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Abstract

Measuring local polar ordering is key to understanding ferroelectricity in thin films, especially for systems with small domains or significant
disorder. Scanning nanobeam electron diffraction (NBED) provides an effective local probe of lattice parameters, local fields, polarization
directions, and charge densities, which can be analyzed using a relatively low beam dose over large fields of view. However, quantitatively
extracting the magnitudes and directions of polarization vectors from NBED remains challenging. Here, we use a cepstral approach, similar to
a pair distribution function, to determine local polar displacements that drive ferroelectricity fromm NBED patterns. Because polar distortions
generate asymmetry in the diffraction pattern intensity, we can efficiently recover the underlying displacements from the imaginary part of
the cepstrum transform. We investigate the limits of this technique using analytical and simulated data and give experimental examples,

achieving the order of 1.1 pm precision and mapping of polar displacements with nanometer resolution.
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Introduction

Materials with polarity—that have a crystal structure with bro-
ken inversion symmetry—comprise a fundamentally interesting
and technologically relevant space, including ferroelectrics, pie-
zoelectrics, and many two-dimensional materials. In many of
these systems, the polar displacements exhibit spatial varia-
tions, with examples including interfaces, such as electrode/sub-
strate or domain walls (Stemmer et al., 1995a; Zheng et al.,
2007; Catalan et al., 2011; Han et al., 2014; Holtz et al.,
2017; Xu et al., 2020), antiferroelectrics, relaxor ferroelectrics,
or materials with charge density waves, which feature
nanoscale-correlated polar disorder (MacLaren et al., 2013;
Hovden et al., 2016; Baggari et al., 2018; Eremenko et al.,
2019; Kumar et al., 2021), nanostructured materials exhibiting
distinct types of polar order (Naumov et al., 2004; Schilling
et al., 2009; Nahas et al., 2015; Liu et al., 2017), and superlat-
tices with dimensional confinement that can create or destroy
ferroelectric vortices (Yadav et al., 2016, 2019; Holtz et al.,
2021). In all these cases, understanding structure—property rela-
tionships is aided by localized measurement of the polarization
at the atomic and nanometer scales.

While bulk Bragg diffraction methods permit high-precision
measurements of crystal structure, the determination of local
structural variations is challenging. Combining diffraction-
based techniques with simulation (such as reverse Monte
Carlo) is one promising approach (Eremenko et al., 2017),
where the structure is represented using a large atomic config-
uration and the local and nanoscale orders are determined
via the comparison of calculated and experimental signals.

However, such macroscopic methods cannot provide direct,
localized measurements of the crystal structure.

The ability to directly characterize the local atomic order, in-
cluding the local polarity, is a difficult problem (Billinge &
Levin, 2007). Imaging of structural projections in a transmis-
sion electron microscope (TEM) is widely used to for this pur-
pose (Stemmer et al., 1995a, 1995b; Jia et al., 2007, 2008). In
particular, atomic-resolution annular dark field (ADF) scanning
TEM (STEM) is a powerful tool for imaging atomic columns
due to its straightforward and incoherent contrast mechanism
which scales with the atomic number (Crewe et al., 1970;
Howie, 1979; Kirkland et al., 1987; Voyles et al., 2002; Zuo
& Spence, 2017). Because ADF STEM excels at providing the
locations of heavy cations, ferroelectric displacements can be
directly measured in many materials (Borisevich et al., 2010;
Chang et al., 2011; Nelson et al., 2011). Measuring oxygen dis-
placements is also critical for understanding ferroelectricity.
Although this is generally not feasible from ADF due to weak
scattering by the oxygen atoms, it can be achieved with bright
field imaging (LeBeau et al., 2009), annular bright field (ABF)
imaging (Findlay et al., 2009; Aso et al., 2013), or differential
phase contrast (DPC) techniques using segmented detectors
(Lazi¢ et al., 2016; Campanini et al., 2020; Kumar et al.,
2021). However, atomic-resolution STEM is sensitive to scan
distortions as well as specimen tilt and thickness (Muller
et al., 2006; Kimoto et al., 2010; Zhou et al., 2016; Biirger
et al., 2020) all of which compromise the accuracy of the meas-
urement. It also requires a large electron dose to achieve a
signal-above-background that is sufficient for fitting positions
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Fig. 1. An overview of the cepstral transforms providing interatomic distances and polarity and how they relate to the crystal structure for three different
materials: MoS,, GaN, and PMN-PT. The first column shows the crystal structure to scale, with the unit cells marked starting from the center of the
transforms (for MoS,, two unit cells are marked). The second column is the logarithm of the nanobeam electron diffraction pattern (In(NBED)), with circled
spots corresponding to the indices labeled in the bottom left. Because these materials are noncentrosymmetric, there is symmetry breaking in the
diffraction pattern. The third column is the absolute magnitude of the Fourier transform of the In(NBED), or exit wave power cepstrum transformation
(EWPC) or “gamnitude,” which is similar to a pair distribution function. The final column shows the imaginary component of the Fourier transform of the
In(NBED), or exit wave imaginary cepstrum (EWIC) highlighting polarity and symmetry breaking in the crystals. Arrows corresponding to the polar
displacements are shown for both the EWIC and the crystal structure. Dashed lines on the NBED and EWIC columns are mirror planes.

of the atomic columns. Finally, atomic-resolution STEM typic-
ally covers only small fields of view to maintain the required
spatial sampling, making it unsuitable for mapping of
micrometer-scale polar domain structures.

