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Abstract
Measuring local polar ordering is key to understanding ferroelectricity in thin films, especially for systems with small domains or significant 
disorder. Scanning nanobeam electron diffraction (NBED) provides an effective local probe of lattice parameters, local fields, polarization 
directions, and charge densities, which can be analyzed using a relatively low beam dose over large fields of view. However, quantitatively 
extracting the magnitudes and directions of polarization vectors from NBED remains challenging. Here, we use a cepstral approach, similar to 
a pair distribution function, to determine local polar displacements that drive ferroelectricity from NBED patterns. Because polar distortions 
generate asymmetry in the diffraction pattern intensity, we can efficiently recover the underlying displacements from the imaginary part of 
the cepstrum transform. We investigate the limits of this technique using analytical and simulated data and give experimental examples, 
achieving the order of 1.1 pm precision and mapping of polar displacements with nanometer resolution.
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Introduction
Materials with polarity—that have a crystal structure with bro
ken inversion symmetry—comprise a fundamentally interesting 
and technologically relevant space, including ferroelectrics, pie
zoelectrics, and many two-dimensional materials. In many of 
these systems, the polar displacements exhibit spatial varia
tions, with examples including interfaces, such as electrode/sub
strate or domain walls (Stemmer et al., 1995a; Zheng et al., 
2007; Catalan et al., 2011; Han et al., 2014; Holtz et al., 
2017; Xu et al., 2020), antiferroelectrics, relaxor ferroelectrics, 
or materials with charge density waves, which feature 
nanoscale-correlated polar disorder (MacLaren et al., 2013; 
Hovden et al., 2016; Baggari et al., 2018; Eremenko et al., 
2019; Kumar et al., 2021), nanostructured materials exhibiting 
distinct types of polar order (Naumov et al., 2004; Schilling 
et al., 2009; Nahas et al., 2015; Liu et al., 2017), and superlat
tices with dimensional confinement that can create or destroy 
ferroelectric vortices (Yadav et al., 2016, 2019; Holtz et al., 
2021). In all these cases, understanding structure–property rela
tionships is aided by localized measurement of the polarization 
at the atomic and nanometer scales.

While bulk Bragg diffraction methods permit high-precision 
measurements of crystal structure, the determination of local 
structural variations is challenging. Combining diffraction- 
based techniques with simulation (such as reverse Monte 
Carlo) is one promising approach (Eremenko et al., 2017), 
where the structure is represented using a large atomic config
uration and the local and nanoscale orders are determined 
via the comparison of calculated and experimental signals. 

However, such macroscopic methods cannot provide direct, 
localized measurements of the crystal structure.

The ability to directly characterize the local atomic order, in
cluding the local polarity, is a difficult problem (Billinge & 
Levin, 2007). Imaging of structural projections in a transmis
sion electron microscope (TEM) is widely used to for this pur
pose (Stemmer et al., 1995a, 1995b; Jia et al., 2007, 2008). In 
particular, atomic-resolution annular dark field (ADF) scanning 
TEM (STEM) is a powerful tool for imaging atomic columns 
due to its straightforward and incoherent contrast mechanism 
which scales with the atomic number (Crewe et al., 1970; 
Howie, 1979; Kirkland et al., 1987; Voyles et al., 2002; Zuo 
& Spence, 2017). Because ADF STEM excels at providing the 
locations of heavy cations, ferroelectric displacements can be 
directly measured in many materials (Borisevich et al., 2010; 
Chang et al., 2011; Nelson et al., 2011). Measuring oxygen dis
placements is also critical for understanding ferroelectricity. 
Although this is generally not feasible from ADF due to weak 
scattering by the oxygen atoms, it can be achieved with bright 
field imaging (LeBeau et al., 2009), annular bright field (ABF) 
imaging (Findlay et al., 2009; Aso et al., 2013), or differential 
phase contrast (DPC) techniques using segmented detectors 
(Lazić et al., 2016; Campanini et al., 2020; Kumar et al., 
2021). However, atomic-resolution STEM is sensitive to scan 
distortions as well as specimen tilt and thickness (Muller 
et al., 2006; Kimoto et al., 2010; Zhou et al., 2016; Bürger 
et al., 2020) all of which compromise the accuracy of the meas
urement. It also requires a large electron dose to achieve a 
signal-above-background that is sufficient for fitting positions 
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of the atomic columns. Finally, atomic-resolution STEM typic
ally covers only small fields of view to maintain the required 
spatial sampling, making it unsuitable for mapping of 
micrometer-scale polar domain structures.

Scanning nanobeam electron diffraction (NBED) bridges 
the gap between bulk diffraction, which achieves high- 
precision measurements over large regions, and atomic-scale 
imaging, which covers smaller fields of view at high resolution. 
NBED combined with new, fast, pixelated STEM detectors 
[so-called 4D STEM because it collects the diffraction pattern 
(kx, ky) at every scan position (x, y)] can achieve crystallo
graphic measurements with unit-cell–sized spatial resolution 
over relatively large fields of view for STEM (micrometers) 
(Ophus, 2019). NBED also allows new avenues for measuring 
polarity and electric fields (Yadav et al., 2019). Because of the 
possible breaking of Friedel’s law in electron diffraction from 
noncentrosymmetric materials (Miyake & Uyeda, 1955), 
measuring the relative intensities of [hkl] and [h̅k̅̅l] reflections 
can yield the direction and relative magnitude of the polariza
tion vector or symmetry breaking (Wicks & Lewis, 1968; 
Serneels et al., 1973; Tanaka, 1975; Lebeau et al., 2011; 
Tsuda et al., 2013; Yadav et al., 2019; Deb et al., 2020). 
Figure 1 provides examples of several distinctly structured po
lar materials (with crystal structures as shown in the first 

column) generating NBED patterns that exhibit a violation 
of Friedel’s law (second column of Fig. 1). However, quantita
tive measurements of the polarization magnitude using NBED 
are not straightforward because the disk intensities are af
fected by several other factors, including dynamical diffrac
tion or specimen tilt. For example, such effects complicate 
disentangling the various structural changes at domain walls 
(MacLaren et al., 2015).

