
Formalizing Stack Safety as a Security Property
Sean Noble Anderson
Portland State University

ander28@pdx.edu

Roberto Blanco
MPI-SP

roberto.blanco@mpi-sp.org

Leonidas Lampropoulos
University of Maryland, College Park

leonidas@umd.edu

Benjamin C. Pierce
University of Pennsylvania
bcpierce@cis.upenn.edu

Andrew Tolmach
Portland State University

tolmach@pdx.edu

Abstract—The term stack safety is used to describe a variety
of compiler, run-time, and hardware mechanisms for protecting
stack memory. Unlike “the heap,” the ISA-level stack does not
correspond to a single high-level language concept: different
compilers use it in different ways to support procedural and
functional abstraction mechanisms from a wide range of lan-
guages. This protean nature makes it difficult to nail down what
it means to correctly enforce stack safety.

We propose a new formal characterization of stack safety using
concepts from language-based security. Rather than treating
stack safety as a monolithic property, we decompose it into an
integrity property and a confidentiality property for each of the
caller and the callee, plus a control-flow property: five properties
in all. This formulation is motivated by a particular class of
enforcement mechanisms, the “lazy” stack safety micro-policies
studied by Roessler and DeHon [1], which permit functions to
write into one another’s frames but taint the changed locations
so that the frame’s owner cannot access them. No existing
characterization of stack safety captures this style of safety;
we capture it here by stating our properties in terms of the
observable behavior of the system.

Our properties go further than previous formal definitions
of stack safety, supporting caller- and callee-saved registers,
arguments passed on the stack, and tail-call elimination. We
validate the properties by using them to distinguish between
correct and incorrect implementations of Roessler and DeHon’s
micro-policies using property-based random testing. Our test
harness successfully identifies several broken variants, including
Roessler and DeHon’s lazy policy; a repaired version of their
policy passes our tests.

I. INTRODUCTION

Functions in high-level languages (and related abstractions
such as procedures, methods, etc.) are units of computation
that invoke one another to define larger computations in a
modular way. At a low level, each function activation manages
its own local variables, spilled temporaries, etc., as well as
information about the caller to which it will return. The call
stack is the fundamental data structure used to implement
functions, aided by an Application Binary Interface (ABI) that
defines how registers are shared between activations.

From a security perspective, attacks on the call stack are
attacks on the function abstraction itself. Indeed, the stack is an
ancient [2] and perennial [3]–[8] target for low-level attacks,
sometimes involving control-flow hijacking via corrupting the
return address, sometimes memory corruption more generally.

The variety in attacks on the stack is mirrored in the range
of software and hardware protections that aim to prevent them,
including stack canaries [9], bounds checking [10]–[12], split
stacks [13], shadow stacks [14], [15], capabilities [16]–[20],
and hardware tagging [1], [21]. But enforcement mechanisms
can be brittle, successfully eliminating one attack while leav-
ing room for others. To avoid an endless game of whack-a-
mole, we seek formal properties of safe behavior that can be
proven, or at least rigorously tested. Such properties can be
used as the specification against which enforcement can be
validated—even enforcement mechanisms that do not fulfill
a property can benefit from the ability to articulate why and
when they may fail.

Many of the mechanisms listed above are fundamentally
ill-suited for offering formal guarantees: they may impede
attackers, but they do not provide universal protection. Shadow
stacks, for instance, aim to “restrict the flexibility available
in creating gadget chains” [15], not to categorically rule out
attacks. Other mechanisms, such as SoftBound [10] and code-
pointer integrity [13], do aim for stronger guarantees, but not
formal ones. To our knowledge, the sole line of work making
a formal claim to protect stack safety is the study of secure
calling conventions by Skorstengaard et al. [19] and Georges
et al. [20].

Some of the other mechanisms listed above should also
be amenable to strong formal guarantees. In particular,
Roessler and DeHon [1] present an array of tag-based micro-
policies [22] for stack safety that aim to offer universal
protection. But the reasoning involved can be subtle: they
include micro-policy optimizations, Lazy Tagging and Lazy
Clearing (likely to be deployed together, which we hereafter
refer to as Lazy Tagging and Clearing, or LTC). LTC allows
function activations to write improperly into one another’s
stack frames, but ensures that the owner of the corrupted mem-
ory cannot access it afterward, avoiding expensive clearings
of the stack frame. Under this policy, one function activation
can corrupt another’s memory—just not in ways that affect
observable behavior. Therefore, LTC would not fulfill Georges
et al.’s property (adapted to the tagged setting). But LTC
does arguably enforce stack safety, or as Roessler and DeHon
describe it informally, a sort of data-flow integrity tied to the
stack. A looser, more observational definition of stack safety

is needed to fit this situation.
We propose here a formal characterization of stack safety

based on the intuition of protecting function activations from
each other and using the tools of language-based security [23]
to treat function activations as security principals. We decom-
pose stack safety into a family of properties describing the
integrity and confidentiality of the caller’s local state and the
callee’s behavior during (and after) the callee’s execution, to-
gether with the well-bracketed control flow (WBCF) property
articulated by Skorstengaard et al. [19].

Our properties are stated abstractly in the hope that they
can also be applied to other enforcement mechanisms besides
LTC. However, it does not seem feasible to give a universal
definition of stack safety that applies to all architectures and
compilers. While many security properties can be described
purely at the level of a high-level programming language and
translated to a target machine by a secure compiler, stack
safety cannot be defined in this way, since “the stack” is not
explicitly present in the definitions of most source languages
but rather is implicit in the semantics of features such as
calls and returns.1 But neither can stack safety be described
coherently as a purely low-level property; indeed, at the lowest
level, the specification of a “well-behaved stack” is almost
vacuous. The ISA is not concerned with such questions as
whether a caller’s frame should be readable or writable to its
callee. Those are the purview of high-level languages built
atop the hardware stack.

Thus, any low-level treatment of stack safety must begin
by asking: which high-level features are supported in a given
setting using the stack, and how does their presence influence
the expectation of well-bracketed control flow, confidentiality,
and integrity? We begin with a simple system with very few
features, then move to a more realistic one supporting tail-
call elimination, argument passing on the stack, and callee-
save registers. Our properties are factored so that the basic
structure of each of our five properties remains constant while
the presence or absence of different features leads to subtler
differences in how they behave.

We demonstrate the usefulness of our properties for dis-
tinguishing between correct and incorrect enforcement us-
ing QuickChick [25], [26], a property-based random testing
tool for Coq. Indeed, we find that the published version of
LTC is flawed in a way that undermines both integrity and
confidentiality; after correcting this flaw, LTC satisfies all
of our properties. Further, we modify LTC to protect the
features of our more realistic system and apply random testing
to validate this extended protection mechanism against the
extended properties.

In summary, we offer the following contributions:
• We give a novel characterization of stack safety as a con-

junction of security properties—confidentiality and in-
tegrity for callee and caller—plus well-bracketed control-
flow. The properties are parameterized over a notion of

1Contrast Azevedo de Amorim et al.’s work on heap safety [24], where
the concept of the heap figures directly in high-level language semantics and
its security is therefore amenable to a high-level treatment.

external observation, allowing them to characterize lazy
enforcement mechanisms.

• We extend these core definitions to describe a realistic
setting with argument passing on the stack, callee-saves
registers, and tail-call elimination. The model is modular
enough that adding these features is straightforward.

• We validate a published enforcement mechanism, Lazy
Tagging and Clearing, via property-based random testing,
find that it falls short, and propose and validate a fix.

The following section offers a brief overview of our framework
and assumptions. Section III walks through a function call in
a simple example machine, discusses informally how each of
our properties applies to it, and motivates the properties from a
security perspective. Section IV formalizes the machine model,
its security semantics, and the stack safety properties built on
these. Section V describes how to support an extended set
of features. Section VII describes the micro-policies that we
test, Section VIII the testing framework itself, and Sections IX
and X related and future work.

The accompanying artifact 2 contains formal definitions
(in Coq) of our properties, plus our testing framework. It
does not include proofs, since we use Coq primarily for the
QuickChick testing library and to ensure that our definitions
are unambiguous. Formal proofs are left as future work.

II. FRAMEWORK AND ASSUMPTIONS

Stack safety properties need to describe the behavior of ma-
chine code, but they naturally talk about function activations
and stack contents—abstractions that are typically not visible
at machine level. To bridge this gap, our properties are defined
in terms of a security semantics layered on top of the standard
execution semantics of the machine. The security semantics
identifies certain state transitions of the machine as security-
relevant operations, which update a notional security context.
This context consists of an (abstract) stack of function acti-
vations, each associated with a view that maps each machine
state element (memory location or register) to a security class
(active, sealed, etc.) specifying how the activation can access
the element. The action of a security-relevant operation on the
context is defined by a function that characterizes how the
operation’s underling machine code ought to implement the
function abstraction in terms of the stack and registers.

Given the security classes of the elements of the machine
state, we define high-level security properties—integrity, confi-
dentiality, and well-bracketed control flow—as predicates that
must hold on each call. These predicates draw on the idea
of variant states from the theory of non-interference, plus
a notion of observable events, which might include specific
function calls (e.g., system calls that perform I/O), writes to
special addresses representing memory-mapped regions, etc.
For example, to show that certain locations are kept secret,
it suffices to compare executions starting at machine states
which vary at those locations and check that their traces of
observable events are the same. This structure allows us to

2https://github.com/SNoAnd/stack-safety

talk about the eventual impact of leaks or memory corruption
without reference to internal implementation details and, in
particular, to support lazy enforcement by flagging corruption
of values only when it can actually impact visible behavior.