Scanning nanobeam electron diffraction (NBED) bridges
the gap between bulk diffraction, which achieves high-
precision measurements over large regions, and atomic-scale
imaging, which covers smaller fields of view at high resolution.
NBED combined with new, fast, pixelated STEM detectors
[so-called 4D STEM because it collects the diffraction pattern
(ky, ky) at every scan position (x, y)] can achieve crystallo-
graphic measurements with unit-cell-sized spatial resolution
over relatively large fields of view for STEM (micrometers)
(Ophus, 2019). NBED also allows new avenues for measuring
polarity and electric fields (Yadav et al., 2019). Because of the
possible breaking of Friedel’s law in electron diffraction from
noncentrosymmetric materials (Miyake & Uyeda, 1955),
measuring the relative intensities of [hkl] and [hkl] reflections
can yield the direction and relative magnitude of the polariza-
tion vector or symmetry breaking (Wicks & Lewis, 1968;
Serneels et al., 1973; Tanaka, 1975; Lebeau et al., 2011;
Tsuda et al., 2013; Yadav et al., 2019; Deb et al., 2020).
Figure 1 provides examples of several distinctly structured po-
lar materials (with crystal structures as shown in the first

column) generating NBED patterns that exhibit a violation
of Friedel’s law (second column of Fig. 1). However, quantita-
tive measurements of the polarization magnitude using NBED
are not straightforward because the disk intensities are af-
fected by several other factors, including dynamical diffrac-
tion or specimen tilt. For example, such effects complicate
disentangling the various structural changes at domain walls
(MacLaren et al., 2015).

Previously, it was demonstrated that diffraction-based tech-
niques offered by the 4D STEM configuration combined with
cepstral techniques inspired by audio processing enables ro-
bust, localized measurements of interatomic spacings
(Padgett et al., 2020). This technique uses the magnitude of
the Fourier transform of the flattened NBED patterns (the
exit wave power cepstrum, or EWPC, transform), which pro-
duces a signal similar to a pair distribution function (PDF) in
projection (third column of Fig. 1). In this case, the effects of
tilt and thickness are suppressed by taking the logarithm of
the NBED patterns. However, the magnitude of the Fourier
transform cannot reveal asymmetrical components in the dif-
fraction pattern arising because of the breaking of Friedel’s
law. The result is that EWPC can measure the tetragonality
of the crystal, which can act as a proxy for polarization as pre-
viously seen in electron backscattered diffraction and Kikuchi
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techniques (Farooq et al., 2008), but it cannot tell the polariza-
tion direction.

Here, we develop a related, cepstral-based algorithm that ex-
tracts such asymmetrical components associated with polar dis-
tortions in the crystal, yielding the directions and magnitudes of
local polar displacements. The algorithm uses the imaginary
part of the Fourier transform of the flattened NBED patterns,
in what we call the exit wave imaginary cepstrum (EWIC), to
highlight polar components of the crystal lattice. This approach
is illustrated in the final column of Figure 1, with red and blue
colors indicating positive and negative components, respective-
ly. Comparing to the crystal structure, which is to scale in the
first column of Figure 1, we can see how the EWPC and
EWIC transforms can detect interatomic positions with sym-
metric and asymmetric components, respectively.

We will discuss the mathematics behind the EWIC trans-
form and provide an intuitive method for visualizing the re-
sulting EWIC patterns. We will show through analytical
calculations that the distance between positive and negative
EWIC peaks is twice the polar displacement in the diffracting
volume of the specimen and discuss how this measurement is
affected by diffraction-space sampling, specimen thickness,
and specimen tilt. We demonstrate approximately 1 pm preci-
sion in measured atomic displacements for thin (less than half
of an elastic mean free path) specimens which are oriented
with a high-symmetry zone axis aligned parallel to the electron
beam. We will further apply this approach to mapping polar
distortions in PbTiOj5 ferroelectric domains.

Theory of the Complex Transform

Previous work described the use of the EWPC transform of
NBED patterns for determining interatomic spacings in crys-
tals (Padgett et al., 2020). For a diffraction pattern, I(k), the
EWPC transform is defined as follows:

EWPC(x) = | F[In (I(k))]| = | F[In (|_7-“[q)(x)]|2)]‘, (1)

where x is the real-space position vector, k is the scattering vec-
tor, and ®(x) is the exit wave function. This result is conceptu-
ally similar to a PDF or Patterson function (Patterson, 1934),
but, as indicated in the Introduction section, the addition of
the logarithm sharpens the peaks, making the transform
more robust to specimen tilt and thickness effects. For
NBED conditions, where the diffraction disks are separated,
I(k) was approximated as equations 6, 7, and 9 of Padgett
et al., 2020, based on Ishizuka, 1982; Spence, 2013:

1(k) = |F0()1* ~ |p(k) = (E(k) - Vo(k)[*

~ |E(R)|” - |®y(k) * Vo(R)*.  (2)

Here, * denotes convolution and - denotes multiplication;
@, (k) is the reciprocal-space probe function; E(k) is the
Ewald-sphere envelope function that takes into account speci-
men misorientation; and Vy(k) is the object function based on
the projected potential of the tilt-free specimen V(x), such
that Vy(k) = Flexp (icV(x))], where o is the scattering cross
section.

This form of I(k) highlights several useful properties
of the cepstral transform. The logarithm in the transform sepa-
rates multiplied signals additively, isolating the effects of speci-
men tilt, E(k), from the lattice component, Vj(k). The Fourier
transform of the diffracted disks converts the lattice-spacing
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information into sharp, real-space points, enabling
dose-efficient and precise measurements of interatomic
distances.

The parameter of interest here is the polarity of the crystal
(V(x) # V(—x)). Polarity appears in electron diffraction
patterns as an antisymmetrical component, such that
I(k) # I(=k). If Friedel’s law is violated, the diffracted intensity
can be represented as I(k) = Iyym (k) + Lini(k), where Igym(k) is
the symmetric part of the diffraction pattern and I,.(k) is
its antisymmetric part.

While the EWPC transform excels at extracting interatomic
distances, the magnitude of the Fourier transform of a real
function is an even, centrosymmetric function, devoid of any
information about asymmetry in the crystal or diffraction
pattern. If we consider the (complex) Fourier transform
of the function I(k), we can separate the symmetric and anti-
symmetric components:

F(I(k) = F(Isym(k)) + F (Lanei (k) - (3)

The Fourier transform of a symmetric, real function is also
real, whereas the Fourier transform of an antisymmetric,
real function is imaginary. Thus, the first term in Eq. (3) is
real and the second term is imaginary. This enables isolation
of the antisymmetric component of the diffraction pattern,
and thus the underlying polarity, by using the imaginary com-
ponent of the Fourier transform:

Sm[F(I(k))] = F (Lani(k))- (4)

We could alternately have written this expression for
F (InI(k)), which is analogously the exit wave complex ceps-
trum (EWCC), although it would not be possible to write as
clear of a physical interpretation for the transform as we will
in Eq. 7 in the next section. Because the diffraction intensity is
real and positive, the logarithm of the diffraction pattern is
also a real function. Further, because the logarithm is a mono-
tonic function, In(I(k)) and I(k) have the same symmetry. In
this section, for mathematical and conceptual simplicity, we
will continue discussing the complex Patterson function,
F(I(k)), but the discussion is analogous to the more-useful
EWCC transform.