Previously, it was demonstrated that diffraction-based tech
niques offered by the 4D STEM configuration combined with 
cepstral techniques inspired by audio processing enables ro
bust, localized measurements of interatomic spacings 
(Padgett et al., 2020). This technique uses the magnitude of 
the Fourier transform of the flattened NBED patterns (the 
exit wave power cepstrum, or EWPC, transform), which pro
duces a signal similar to a pair distribution function (PDF) in 
projection (third column of Fig. 1). In this case, the effects of 
tilt and thickness are suppressed by taking the logarithm of 
the NBED patterns. However, the magnitude of the Fourier 
transform cannot reveal asymmetrical components in the dif
fraction pattern arising because of the breaking of Friedel’s 
law. The result is that EWPC can measure the tetragonality 
of the crystal, which can act as a proxy for polarization as pre
viously seen in electron backscattered diffraction and Kikuchi 

Fig. 1. An overview of the cepstral transforms providing interatomic distances and polarity and how they relate to the crystal structure for three different 
materials: MoS2, GaN, and PMN-PT. The first column shows the crystal structure to scale, with the unit cells marked starting from the center of the 
transforms (for MoS2, two unit cells are marked). The second column is the logarithm of the nanobeam electron diffraction pattern (ln(NBED)), with circled 
spots corresponding to the indices labeled in the bottom left. Because these materials are noncentrosymmetric, there is symmetry breaking in the 
diffraction pattern. The third column is the absolute magnitude of the Fourier transform of the ln(NBED), or exit wave power cepstrum transformation 
(EWPC) or “gamnitude,” which is similar to a pair distribution function. The final column shows the imaginary component of the Fourier transform of the 
ln(NBED), or exit wave imaginary cepstrum (EWIC) highlighting polarity and symmetry breaking in the crystals. Arrows corresponding to the polar 
displacements are shown for both the EWIC and the crystal structure. Dashed lines on the NBED and EWIC columns are mirror planes.
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techniques (Farooq et al., 2008), but it cannot tell the polariza
tion direction.

Here, we develop a related, cepstral-based algorithm that ex
tracts such asymmetrical components associated with polar dis
tortions in the crystal, yielding the directions and magnitudes of 
local polar displacements. The algorithm uses the imaginary 
part of the Fourier transform of the flattened NBED patterns, 
in what we call the exit wave imaginary cepstrum (EWIC), to 
highlight polar components of the crystal lattice. This approach 
is illustrated in the final column of Figure 1, with red and blue 
colors indicating positive and negative components, respective
ly. Comparing to the crystal structure, which is to scale in the 
first column of Figure 1, we can see how the EWPC and 
EWIC transforms can detect interatomic positions with sym
metric and asymmetric components, respectively.

We will discuss the mathematics behind the EWIC trans
form and provide an intuitive method for visualizing the re
sulting EWIC patterns. We will show through analytical 
calculations that the distance between positive and negative 
EWIC peaks is twice the polar displacement in the diffracting 
volume of the specimen and discuss how this measurement is 
affected by diffraction-space sampling, specimen thickness, 
and specimen tilt. We demonstrate approximately 1 pm preci
sion in measured atomic displacements for thin (less than half 
of an elastic mean free path) specimens which are oriented 
with a high-symmetry zone axis aligned parallel to the electron 
beam. We will further apply this approach to mapping polar 
distortions in PbTiO3 ferroelectric domains.

Theory of the Complex Transform
Previous work described the use of the EWPC transform of 
NBED patterns for determining interatomic spacings in crys
tals (Padgett et al., 2020). For a diffraction pattern, I(k), the 
EWPC transform is defined as follows:

EWPC(x) =
􏼌
􏼌F [ln (I(k))]

􏼌
􏼌 =

􏼌
􏼌F [ln (|F [Φ(x)]

􏼌
􏼌2)]

􏼌
􏼌, (1) 

where x is the real-space position vector, k is the scattering vec
tor, and Φ(x) is the exit wave function. This result is conceptu
ally similar to a PDF or Patterson function (Patterson, 1934), 
but, as indicated in the Introduction section, the addition of 
the logarithm sharpens the peaks, making the transform 
more robust to specimen tilt and thickness effects. For 
NBED conditions, where the diffraction disks are separated, 
I(k) was approximated as equations 6, 7, and 9 of Padgett 
et al., 2020, based on Ishizuka, 1982; Spence, 2013:

I(k) =
􏼌
􏼌F [Φ(x)]

􏼌
􏼌2 ≈

􏼌
􏼌Φp(k) ∗ (E(k) · V0(k))

􏼌
􏼌2

≈
􏼌
􏼌E(k)

􏼌
􏼌2

·
􏼌
􏼌Φp(k) ∗ V0(k)

􏼌
􏼌2

. (2) 

Here, ∗ denotes convolution and · denotes multiplication; 
Φp(k) is the reciprocal-space probe function; E(k) is the 
Ewald-sphere envelope function that takes into account speci
men misorientation; and V0(k) is the object function based on 
the projected potential of the tilt-free specimen V(x), such 
that V0(k) = F [exp (iσV(x))], where σ is the scattering cross 
section.