We introduce these properties by example in Section III and
formally in Section IV. In the remainder of this section we
introduce the underlying semantic framework in more detail.

Machine Model: We assume a conventional ISA (e.g.,
RISC-V, x86-64, etc.), with registers including a program
counter and stack pointer. We make no particular assumptions
about the provenance of the machine code; in particular, we do
not assume any particular compiler. If the machine is enhanced
with enforcement mechanisms such as hardware tags [21],
[27] or capabilities [16], we assume that the behavior of
these mechanisms is incorporated into the basic step semantics
of the machine, with a notion of “compatible” states that
share security behavior that may be defined based on the
enforcement mechanism. Failstop behavior by enforcement
mechanisms is modeled as stepping to the same state (and
thus silently diverging).

Security Semantics: A security semantics extends the
core machine model with additional context about the iden-
tities of current and pending functions (which act as security
principals) and about their security requirements on registers
and memory. This added context is purely notional; it does
not affect the behavior of the core machine. The security
context evolves dynamically through the execution of security-
relevant operations, which include calls, returns, and frame
manipulation. Our security properties are phrased in terms of
this context, often as predicates on future states (“when control
returns to the current function, X must hold...”) or as relations
on traces of future execution (hyper-properties).

Security-relevant operations abstract over the implementa-
tion details of the actions they take. Since the same machine
instruction may be used by compilers for different purposes,
we assume that the compiler or another trusted source has
provided labels to identify the security-relevant purpose of
each instruction, if any. For instance, in the tagged RISC-V
architecture that we use in our examples and tests, calls and
returns are conventionally performed using the jal (“jump-
and-link”) and jalr (“jump-and-link-register”) instructions,
but these instructions might also be used for other things.

These considerations lead to an annotated version of the
machine transition function, written m

 ̄,e��! m
0, where m

and m are machine states, e is an optional externally observ-
able event, and is a list of security-relevant operations—
necessary because a single step might perform multiple simul-
taneous operations. This is then lifted into a transition between
pairs of machine states and contexts by applying a transition
function parameterized by the operation. We will decompose
this function into rules associated with each operation and
introduce them as needed. The most important of these rules
describe call and return operations. A call pushes a new view
onto the context stack and changes the class of the caller’s
data to protect it from the new callee; a return reverses these
steps. Other operations signal how parts of the stack frame

Operation 2 Parameters Sections
call target address, argument registers III,IV

stack arguments (base, offset & size) V,VIII
return III,IV
alloc offset & size III,IV

public flag V,VIII
dealloc offset & size III,IV
tailcall (same as for call) V,VIII
promote register, offset & size VI
propagate source register/address VI

destination register/address VI
clear target register/address VI

TABLE I: Security-relevant operations and their parameters,
with the sections where they are first defined or used. Entries
in light grey do not appear in our examples, but are part of
our testing. Dark grey entries are not tested.

are being used to store or share data, and their corresponding
rules alter the classes of different state elements accordingly.

Exactly which operations and rules are needed depends on
what code features we wish to support. The set of security-
relevant operations () covered in this paper is given in
Table I. A core set of operations covering calls, returns, and
local memory is introduced in the example in Section III
and formalized in Section IV. An extended set covering
simple memory sharing and tail-call elimination is described in
Section V and tested in Section VIII. The remaining operations
are needed for the capability-based model in Section VI.

Views and Security Classes: The security context consists
of a stack of views, where a view is a function mapping each
state element to a security class—one of public, free , active ,
or sealed .

State elements that are outside of the stack—general-
purpose memory used for globals and the heap, as well as
the code region and globally shared registers—are always
labeled public. We place security requirements on some public
elements for purposes of the well-bracketed control flow
WBCF property, and a given enforcement mechanism might
restrict their access (e.g., by rendering code immutable), but
for integrity and confidentiality purposes they are considered
accessible at all times.

When a function is newly activated, every stack location
that is available for use but not yet initialized is free . From
the perspective of the caller, the callee has no obligations
regarding its use of free elements.

Arguments are marked active , meaning that their contents
may be used safely. When a function allocates memory for its
own stack frame, that memory will also be active . Then, on a
call, active elements that are not being used to communicate
with the callee will become sealed—i.e., reserved for an
inactive principal and expected to be unchanged when it
becomes active again.

Instantiating the Framework: Conceptually, the following
steps are needed to instantiate the framework to a specific
machine and coding conventions: (i) define the base machine
semantics, including any hardware security enforcement fea-
tures; (ii) identify the set of security-relevant operations and

rules required by the coding conventions; (iii) determine how
to label machine instructions with security-relevant operations
as appropriate; (iv) specify the form of observable events.

Threat Model and Limitations: When our properties are
used to evaluate a system, the threat model will depend on the
details of that system. However, there are some constraints
that our design puts on any system. In particular, we must
trust that the security-relevant operations have been correctly
labeled. If a compiled function call is not marked as such,
then the caller’s data might not be protected from the callee;
conversely, marking too many operations as calls may cause
otherwise safe programs to be rejected.

We do not assume that low-level code adheres to any single
calling convention or is being used to implement any particular
source-language constructs. Indeed, if the source language is
C, then high-level programs might contain undefined behavior,
in which case they might be compiled to arbitrary machine
code.

In general, it is impossible to distinguish buggy machine
code from an attacker. In examples, we often identify one
function or another as an attacker, but our framework does
not require any static division between trusted and untrusted
code, and we aim to protect even buggy code.

This is a strong threat model, but it does omit some
important aspects of stack safety in real systems: in particular,
it does not address concurrency. Hardware and timing attacks
are also out of scope.

III. PROPERTIES BY EXAMPLE

In this section, we introduce our security properties by
means of small code examples, using a simple set of security-
relevant operations for calls, returns, and private allocations.

Figure 1 gives C code and possible corresponding compiled
64-bit RISC-V code for a function main, which takes an ar-
gument secret and initializes a local variable sensitive
to contain potentially sensitive data. Then main calls another
function f, and afterward it performs a test on sensitive
to decide whether to output secret. Since sensitive is
initialized to 0, the test should always fail, and main should
instead output the return value of f. Output is performed by
writing to the special global out, and we assume that such
writes are the only observable events in the system.

The C code is compiled using the standard RISC-V calling
conventions [28]. In particular, the function’s first argument
and its return value are both passed in a0. Memory is byte
addressed, and the stack grows towards lower addresses. We
assume that main begins at address 0 and its callee f
at address 100. The annotations in the right-hand column
are security-relevant operations, described further below. The
assembly is a simplified but otherwise typical compilation of
the source code into RISC-V; its details are less important than
the positions of the security-relevant operations.

Now, suppose that f is actually an attacker seeking to leak
secret. It might do so in a number of ways, shown as
snippets of assembly code in Fig. 2. Leakage is most obviously
viewed as a violation of main’s confidentiality. In Fig. 2a,

volatile int out;
void main(int secret) {

int sensitive = 0;
int res = f();
if (sensitive == 42)

out = secret;
else

out = res;
}

0: addi sp,sp,-20 alloc (�20, 20)
4: sd ra,12(sp)
8: sw a0,8(sp)

12: sw zero,4(sp)
16: jal f,ra call "
20: sw a0,0(sp)
24: lw a4,4(sp)
28: li a5,42
32: bne a4,a5,L1
36: lw a0,8(sp)
40: sw a0,out
44: j L2

L1, 48: lw a0,0(sp)
52: sw a0,out

L2, 56: ld ra,12(sp)
60: addi sp,sp,20 dealloc (0, 20)
64: jalr ra return

. . .

SP

res

4(SP)

sens

8(SP)

sec

12(SP)

ra1 ra2

 ���������������������������������
Fig. 1: Example: C and assembly code for main and layout
of its stack frame (the stack grows to the left).

f takes an offset from the stack pointer, accesses secret,
and directly outputs it. More subtly, even if it is somehow
prevented from outputting secret directly, f can instead
return its value so that main stores it to out, as in Fig. 2b.
Beyond simply reading secret, the attacker might overwrite
sensitive with 42, guaranteeing that main publishes its
own secret unintentionally (Fig. 2c); this does not violate
main’s confidentiality, but rather its integrity. In Fig. 2d, the
attacker arranges to return to the wrong instruction, thereby
bypassing the check and publishing secret regardless; this
violates the program’s well-bracketed control flow (WBCF).
In Fig. 2e, a different attack violates WBCF, this time by
returning to the correct program counter but with the wrong
stack pointer. (We pad some of these variants with nops just
so that all the snippets have the same length, which keeps the
step numbering uniform in Fig. 3.)