Physical Picture of the EWIC Transform

To obtain a physical picture of this transform, we again con-
sider the measured scattering distribution of electrons in dif-
fraction space, I(k), given by the magnitude squared of the
reciprocal-space exit wave function, ®(k):

I(k) = |D(k)|*. (5)

Using the Wiener—Khinchin Theorem, we can then write the
Fourier transform of I(k) as follows:

F(I(k) = 0(x) @ D*(x), (6)

where ®*(x) denotes the complex conjugate of the exit wave
function and ® denotes the cross-correlation (or autocorrel-
ation). This is the familiar result of the magnitude of the
Fourier transform of the diffraction pattern being equivalent
to the autocorrelation of the lattice potential in the weak-
phase approximation, where ®(x) is proportional to V(x)
(Patterson, 1934). Notably, to reveal polarity in the diffrac-
tion pattern, the specimen must be approximated as a strong-
phase object—which is done for all the analytical calculations
throughout this paper. Friedel’s law holds in the weak-phase
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approximation, and for centrosymmetric crystals. However,
Friedel’s law is typically violated in noncentrosymmetric crys-
tals in electron diffraction. This is due to large electron scatter-
ing cross sections that create significant, antisymmetric
third-order terms in the strong-phase approximation, even
for monolayer-thin two-dimensional polar materials (Deb
et al., 2020). As a result, most electron diffraction patterns
that are measured from noncentrosymmetric crystals exhibit
asymmetry.

To obtain polarity information (the asymmetric part of the
lattice potential) from this transform, we are interested in
Im[F(I(k))] (Eq. (4)). To visualize how this transform relates
to the lattice, consider that

1

SR = 3 F(I(k) - I(~k)
7)
= 2 [00x) ® ¥"(x) ~ () ® D"(~x)]

This equation implies a simple graphical construction for
Sm[F(I(k))]: it is the autocorrelation of the exit wave sub-
tracted from the inversion of itself. For symmetric parts of
the lattice, this function will be zero. The asymmetric compo-
nents of the lattice generate a dipole—a positive component
corresponding to the +x autocorrelation and a negative com-
ponent corresponding to the —x autocorrelation. As illustrated
in Figure 1 by the arrows in the rendering of the crystal struc-
ture and in the EWIC transform, the positive peak corresponds
to the location of the asymmetric ion, whereas the negative
peak appears at the corresponding point for an inverted unit
cell. Additionally, the real part, Re[ F(I(k))], is the autocorrel-
ation of the exit wave plus its inverted self. Re[ F(I(k))] typic-
ally dominates the EWPC signal, making them appear almost
identical. Thus, in this paper, we show only the EWPC in
figures.

Electron diffraction is dominated by scattering from the nu-
clei, and therefore, the EWPC and EWIC transforms reflect in-
ternuclei (interatomic) distances. The polar direction observed
in the EWIC transform is therefore sensitive to the atomic
charge of the nuclei (Z), instead of the ionic or valence charge
on the atom. As an example, MoS; and MoTe, would have an
inverted EWIC signal from each other when the crystal struc-
tures are aligned in the same direction.

In Figure 2, we illustrate the concept of the proposed meth-
od using a diatomic 1-dimensional lattice with a potential V(x)
shown in Figure 2a. This potential can be broken into its
symmetric and antisymmetric components (Fig. 2b), yielding
®(x) with real and imaginary parts shown in Figure 2c.
The magnitude of the Patterson function is equivalent to the
magnitude of the autocorrelation of the lattice potential
(Eq. (6)), which resembles the symmetric lattice potential
shown in Figure 2d. The imaginary component of the complex
Patterson function (IPF) returns the antisymmetric compo-
nents of the lattice (Eq. (7))—as illustrated in Figure 2e.

Here, we have provided a relatively simple example for the
Patterson function. The addition of the logarithm does not
change the characteristic spacings of the diffraction peaks or
their symmetry. As a result, the peak positions revealing inter-
atomic spacings and polar distortions in the complex cepstra
remain the same as in the complex Patterson function (al-
though peak widths and intensities differ). To compare the
IPF and the EWIC, we turn to experimental data from GaN
to show a case with realistic sampling and intensities. In the
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NBED pattern, I(k), we see only the brightest diffraction re-
flections and the central beam, but for In(I(k)), we see spots
out to high scattering angles which are attenuated by the
curvature of the Ewald sphere (Fig. 2f). The magnitude of
the Patterson function (PF) displays broad peaks, whereas
the EWPC contains sharp, well-resolved peaks corresponding
to the interatomic spacings within the unit cell for this projec-
tion direction (Fig. 2g). As discussed previously (Padgett et al.,
2020), the EWPC peaks are sharper and better resolved be-
cause the logarithm enhances the relative contrast of higher-
order diffraction disks, effectively extending the information
limit. Comparing IPF and EWIC (Fig. 2h), the peak locations
remain the same between the two methods but are far better
resolved in EWIC. This effect is highlighted in the line profiles
in Figure 2i through the selection box shown in black in
Figure 2h. For a further comparison of the behavior of IPF ver-
sus EWIC, see Supplementary Figure 1.