This form of I(k) highlights several useful properties 
of the cepstral transform. The logarithm in the transform sepa
rates multiplied signals additively, isolating the effects of speci
men tilt, E(k), from the lattice component, V0(k). The Fourier 
transform of the diffracted disks converts the lattice-spacing 

information into sharp, real-space points, enabling 
dose-efficient and precise measurements of interatomic 
distances.

The parameter of interest here is the polarity of the crystal 
(V(x) ≠ V(−x)). Polarity appears in electron diffraction 
patterns as an antisymmetrical component, such that 
I(k) ≠ I(−k). If Friedel’s law is violated, the diffracted intensity 
can be represented as I(k) = Isym(k) + Ianti(k), where Isym(k) is 
the symmetric part of the diffraction pattern and Ianti(k) is 
its antisymmetric part.

While the EWPC transform excels at extracting interatomic 
distances, the magnitude of the Fourier transform of a real 
function is an even, centrosymmetric function, devoid of any 
information about asymmetry in the crystal or diffraction 
pattern. If we consider the (complex) Fourier transform 
of the function I(k), we can separate the symmetric and anti
symmetric components:

F (I(k)) = F (Isym(k)) + F (Ianti(k)) . (3) 

The Fourier transform of a symmetric, real function is also 
real, whereas the Fourier transform of an antisymmetric, 
real function is imaginary. Thus, the first term in Eq. (3) is 
real and the second term is imaginary. This enables isolation 
of the antisymmetric component of the diffraction pattern, 
and thus the underlying polarity, by using the imaginary com
ponent of the Fourier transform:

ℑm[F (I(k))] = F (Ianti(k)). (4) 

We could alternately have written this expression for 
F (ln I(k)), which is analogously the exit wave complex ceps
trum (EWCC), although it would not be possible to write as 
clear of a physical interpretation for the transform as we will 
in Eq. 7 in the next section. Because the diffraction intensity is 
real and positive, the logarithm of the diffraction pattern is 
also a real function. Further, because the logarithm is a mono
tonic function, ln(I(k)) and I(k) have the same symmetry. In 
this section, for mathematical and conceptual simplicity, we 
will continue discussing the complex Patterson function, 
F (I(k)), but the discussion is analogous to the more-useful 
EWCC transform.

Physical Picture of the EWIC Transform
To obtain a physical picture of this transform, we again con
sider the measured scattering distribution of electrons in dif
fraction space, I(k), given by the magnitude squared of the 
reciprocal-space exit wave function, Φ(k):

I(k) = |Φ(k)|2. (5) 

Using the Wiener–Khinchin Theorem, we can then write the 
Fourier transform of I(k) as follows:

F (I(k)) = Φ(x) ⊗ Φ∗(x), (6) 

where Φ*(x) denotes the complex conjugate of the exit wave 
function and ⊗ denotes the cross-correlation (or autocorrel
ation). This is the familiar result of the magnitude of the 
Fourier transform of the diffraction pattern being equivalent 
to the autocorrelation of the lattice potential in the weak- 
phase approximation, where Φ(x) is proportional to V(x) 
(Patterson, 1934). Notably, to reveal polarity in the diffrac
tion pattern, the specimen must be approximated as a strong- 
phase object—which is done for all the analytical calculations 
throughout this paper. Friedel’s law holds in the weak-phase 
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approximation, and for centrosymmetric crystals. However, 
Friedel’s law is typically violated in noncentrosymmetric crys
tals in electron diffraction. This is due to large electron scatter
ing cross sections that create significant, antisymmetric 
third-order terms in the strong-phase approximation, even 
for monolayer-thin two-dimensional polar materials (Deb 
et al., 2020). As a result, most electron diffraction patterns 
that are measured from noncentrosymmetric crystals exhibit 
asymmetry.

To obtain polarity information (the asymmetric part of the 
lattice potential) from this transform, we are interested in 
ℑm[F (I(k))] (Eq. (4)). To visualize how this transform relates 
to the lattice, consider that

ℑm[F (I(k))] =
1
2

F (I(k) − I(−k))

=
1
2

[Φ(x) ⊗ Φ∗(x) − Φ(−x) ⊗ Φ∗(−x)].

(7) 

This equation implies a simple graphical construction for 
ℑm[F (I(k))]: it is the autocorrelation of the exit wave sub
tracted from the inversion of itself. For symmetric parts of 
the lattice, this function will be zero. The asymmetric compo
nents of the lattice generate a dipole—a positive component 
corresponding to the +x autocorrelation and a negative com
ponent corresponding to the −x autocorrelation. As illustrated 
in Figure 1 by the arrows in the rendering of the crystal struc
ture and in the EWIC transform, the positive peak corresponds 
to the location of the asymmetric ion, whereas the negative 
peak appears at the corresponding point for an inverted unit 
cell. Additionally, the real part, <e[F (I(k))], is the autocorrel
ation of the exit wave plus its inverted self. <e[F (I(k))] typic
ally dominates the EWPC signal, making them appear almost 
identical. Thus, in this paper, we show only the EWPC in 
figures.

Electron diffraction is dominated by scattering from the nu
clei, and therefore, the EWPC and EWIC transforms reflect in
ternuclei (interatomic) distances. The polar direction observed 
in the EWIC transform is therefore sensitive to the atomic 
charge of the nuclei (Z), instead of the ionic or valence charge 
on the atom. As an example, MoS2 and MoTe2 would have an 
inverted EWIC signal from each other when the crystal struc
tures are aligned in the same direction.