The security semantics for this program is based on the
security-relevant events noted in the right columns of Figs. 1
and 2, namely execution of instructions that allocate or deal-
locate space (specified by an SP-relative offset and size), make
a call (with a specified list of argument registers), or make a

100: lw a4,8(sp)
104: sw a4,out
108: li a0,1
112: jalr ra return

(a) Leaking secret directly

100: lw a4,8(sp)
104: mov a0,a4
108: nop
112: jalr ra return

(b) Leaking secret indirectly

100: li a5,42
104: sw a5,4(sp)
108: li a0,1
112: jalr ra return

(c) Attacking sensitive

100: addi ra,ra,16
104: nop
108: nop
112: jalr ra return

(d) Attacking control flow

100: addi sp,sp,8
104: nop
108: nop
112: jalr ra return

(e) Attacking stack pointer integrity

Fig. 2: Example: assembly code alternatives for f as an
attacker.

return.
Our security semantics attaches a security context to the

machine state, consisting of a view V and a stack � of pending
activations’ views. Figure 3 shows how the security context
evolves over the first few steps of the program. (The formal
details of the security semantics are described in Section IV,
and the context evolution rules are formalized in Fig. 7.)
Execution begins at the start of main, with the program
counter (PC) set to zero and the stack pointer (SP) at address
1000. State transitions are numbered and may be labeled with
a security operation, written # , between steps.

The initial view V0 maps all stack addresses below SP to
free and the remainder of memory to public. The sole used
argument register, a0, is mapped to active; other caller-save
registers are mapped to free and callee-save registers to sealed .
Step 1 allocates a word each for secret, sensitive, and
res, as well as two words for the return address; this has the
effect of marking those bytes active . We use V J. . .K to denote
updates to V .

At step 5, the current principal’s record is pushed onto the
inactive list. The callee’s view is updated from the caller’s such
that all active memory locations become sealed . (For now

we assume no sharing of stack memory between activations;
data is passed only through argument registers, which remain
active. In the presence of memory sharing, some memory
would remain active, too.) Function f does not take any
arguments; if it did, any registers containing them would
be mapped to active , while any non-argument, caller-saved
registers are mapped to free . In the current example, only
register a0 changes security class. All callee-save registers
remain sealed for all calls, so if, in the example, we varied
the assembly code for main so that sensitive was stored
in a callee-save register (e.g., s0) rather than in memory, its
security class would still be sealed at the entry to f. At step
9, f returns and the topmost inactive view, that of main, is
restored.

We now show how this security semantics can be used to
define notions of confidentiality, integrity, and correct control
flow in such a way that many classes of bad behavior, includ-
ing the attacks in Fig. 2, are detected as security violations.

Well-Bracketed Control Flow: To begin with, if f returns
to an unexpected place (i.e., PC 6= 20 or SP 6= 980), we say
that it has violated WBCF. WBCF is a relationship between
call steps and their corresponding return steps: just after the
return, the program counter should be at the next instruction
below the call, and the stack pointer should have the same
value that it had before the call. Both of these are essential
for security. In Fig. 2d, the attacker adds 16 to the return
address and then returns; this bypasses the if-test in the code
and outputs secret. In Fig. 2e, the attacker returns with
SP0 = 988 instead of the correct SP = 980. In this scenario,
given the layout of main’s frame,

SP # SP0 #
res sens sec ra1 ra2

main’s attempt to read sensitive may instead read part of
the return address, and its attempt to output res will instead
output secret.

Before the call, the program counter is 16 and the stack
pointer is 980. So we define a predicate on states that should
hold just after the return: Ret m , m[PC] = 20^m[SP] = 980.
We can identify the point just after the return (if a return
occurs) as the first state in which the pending call stack is
smaller than it was just after the call. WBCF requires that, if
m is the state at that point, then Ret m holds. This property
is formalized in Table II, line 1.

Stack Integrity: Like WBCF, stack integrity defines a
condition at the call that must hold upon return. This time the
condition applies to all of the memory in the caller’s frame.
In Fig. 3 we see the lifecycle of an allocated frame: upon
allocation, the view labels it active , and when a call is made,
it instead becomes sealed . Intuitively, the integrity of main is
preserved if, when control returns to it, any sealed elements
are identical to when it made the call. Again, we need to
know when a caller has been returned to, and we use the
same mechanism of checking the depth of the call stack. In
the case of the call from main to f, the sealed elements

PC SP Context
. . .| {z }

free

SP
#

. . .| {z }
public

a0 a4 a5

0 1000 V0, "

1
??yalloc (�20, 20)

. . .| {z }
free

SP
#

| {z }
active

. . .| {z }
public

a0 a4 a5

4 980 V1 = V0J980..999 7! activeK, "

2-4
??y

16 980 V1, "

5
??ycall 100 "

. . .| {z }
free

SP
#

| {z }
sealed

. . .| {z }
public

a0 a4 a5

100 980 V2 = V1J980..999 7! sealed , a0 7! freeK, [V1]

6-8
??y

112 980 V2, [V1]

9
??yreturn

. . .| {z }
free

SP
#

| {z }
active

. . .| {z }
public

a0 a4 a5

20 980 V1, "

Fig. 3: Execution of example up through the return from f. In stack diagrams, addresses increase to the right, stack grows to
the left, and boxes represent 4-byte words.

are the addresses 980 through 999 and callee-saved registers
such as the stack pointer. Note that callee-saved registers often
change during the call—but if the caller accesses them after
the call, it should find them restored to their prior value.

While it would be simple to define integrity as “all sealed
elements retain their values after the call,” this would be
stricter than necessary. Suppose that a callee overwrites some
data of its caller, but the caller never accesses that data (or
only does so after re-initializing it). This would be harmless,
with the callee essentially using the caller’s memory as scratch
space, but the caller never seeing any change.

For a set of elements K, a pair of states m and n are K-
variants if their values an only disagree on elements in K.
We say that the elements of K are irrelevant in m if they
can be replaced by arbitrary other values without changing
the observable behavior of the machine. All other elements
are relevant.3

We define caller integrity (CLRI) as the property that every
relevant element that is sealed under the callee’s view is
restored to its original value at the return point. (This property
is formalized in Table II, line 2).

In our example setting, the observation trace consists of the
sequence of values written to out. In Fig. 2c the states before
and after the call differ in the value of sensitive. Figure 4
shows the states before and after the call, which disagree on the
value at sensitive. If we consider a variant of the original
return state in which sensitive is 0 (orange) as opposed to
42 (blue), that state will eventually output 1, while the actual
execution outputs 5. This means that sensitive is relevant.

3This story is slightly over-simplified. If an enforcement mechanism
maintains additional state associated with elements, such as tags, we don’t
want that state to vary. This is touched on in Section IV-D.

res

0
sens

0
sec

5
ra

0 0

w�
res

0
sens

42
sec

5
ra

0 0

z }| {
res

0
sens

42
sec

5
ra

0 0
res

0
sens

0
sec

5
ra

0 0

,!out

5
,!out

1

Fig. 4: Integrity Violation: sensitive changed, and if
varied, changes future outputs

To be more explicit, similar to WBCF, we define Int as a
predicate on states that holds if all relevant sealed addresses
in m are the same as after step 5. We require that Int hold
on the state following the matching return, which is reached
by step 9. Here sensitive has obviously changed, but we
just saw that it is relevant.

Caller Confidentiality: We treat confidentiality as a form
of non-interference as well: the confidentiality of a caller
means that its callee’s behavior is dependent only on publicly
visible data, not the caller’s private state. This also requires
that the callee initialize memory before reading it. As we saw
in the examples, we must consider both the observable events
that the callee produces during the call and the changes that
the callee makes to the state that might affect the caller after
the callee returns.

res

0
sens

0
sec

5
ra

0 0

z }| {
res

0
sens

0
sec

5
ra

0 0
res

1
sens

2
sec

3
ra

4 5
wwww�

,!out

5 6⇡
,!out

3

wwww�
res

0
sens

0
sec

5
ra

0 0
res

1
sens

2
sec

3
ra

4 5

Fig. 5: Internal Confidentiality Violation

res

0
sens

0
sec

5
ra

0 0

z }| {
res

0
sens

0
sec

5
ra

0 0
res

1
sens

2
sec

3
ra

4 5
wwww�

a0

0
a0

6

wwww�
res

0
sens

0
sec

5
ra

0 0
res

1
sens

2
sec

3
ra

4 5

a0

5
a0

3

Fig. 6: Return-time Confidentiality Violation

Consider the state after step 5, shown at the top of Fig. 5,
with the attacker code from Fig. 2a and the assumption that
secret has the value 5. We take a variant state over the set
of elements that are sealed in V2 (orange), and compare it to
the original (blue). During the execution, the value of secret
is written to the output, and the information leak is evidenced
by the fact that the outputs do not agree—the original outputs
5, while the variant outputs 3. This is a violation of internal
confidentiality (formalized in Table II, line 3a).

But, in Fig. 2b, we also saw an attacker that exfiltrated the
secret by reading it and then returning it, in a context where
the caller would output the returned value. Figure 6 shows
the behavior of the same variants under this attacker, but in
this case, there is no output during the call. Instead the value
of secret is extracted and placed in a0, the return value
register.

At the end of the call, we can deduce that every element on
which the variant states disagree must carry some information
derived from the original varied elements. In most cases, that
is because the element is one of the original varied elements
and has not changed during the call, which does not represent

a leak. But in the case of a0, it has changed during the call,
and the return states do not agree on its value. This represents
data that has been leaked, and should not be used to affect
future execution. Unless a0 happens to be irrelevant to the
caller, this example is a violation of what we term return-time
confidentiality (formalized in Table II, line 3b).

