. We used this search method on the same exact search campaigns 

as the mixed-host dataset (Figure 3c). The random search method required an average of 19.6 DFT 

calculations to reach the target energies (Figure 3c, yellow), more than 4 times more than BO. This 

further illustrates the efficiency of our BO workflow. 

We also examined the influence of the Oads feature (the O adsorption energy on the dopant 

as a pure metal, taken from literature41) on the search efficiency of the same exact campaigns from 

Figure 3c. To achieve this, we considered two feature sets: (1) our previously used feature set with 

Oads, G, P, Vad2 and a dummy variable (to represent host metals), and (2) the same feature set 

except with Oads removed. Based on Figure 3d, including Oads allows the BO to converge with an 

average of 4.4 DFT calculations, and without it an average of 10.2 DFT calculations are needed. 

This shows that Oads improves the efficiency, but without it the scheme is still significantly more 

efficient than the random search.  

Lastly, to further test how sensitive the BO efficiency is to the feature set, we ran the same 

5-fold search campaign for CH but with a completely different feature set. This time our feature 

set was made up of the heat of formation of the dopant metal, dipole polarizability of the dopant 

metal, Pauling electronegativity of the dopant metal, and fusion heat of the dopant metal. These 

features were arbitrarily chosen from the Mendeleev python database.44 In this case, our BO 

workflow took an average of 4.8 additional DFT calculations to converge. This is slightly higher 

than the 3 additional calculations needed when using our original feature set (see Figure S1). Thus, 

we demonstrate our BO workflow is still effective even with a different, arbitrarily chosen feature 

set, although the efficiency does depend somewhat on the feature set. 



 

Figure 3: Series of BO search campaigns. In each case, the average number of DFT calculations 
(not including the initial seed set) needed to achieve the target adsorption energy is shown, with 
the standard deviations shown by error bars. (a) 5-fold BO search campaign across all adsorbates 
in the methane-intermediate dataset, which has the same metal host (Cu) but various adsorbates. 
(b) 5-fold BO search campaign across each metal host in the H adsorption dataset. (c) BO vs 
random search across a combination of all three host metals from the H adsorption dataset. (d) 5-
fold BO search campaign performed with Oads and without Oads included in the feature set. The 
BO workflow is still reasonably efficient without Oads. 

 

3.3 The Effect of the Initial set on BO Efficiency 

Overall, we have shown the effectiveness and robustness of our BO framework in handling 

different types of search campaigns for target adsorption energies. However, because the search 

efficiency of our BO campaigns depends on the initial set of DFT calculations, it is useful to 

understand which properties of this initial set of DFT calculations affect the BO campaign 

efficiency. Broadly, this provides useful insight into how to design an efficient BO campaign. 



Thus, we carried out a set of BO tests to examine how the size of the initial set of DFT calculations, 

the dispersion of initial dopants on the periodic table, the number of initial dopants in the same 

group, and the number of initial dopants in the same period all affect the efficiency of our BO 

searches. We considered the same search campaign as Figure 2, where the goal was to identify a 

Cu-based SAA that had an adsorption energy within 2% of -6.23 eV. If a BO search could not find 

its target, the search was associated with the maximum number of DFT calculations, as defined by 

stopping criterion 2. Overall, as described below, collections of different initial sets were used to 

run a total of 1200 BO searches for the same search campaign in Figure 2. 

 First, because BO is an iterative process, we wanted to see if the size of the initial set of 

calculations had a significant impact on the search efficiency. To test this, we generated 100 initial 

sets of calculations for each size ranging from 2 to 6 using random sampling without replacement. 

Figure 4a shows the average number of DFT calculations in the BO search campaign in blue, while 

the green bars show the inherent cost of running more initial DFT calculations to obtain the initial 

set. Interestingly, the sample size appears to have no effect on BO campaign efficiency (mean 

additional calculations is 5.3, 5.3, 5.7, 5.3, 5.0 for 2 – 6 initial calculations), which indicates that 

using smaller initial set sizes is likely to decrease the overall computational cost. 

 Next, we wanted to examine if dispersion across the periodic table would lead to an 

increased BO efficiency, as this may make the initial GPR model more broadly accurate across the 

search space. Using the previously generated initial sets of size 4, we obtained a measure of seed 

dispersion by calculating the Euclidean distance between dopant metals on the periodic table 

(using the samples’ group number and period number to create a 2D coordinate system) and 

summing the distance between each pair of dopant metals within the initial set (see Figure 4b). 



There is no apparent relationship between initial set dispersion on the periodic table and the BO 

campaign efficiency. 