In Figure 2, we illustrate the concept of the proposed meth
od using a diatomic 1-dimensional lattice with a potential V(x) 
shown in Figure 2a. This potential can be broken into its 
symmetric and antisymmetric components (Fig. 2b), yielding 
Φ(x) with real and imaginary parts shown in Figure 2c. 
The magnitude of the Patterson function is equivalent to the 
magnitude of the autocorrelation of the lattice potential 
(Eq. (6)), which resembles the symmetric lattice potential 
shown in Figure 2d. The imaginary component of the complex 
Patterson function (IPF) returns the antisymmetric compo
nents of the lattice (Eq. (7))—as illustrated in Figure 2e.

Here, we have provided a relatively simple example for the 
Patterson function. The addition of the logarithm does not 
change the characteristic spacings of the diffraction peaks or 
their symmetry. As a result, the peak positions revealing inter
atomic spacings and polar distortions in the complex cepstra 
remain the same as in the complex Patterson function (al
though peak widths and intensities differ). To compare the 
IPF and the EWIC, we turn to experimental data from GaN 
to show a case with realistic sampling and intensities. In the 

NBED pattern, I(k), we see only the brightest diffraction re
flections and the central beam, but for ln(I(k)), we see spots 
out to high scattering angles which are attenuated by the 
curvature of the Ewald sphere (Fig. 2f). The magnitude of 
the Patterson function (PF) displays broad peaks, whereas 
the EWPC contains sharp, well-resolved peaks corresponding 
to the interatomic spacings within the unit cell for this projec
tion direction (Fig. 2g). As discussed previously (Padgett et al., 
2020), the EWPC peaks are sharper and better resolved be
cause the logarithm enhances the relative contrast of higher- 
order diffraction disks, effectively extending the information 
limit. Comparing IPF and EWIC (Fig. 2h), the peak locations 
remain the same between the two methods but are far better 
resolved in EWIC. This effect is highlighted in the line profiles 
in Figure 2i through the selection box shown in black in 
Figure 2h. For a further comparison of the behavior of IPF ver
sus EWIC, see Supplementary Figure 1.

Materials and Methods
The 4D STEM NBED measurements were carried out at 
the National Institute of Standards and Technology (NIST) 
and Cornell University with both microscopes operating in 
microprobe mode. In this mode, the illumination lenses are 
configured to produce a small, nearly parallel probe which 
prevents overlap of the resulting diffraction disks. STEM ex
periments at NIST were performed using a Thermo Fisher 
Scientific Titan 80–300 (S)TEM instrument1 operating with 
a primary beam energy of 300 keV. Scanning NBED measure
ments were collected with a Merlin Medipix 3RX from 
Quantum Detectors with a (1 to 2) ms dwell time at (256 ×  
256) pixels per diffraction pattern and a bit depth of 12. 
STEM experiments performed at the Cornell Center for 
Materials Research used a Thermo Fisher Scientific Titan 
60–300 (S)TEM operating with a primary beam energy of 
300 keV, or 80 keV in the case of the MoS2 analysis. In this 
setup, scanning NBED data were captured using an EMPAD 
detector (Tate et al., 2016) with a 1 ms dwell time at (124 ×  
124) pixels per diffraction pattern and a bit depth of 30. 
Data from both laboratories were binned by two in the spatial 
directions to improve the signal-to-noise ratio of the diffrac
tion patterns.

The samples used in this study included MoS2 (Figs. 1, 3), 
GaN (Figs. 1, 2, and 4), PbMg1/3Nb2/3O3-PbTiO3 

(PMN-PT) (Fig. 1), and PbTiO3 (Fig. 6). Cross sectional speci
mens of GaN and PMN-PT were prepared by focused ion 
beam (FIB) lift-out using a Thermo Fisher Scientific Nova 
NanoLab 600. Before lift-out, protective layers of sputtered 
carbon followed by ion beam–deposited Pt-C were applied 
to the surface of the thin film. Rough milling steps were per
formed with 30 keV Ga+ ions, and the final thinning of the 
sample was done at 5 keV to reduce surface damage. For these 
samples, data were acquired at NIST using the conditions de
scribed above.

The sample preparation and data collection details for 
MoS2 are summarized in reference Deb et al., 2020. Similar in
formation for the PbTiO3 sample is described in references 
Langenberg et al., 2019; Padgett et al., 2020. For these 

1 Certain commercial equipment, instruments, software, or materials are 
identified in this paper to foster understanding. Such identification does not 
imply recommendation or endorsement by the National Institute of 
Standards and Technology nor does it imply that the materials or equipment 
identified are necessarily the best available for the purpose.
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samples, data were acquired at Cornell University using condi
tions described above or as described in the cited papers.

All computations were performed in MATLAB using the 
Curve Fitting, Image Processing, Optimization, and Signal 
Processing toolboxes. Essential functions and example codes 
are available on GitHub (Holtz, 2022). The workflow of 
data processing was as follows: 

1. To maintain consistency and avoid numerical problems 
during the logarithm step, we first perform preprocessing 
of the diffraction patterns. The intensity is scaled to fit an 
appropriate range (zero to thousands of counts) which 
corrects for negative pixels on the detector and other scal
ing artifacts if preprocessing has altered the overall inten
sity. A constant value, typically 1, is then added to the raw 
diffraction patterns to ensure all values are greater than 
zero.

2. The diffraction patterns are then centered numerically to 
avoid asymmetries caused by misalignment of the patterns 
on the detector. The patterns can be centered by finding the 
center of mass of the central disk or by minimizing the 
EWIC transform on lattice sites where no polar signal is ex
pected. In this paper, the minimization approach is used, 
which proved to be more reliable for nonideal diffraction 
patterns (e.g., when the detector was saturated or where 
the specimen was thicker than optimal). The diffraction 
patterns were then centered by applying a phase shift in 
Fourier space. Throughout the processing, whenever the 
fast Fourier transform is applied, a centered Hann window 
is used to minimize edge effects.