Materials and Methods

The 4D STEM NBED measurements were carried out at
the National Institute of Standards and Technology (NIST)
and Cornell University with both microscopes operating in
microprobe mode. In this mode, the illumination lenses are
configured to produce a small, nearly parallel probe which
prevents overlap of the resulting diffraction disks. STEM ex-
periments at NIST were performed using a Thermo Fisher
Scientific Titan 80-300 (S)TEM instrument' operating with
a primary beam energy of 300 keV. Scanning NBED measure-
ments were collected with a Merlin Medipix 3RX from
Quantum Detectors with a (1 to 2) ms dwell time at (256 x
256) pixels per diffraction pattern and a bit depth of 12.
STEM experiments performed at the Cornell Center for
Materials Research used a Thermo Fisher Scientific Titan
60-300 (S)TEM operating with a primary beam energy of
300 keV, or 80 keV in the case of the MoS, analysis. In this
setup, scanning NBED data were captured using an EMPAD
detector (Tate et al., 2016) with a 1 ms dwell time at (124 x
124) pixels per diffraction pattern and a bit depth of 30.
Data from both laboratories were binned by two in the spatial
directions to improve the signal-to-noise ratio of the diffrac-
tion patterns.

The samples used in this study included MoS, (Figs. 1, 3),
GaN (Figs. 1, 2, and 4), PbMg,;Nbs;03-PbTiO;
(PMN-PT) (Fig. 1), and PbTiOj (Fig. 6). Cross sectional speci-
mens of GaN and PMN-PT were prepared by focused ion
beam (FIB) lift-out using a Thermo Fisher Scientific Nova
NanoLab 600. Before lift-out, protective layers of sputtered
carbon followed by ion beam-deposited Pt-C were applied
to the surface of the thin film. Rough milling steps were per-
formed with 30 keV Ga™ ions, and the final thinning of the
sample was done at 5 keV to reduce surface damage. For these
samples, data were acquired at NIST using the conditions de-
scribed above.

The sample preparation and data collection details for
MoS; are summarized in reference Deb et al., 2020. Similar in-
formation for the PbTiO3 sample is described in references
Langenberg et al., 2019; Padgett et al., 2020. For these

1 . . . . .
Certain commercial equipment, instruments, software, or materials are

identified in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology nor does it imply that the materials or equipment
identified are necessarily the best available for the purpose.
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samples, data were acquired at Cornell University using condi-
tions described above or as described in the cited papers.

All computations were performed in MATLAB using the
Curve Fitting, Image Processing, Optimization, and Signal
Processing toolboxes. Essential functions and example codes
are available on GitHub (Holtz, 2022). The workflow of
data processing was as follows:

1. To maintain consistency and avoid numerical problems
during the logarithm step, we first perform preprocessing
of the diffraction patterns. The intensity is scaled to fit an
appropriate range (zero to thousands of counts) which
corrects for negative pixels on the detector and other scal-
ing artifacts if preprocessing has altered the overall inten-
sity. A constant value, typically 1, is then added to the raw
diffraction patterns to ensure all values are greater than
zero.

2. The diffraction patterns are then centered numerically to
avoid asymmetries caused by misalignment of the patterns
on the detector. The patterns can be centered by finding the
center of mass of the central disk or by minimizing the
EWIC transform on lattice sites where no polar signal is ex-
pected. In this paper, the minimization approach is used,
which proved to be more reliable for nonideal diffraction
patterns (e.g., when the detector was saturated or where
the specimen was thicker than optimal). The diffraction
patterns were then centered by applying a phase shift in
Fourier space. Throughout the processing, whenever the
fast Fourier transform is applied, a centered Hann window
is used to minimize edge effects.

3. Implemented in MATLAB, the EWCC transform is as fol-
lows: fftshift(fft2 (fftshift(win.*log(DP)))), where win is
the centered Hann window and DP is the preprocessed
two-dimensional diffraction pattern. The EWIC is the im-
aginary part of the EWCC, and the EWPC is the absolute
value of the EWCC. Note that fftshift is used to maintain
phase consistency throughout the calculation. With the
use of fftshift, the convention for the center location in
MATLAB is floor(N/2) + 1 where N is the size of the dif-
fraction pattern (i.e., a [256, 256]-sized detector has a
center of [129, 129]).

4. Peaks are then identified using an optimization method
demonstrated for EWPC (Padgett et al., 2020) which is
based on a minimization function. Here, the fitting must
be performed for the maxima of the absolute EWPC sig-
nals as well as for the minimum and maximum values of
the imaginary EWIC signal.

(a) In addition to the high-precision, subpixel measure-
ment of the peak implemented in the previous EWPC
package, in Figure 3, we also evaluate a “difference
of 2D Gaussian” fitting algorithm, which is more ac-
curate at small polar spacings (less than 2 pixels) but
is significantly slower. The fit parameters were four
spatial positions corresponding to the (x, y) coordi-
nates of each Gaussian: two sigma parameters corre-
sponding to the symmetrical Gaussian shapes and
two intensity parameters for the height of each
Gaussian—one positive and one negative.

5. In EWIC, we need to determine that the peaks found by
the peak fitting algorithm are due to lattice polarity and
not due to small random fluctuations within the fitting
window (for example, noise found around a lattice spot

Microscopy and Microanalysis, 2023, Vol. 29, No. 4

that should exhibit no polarity). We have tried two meth-
ods for this:

(a) Because any component that is a real dipole in the ma-
terial should also exhibit EWPC peaks at the same lo-
cation, we can fit the signal represented by the
EWIC x EWPC. This will suppress random noise in
the EWIC signal that is not related to interatomic dis-
tances. However, if the EWPC signal is also low in
this region, i.e. there is no real spot in the fitting win-
dow in this part of the sample, this will still produce
spurious results.

Specify a parameter, imWt, that is a ratio of the mag-
nitude of the EWIC spots to the EWPC spots. If there
is real polarity in the sample at a scan point, imWt
will be large, but if there is not, imWt will be small.
We then threshold the results and only keep polarity
measurements when imWt is above a threshold,
which can usually be easily picked with an algorithm
or by inspecting a histogram of imWt for polar
and nonpolar regions and/or spots. This allows sup-
pression of spurious results in regions with no polar-
ity. However, picking the threshold value must be
done sample to sample and may lead to subjective
results.

=

For most microscopes, geometrical distortions of the pro-
jection lenses result in calibrations being slightly (<1%) dif-
ferent for the different orthogonal directions on the detector.
These distortions were measured using a specimen with cubic
crystal symmetry and corrected for in the subsequent
analyses.