Structurally, return-time confidentiality resembles integrity,
but now dealing with variants. We begin with a state imme-
diately following a call, m. We consider an arbitrary variant
state, n, which may vary any element that is sealed or free , i.e.,
any element that is not used legitimately to pass arguments.
Caller confidentiality therefore can be thought of as the callee’s
insensitivity to elements in its initial state that are not part of
the caller-callee interface.

We define a binary relation Conf on pairs of states, which
holds on eventual return states m

0 and n
0 if all relevant

elements are uncorrupted relative to m and n. An element is
corrupted if it differs between m

0 and n
0, and it either changed

between m and m
0 or between n and n

0.
Finally, we define caller confidentiality (CLRC) as the com-

bination of internal and return-time confidentiality (Table II,
line 3).

The Callee’s Perspective: We presented our initial ex-
ample from the perspective of the caller, but a callee may
also have privilege that its caller lacks, and which must be
protected from the caller. Consider a function that makes a
privileged system call to obtain a secret key, and uses that
key to perform a specific task. An untrustworthy or erroneous
caller might attempt to read the key out of the callee’s memory
after return, or to influence the callee to cause it to misuse the
key itself!

Where the caller’s confidentiality and integrity are con-
cerned with protecting specific, identifiable state—the caller’s
stack frame—their callee equivalents are concerned with en-
forcing the expected interface between caller and callee. Com-
munication between the principals should occur only through
the state elements that are designated for the purpose: those
labeled public and active .

Applying this intuition using our framework, callee con-
fidentiality (CLEC) turns out to resemble CLRI, extended to
every element that is not marked active or public at call-time.
The callee’s internal behavior is represented by those elements
that change over the course of its execution, and which are not
part of the interface with the caller. At return, those elements
should become irrelevant to the subsequent behavior of the
caller.

Similarly, in callee integrity (CLEI), only elements marked
active or public at the call should influence the behavior of the
callee. It may seem odd to call this integrity, as the callee does
not have a private state. But an erroneous callee that performs
a read-before-write within its stack frame, or which uses a
non-argument register without initializing it, is vulnerable to
its caller seeding those elements with values that will change
its behavior. The fact that well-behaved callees have integrity
by definition is probably why callee integrity is not typically
discussed.

IV. FORMALIZATION

We now give a formal description of our machine model,
security semantics, and properties. Our definitions abstract
over: (i) the details of the target machine architecture and ABI,
(ii) the set of security-relevant operations and their effects on
the security context, (iii) the set of observable events, and (iv)
a notion of value compatibility.

A. Machine

The building blocks of a machine are words and registers.
Words are ranged over by w and, when used as addresses,
a, and are drawn from the set W . Registers in the set R are
ranged over by r, with the stack pointer given the special name
SP; some registers may be classified as caller-saved (CLR) or
callee-saved (CLE). Along with the program counter, PC, these
are referred to as state elements k in the set K ::= PC|W|R.

A machine state m 2M is a map from state elements to a
set V of values. Each value v contains a payload word, written
|v|. We write m[k] to denote the value of m at k and m[v] as
shorthand for m[|v|]. Depending on the specific machine being
modeled, values may also contain other information relevant
to hardware enforcement (such as a tag). When constructing
variants (see Section IV-D, this additional information should
not be varied. To capture this idea, we assume a given
compatibility equivalence relation ⇠ on values, and lift it
element-wise to states. Two values should be compatible if
their non-payload information (e.g., their tag) is identical.

The machine has a step function m
 ̄,e��! m

0. Except for
the annotations over the arrow, this function just encodes the
usual ISA description of the machine’s instruction set. The
annotations serve to connect the machine’s operation to our
security setting: ̄ is a list of security-relevant operations
drawn from an assumed given set , and e is an (potentially
silent) observable event; these are described further below.

B. Security semantics

The security semantics operates in parallel with the ma-
chine. Each state element (memory word or register) is given
a security class l 2 {public, active, sealed , free}. A view
V 2 VIEW maps elements to security classes. For any
security class l, we write l(V) to denote the set of elements k

such that V k = l. The initial view V0 maps all stack locations
to free , all other locations to public, and registers based on
which set they belong to: sealed for callee-saved, free for
caller-saved except for those that contain arguments at the start
of execution, which are active , and public otherwise.

A (security) context is a pair of the current activation’s view
and a list of views representing the call stack (pending inactive
principals), ranged over by �.

c 2 C ::= VIEW ⇥ list VIEW

The initial context is c0 = (V0, ").
Section III describes informally how the security context

evolves as the system performs security-relevant operations.
Formally, we combine each machine state with a context to

range r o↵ sz m , {m[r] + i|o↵  i < o↵ + sz}

K = range SP o↵ sz m \ free(V)
V

0 = V Ja 7! active | a 2 KK
Op m (alloc o↵ , sz) (V,�) = (V 0

,�)
ALLOC

K = range SP o↵ sz m \ active(V)
V

0 = V Ja 7! free | a 2 KK
Op m (dealloc o↵ , sz) (V,�) = (V 0

,�)
DEALLOC

V
0 = �k.

8
>>><

>>>:

free if k 2 CLR

public if k 2 rargs

sealed if k 2W and k 2 active(V)

V (k) otherwise
Op m (call atarget rargs) (V,�) = (V 0

, V :: �)

CALL

Op m return (, (V,�0)) = (V,�0)
RETURN

Fig. 7: Basic Operations

create a combined state s = (m, c) and lift the transition to
=) on combined states. At each step, the context updates
based on an assumed given function Op : M ! C ! !
C . Since a single step might correspond to multiple operations,
we apply Op as many times as needed, using foldl .

m
 ,e��! m

0 foldl (Op m) c = c0

(m, c)
 , e
=) (m0

, c0)

A definition of Op is most convenient to present decom-
posed into rules for each operation. We have already seen
the intuition behind the rules for alloc, call, and ret. For
the machine described in the example, the Op rules would be
those found in Fig. 7. Note that Op takes as its first argument
the state before the step.

C. Events and Traces

We abstract over the events that can be observed in the
system, assuming just a given set EVENTS that contains
at least the element ⌧ , the silent event. Other events might
represent certain function calls (i.e., system calls) or writes
to special addresses representing memory-mapped regions. A
trace is a nonempty, finite or infinite sequence of events,
ranged over by E . We use “·” to represent “cons” for traces,
reserving “::” for list-cons.

We are particularly interested in traces that end just after a
function returns. We define these in terms of the depth d of
the security context’s call stack �. We write d ,! s for the
trace of execution from a state s up to the first point where the
stack depth is smaller than d, defined coinductively by these
rules:

|�| < d

d ,! (m, (V,�)) = ⌧
DONE

|�| � d d ,! (m0
, c0) = E

(m, (V,�))
 , e
=) (m0

, c0)
d ,! (m, (V,�)) = e · E

STEP

When d = 0, the trace will always be infinite because the
machine never halts; in this case we omit d and just write
,! s.

Two event traces E1 and E2 are similar, written E1 h E2,
if the sequence of non-silent events is the same. That is, we
compare up to deletion of ⌧ events. Note that this results in an
infinite silent trace being similar to any trace. So, a trace that
silently diverges due to a failstop will be vacuously similar to
all other traces.

E h E SIMREFL
E1 h E2

e · E1 h e · E2
SIMEVENT

E1 h E2
⌧ · E1 h E2

SIMLEFT
E1 h E2

E1 h ⌧ · E2
SIMRIGHT

D. Variants, corrupted sets, and “on-return” assertions

Two (compatible) states are variants with respect to a set
of elements K if they agree on the value of every element
not in K. Our notion of non-interference involves comparing
the traces of such K-variants. We use this to define sets
of irrelevant elements. Recall that ⇠ is a policy-specific
compatibility relation.

Definition 1. The difference set of two machine states m

and m
0, written �(m,m

0), is the set of elements k such that
m[k] 6= m

0[k].

Definition 2. Machine states m and n are K-variants, written
m ⇡K n, if m ⇠ n and �(m,n) ✓ K.

Definition 3. An element set K is irrelevant to state (m, c),
written (m, c) k K, if for all n such that m ⇡K n,
,! (m, c) h ,! (n, c).

When comparing the behavior of variant states, we need a
notion of how their differences have influenced them.

Definition 4. The corrupted set 3̄(m,m
0
, n, n

0) is the set
(�(m,m

0) [�(n, n0)) \�(m0
, n

0).
If we consider two execution sequences, one from m to m

0

and the other from n to n
0, then 3̄(m,m

0
, n, n

0) is the set
of elements that change in one or both executions and end
up with different values. Intuitively, this captures the effect of
any differences between m and n, i.e., the set of values that
are “corrupted” by those differences.