3. Implemented in MATLAB, the EWCC transform is as fol
lows: fftshift(fft2(fftshift(win.*log(DP)))), where win is 
the centered Hann window and DP is the preprocessed 
two-dimensional diffraction pattern. The EWIC is the im
aginary part of the EWCC, and the EWPC is the absolute 
value of the EWCC. Note that fftshift is used to maintain 
phase consistency throughout the calculation. With the 
use of fftshift, the convention for the center location in 
MATLAB is floor(N/2) + 1 where N is the size of the dif
fraction pattern (i.e., a [256, 256]-sized detector has a 
center of [129, 129]).

4. Peaks are then identified using an optimization method 
demonstrated for EWPC (Padgett et al., 2020) which is 
based on a minimization function. Here, the fitting must 
be performed for the maxima of the absolute EWPC sig
nals as well as for the minimum and maximum values of 
the imaginary EWIC signal. 
(a) In addition to the high-precision, subpixel measure

ment of the peak implemented in the previous EWPC 
package, in Figure 3, we also evaluate a “difference 
of 2D Gaussian” fitting algorithm, which is more ac
curate at small polar spacings (less than 2 pixels) but 
is significantly slower. The fit parameters were four 
spatial positions corresponding to the (x, y) coordi
nates of each Gaussian: two sigma parameters corre
sponding to the symmetrical Gaussian shapes and 
two intensity parameters for the height of each 
Gaussian—one positive and one negative.

5. In EWIC, we need to determine that the peaks found by 
the peak fitting algorithm are due to lattice polarity and 
not due to small random fluctuations within the fitting 
window (for example, noise found around a lattice spot 

that should exhibit no polarity). We have tried two meth
ods for this: 
(a) Because any component that is a real dipole in the ma

terial should also exhibit EWPC peaks at the same lo
cation, we can fit the signal represented by the 
EWIC × EWPC. This will suppress random noise in 
the EWIC signal that is not related to interatomic dis
tances. However, if the EWPC signal is also low in 
this region, i.e. there is no real spot in the fitting win
dow in this part of the sample, this will still produce 
spurious results.

(b) Specify a parameter, imWt, that is a ratio of the mag
nitude of the EWIC spots to the EWPC spots. If there 
is real polarity in the sample at a scan point, imWt 
will be large, but if there is not, imWt will be small. 
We then threshold the results and only keep polarity 
measurements when imWt is above a threshold, 
which can usually be easily picked with an algorithm 
or by inspecting a histogram of imWt for polar 
and nonpolar regions and/or spots. This allows sup
pression of spurious results in regions with no polar
ity. However, picking the threshold value must be 
done sample to sample and may lead to subjective 
results.

For most microscopes, geometrical distortions of the pro
jection lenses result in calibrations being slightly (<1%) dif
ferent for the different orthogonal directions on the detector. 
These distortions were measured using a specimen with cubic 
crystal symmetry and corrected for in the subsequent 
analyses.

Analytical calculations of diffraction patterns were per
formed using atomic potentials adopted from Kirkland, 
2020 and methods similar to those described in Deb 
et al., 2020. The calculation was executed in the strong 
phase approximation to maintain polarity information. 
Effects from tilt were incorporated using the theory pre
sented here and in ref Padgett et al., 2020 and according 
to Howie, 1971; Spence, 2013; Zuo & Spence, 2017. The 
EWIC transform is sensitive to numerical issues, discontinu
ities, and resulting asymmetries that are accentuated by the 
logarithm and selection of the imaginary part of the signal. 
Therefore, care is required for the analytical calculations.

Diffraction patterns were also simulated using the Bloch 
wave method as implemented in MBFIT (Tsuda & Tanaka, 
1999). An accelerating voltage of 300 kV and a convergence 
semiangle of 1 mrad were used. The total number of beams in
cluded varied with sample tilt but was at a minimum 472. The 
crystal structure parameters for GaN refined by Schulz and 
Theimann (Schulz & Thiemann, 1977) were used. Diffraction 
patterns were calculated at sample thicknesses in 1 nm intervals 
from 1 nm to 10 nm and 2 nm intervals from 10 nm to 40 nm.

Results
Polar Displacement Quantification with the EWIC 
Transform
We examine the behavior of the EWIC transform for polar dis
placements of various magnitudes by carrying out analytical 
calculations using the potential that describes a one- 
dimensional chain of atoms. The atomic chain consists of al
ternating species A and B (…A-B-A-B…), with the species B 
(which has an atomic number smaller than that of A) 
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increasingly offset from a centered position (Fig. 3). For the 
symmetric case, where the displacement d from the center is 
zero, the EWPC transform (Fig. 3a) shows sharp peaks corre
sponding to the interatomic distances and the EWIC shows no 
imaginary component (Fig. 3b). Zero EWIC is expected in this 
case since the structure is centrosymmetric. As the displace
ment d increases to 0.03 unit cells and then to 0.06 unit cells, 
peak broadening and splitting in the EWPC transform occur, 
reflecting the presence of longer and shorter interatomic dis
tances within the unit cell. In the EWIC transform, there is a 
dipole corresponding to this polar displacement, with the right 
positive and left negatives lobes flanking the centered posi
tions. These lobes are separated by a distance equal to 2d. 
The polar displacement direction points from the negative to 
the positive peak.