Analytical calculations of diffraction patterns were per-
formed using atomic potentials adopted from Kirkland,
2020 and methods similar to those described in Deb
et al., 2020. The calculation was executed in the strong
phase approximation to maintain polarity information.
Effects from tilt were incorporated using the theory pre-
sented here and in ref Padgett et al., 2020 and according
to Howie, 1971; Spence, 2013; Zuo & Spence, 2017. The
EWIC transform is sensitive to numerical issues, discontinu-
ities, and resulting asymmetries that are accentuated by the
logarithm and selection of the imaginary part of the signal.
Therefore, care is required for the analytical calculations.

Diffraction patterns were also simulated using the Bloch
wave method as implemented in MBFIT (Tsuda & Tanaka,
1999). An accelerating voltage of 300 kV and a convergence
semiangle of 1 mrad were used. The total number of beams in-
cluded varied with sample tilt but was at a minimum 472. The
crystal structure parameters for GaN refined by Schulz and
Theimann (Schulz & Thiemann, 1977) were used. Diffraction
patterns were calculated at sample thicknesses in 1 nm intervals
from 1 nm to 10 nm and 2 nm intervals from 10 nm to 40 nm.

Results

Polar Displacement Quantification with the EWIC
Transform

We examine the behavior of the EWIC transform for polar dis-
placements of various magnitudes by carrying out analytical
calculations using the potential that describes a one-
dimensional chain of atoms. The atomic chain consists of al-
ternating species A and B (...A-B-A-B...), with the species B
(which has an atomic number smaller than that of A)
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Fig. 2. Visualizing the lattice potential and the various transforms, for analytical (a—e) and experimental (f-i) data. (a) Line profiles of the potential and (b)
the potential broken into its symmetric and antisymmetric components. The B site atomic position is displaced from the center of the unit cell, which is
marked by the dashed line. (c) A line profile of the exit wave showing real and imaginary components. (d) The Patterson function (PF), which is the
magnitude of the autocorrelation of the exit wave, which has the same symmetry as the symmetrized lattice potential shown in (b). (e) The imaginary
component of the Patterson function, IPF, which effectively recovers the polar displacements shown by the antisymmetric potential in (b). Experimental
data showing the transforms for GaN (f-i). (f) The NBED pattern and its logarithm. (g) The PF and exit wave power cepstrum (EWPC) transforms. (h) The
IPF and exit wave imaginary cepstrum (EWIC) transforms. In both cases, the logarithm sharpens and better resolves the peaks in the transforms. (i) Line
profile of the IPF and EWIC over the box shown in black in Figure 2h, displaying equivalent peak positions.

increasingly offset from a centered position (Fig. 3). For the
symmetric case, where the displacement d from the center is
zero, the EWPC transform (Fig. 3a) shows sharp peaks corre-
sponding to the interatomic distances and the EWIC shows no
imaginary component (Fig. 3b). Zero EWIC is expected in this
case since the structure is centrosymmetric. As the displace-
ment d increases to 0.03 unit cells and then to 0.06 unit cells,
peak broadening and splitting in the EWPC transform occur,
reflecting the presence of longer and shorter interatomic dis-
tances within the unit cell. In the EWIC transform, there is a
dipole corresponding to this polar displacement, with the right
positive and left negatives lobes flanking the centered posi-
tions. These lobes are separated by a distance equal to 2d.
The polar displacement direction points from the negative to
the positive peak.

For small displacements (such as d=0.03 unit cells), the
EWPC does not resolve peak splitting because of the finite width
of the EWPC peak—the origins of the cepstral peak widths will
be discussed in the next paragraph. The EWIC still shows a di-
pole with a spacing corresponding to the displacement, but, due
to the finite peak width, the intensity is lower because of the
peak overlap. The finite widths of the EWIC peaks impact the
accuracy of peak-to-peak measurements for predicting atomic
displacement: for dipole peaks located less than 2 pixels apart,
the measured peak-to-peak distance in the EWIC transform us-
ing a minimization algorithm described in the methods overes-
timates the atomic displacement (Fig. 3c, red line). An
alternative approach is to fit a “difference of Gaussian” func-
tion to model the dipole (Fig. 3c, turquoise line). This approach
offers a modest improvement in the lower limit at which the
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Fig. 3. The EWPC (a) and EWIC (b) transforms for a one-dimensional atomic chain with a polar displacement d=0, 0.03, or 0.06 away from the center (as a
fraction of the lattice parameter, with 60 pixels/unit cell (px/uc) sampling). On the right, there is a magnified region from the center of the unit cell showing
how these transforms change with polar displacement. The EWPC transform reveals peak splitting for the larger displacement, d=0.06, but not for the
smaller displacement due to the finite peak width, which is controlled by the breadth of information measured in diffraction space. The EWIC directly
measures the peak splitting, with the magnitude of splitting equal to twice the displacement distance. (¢) The measured distance between the peaks
divided by two compared to the displacement simulated in pixels for both Gaussian fitting and minimization algorithms (left). As the displacement
becomes less than two pixels, the minimization algorithm overestimates the polar displacement, while Gaussian fitting is accurate down to the peak
splitting of a single pixel although introducing fitting complexity. The accuracy is entirely controlled by sampling in the analytical calculation (c, right), since
the peak width is only determined by this “effective camera length,” although in experimental data, the extent of the zeroth-order Laue zone that is
measured can also be a limiting factor. Thus, sampling the data to ensure expected peak distances which are larger than ideally two pixels minimizes
these artifacts. (d) The histograms of lattice spacing measured by EWPC and the precision of the polar spacing measured by EWIC for an experimental
dataset of monolayer MoS, shown with a Gaussian fit. The standard deviation, o, is indicated for each.
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Fig. 4. The (a) NBED, (b) EWPC, (¢) EWIC, and (d) measured lattice spacings and polar displacements as a function of specimen thickness measured
experimentally for the GaN sample, with thickness determined by EELS. The EWPC peak is measurable throughout the range of thicknesses, reliably
extracting the lattice parameter, as expected from previous results. The EWIC transform has clear spots for the two thinnest-sample datasets but
becomes increasingly unclear for t/A > 0.5. We can accurately determine peak spacing of up to #/A = 0.5, but the measurements become unreliable above
that thickness. Because the EWIC transform is sensitive to relative changes of intensities for the diffraction pattern spots, it is also sensitive to the effects
of multiple scattering. Error bars are standard error in the mean of the measurements from that thickness.

displacement can be measured accurately, down to about d =
1.25 pixels; however, there is significant added complexity, fit-
ting parameters, and computational time introduced by the
“difference of Gaussian” fits. Here, we use the minimization
function.