Our “on-return” assertions are defined using a second-order
logical operator d " P , pronounced “P holds on return from
depth d,” where P is a predicate on machine states. This
is a coinductive relation similar to “weak until” in temporal
logic—it also holds if the program never returns from depth
d.

|�| < d P m

(d " P) (m, (V,�))
RETURNED

|�| � d (d " P) (m0
, c0)

(m, (V,�))
 , e
=) (m0

, c0)
(d " P) (m, (V,�))

STEP

Similarly, we give a analogous binary relation for use in
confidentiality. We define * so that (m, c) (d * R) (m0

, c0)
holds if R holds on the first states that return from depth d after
(m, c) and (m0

, c0), respectively. Once again, * is coinductive.

|�1| < d |�2| < d m1 R m2

(m1, (V1,�1)) (d * R) (m2, (V2,�2))
RETURNED

|�1| � d (m1, (V1,�1))
 , e
=) (m0

1, c
0
1)

(m0
1, c

0
1) (d * R) (m2, (V2,�2))

(m1, (V1,�1)) (d * R) (m2, (V2,�2))

LEFT

|�2| � d (m2, (V2,�2))
 , e
=) (m0

2, c
0
2)

(m1, (V1,�1)) (d * R) (m0
2, c

0
2)

(m1, (V1,�1)) (d * R) (m2, (V2,�2))

RIGHT

E. Properties
Finally, the core property definitions are given in Table II,

arranged to show their commonalities and distinctions. Each
definition gives a criterion quantified over states s that imme-
diately follow call steps. If an execution includes a transition
s
0
=) s where call a r 2 ̄, then s is the target of a call.

As a shorthand, we write that each property is defined by a
criterion that must hold “for all call targets s,” or, in the case
of WBCF, “for all call steps s =) s

0.”
1. WBCF: Given a call step (m, (V,�)) =)

(m0
, (V 0

,�
0)), we define the predicate Ret to hold on states

m
00 whose stack pointer matches that of m and whose program

counter is at the next instruction. A system enjoys WBCF if,
for every call transition, Ret holds just after the callee returns
(i.e., the call stack shrinks).

2. CLRI: When the call target is (m, (V,�)), we define
the predicate Int to hold on states m

0 if all elements that are
both sealed in V and in the difference set between m and m

0

are irrelevant. A system enjoys CLRI if, for every call, Int
holds just after the corresponding return.

3. CLRC: When the call target is (m, (V,�)), we begin
by taking an arbitrary n that is a K-variant of m, where K is
the set of sealed elements in V . We require that two clauses
hold. On line 3a, the behavior of a trace from (m, (V,�)) up
to its return must match that of (n, (V,�)). On line 3b, we
define a relation Conf that relates states m

0 and n
0 if their

corrupted set (relative to m and n) is irrelevant, and require
that it hold just after the returns from the callees that start at
(m, (V,�)) and (n, (V,�)). A system enjoys CLRC if both
clauses hold for every call.

4. CLEC: We consider the callee’s private behavior to
be any changes that it makes to the state outside of legitimate
channels—elements marked active or public. The remainder
should be kept secret, which is to say, irrelevant to future
execution. Similar to CLRI, given a call target (m, (V,�)), we
define a predicate CConf to hold on states m0 if the difference
set between m and m

0, excluding active or public locations,

1 WBCF , (|�0| " Ret) (m0, (V 0,�0)) where Ret m00 , m00[SP] = m[SP] for all calls (m, (V,�)) =) (m0, (V 0,�0))
^m00[PC] = m[PC] + sz where sz is the size of instruction at m[PC]

2 CLRI , (|�| " Int) (m, (V,�)) where Int m0 , m0 k (sealed(V) \�(m,m0)) for all call targets (m, (V,�))
3 CLRC , 8n s.t. m ⇡K n, where K = sealed(V) for all call targets (m, (V,�))
3a |�| ,! (m, (V,�)) ' |�| ,! (n, (V,�))
3b and (m, (V,�)) (|�| * Conf) (n, (V,�)) where (m0 Conf n0) , m0 k 3̄(m,n,m0, n0)
4 CLEC , (|�| " CConf) (m, (V,�)) where CConf m0 , m0 k (�(m,m0)�K) for all call targets (m, (V,�))

where K = public(V) [active(V)
5 CLEI , 8n s.t. m ⇡K n, where K = K� (public(V) [active(V)) for all call targets (m, (V,�))
5a |�| ,! (m, (V,�)) ' |�| ,! (n, (V,�))
5b and (m, (V,�)) (|�| * CInt) (n, (V,�)) where (m0 CInt n0) , m0 k 3̄(m,n,m0, n0)

TABLE II: Properties

is irrelevant. A system enjoys CLEC if, for every call, CConf
holds just after the corresponding return.

5. CLEI: Callee integrity means that the caller does not
influence the callee outside of legitimate channels. The caller’s
influence can be seen internally, or in corrupted data on return,
just like the caller’s secrets would be under CLRC. So, for a
call target (m, (V,�)), we take an arbitrary n that is a K-
variant of m, where K is the set of elements that are not
active or public. The remainder of the property is identical to
CLRC.

V. EXTENDED CODE FEATURES

The system we model in Sections III and IV is very simple,
but our framework is designed to make it easy to add support
for additional code features. To support argument passing on
the stack, we just add new parameters to the existing security-
relevant operations, and refine how they update the security
context. The remainder of the properties do not change at all.
To add tail-calls, we add and define a new operation, and since
it is a kind of call, we add it to the definition of call targets.
The rules for the extended security semantics are given in
Fig. 8; the rules in Fig. 7 can be recaptured by instantiating
call with sa as the empty set, and alloc with flag f .

A. Sharing Stack Memory

In our examples, we have presented a vision of stack
safety in which the interface between caller and callee is in
the registers that pass arguments and return values. This is
frequently not the case in a realistic setting. Arguments may
be passed on the stack because there are too many to pass in
registers, as variadic arguments, or because they are composite
types that inherently have pass-by-reference semantics. The
caller may also pass a stack-allocated object by reference in
the C++ style, or take its address and pass it as a pointer.

We refine our call operation to make use of the information
that we have about which stack memory locations contain
arguments. The new annotation sa is a set of triples of a
register, an offset from the value of that register, and a size.
We first define the helpful set passed sa m, then extend the
call operation to keep all objects in passed marked as active
and seal everything else (Fig. 8b).

Using this mechanism, a call-by-value argument passed on
the stack at an SP-relative offset is specified by the triple
(SP, o↵ , sz). In this case, only the immediate callee gains

access to the argument location. A C++-style call-by-reference
argument where the reference is passed in r is instead specified
by the triple (r, 0, sz). Such a call-by-reference argument
could be passed through multiple calls, provided that it is in
sa each time.

Absent the more sophisticated capability model (below), if
the address of an object is taken directly and passed as a
pointer, we simply classify the object as “public” and give it
no protection against access by other functions. We extend the
alloc operation with a boolean flag, where t indicates that the
allocation is public, and f that it is private. If space for multiple
objects is allocated in a single step, that step can make mul-
tiple allocation operations, each labeled appropriately. Public
objects are labeled public rather than active , so they are never
sealed at a call (Fig. 8a). Providing more fine-grained control
over sharing is desirable, but requires a considerably more
complex model. This simple model is included in our testing;
we describe an untested approach based on capabilities below.

B. Tail Calls

The rule for a tail call is similar to that for a normal call.
We do not push the caller’s view onto the stack, but replace it
outright. This means that a tail call does not increase the size
of the call stack, and therefore for purposes of our properties,
all tail calls will be considered to return simultaneously when
the eventual return operation pops the top of the stack.

Since the caller will not be returned to, it does not need
integrity, but it should still enjoy confidentiality. We set its
frame to free rather than sealed to express this. In Table II, we
replace “call targets” with “call or tail call targets” in CLRC,
CLEC, and CLEI.

VI. PROVENANCE, CAPABILITIES, AND PROTECTING
OBJECTS

Lastly, what if we want to express a finer-grained notion of
safety, in which stack objects are protected unless the function
that owns them intentionally passes a pointer to them? This
can be thought of as a capability-based notion of security.
Capabilities are unforgeable tokens that grant access to a
region of memory, typically corresponding to valid pointers
to that region. As such, this capability safety relies on some
preexisting notion of pointer validity, i.e., pointer provenance.
Memarian et al.’s PVI [29] (provenance via integer) mem-
ory model is a good option: it annotates pointers with the

K = range SP o↵ sz m \ free(V)
V

0 = V Ja 7! active | a 2 KK
Op m (alloc f (o↵ , sz)) (V,�) = (V 0

,�)
ALLOCF

K = range SP o↵ sz m \ free(V)
V

0 = V Ja 7! public | a 2 KK
Op m (alloc t (o↵ , sz)) (V,�) = (V 0

,�)
ALLOCT

K = range SP o↵ sz m \ active(V)
V

0 = V Ja 7! free|a 2 KK
Op m (dealloc (o↵ , sz)) (V,�) = (V 0

,�)
DEALLOC

(a) Memory Allocation

push V r K , �k.

8
>>>>>><

>>>>>>:

free if k 2 CLR

public if k 2 rargs

sealed if k 2W and
k 2 active(V)�K

V (k) otherwise

passed sa m ,
[

(r,o↵ ,sz)2sa

range r o↵ sz m

K = passed sa m V
0 = push V rargs K

Op m (call atarget rargs sa) (V,�) = (V 0
, V :: �)

CALL

K = passed sa m V
0 = push V rargs K

Op m (tailcall atarget rargs sa) (V,�) = (V 0
,�)

TAILCALL

(b) Calls with Argument Passing on the Stack

Fig. 8: Operations supporting tail calls and argument passing on stack.

identity of the object they first pointed to, and propagates the
annotation when the pointer is copied and when operations
are performed on it. This constitutes a substantial addition to
the security context, which is why this enhancement is more
speculative than the others, and we have not tested it.