For small displacements (such as d = 0.03 unit cells), the 
EWPC does not resolve peak splitting because of the finite width 
of the EWPC peak—the origins of the cepstral peak widths will 
be discussed in the next paragraph. The EWIC still shows a di
pole with a spacing corresponding to the displacement, but, due 
to the finite peak width, the intensity is lower because of the 
peak overlap. The finite widths of the EWIC peaks impact the 
accuracy of peak-to-peak measurements for predicting atomic 
displacement: for dipole peaks located less than 2 pixels apart, 
the measured peak-to-peak distance in the EWIC transform us
ing a minimization algorithm described in the methods overes
timates the atomic displacement (Fig. 3c, red line). An 
alternative approach is to fit a “difference of Gaussian” func
tion to model the dipole (Fig. 3c, turquoise line). This approach 
offers a modest improvement in the lower limit at which the 

Fig. 2. Visualizing the lattice potential and the various transforms, for analytical (a–e) and experimental (f–i) data. (a) Line profiles of the potential and (b) 
the potential broken into its symmetric and antisymmetric components. The B site atomic position is displaced from the center of the unit cell, which is 
marked by the dashed line. (c) A line profile of the exit wave showing real and imaginary components. (d) The Patterson function (PF), which is the 
magnitude of the autocorrelation of the exit wave, which has the same symmetry as the symmetrized lattice potential shown in (b). (e) The imaginary 
component of the Patterson function, IPF, which effectively recovers the polar displacements shown by the antisymmetric potential in (b). Experimental 
data showing the transforms for GaN (f–i). (f) The NBED pattern and its logarithm. (g) The PF and exit wave power cepstrum (EWPC) transforms. (h) The 
IPF and exit wave imaginary cepstrum (EWIC) transforms. In both cases, the logarithm sharpens and better resolves the peaks in the transforms. (i) Line 
profile of the IPF and EWIC over the box shown in black in Figure 2h, displaying equivalent peak positions.
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Fig. 3. The EWPC (a) and EWIC (b) transforms for a one-dimensional atomic chain with a polar displacement d = 0, 0.03, or 0.06 away from the center (as a 
fraction of the lattice parameter, with 60 pixels/unit cell (px/uc) sampling). On the right, there is a magnified region from the center of the unit cell showing 
how these transforms change with polar displacement. The EWPC transform reveals peak splitting for the larger displacement, d = 0.06, but not for the 
smaller displacement due to the finite peak width, which is controlled by the breadth of information measured in diffraction space. The EWIC directly 
measures the peak splitting, with the magnitude of splitting equal to twice the displacement distance. (c) The measured distance between the peaks 
divided by two compared to the displacement simulated in pixels for both Gaussian fitting and minimization algorithms (left). As the displacement 
becomes less than two pixels, the minimization algorithm overestimates the polar displacement, while Gaussian fitting is accurate down to the peak 
splitting of a single pixel although introducing fitting complexity. The accuracy is entirely controlled by sampling in the analytical calculation (c, right), since 
the peak width is only determined by this “effective camera length,” although in experimental data, the extent of the zeroth-order Laue zone that is 
measured can also be a limiting factor. Thus, sampling the data to ensure expected peak distances which are larger than ideally two pixels minimizes 
these artifacts. (d) The histograms of lattice spacing measured by EWPC and the precision of the polar spacing measured by EWIC for an experimental 
dataset of monolayer MoS2 shown with a Gaussian fit. The standard deviation, σ, is indicated for each.
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displacement can be measured accurately, down to about d =  
1.25 pixels; however, there is significant added complexity, fit
ting parameters, and computational time introduced by the 
“difference of Gaussian” fits. Here, we use the minimization 
function.

The cepstral peak width—and thus the smallest resolvable 
distance—is related to the highest frequencies in diffraction 
space which are included in the transform. Because polar dis
placements in crystals can be as small as 10 pm, adequate sam
pling in diffraction space is essential to achieve well-separated 
and sharp spots. There are two main sampling effects to con
sider: the breadth of the cepstral spot and the pixel size in ceps
tral space. The cepstral spot breadth is ultimately limited by the 
extent of the zeroth-order Laue zone captured by NBED. The 
highest order of measurable diffracted disks is limited by 
beam voltage and specimen thickness, with higher voltages 

and thinner crystals yielding sharper cepstral spots. In practice, 
the highest order of diffracted disks measured may also be lim
ited by the upper angular bound of the detector or by the win
dowing function used in the Fourier transform. In this case, the 
pixel size is limiting. The cepstral pixel size is approximately 
equal to the wavelength of the incident electron beam divided 
by the total angular range of the detector; that is, the sampling 
in this space can be controlled by adjusting the camera length. 
For a 300 keV beam with a wavelength of 1.97 pm and a ferro
electric displacement of 10 pm, the half angular range of the de
tector should be nearly 100 mrad, which is a relatively large 
angle. Because the diffracted disks rarely extend beyond the first 
50 mrad, increasing the cepstral sampling can also be accom
plished by using a detector with more pixels, padding after win
dowing, or by using subpixel measurement techniques (as done 
here). The sharpness of the peaks should be optimized using 

Fig. 4. The (a) NBED, (b) EWPC, (c) EWIC, and (d) measured lattice spacings and polar displacements as a function of specimen thickness measured 
experimentally for the GaN sample, with thickness determined by EELS. The EWPC peak is measurable throughout the range of thicknesses, reliably 
extracting the lattice parameter, as expected from previous results. The EWIC transform has clear spots for the two thinnest-sample datasets but 
becomes increasingly unclear for t/λ ≥ 0.5. We can accurately determine peak spacing of up to t/λ = 0.5, but the measurements become unreliable above 
that thickness. Because the EWIC transform is sensitive to relative changes of intensities for the diffraction pattern spots, it is also sensitive to the effects 
of multiple scattering. Error bars are standard error in the mean of the measurements from that thickness.
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high primary beam energies, thin specimens, and short camera 
lengths that collect slightly more than the entire zeroth-order 
Laue zone. Detectors with larger numbers of pixels may be ad
vantageous for this method. In Figure 3, because we are using 
an analytical calculation with arbitrarily high sampling, we 
are ultimately limited by cepstral pixel size as shown in the right 
panel of Figure 3c.