 Furthermore, we examined the effect of having various period and group repetitions in the 

initial set of calculations (i.e., multiple dopants in the same period or group). This is largely 

because periodicity has been shown to be a good descriptor of adsorption energies on SAAs. We 

generated 100 initial sets of a fixed size (4) with 1 to 4 dopants in the same period and 1 to 3 

dopants in the same group, then ran BO searches for all 700 of them and averaged the results. From 

Figure 4c, we see that the BO campaign efficiency does not depend on period repetitions. In 

contrast, Figure 4d shows a roughly proportional relationship between group repetition and BO 

campaign efficiency. This suggests that we could minimize computational cost by choosing initial 

sets with more dopants in the same group. 

 



Figure 4: Series of BO search campaigns to ascertain the effect of (a) size of the initial set of 
calculations, (b) the dispersion of elements in the initial set of calculations, (c) the number of 
repetitions of elements along the same period on the periodic table (d) the number of repetitions 
of elements along the same group in the periodic table. Only group repetitions have a notable 
effect. 

 

3.4 Applications 

 Due to the demonstrated high catalytic performance of SAAs for a variety of reactions, 

there continue to be intensive searches for promising SAAs for a variety of chemical processes. In 

this section, we applied our BO workflow to search for potentially effective catalysts for three 

important catalytic processes using simple design principles. 

3.4.1 Alkane Transformations 

The conversion of alkanes into more valuable products is a very important industrial 

process for both technological and environmental purposes.45 This process is a vital building block 

for the production of plastics, synthetic rubber, synthesis gas, and a wide variety of useful 

chemicals.10,32,45–47 For example, methane steam reforming involves the catalytic conversion of 

methane to synthesis gas, which is a valuable raw material for methanol synthesis and Fischer-

Tropsch synthesis.48,49 The ideal catalyst for alkane conversion reactions will activate the alkane 

(which can be measured via strong CH3 adsorption) while simultaneously permitting the rapid 

formation and desorption of products (which can be measured via weak C adsorption) thereby 

inhibiting coking.10,50 However, the search for the optimal catalyst via the traditional approach is 

often difficult due to the linear scaling relations that often exist between C and CH3 adsorption 

energies. 

Here, we used BO to search for a promising Cu-based SAA catalyst for alkane conversion 

using the design principle previously stated (strong CH3 adsorption but weak C adsorption). The 

goal was to identify a SAA that performed similarly or better than Ti1Cu, which was found in 



previous work10 to be a promising candidate for methane steam reforming. We used C and CH3 

adsorption energies from the methane-intermediate dataset. We maintained the same initial set of 

materials and feature set previously used for Figure 3a. For our target, we used a CH3 adsorption 

energy of -2.6 eV and a C adsorption energy of -4.8 eV (see Figure 5). In this case, we are not 

aiming to achieve this particular target; instead, BO attempting to move towards this target will 

discover cases with strong CH3 adsorption but weak C adsorption. The stopping criterion was that 

the loop ends if the recommendation has an equal or stronger CH3 adsorption energy than Ti1Cu 

(-1.97 eV), as well as an equal or weaker C adsorption energy than Ti1Cu (-6.38 eV). The first 

recommendation, Ni1Cu, does not satisfy our stopping criterion, but the second, Hf1Cu, does 

satisfy the criterion, which ends the loop. Thus, in just two additional DFT calculations our BO 

workflow effectively optimizes through a space of 2D adsorption energies, making BO very useful 

in searching for materials that do not obey scaling relations and thus are challenging to design. 

Data from previous work indicates that Hf1Cu is stable against aggregation and therefore is likely 

to be synthesizable.39 In general, while Hf1Cu appears to be a promising candidate for activating 

alkanes while preventing coking (based on the design principle we used), it may or may not turn 

out to be an effective catalyst for a particular alkane conversion reaction for a variety of reasons. 

For example, we did not consider selectivity, possible poisoning by other intermediates or 

contaminants, etc. Thus, further DFT or experimental testing would be needed. 

 



 

Figure 5: BO search campaign for MSR. The goal is to identify a Cu-host SAA with both weaker 
C adsorption and stronger CH3 adsorption as compared to Ti1Cu. BO proceeds through this 2D 
search space of C and CH3 adsorption energies. Ti is shown in blue, while the first and second 
recommendations (Ni and Hf) are shown in green, and the rest of the unexplored SAAs are shown 
in grey.  