The cepstral peak width—and thus the smallest resolvable
distance—is related to the highest frequencies in diffraction
space which are included in the transform. Because polar dis-
placements in crystals can be as small as 10 pm, adequate sam-
pling in diffraction space is essential to achieve well-separated
and sharp spots. There are two main sampling effects to con-
sider: the breadth of the cepstral spot and the pixel size in ceps-
tral space. The cepstral spot breadth is ultimately limited by the
extent of the zeroth-order Laue zone captured by NBED. The
highest order of measurable diffracted disks is limited by
beam voltage and specimen thickness, with higher voltages

and thinner crystals yielding sharper cepstral spots. In practice,
the highest order of diffracted disks measured may also be lim-
ited by the upper angular bound of the detector or by the win-
dowing function used in the Fourier transform. In this case, the
pixel size is limiting. The cepstral pixel size is approximately
equal to the wavelength of the incident electron beam divided
by the total angular range of the detector; that is, the sampling
in this space can be controlled by adjusting the camera length.
For a 300 keV beam with a wavelength of 1.97 pm and a ferro-
electric displacement of 10 pm, the half angular range of the de-
tector should be nearly 100 mrad, which is a relatively large
angle. Because the diffracted disks rarely extend beyond the first
50 mrad, increasing the cepstral sampling can also be accom-
plished by using a detector with more pixels, padding after win-
dowing, or by using subpixel measurement techniques (as done
here). The sharpness of the peaks should be optimized using
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Fig. 5. Analytical calculations showing the effect of specimen mistilt on EWIC transform for a two-dimensional version of the potential in Figure 3. (a) The
reciprocal space potential V{k) is modulated by the tilted (off-center) Ewald sphere function E(k) and convolved with the probe function which gives the
diffraction pattern /(k) (Eq. (2)). The EWPC transform is shown on the right. (b) The EWIC transform for tilts around the axes perpendicular (8,) and parallel
(6,) to the polarization direction. As the specimen is tilted, lattice peaks show additional dipoles corresponding to the asymmetry introduced in the data by
the tilt. These dipoles point in the direction of the tilt. The sites which have polar dipoles from the lattice (shown in the box) don't display a full change in
direction like the lattice peaks but exhibit significant angular deviation, which is quantified in (¢). The fractional error in the length of the dipole is shown in
(d), which is consistent with the trend towards shortening the magnitude of the polar displacement.

high primary beam energies, thin specimens, and short camera
lengths that collect slightly more than the entire zeroth-order
Laue zone. Detectors with larger numbers of pixels may be ad-
vantageous for this method. In Figure 3, because we are using
an analytical calculation with arbitrarily high sampling, we
are ultimately limited by cepstral pixel size as shown in the right
panel of Figure 3c.

Under ideal experimental conditions for a thin, on-axis crys-
tallite with well-separated asymmetrical lattice components
(making ideal sampling straightforward), we can find the pre-
cision of EWPC lattice—parameter and EWIC polarity meas-
urements. Figure 3d presents simultaneous EWPC and
EWIC measurements for monolayer MoS,, yielding standard
deviations of 0.3 pm and 1.1 pm for the EWPC and for the
EWIC peak positions, respectively.

Tilt, Thickness, and Miscentering Effects on EWIC

Next, we turn to the behavior of the transform under a range
of realistic experimental conditions. We investigated the effect
of specimen thickness by collecting experimental data for a
GaN wedge-shaped specimen with a ratio of thickness ¢ to
the inelastic mean free path A varying from 0.1 to 1 (Fig. 4).
This ratio was determined using electron energy loss spectros-
copy (EELS). The inelastic mean free path for a 300 keV elec-
tron beam in GaN is 90 nm if estimated using the Malis
method (Malis et al., 1988) and 120 nm per the free-electron
estimate (eq. 3.58 of Egerton, 2011). We should note that
we used EELS to measure the thickness in terms of inelastic
mean free path for experimental convenience but the more
relevant parameter for diffraction patterns is the elastic
mean free path. Because the ratio of elastic to inelastic mean
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to the dipole angles shown in the histogram below. (f) Histograms of the polar dipole directions and separations. The dipole separation is (19 + 4)

picometers, overestimating the expected displacement (15 pm), likely due to

free paths varies as 20/Z, where Z is the atomic number (see
Eq. 5.66 in Reimer & Kohl, 2008), and the effective Z of
GaN is 19, conveniently, in this specimen, the inelastic and
elastic mean free paths are about the same and the indicated
thicknesses also correspond to the elastic mean free path.

The NBED patterns for several #/\ values are presented in
Figure 4a. The EWPC transform, shown in Figure 4b, reveals
that while some peak intensities decrease markedly for larger
thicknesses, the peak locations are unchanged. For example,
the position of the EWPC peak marked with a purple box re-
mains constant across the entire range of measured thicknesses
(purple points in Fig. 4d). Error bars indicating the standard
error in the mean are smaller than the symbol size.

The EWIC transform as a function of thickness (Fig. 4c)
displays similar peaks for #/A equal to 0.1 and 0.25, whereas
the peaks become less clear for larger thicknesses. Unlike the
EWPC transform, EWIC relies on relative intensities of dif-
fracted disks to determine the polarity, and, therefore, mul-
tiple scattering and dynamical diffraction obscure the
asymmetry. Figure 4d presents the positions of the positive
and negative EWIC peaks (marked in red and blue, respect-
ively, as a function of thickness); the dashed line shows the
nominal positions of these peaks. The peak measurement is
robust up to 0.5#/A but becomes unreliable for larger thick-
nesses, displaying contrast inversion. The origin of contrast
inversion likely stems from thickness fringes in the Friedel
pairs in the diffraction pattern (Howie & Whelan, 1961;
Howie, 1971; Serneels et al., 1973). We expect that this con-
trast reversal will be a general effect due to dynamical scat-
tering inherent to Friedel’s law breaking and will likely

undersampling. The reported error is the standard deviation.

limit all polarization mapping techniques based off of rela-
tive spot intensities.