We can model the provenance model as a trio of additional
security-relevant operations: one which declares a register to
contain a valid pointer, one which transmits the provenance of
a pointer from one element to another, and one which clears
the provenance (for instance, when a pointer is modified in
place in a way that makes it invalid).

In addition to the normal call stack, our security context will
carry a map ⇢ from elements to memory regions, represented
as a base and a bound c = (V,�, ⇢). Most existing operations
are extended to preserve the value of ⇢, while the new
operations and the call operation work as seen in Fig. 9.

This essentially generalizes the above notion of passing: we
will consider a caller to have intentionally passed an object if
that object is reachable by a capability that has been passed to
the callee. Reachability includes capabilities passed indirectly,
by being stored in an object that is in turn passed. We define
the set of reachable addresses using reach⇤, the transitive
closure of elements that can be reached from the arguments of
the call. The call operation in this setting will seal only objects
that are not in reach⇤ nor the previously defined passed .

In the resulting property, once an object is sealed (because
its capability has not been passed to a callee), subsequent
nested calls can never unseal it. On the other hand, an object
that is passed via a pointer may be passed on indefinitely.

VII. ENFORCEMENT

We implement and test two micro-policies inspired by
Roessler and DeHon [1]: Depth Isolation without lazy opti-
mizations (DI) and with both Lazy Tagging and Lazy Clearing
optimizations (LTC). (The connection between our properties
and Roessler and DeHon’s work is discussed below.) They

share a common structure: each function activation is assigned
a “color” n representing its identity. Stack locations belonging
to that activation are tagged STACK n, and while the activation
is running, the tag on the program counter (PC tag) is PC n.
Stack locations not part of any activation are tagged UNUSED.

In DI, n always corresponds to the depth of the stack when
the function is called. A function must initialize its entire
frame upon entry in order to tag it, and then clear the frame
before returning. During normal execution, the micro-policy
rules only permit load and store operations when the target
memory is tagged with the same depth as the current PC tag, or,
for store operations, if the target memory is tagged UNUSED.

In LTC, a function neither initializes the frame at entry nor
clears it at exist; instead, it simply sets each location’s tag to
the PC tag when that location is written. It does not check if
those writes are legal! If the PC tag is PC n, then any stack
location that recieves a store will be tagged STACK n. On a
load, the micro-policy failstops if the source memory location
is tagged UNUSED or STACK n for some n that doesn’t match
the PC tag.

To implement this discipline, blessed instruction sequences
appear at the entry and exit of each function, which manipulate
tags as just described while performing the usual tasks of
saving/restoring the return address to/from the stack and
adjusting the stack pointer. A blessed sequence uses further
tags to guarantee that the full sequence executes from the
beginning—no jumping into the middle.

Applicability to Roessler & DeHon [1]: Roessler and De-
Hon (henceforward R&D) R&D differentiate between memory
safety policies (without lazy optimization) and data-flow in-
tegrity policies (with lazy optimization). Our properties are
phrased in terms of data flow, and we apply them to both
optimized and non-optimized Depth Isolation. R&D do not
attempt to define explicit formal properties, but they do list
the behaviors that they expect their data-flow integrity policies
to prevent, namely: reads from sealed objects (our CLRC),

⇢
0 = ⇢[rdst 7! range rbase o↵ sz]

Op m (promote rdst (rbase, o↵ , sz)) (V,�, ⇢) = (V,�, ⇢0)
PROMOTE

⇢
0 = ⇢[k 7! ;]

Op m (clear k) (V,�, ⇢) = (V,�, ⇢0)
CLEAR

⇢
0 = ⇢[kdst 7! ⇢[ksrc]]

Op m (propagate ksrc kdst) (V,�, ⇢) = (V,�, ⇢0)
PROPAGATE

reach k ⇢ , {k0|base  k
0
< bound where ⇢[k] = (base, bound)}

reach⇤
K ⇢ ,

[

k2K

{k} [reach⇤ (reach k ⇢) ⇢

K = passed sa [rargs K
0 = reach⇤

K ⇢ V
0 = push V rargs K

0

Op m (call atarget rargs sa) (V,�, ⇢) = (V 0
, V :: �, ⇢)

CALL

K = passed sa [rargs K
0 = reach⇤

K ⇢ V
0 = push V rargs K

0

Op m (call atarget rargs sa) (V,�, ⇢) = (V 0
,�, ⇢)

TAILCALL

Fig. 9: Operations supporting provenance-based protection of passed objects

writes to sealed objects if they are later read (our CLRI), and
reads from deallocated objects (our CLEC). They also note that
Lazy Clearing prevents uninitialized reads, which corresponds
roughly to our CLEI.

R&D note a flaw in Depth Isolation: because function
activations are identified by depth, a dangling pointer into a
stack frame might be usable when a new frame is allocated
at the same depth. Our testing does not discover this flaw,
because we do not test address-taken objects, but it discovers
a related flaw under Lazy Tagging and Clearing that does not
require an object’s address to be taken. If an activation reads
a location that was previously written by an earlier activation
at the same depth, it will violate callee confidentiality. If that
location was in a caller’s frame, it also violates caller integrity
and confidentiality.

They propose addressing the dangling-pointer issue by
tracking both the depth of the current activation and the static
identity of the active function. This would not eliminate all
instances of this issue, but it would require the confidentiality-
violating activation to be of the same function that wrote the
data in the first place, which is a significantly higher bar.
We propose instead tracking every activation uniquely, which
should eliminate the issue entirely—and does in our tests.

Protecting Registers: R&D do not need to protect regis-
ters, since they include the compiler in their trusted computing
base, but we target threat models that do not. In particular,
CLRI requires callee-saved registers to be saved and restored
properly. We extend DI and LTC so that callee-saved registers
are also tagged with the color of the function that is using
them. In DI they are tagged as part of the entry sequence,
while in LTC they are tagged when a value is placed in them.

VIII. VALIDATION THROUGH RANDOM TESTING

There are several ways to evaluate whether an enforcement
mechanism enforces the above stack safety properties. Ideally
such validation would be done through formal proof over the
semantics of the enforcement-augmented machine. However,
while there are no fundamental barriers to producing such a
proof, it would be considerable work to carry out for a full
ISA like RISC-V and complex enforcement mechanisms like
Roessler and DeHon’s micro-policies. We therefore choose
to systematically test their Depth Isolation and Lazy Per-
Activation Tagging and Clearing micro-policies.

We use a Coq specification of the RISC-V architecture [30],
extend it with a runtime monitor implementing a stack safety
micro-policy, and test it using QuickChick [26], a randomized
property-based testing framework. QuickChick works by gen-
erating random programs, executing them, and checking that
they fulfill our criteria.

Such testing is sound—it will not produce false positives—
but necessarily incomplete. We might test a flawed policy but
fail to generate a program that exploits the flaw. Additionally,
detecting violations of noninterference-style properties is de-
pendent on choosing appropriate variant states, so it is possible
to generate a dangerous program but have it pass the test due
to variant selection. We increase our confidence in our test
coverage by mutation testing, in which we intentionally inject
flaws into the policies and demonstrate that testing can find
them.

A. Test Generation
To use QuickChick, we develop random test-case generators

that produce an initial RISC-V machine state tagged appro-

priately for the micro-policy (see Section VII), including a
code region containing a low-level program. They also produce
the meta-information about how instructions in that program
map to security-relevant operations, which would normally be
provided by the compiler.

Our generators build on the work of Hriţcu et al. [31],
[32], which introduced generation by execution, a technique
that produces programs that lead to longer executions—and
hopefully towards more interesting behaviors as a result. Each
step of generation by execution takes a partially instantiated
machine state and attempts to generate an instruction that
makes sense locally (e.g., jumps go to a potentially valid code
location, loads read from a potentially valid stack location).
The generator repeats this process for an arbitrary number
of steps, or until it reaches a point where the machine cannot
step any more. Each time it generates a call or return, it places
the appropriate policy tags on the relevant instruction(s) and
records the operation.

We extend Hriţcu et al.’s technique with additional state-
fulness to avoid early failstops. For example, immediately
after a call, we increase the probability of generating code
that initializes any stack-allocated variables. To allow for
potential attack vectors to manifest, the generator periodically
relaxes those constraints and generates potentially ill-formed
code, such as failing to initialize variables, writing outside
of the current stack frame, or attempting an ill-formed return
sequence,

B. Property-based Testing
Once a test program is generated, QuickChick tests it against

a property. A typical hyperproperty testing scheme might do
this by generating a pair of initial variant states, executing
them to completion, and comparing the results. We extend
this procedure to handle the nested nature of confidentiality.

For our setup to naı̈vely test the confidentiality of every
call, it would need to create a variant state at each call point,
execute it until return, then generate a post-call variant based
on any tainted values. The post-call variant would execute
alongside the “primary” execution until the test is finished.
This results in tracking a number of variant executions that is
linear in the total number of calls!

For better performance, we instead maintain a single execu-
tion that combines all of the variants that would be spawned
at returns. So, at any given time, we need only simulate (1)
the original execution, (2) the tainted execution, and (3) one
variant execution for each call on the call stack. This approach
makes testing longer executions substantially faster, at the cost
of making it harder to identify which call is the source of a
failure.