Under ideal experimental conditions for a thin, on-axis crys
tallite with well-separated asymmetrical lattice components 
(making ideal sampling straightforward), we can find the pre
cision of EWPC lattice–parameter and EWIC polarity meas
urements. Figure 3d presents simultaneous EWPC and 
EWIC measurements for monolayer MoS2, yielding standard 
deviations of 0.3 pm and 1.1 pm for the EWPC and for the 
EWIC peak positions, respectively.

Tilt, Thickness, and Miscentering Effects on EWIC
Next, we turn to the behavior of the transform under a range 
of realistic experimental conditions. We investigated the effect 
of specimen thickness by collecting experimental data for a 
GaN wedge–shaped specimen with a ratio of thickness t to 
the inelastic mean free path λ varying from 0.1 to 1 (Fig. 4). 
This ratio was determined using electron energy loss spectros
copy (EELS). The inelastic mean free path for a 300 keV elec
tron beam in GaN is 90 nm if estimated using the Malis 
method (Malis et al., 1988) and 120 nm per the free-electron 
estimate (eq. 3.58 of Egerton, 2011). We should note that 
we used EELS to measure the thickness in terms of inelastic 
mean free path for experimental convenience but the more 
relevant parameter for diffraction patterns is the elastic 
mean free path. Because the ratio of elastic to inelastic mean 

Fig. 5. Analytical calculations showing the effect of specimen mistilt on EWIC transform for a two-dimensional version of the potential in Figure 3. (a) The 
reciprocal space potential V(k) is modulated by the tilted (off-center) Ewald sphere function E(k) and convolved with the probe function which gives the 
diffraction pattern I(k) (Eq. (2)). The EWPC transform is shown on the right. (b) The EWIC transform for tilts around the axes perpendicular (θx) and parallel 
(θy) to the polarization direction. As the specimen is tilted, lattice peaks show additional dipoles corresponding to the asymmetry introduced in the data by 
the tilt. These dipoles point in the direction of the tilt. The sites which have polar dipoles from the lattice (shown in the box) don’t display a full change in 
direction like the lattice peaks but exhibit significant angular deviation, which is quantified in (c). The fractional error in the length of the dipole is shown in 
(d), which is consistent with the trend towards shortening the magnitude of the polar displacement.
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free paths varies as 20/Z, where Z is the atomic number (see 
Eq. 5.66 in Reimer & Kohl, 2008), and the effective Z of 
GaN is 19, conveniently, in this specimen, the inelastic and 
elastic mean free paths are about the same and the indicated 
thicknesses also correspond to the elastic mean free path.

The NBED patterns for several t/λ values are presented in 
Figure 4a. The EWPC transform, shown in Figure 4b, reveals 
that while some peak intensities decrease markedly for larger 
thicknesses, the peak locations are unchanged. For example, 
the position of the EWPC peak marked with a purple box re
mains constant across the entire range of measured thicknesses 
(purple points in Fig. 4d). Error bars indicating the standard 
error in the mean are smaller than the symbol size.

The EWIC transform as a function of thickness (Fig. 4c) 
displays similar peaks for t/λ equal to 0.1 and 0.25, whereas 
the peaks become less clear for larger thicknesses. Unlike the 
EWPC transform, EWIC relies on relative intensities of dif
fracted disks to determine the polarity, and, therefore, mul
tiple scattering and dynamical diffraction obscure the 
asymmetry. Figure 4d presents the positions of the positive 
and negative EWIC peaks (marked in red and blue, respect
ively, as a function of thickness); the dashed line shows the 
nominal positions of these peaks. The peak measurement is 
robust up to 0.5t/λ but becomes unreliable for larger thick
nesses, displaying contrast inversion. The origin of contrast 
inversion likely stems from thickness fringes in the Friedel 
pairs in the diffraction pattern (Howie & Whelan, 1961; 
Howie, 1971; Serneels et al., 1973). We expect that this con
trast reversal will be a general effect due to dynamical scat
tering inherent to Friedel’s law breaking and will likely 

limit all polarization mapping techniques based off of rela
tive spot intensities.

While there may be dependence on the specific material, 
these tests suggest that valid EWIC measurements require 
samples thinner than roughly 0.5 elastic mean free paths to 
avoid multiple scattering artifacts including contrast inver
sion. We did not find any limitation in the very small thickness 
limit, where we might expect the diffraction intensity to be
have in a more kinematical manner and Friedel symmetry 
breaking to be reduced. This may be expected due to the 
strong cross section for electron scattering in many materials, 
which has produced symmetry breaking in even atomically 
thin systems (Deb et al., 2020).

The EWIC transform is designed to detect asymmetries, 
which can arise from specimen tilt besides structural origins. 
Here, we visualize the effect of tilt using the Ewald sphere, 
which can be described as an envelope function E(k) multi
plied by the reciprocal lattice potential, V(k) (Eq. (2)). A shift 
of the center of the Ewald sphere introduces a dominant asym
metric term enhancing one part of the diffraction pattern rela
tive to the other. In diffraction space, the Ewald sphere term is 
multiplied by the potential yielding a convolution of the corre
sponding real-space terms in both the EWPC and EWIC trans
forms. The EWPC transform is only weakly sensitive to this 
off-centering (Padgett et al., 2020) since the smearing of lattice 
points is symmetrical. This effect is shown schematically in 
Figure 5a for a model cubic A-B crystal with an off-center po
lar displacement for the B site.