While there may be dependence on the specific material,
these tests suggest that valid EWIC measurements require
samples thinner than roughly 0.5 elastic mean free paths to
avoid multiple scattering artifacts including contrast inver-
sion. We did not find any limitation in the very small thickness
limit, where we might expect the diffraction intensity to be-
have in a more kinematical manner and Friedel symmetry
breaking to be reduced. This may be expected due to the
strong cross section for electron scattering in many materials,
which has produced symmetry breaking in even atomically
thin systems (Deb et al., 2020).

The EWIC transform is designed to detect asymmetries,
which can arise from specimen tilt besides structural origins.
Here, we visualize the effect of tilt using the Ewald sphere,
which can be described as an envelope function E(k) multi-
plied by the reciprocal lattice potential, V(k) (Eq. (2)). A shift
of the center of the Ewald sphere introduces a dominant asym-
metric term enhancing one part of the diffraction pattern rela-
tive to the other. In diffraction space, the Ewald sphere term is
multiplied by the potential yielding a convolution of the corre-
sponding real-space terms in both the EWPC and EWIC trans-
forms. The EWPC transform is only weakly sensitive to this
off-centering (Padgett et al., 2020) since the smearing of lattice
points is symmetrical. This effect is shown schematically in
Figure 5a for a model cubic A-B crystal with an off-center po-
lar displacement for the B site.

In the EWIC transform, the tilt manifests as an imaginary di-
pole term convolved with all the lattice points, as shown for a
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range of specimen misorientations in Figure Sb. In this figure,
the black box indicates the location of the polar dipole and
the green circle indicates a characteristic unit-cell distance or
lattice site. Effects of crystal tilt in the EWIC transform are eas-
ily identifiable because the resulting dipole appears even at
the lattice vector (unit-cell) points, such as the ones circled
in green, which cannot arise from crystal asymmetry. These di-
poles point in the direction of specimen misorientation.
Dipoles from the crystal asymmetry, such as those marked
with the black rectangle, display some angular deviation
with specimen tilt. Because the dipole of the crystal is con-
volved with the dipole associated with misorientation, the an-
gular deviation is smaller than that for the lattice-vector sites
without inherent dipoles. The error in angular deviation and
polarization displacement length due to tilt is shown in
Figures Sc, 5d. A tilt axis perpendicular to the polarization dir-
ection impacts the angular deviation less than a tilt axis paral-
lel to the polarization. With specimen misorientation, tilts less
than 5 mrad resulted in less than a 5% error in the dipole
length. Correcting for the Ewald sphere off-centering may be
possible by multiplying the data by a function that is effective-
ly the inverse of the one describing the Ewald sphere. While we
attempted this correction using an Ewald sphere that was ex-
tracted using a low-pass filter of the EWPC transform (Padgett
et al., 2020), we only saw a reasonably satisfying effect for
simulated data—in experimental data, it did not produce
reliable results, likely due to noise in both the pattern and
extracted Ewald sphere.

A comparison of the robustness of EWIC and IPF with spe-
cimen thickness and tilt is shown in Supplementary Figure 1b.
As expected, due to the logarithm, the EWIC is significantly
more robust to mistilts in both the angular and length devia-
tions measured compared to the IPF. Furthermore, the analyt-
ical calculations are compared with Blochwave simulations
for specimen mistilt in GaN in Supplementary Figure 2. The
results are qualitatively similar for the polar dipoles, although
including the effect of specimen thickness in the Blochwaves
also introduces larger background signals.

Another source of asymmetry in the diffraction pattern is
off-centering of the diffraction pattern on the detector. Such
off-centering is inevitable for experimental data, but fortu-
nately, it is easily corrected. This artifact, which is manifested
in the appearance of bright spots in one half of the EWIC
transform and dark spots in the other half even for subpixel
centering inaccuracies, must be corrected during postprocess-
ing by numerically shifting the diffraction pattern to the image
center. In practice, finding the diffraction pattern center with
subpixel precision can be done in several ways; for example,
a relatively simple approach is to minimize the absolute mag-
nitude of the EWIC pattern at lattice sites for different center-
ing corrections (see Methods).

Polar Mapping in Ferroelectric Thin Film

Here, we demonstrate the use of the EWPC and EWIC trans-
forms of scanning NBED for mapping the time-averaged local
polarization directions in a thin film of tetragonal, ferroelec-
tric PbTiO3 (Fig. 6). This film is grown on a DyScO3 substrate
that strains the film, generating larger c-domains having the
polarization vector along the [001] direction normal to the
film surface and smaller a-domains with polarization pointing
in the in-plane [100] direction (Langenberg et al., 2019).
Example NBED patterns from each domain type are shown
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in Figure 6a. In these patterns, symmetry is broken along
[001] and [100] directions for the ¢- and a-domains, respect-
ively. The cropped EWPC pattern, displaying the interatomic
distances, is shown in Figure 6b. Yellow squares mark spots at
lattice-vector distances along the c- and a-directions. These
spots are sharper than the intraunit-cell spots representing
the Pb-Ti distances, which are blurred because of the polar dis-
placements creating shorter and longer distances between Pb
and Ti. The EWIC transform, shown in Figure 6c, reveals
strong dipole signatures, marked by black squares, at the
Pb-Ti distances. Vectors linking the blue and red peaks com-
prising these dipoles reflect the directions of the relative Ti/
Pb off-center shifts, which define the polarization direction.
Furthermore, in the EWIC transform, there is no signal at
the lattice sites, indicating that the original NBED pattern ex-
hibits no mistilting or miscentering. Oxygen—cation dipoles
can also be observed, although they are less distinct.

EWPC permits localized measurements of the lattice param-
eters and the c¢/a ratio, as shown in Figure 6d and described
previously (Padgett et al., 2020). The orange and purple re-
gions correspond to the ¢- and a-domains. We measure a c/a
ratio of 1.059 + 0.001 (compared to the handbook value of
1.0581) and a flexoelectric rotation of 86.82° + 0.02° between
the domains. Theoretically, we expect a rotation of 86.766° as
calculated from the handbook c¢/a ratio as described in referen-
ces MacLaren et al., 2005; Farooq et al., 2008. The discrepan-
cies between these numbers likely reflects small miscalibration
of the detector and slight differences in the directions of the
projector lenses.