C. Mutation Testing
To ensure the effectiveness of testing against our formal

properties, we use mutation testing [33] to inject errors
(mutations) in a program that should cause the property of
interest (here, stack safety) to fail, and ensure that the testing
framework can find them. The bugs we use for our evaluation

Bug Property Violated Ave. MTTF (s) Tests
LOAD NO CHECK Confidentiality 24.2 13.3
STORE NO CHECK Integrity 26.9 26
HEADER NO INIT Integrity 69.5 76.3
PER DEPTH TAG Integrity 10.5 82
PER DEPTH TAG Confidentiality 16.85 88
LOAD NO CHECK Integrity 8.82 34.3
LOAD NO CHECK Confidentiality 22.55 127

STORE NO UPDATE Integrity 6.96 101
STORE NO UPDATE Confidentiality 17.34 11

TABLE III: MTTF for finding bugs in erroneous micro-
policies: DI (top) and LTC (bottom)

are either artificially generated by us (deliberately weakening
the micro-policy in ways that we expect should break its
guarantees), or actual bugs that we discovered through testing
our implementation. We elaborate on some such bugs below.

For example, when loading from a stack location, Depth
Isolation needs to enforce that the tag on the location being
read is STACK n for some number n and that the tag of the
current PC is PC n for the same depth n. We can relax that
restriction by omitting the check (bug LOAD NO CHECK).
Similarly, when storing to a stack location, the correct micro-
policy needs to ensure that the tag on the memory location is
either UNUSED or has again the same depth as the current PC
tag. Relaxing that constraint causes violations to the integrity
property (bug STORE NO CHECK).

In additional intentional mutations, our testing catches errors
in our own implementation of the enforcement mechanism,
including one interesting bug where the initial function’s
frame included space allocated for its return address, but this
uninitialized (and therefore UNUSED-tagged) space was treated
as private data but left unprotected. We added this to our set
of mutations as HEADER NO INIT.

For LTC, the original micro-policy, implemented as
PER DEPTH TAG, fails in testing, in cases where data is
leaked between sequential calls. To round out our mutation
testing we also check LOAD NO CHECK, equivalent to its
counterpart in depth isolation, and a version where stores suc-
ceed but fails to propagate the PC tag, STORE NO UPDATE.

The mean-time-to-failure (MTTF) and average number of
tests for various bugs can be found in Table III, along with the
average number of tests it took to find the failure. Experiments
were run in a desktop machine equipped with i7-4790K CPU
@ 4.0GHz with 32GB RAM.

IX. RELATED WORK

The centrality of the function abstraction and its security are
behind the many software and hardware mechanisms proposed
for its protection [1], [9]–[21]. Many enforcement techniques
focus purely on WBCF; others combine this with some degree
of memory protection, chiefly focusing on integrity. Roessler
and DeHon’s Depth Isolation and Lazy Tagging and Clearing
[1] both offer protections corresponding to WBCF, CLRI, and
CLRC, though they do not give a formal description of this.
They are generally not concerned with protecting callees.

To our knowledge, the only other line of work that aims
to rigorously characterize the security of the stack is the

StkTokens-Cerise family of CHERI-enforced secure calling
conventions [18]–[20]. The authors define stack safety as
overlay semantics and related stack safety properties, phrased
in terms of logical relations instead of trace properties. Orig-
inally, they define an informal notion of stack safety as the
combination of WBCF and “local state encapsulation” [19],
and describe the latter in terms of integrity only (but it has
confidentiality, equivalent to CLRI and CLRC). StkTokens
[19] makes this conception of stack safety explicit through an
overlay semantics which (1) on call mints new a stack frame
from a capability representing the available stack space, and
(2) on return merges the current frame back into the stack
capability, under the assumption that there are no capabilities
left on the stack. The underlying unary logical relation does
not capture confidentiality proper, although it does capture
some of its facets.

Their latest paper [20] was inspired by the properties
presented in this paper to extend their formalism to include
confidentiality through a binary logical relation. When check-
ing if our properties applied to their old calling convention,
they noted that it did not enforce CLEC, and made sure that
their new version would in addition to building it into their
formalism.4 To do so, they redesign the overlay semantics to
actually pop stack frames on return and have them disappear
from the stack. This demonstrates the benefit of our choice to
explicitly state properties in security terms: specifying security
is hard, and when the spec takes the form of a “correct by
construction” machine, it is easy to neglect a non-obvious
security requirement.

In terms of direct feature comparison with Georges et
al. [20] (the most recent work in the line), with the addition
of confidentiality to their formalism, we are roughly at parity
in terms of the expressiveness of our properties. We have
additionally proposed callee-integrity, but it is probably the
least practical of our properties. We extend our model to
tailcalls, which they do not, and to the passing of pointers to
stack objects. They discuss stack objects and the interaction
between stack and heap, but their calling convention does not
guarantee safety in the presence of pointer passing without
additional checks. We test a limited degree of pointer passing,
which does not guarantee memory safety for the passed pointer
but which does not undermine the security of its frame, and
we offer an untested formalism for memory-safe passing of
pointers. On the other hand, their properties are validated by
proof, while ours are only tested.

X. FUTURE WORK

We plan to test our properties against multiple enforcement
mechanisms. The top priority is capability machines, namely
CHERI [34], a modern architecture designed to provide effi-
cient fine-grained memory protection and compartmentaliza-
tion. We want to test the most recent work by Georges et
al. [20], which is designed to enforce analogues of all of our
properties except for CLEI.

4A. L. Georges, personal communication.

It would also be interesting to test a software enforcement
approach. Under a bounds checking discipline [10], all the
pointers in a program are extended with some disjoint meta-
data used to gate memory accesses. These approaches enforce
a form of memory safety, and we would therefore expect them
to enforce CLRI and CLRC. They aim to enforce WBCF
by cutting off attacks that involve memory-safety violations,
but that may not be sufficient. Bounds checking approaches
require substantial compiler cooperation. This is not a problem
for our properties in general, but it is not very compatible with
generation-by-execution of low-level code. A better choice
might be to generate high-level code using a tool like CSmith
[35], or prove the properties instead.

Several popular enforcement mechanisms are not designed
to provide absolute guarantees of security. For example, stack
canaries [9] and shadow stacks [14], [15] are chiefly hardening
techniques: they increase the difficulty of some control-flow
attacks on the stack, but cannot provide absolute guarantees
on WBCF under a normal attacker model. Interestingly, these
are lazy enforcement mechanisms, in that the attack may occur
and be detected some time later, as long as it is detected before
it can become dangerous. That would make our observation-
based formalism a good fit for defining their security, if we
could find a formal characterization of what they do acheive
(perhaps in terms of a base machine with restricted addressing
power).

We have preliminary work on extending our model to
handle C++-style exceptions, which, like tailcalls, obey only a
weakened version of WBCF. We are also exploring extensions
to concurrency, starting with a model of statically allocated co-
routines. These extensions will also require non-trivial testing
effort. We also plan to test the model in Section VI for arbitrary
memory-safe pointer sharing.

Acknowledgements: We thank the reviewers for their com-
ments, CHR Chhak and Allison Naaktgeboren for feedback
during the writing process, and Aı̈na Linn Georges for signif-
icant technical feedback and encouragement.

This work was supported by the National Science Foun-
dation under Grant No. 2048499, Specifying and Verifying
Secure Compilation of C Code to Tagged Hardware; by
ERC Starting Grant SECOMP (715753), Efficient Formally
Secure Compilers to a Tagged Architecture; by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
as part of the Excellence Strategy of the German Federal and
State Governments, EXC 2092 CASA – 390781972; by NSF
award #2145649, CAREER: Fuzzing Formal Specifications,
by NSF award #1955610, Bringing Python Up To Speed,
and by NSF award #1521523, Expeditions in Computing: The
Science of Deep Specification.

REFERENCES

[1] N. Roessler and A. DeHon, “Protecting the stack with metadata
policies and tagged hardware,” in 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. IEEE Computer Society, 2018, pp. 478–495.
[Online]. Available: https://doi.org/10.1109/SP.2018.00066

https://doi.org/10.1109/SP.2018.00066

[2] A. One, “Smashing the stack for fun and profit,” Phrack, vol. 7,
no. 49, November 1996. [Online]. Available: http://www.phrack.com/
issues.html?issue=49&id=14

[3] MITRE Corporation, “Common weakness enumeration:2022 top 25
most dangerous software weaknesses,” https://cwe.mitre.org/top25/
archive/2022/2022 cwe top25.html, 2022.

[4] V. van der Veen, N. dutt-Sharma, L. Cavallaro, and H. Bos, “Memory
errors: The past, the present, and the future,” in Research in Attacks,
Intrusions, and Defenses - 15th International Symposium, RAID 2012,
Amsterdam, The Netherlands, September 12-14, 2012. Proceedings,
ser. Lecture Notes in Computer Science, D. Balzarotti, S. J. Stolfo,
and M. Cova, Eds., vol. 7462. Springer, 2012, pp. 86–106. [Online].
Available: https://doi.org/10.1007/978-3-642-33338-5 5

[5] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013. IEEE Computer Society, 2013,
pp. 48–62. [Online]. Available: https://doi.org/10.1109/SP.2013.13

[6] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control
data attacks,” in IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016. IEEE Computer Society, 2016,
pp. 969–986. [Online]. Available: https://doi.org/10.1109/SP.2016.62

[7] M. Miller, “Trends, challenges, and strategic shifts in the software vul-
nerability mitigation landscape,” https://github.com/Microsoft/MSRC-
Security-Research/blob/master/presentations/2019 02 BlueHatIL/,
2019.