 

3.4.2 CO2 reduction. 

In the pursuit of sustainability and carbon neutrality, efficient conversion of CO2 to useful 

products has received intensive research attention. By lowering net greenhouse gas emissions and 

offering a renewable source of carbon-based chemicals, this process could potentially play a 

significant role in combating climate change. However, many challenges remain, such as the 

design of catalysts with high efficiency and selectivity toward desired products.  Previous work51 

has identified Cu as the best pure-metal electrocatalyst for this process. 

Here, the goal is to identify a SAA that is predicted to outperform Cu for CO2 

electroreduction using our BO workflow. We leveraged a volcano plot from previous work51 that 

can estimate the catalytic performance for this process using CO adsorption energies. Using the 

CO adsorption energy on Cu as reference, we scaled the volcano plot to match adsorption energy 

data from our computational setup. After scaling, the apex of the volcano plot had a CO adsorption 



energy of -0.78 eV, compared to pure Cu at -0.89 eV. We then defined our target region as -0.78 

± 0.1 eV. For the initial set of calculations, we leveraged 22 CO adsorption energies consisting of 

Ag-based, Au-based, and Cu-based SAAs (see Supporting information) from our previous work.39 

Our search space contained a total of 75 SAAs consisting of Ag-based, Au-based Cu-based SAAs, 

with dopants ranging from transition metals to post-transition metals. For our feature set, we used 

the same feature set as in Figure 3c and d. The stopping criteria was similar to our previous 

campaigns with the target region of -0.78 ± 0.1 eV. In this case, we performed new DFT 

calculations as recommended by BO, rather than drawing them from a database. 

The first, second, third and final recommendation were Bi1Au, W1Au, Tl1Cu and Y1Au 

with CO adsorption energies -0.12 eV, -2.58 eV, -0.12 eV and -0.77 eV respectively (see Figure 

6a). Y1Au (-0.77 eV) is predicted to be more active than pure Cu (-0.89 eV) for CO2 reduction. 

Next, we decided to replace Oads with Cads (the C adsorption energy on a pure surface of the dopant 

metal) in our feature set. Previous work had suggested both Oads and Cads might be good descriptors 

for CO adsorption.49,52,53 We repeated the same BO procedure and found Y1Cu (-0.69 eV) and 

Y1Ag (-0.84 eV) at the 3rd and 8th iteration respectively (see Figure 6b). These results suggest that 

Y1Au, Y1Cu, and Y1Ag are more active than pure Cu and would likely be suitable for this process. 

However, it is important to acknowledge that the descriptor-based approach has certain limitations, 

such as focusing primarily on activity. Thus, further tests for selectivity would need to be 

performed. Two recent theoretical studies6,54 have also predicted that Y1Cu is indeed a good 

catalyst for this process, further corroborating our findings. By requiring a small number of DFT 

calculations to identify SAAs, this further demonstrates the utility and efficiency of our BO 

workflow for material discovery. 



 

Figure 6: (a) CO2 reduction screening using Oads as part of the feature set. The BO workflow 
efficiently identified Y1Au as a promising candidate for this reaction. (b) CO2 reduction screening 
using Cads instead of Oads. The BO workflow efficiently identified Y1Cu and Y1Ag as promising 
candidates. Y1Au, Y1Cu and Y1Ag are predicted to be more active than pure Cu. 

 

Lastly, we performed simple stability tests of our promising candidates (see SI for further  

description of the stability tests). The reaction energy of 2𝑌1𝑀35 →  𝑌2𝑀34 +  𝑀36 must be 

positive for Y1M35 to be stable against aggregation. Here, 𝑌1𝑀35 is the SAA and M represents Au, 

Ag or Cu. This is stability test is quite common and has been used in previous studies39,55. The 

reaction energies were 1.17 eV, 0.69 eV and 1.27 eV for Y1Au, Y1Cu, and Y1Ag respectively. This 

means Y1Au, Y1Cu, and Y1Ag are stable against aggregation. Next, we carried out tests to 

determine dopant segregation. The energy difference, ∆𝐸𝐶𝑂 =  𝐸𝑏𝑢𝑙𝑘
𝐶𝑂 − 𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐶𝑂  must be positive 

for the SAA to be stable against segregation in the presence of CO. The energy differences were 

0.27 eV, 1.06 eV and 0.23 eV for Y1Au, Y1Cu, and Y1Ag respectively. This indicates all three  are 

stable against dopant segregation to the subsurface. Overall, Y1Au, Y1Cu, and Y1Ag are predicted 

to be stable and would most likely be synthesizable. 