The dipole lengths and directions in the EWIC patterns can
be used to extract polar displacements, plotted as vectors in
Figure 6e. The arrow color reflects the dipole angle, as shown
in the histogram of dipole angles in Figure 6e, with the blue
and red arrows corresponding to ¢-domains and a-domains,
respectively. The polarization angle exhibits a broad distribu-
tion with a standard deviation of about +15°. This spread in
polarization is likely due to a combination of flexoelectric ro-
tations, as seen by Catalan et al., 2011, strain relaxation that
occurs during TEM lift-out into a thin lamella, and significant
spread from the measurement technique. In the middle of the
c-domains relatively far from the domain walls, the measured
spread in polarization is 10°. The dipole length is (19 + 4) pm,
slightly larger than the displacement of 15 pm expected for
PbTiOj;. The reported spread is the standard deviation of the
measurements. We attribute this discrepancy to the EWIC
overestimating the measured distances when the separation
of spots in the dipole is small, leading to overlapping tails
(as shown in Fig. 3c). This issue could be caused by undersam-
pling because of a lack of higher-order spots due to the short
sampling time and the sample thickness limiting the extent
of the Ewald sphere intersection with the diffraction pattern
plane. This illustrates how it is critical for the EWIC method
to have proper sampling to measure small displacements,
and how during data processing we should check the spacings
compared to the sampling size and cepstral peak width to en-
sure the dipole lengths are not overestimated.

Discussion

In this paper, we describe the use of the imaginary part of the
exit wave cepstrum to map polarization in crystals. Because
this EWIC approach is based on measuring asymmetries pre-
sent due to the breakdown of Friedel’s law by dynamical
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diffraction, it can produce spurious results for specimens with
crystal mistilt, high thicknesses, and those with very small po-
lar displacements. This contrasts with the EWPC algorithm,
which was remarkably robust to crystal mistilt and thickness.

All diffraction-based methods for measuring polarization
fundamentally rely on the breaking of Friedel’s law and as
such are reliant on the intensity differences of the diffraction
pattern (Wicks & Lewis, 1968; Serneels et al., 1973;
Tanaka, 1975; Lebeau et al., 2011; Tsuda et al., 2013;
Yadav et al., 2019; Deb et al., 2020). Measurement of the in-
tensity differences in diffraction disks can directly provide po-
larization direction, but additional calculations and
simulations are necessary in order to relate that to polarization
magnitude (Spence, 1993). The EWIC approach requires no
simulations to pull out the magnitude of polar displacements
in addition to their directions, making it computationally
more convenient. By compiling data from the overall diffrac-
tion pattern, not just individual spots, the EWIC technique
is also relatively dose efficient. However, to avoid spurious re-
sults for very small displacements, either appropriate sampling
of EWIC or additional verification from disk intensities and/or
simulations is required.

Friedel law breaking can also produce intensity differences
in the Kikuchi bands (Marthinsen & Hoier, 1988; Bird &
Wright, 1989). Recent comparison of Kikuchi band polariza-
tion mapping and diffraction intensity mapping suggests that
contrast reversal happens for Bragg disks around 0.04°
(~0.7 mrad), whereas Kikuchi mapping can tolerate mistilt
of up to 0.23° (4 mrad) (Shao et al., 2023). Because EWIC is
comparing symmetry breaking in Bragg disk intensities,
EWIC is also susceptible to thickness and mistilt artifacts.
However, we did not observe a reversal in dipole direction
for the EWIC method across the 10 mrad of specimen tilt cal-
culated for the polar spots in Figure 5, or for similar calcula-
tions and Blochwave simulations for GaN in Supplementary
Figure 2. This apparent suppression of sensitivity to tilt may
in part be due to the logarithm, which flattens and separates
components such as the Ewald sphere and the lattice. In the
EWIC, the Ewald sphere term acts as a convolution on each
lattice point, deviating the angle of tilt (not flipping it). The po-
larization magnitude measured by EWIC deviates less than
5% within § mrad of specimen tilt.

Additional scanning diffraction methods to determine po-
larization include ptychographic reconstruction, which can
extract atomic positions, even in the projection direction
(Chen et al., 2021). While incredibly powerful, in that it
can achieve resolutions limited by thermal vibrations in the
crystal, advanced reconstruction techniques are necessary,
especially for thicker specimens. Furthermore, it requires sig-
nificant dose and high sampling (similar to atomic resolution
ADF-STEM), compared to NBED-based methods which typ-
ically require lower doses and can sample larger regions, at
the cost of lower spatial resolution.

Conclusion

Here, we outline an algorithm that utilizes the EWIC trans-
form of NBED patterns to map polar displacements at the
nanoscale. This technique applies to large classes of techno-
logically relevant materials including ferroelectrics, piezoelec-
trics, and many two-dimensional materials. The EWIC
transform distills the breaking of inversion symmetry in
NBED, extracting the directions and magnitudes of the polar
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displacements with near-picometer precision. Because EWIC
relies on relative diffraction spot intensities, it is sensitive to
dynamical diffraction and multiple scattering. Here, it is dem-
onstrated for GaN that we can extract accurate polarity infor-
mation for thicknesses of up to half of an elastic mean free
path. Furthermore, specimen misorientation must be mini-
mized because it introduces additional asymmetry into
NBED patterns; fortunately, such artifacts are easy to identify
and introduce minimal artifacts below 5 mrad of specimen mi-
sorientation. Precession of the electron beam or postprocess-
ing of NBED patterns may mitigate the effects of tilt. The
EWIC technique is somewhat less robust to specimen thick-
ness and mistilt compared to the EWPC technique but is still
suitable for high-quality STEM samples. We experimentally
demonstrate this mapping technique using a PbTiOj3 thin-film
specimen with an a/c domain structure to determine the direc-
tion and magnitude of the local polarization in a single data-
set. The ability of EWIC to provide quantitative and direct
measurements of polar displacements over a wide range of
length scales makes it useful for characterization of polar ma-
terials and devices.
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