[8] Chromium Projects, “Chromium security:memory safety,” https://www.
chromium.org/Home/chromium-security/memory-safety/.

[9] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th Conference on USENIX Security Symposium - Volume 7, ser.
SSYM’98. USA: USENIX Association, 1998, p. 5.

[10] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic,
“SoftBound: highly compatible and complete spatial memory safety for
C,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM, 2009, pp. 245–
258. [Online]. Available: http://repository.upenn.edu/cgi/viewcontent.
cgi?article=1941&context=cis reports

[11] ——, “CETS: compiler enforced temporal safety for C,” in 9th
International Symposium on Memory Management. ACM, 2010, pp.
31–40. [Online]. Available: http://acg.cis.upenn.edu/papers/ismm10
cets.pdf

[12] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic,
“HardBound: Architectural support for spatial safety of the
C programming language,” in 13th International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2008, pp. 103–114. [Online]. Available:
http://acg.cis.upenn.edu/papers/asplos08 hardbound.pdf

[13] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’14. USA:
USENIX Association, 2014, p. 147–163.

[14] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost
of shadow stacks and stack canaries,” in Proceedings of the 10th
ACM Symposium on Information, Computer and Communications
Security, ser. ASIA CCS ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 555–566. [Online]. Available:
https://doi.org/10.1145/2714576.2714635

[15] V. Shanbhogue, D. Gupta, and R. Sahita, “Security analysis of processor
instruction set architecture for enforcing control-flow integrity,” in
Proceedings of the 8th International Workshop on Hardware and
Architectural Support for Security and Privacy, ser. HASP ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3337167.3337175

[16] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
cheri capability model: Revisiting risc in an age of risk,” in Proceeding
of the 41st Annual International Symposium on Computer Architecuture,
ser. ISCA ’14. IEEE Press, 2014, p. 457–468.

[17] D. Chisnall, C. Rothwell, R. N. Watson, J. Woodruff, M. Vadera,
S. W. Moore, M. Roe, B. Davis, and P. G. Neumann, “Beyond
the pdp-11: Architectural support for a memory-safe c abstract
machine,” in Proceedings of the Twentieth International Conference

on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 117–130. [Online]. Available:
https://doi.org/10.1145/2694344.2694367

[18] L. Skorstengaard, D. Devriese, and L. Birkedal, “Reasoning about a
machine with local capabilities: Provably safe stack and return pointer
management,” ACM Trans. Program. Lang. Syst., vol. 42, no. 1, Dec.
2019. [Online]. Available: https://doi.org/10.1145/3363519

[19] ——, “Stktokens: Enforcing well-bracketed control flow and stack en-
capsulation using linear capabilities,” J. Funct. Program., vol. 31, p. e9,
2021. [Online]. Available: https://doi.org/10.1017/S095679682100006X

[20] A. L. Georges, A. Trieu, and L. Birkedal, “Le temps des cerises:
Efficient temporal stack safety on capability machines using directed
capabilities,” Proc. ACM Program. Lang., vol. 6, no. OOPSLA1, apr
2022. [Online]. Available: https://doi.org/10.1145/3527318

[21] R. Gollapudi, G. Yuksek, D. Demicco, M. Cole, G. N. Kothari,
R. H. Kulkarni, X. Zhang, K. Ghose, A. Prakash, and Z. Umrigar,
“Control flow and pointer integrity enforcement in a secure tagged
architecture,” in 2023 2023 IEEE Symposium on Security and
Privacy (SP) (SP). Los Alamitos, CA, USA: IEEE Computer
Society, may 2023, pp. 1780–1795. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/SP46215.2023.00102

[22] A. Azevedo de Amorim, M. Dénès, N. Giannarakis, C. Hriţcu, B. C.
Pierce, A. Spector-Zabusky, and A. Tolmach, “Micro-policies: Formally
verified, tag-based security monitors,” in 36th IEEE Symposium on
Security and Privacy (Oakland S&P). IEEE, May 2015.

[23] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on selected areas in communications, vol. 21, no. 1,
pp. 5–19, 2003.

[24] A. Azevedo de Amorim, C. Hritcu, and B. C. Pierce, “The
meaning of memory safety,” in Principles of Security and Trust
- 7th International Conference, POST 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
ser. Lecture Notes in Computer Science, L. Bauer and R. Küsters,
Eds., vol. 10804. Springer, 2018, pp. 79–105. [Online]. Available:
https://doi.org/10.1007/978-3-319-89722-6 4

[25] M. Dénès, C. Hritcu, L. Lampropoulos, Z. Paraskevopoulou, and
B. C. Pierce, “QuickChick: Property-based testing for Coq (abstract),”
in VSL, 2014. [Online]. Available: http://www.easychair.org/smart-
program/VSL2014/index.html

[26] L. Lampropoulos and B. C. Pierce, QuickChick: Property-Based Testing
in Coq, ser. Software Foundations series, volume 4. Electronic textbook,
Aug. 2018, version 1.0. http://www.cis.upenn.edu/ bcpierce/sf.

[27] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F.
Knight, B. C. Pierce, and A. DeHon, “PUMP – A Programmable
Unit for Metadata Processing,” in Proceedings of the 3rd International
Workshop on Hardware and Architectural Support for Security and
Privacy, ser. HASP ’14. New York, NY, USA: ACM, 2014. [Online].
Available: http://www.crash-safe.org/node/32

[28] R.-V. Consortium, “Risc-v calling conventions,” https://github.com/
riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc.

[29] K. Memarian, V. Gomes, B. Davis, S. Kell, A. Richardson, R. Watson,
and P. Sewell, “Exploring c semantics and pointer provenance,” Pro-
ceedings of the ACM on Programming Languages, vol. 3, pp. 1–32, 01
2019.

[30] T. Bourgeat, I. Clester, A. Erbsen, S. Gruetter, A. Wright, and
A. Chlipala, “A multipurpose formal risc-v specification,” ArXiv, vol.
abs/2104.00762, 2021.

[31] C. Hriţcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vytiniotis,
A. Azevedo de Amorim, and L. Lampropoulos, “Testing noninterference,
quickly,” in 18th ACM SIGPLAN International Conference on
Functional Programming (ICFP), Sep. 2013, full version in Journal
of Functional Programming, special issue for ICFP 2013, 26:e4 (62
pages), April 2016. Technical Report available as arXiv:1409.0393.
[Online]. Available: http://www.crash-safe.org/node/24

[32] C. Hriţcu, L. Lampropoulos, A. Spector-Zabusky, A. Azevedo de
Amorim, M. Dénès, J. Hughes, B. C. Pierce, and D. Vytiniotis,
“Testing noninterference, quickly,” J. Funct. Program., vol. 26, p. e4,
2016. [Online]. Available: https://doi.org/10.1017/S0956796816000058

[33] Y. Jia and M. Harman, “An analysis and survey of the development
of mutation testing,” IEEE Transactions on Software Engineering,
vol. 37, no. 5, pp. 649–678, 2011. [Online]. Available: http:
//crest.cs.ucl.ac.uk/fileadmin/crest/sebasepaper/JiaH10.pdf

http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2016.62
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports
http://acg.cis.upenn.edu/papers/ismm10_cets.pdf
http://acg.cis.upenn.edu/papers/ismm10_cets.pdf
http://acg.cis.upenn.edu/papers/asplos08_hardbound.pdf
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1145/2694344.2694367
https://doi.org/10.1145/3363519
https://doi.org/10.1017/S095679682100006X
https://doi.org/10.1145/3527318
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00102
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00102
https://doi.org/10.1007/978-3-319-89722-6_4
http://www.easychair.org/smart-program/VSL2014/index.html
http://www.easychair.org/smart-program/VSL2014/index.html
http://www.crash-safe.org/node/32
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc
http://www.crash-safe.org/node/24
https://doi.org/10.1017/S0956796816000058
http://crest.cs.ucl.ac.uk/fileadmin/crest/sebasepaper/JiaH10.pdf
http://crest.cs.ucl.ac.uk/fileadmin/crest/sebasepaper/JiaH10.pdf

[34] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. H. Dave, B. Davis, K. Gudka,
B. Laurie, S. J. Murdoch, R. M. Norton, M. Roe, S. D. Son,
and M. Vadera, “CHERI: A hybrid capability-system architecture for
scalable software compartmentalization,” in 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015. IEEE Computer Society, 2015, pp. 20–37. [Online]. Available:
https://doi.org/10.1109/SP.2015.9

[35] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, M. W. Hall and
D. A. Padua, Eds. ACM, 2011, pp. 283–294. [Online]. Available:
https://doi.org/10.1145/1993498.1993532

https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1145/1993498.1993532

	Introduction
	Framework and Assumptions
	Properties by Example
	Formalization
	Machine
	Security semantics
	Events and Traces
	Variants, corrupted sets, and ``on-return'' assertions
	Properties

	Extended Code Features
	Sharing Stack Memory
	Tail Calls

	Provenance, Capabilities, and Protecting Objects
	Enforcement
	Validation through Random Testing
	Test Generation
	Property-based Testing
	Mutation Testing

	Related Work
	Future Work
	References