3.4.3 Hydrogen evolution. 



To demonstrate that our BO workflow can also efficiently screen through a relatively large 

search space, we screened through an existing dataset of H adsorption energies for possible active 

sites for HER. Here, the goal is to identify a bimetallic alloy that is predicted to outperform Pt for 

HER using our BO workflow. We leveraged a volcano plot from previous work56 to estimate the 

catalytic activity for this process using H adsorption energies. To account for differences in 

computational setup, we shifted the volcano plot from this previous work using Pt as a reference 

point. After shifting, the apex of the volcano plot had an H adsorption energy of -0.225 eV (relative 

to gas-phase H2), compared to pure Pt at -0.31 eV. We then defined our target region as -0.225 ± 

10% eV. We utilized just 2% of the bimetallic dataset to initialize the first BO iteration, which 

corresponds to 59 H adsorption energies on bimetallics in different sites. Our search space 

contained a total of 2875 H adsorption energies on bimetallics in various sites. We used the same 

feature set as before except for Vad2, which we substituted in place of the s-d coupling of the dopant 

metal. To account for possible heterogeneity within a site, we took the weighted average of each 

feature for all neighboring surface atoms. This has been shown to be a good characterization of 

the adsorbing atom’s local environment.42 We also added dummy variables to represent each type 

of site (top, bridge, fcc hollow, hcp hollow). The stopping criteria was similar to our previous 

campaigns.  

BO identified a promising candidate for HER in just four iterations. The first, second, third 

and final recommendation were Au9Zr3 on the top site, Hf3Zr9 on the fcc-hollow site, Os6W6 on 

the top site, and Ag6Ir6 on the top site (see Figure 7). Ag6Ir6 (-0.226 eV) is predicted to be more 

active than pure Pt (-0.31 eV) for HER, based on the volcano plot. Ag-Ir alloys have also been 

shown to be synthesizable from previous work.57 Thus, it is a strong candidate for further 

investigation. Therefore, we have shown our BO workflow performs quite well on a relatively 



large search space. This test also shows that our BO workflow can perform well on materials other 

than SAAs. Despite the good performance of our sequential BO workflow on this large search 

space, batch BO (where k >1 recommendation is provided per iteration) may be more effective for 

relatively large search spaces in general. 

 
Figure 7: HER screening with BO. The BO workflow efficiently identified Ag6Ir6 on the top site 
as a promising candidate for this reaction. 

 

4 Discussion and Conclusion 

In general, the utility of our BO workflow is not limited to SAAs: our BO workflow is also 

capable of handling different types of systems such as single-atom catalysts (SACs)9, dual-atom 

catalysts (DACs)58, dual-atom alloys (DAAs)39, and other classes of materials. Furthermore, our 

BO workflow can be utilized for experiments and high-level theory calculations. More 

specifically, our BO workflow is particularly effective for learning from an arduously collected 

dataset (e.g., data from literature spanning many years), and making subsequent searches much 

more efficient. We demonstrated this with the search campaign for CO2 reduction, where a dataset 

from previous work was used to accelerate a new search. We showed our BO technique to be 



effective in relatively small search spaces, as this is a neglected (but important) use-case for 

machine learning. However, it is also effective for larger search spaces, as demonstrated by our 

HER screening. 

 In summary, we developed a BO workflow to efficiently guide the search of materials, 

specifically SAAs. We ran a series of BO search campaigns across multiple adsorption systems 

and datasets, demonstrating the efficiency of our BO workflow in identifying potentially high-

performing catalysts with a small number of DFT calculations/iterations. Our BO workflow 

significantly outperformed a random search method, demonstrating its efficacy in searching 

through a complex space. We also demonstrated that our BO workflow can be used with simple, 

off-the-shelf features and does not necessarily require a high-level featurization like many 

traditional ML methods for material screening. Furthermore, we applied our BO workflow to 

identify optimal catalysts for three technologically important processes: alkane transformations, 

CO2 reduction, and HER. With just two additional DFT calculations/iterations our BO workflow 

identified Hf1Cu as an ideal candidate for alkane transformations. For CO2 reduction, after very 

few DFT calculations/iterations, our BO workflow identified Y1Au, Y1Cu and Y1Ag as promising 

candidates for this chemical process. Recent studies also corroborate our findings, as Y1Cu was 

recently predicted via DFT to be an effective catalyst for this process, further demonstrating the 

effectiveness of our workflow. Simple stability tests also indicate Y1Au, Y1Cu and Y1Ag are stable 

(against aggregation and segregation) and would most likely be synthesizable. For HER, our BO 

workflow identified Ag-Ir bimetallic alloy within a few iterations. Overall, our BO workflow can 

be applied to different classes of materials, experiments, and high-level theory calculations, and 

would be particularly useful in cases where data generation is expensive. 
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