In the EWIC transform, the tilt manifests as an imaginary di
pole term convolved with all the lattice points, as shown for a 

Fig. 6. An example of lattice and polarity mapping from scanning NBED measurements of PbTiO3. Example (a) NBED, (b) EWPC, and (c) EWIC from a 
domains (in-plane polarization) and c domains (out of plane polarization) in PbTiO3. In the EWPC transform, in-plane and out-of-plane (a and c) lattice spots 
are marked. In the EWIC transform, the spots representing a polar dipole associated with Pb-Ti off-centering are indicated. (d) The c/a lattice-parameter 
ratio from EWPC, highlighting the c (orange) and a domains (purple). (e) The polar displacement vectors measured from EWIC, with colors corresponding 
to the dipole angles shown in the histogram below. (f) Histograms of the polar dipole directions and separations. The dipole separation is (19 ± 4) 
picometers, overestimating the expected displacement (15 pm), likely due to undersampling. The reported error is the standard deviation.
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range of specimen misorientations in Figure 5b. In this figure, 
the black box indicates the location of the polar dipole and 
the green circle indicates a characteristic unit-cell distance or 
lattice site. Effects of crystal tilt in the EWIC transform are eas
ily identifiable because the resulting dipole appears even at 
the lattice vector (unit-cell) points, such as the ones circled 
in green, which cannot arise from crystal asymmetry. These di
poles point in the direction of specimen misorientation. 
Dipoles from the crystal asymmetry, such as those marked 
with the black rectangle, display some angular deviation 
with specimen tilt. Because the dipole of the crystal is con
volved with the dipole associated with misorientation, the an
gular deviation is smaller than that for the lattice-vector sites 
without inherent dipoles. The error in angular deviation and 
polarization displacement length due to tilt is shown in 
Figures 5c, 5d. A tilt axis perpendicular to the polarization dir
ection impacts the angular deviation less than a tilt axis paral
lel to the polarization. With specimen misorientation, tilts less 
than 5 mrad resulted in less than a 5% error in the dipole 
length. Correcting for the Ewald sphere off-centering may be 
possible by multiplying the data by a function that is effective
ly the inverse of the one describing the Ewald sphere. While we 
attempted this correction using an Ewald sphere that was ex
tracted using a low-pass filter of the EWPC transform (Padgett 
et al., 2020), we only saw a reasonably satisfying effect for 
simulated data—in experimental data, it did not produce 
reliable results, likely due to noise in both the pattern and 
extracted Ewald sphere.

A comparison of the robustness of EWIC and IPF with spe
cimen thickness and tilt is shown in Supplementary Figure 1b. 
As expected, due to the logarithm, the EWIC is significantly 
more robust to mistilts in both the angular and length devia
tions measured compared to the IPF. Furthermore, the analyt
ical calculations are compared with Blochwave simulations 
for specimen mistilt in GaN in Supplementary Figure 2. The 
results are qualitatively similar for the polar dipoles, although 
including the effect of specimen thickness in the Blochwaves 
also introduces larger background signals.

Another source of asymmetry in the diffraction pattern is 
off-centering of the diffraction pattern on the detector. Such 
off-centering is inevitable for experimental data, but fortu
nately, it is easily corrected. This artifact, which is manifested 
in the appearance of bright spots in one half of the EWIC 
transform and dark spots in the other half even for subpixel 
centering inaccuracies, must be corrected during postprocess
ing by numerically shifting the diffraction pattern to the image 
center. In practice, finding the diffraction pattern center with 
subpixel precision can be done in several ways; for example, 
a relatively simple approach is to minimize the absolute mag
nitude of the EWIC pattern at lattice sites for different center
ing corrections (see Methods).

Polar Mapping in Ferroelectric Thin Film
Here, we demonstrate the use of the EWPC and EWIC trans
forms of scanning NBED for mapping the time-averaged local 
polarization directions in a thin film of tetragonal, ferroelec
tric PbTiO3 (Fig. 6). This film is grown on a DyScO3 substrate 
that strains the film, generating larger c-domains having the 
polarization vector along the [001] direction normal to the 
film surface and smaller a-domains with polarization pointing 
in the in-plane [100] direction (Langenberg et al., 2019). 
Example NBED patterns from each domain type are shown 

in Figure 6a. In these patterns, symmetry is broken along 
[001] and [100] directions for the c- and a-domains, respect
ively. The cropped EWPC pattern, displaying the interatomic 
distances, is shown in Figure 6b. Yellow squares mark spots at 
lattice-vector distances along the c- and a-directions. These 
spots are sharper than the intraunit-cell spots representing 
the Pb-Ti distances, which are blurred because of the polar dis
placements creating shorter and longer distances between Pb 
and Ti. The EWIC transform, shown in Figure 6c, reveals 
strong dipole signatures, marked by black squares, at the 
Pb-Ti distances. Vectors linking the blue and red peaks com
prising these dipoles reflect the directions of the relative Ti/ 
Pb off-center shifts, which define the polarization direction. 
Furthermore, in the EWIC transform, there is no signal at 
the lattice sites, indicating that the original NBED pattern ex
hibits no mistilting or miscentering. Oxygen–cation dipoles 
can also be observed, although they are less distinct.

EWPC permits localized measurements of the lattice param
eters and the c/a ratio, as shown in Figure 6d and described 
previously (Padgett et al., 2020). The orange and purple re
gions correspond to the c- and a-domains. We measure a c/a 
ratio of 1.059 ± 0.001 (compared to the handbook value of 
1.0581) and a flexoelectric rotation of 86.82° ± 0.02° between 
the domains. Theoretically, we expect a rotation of 86.766° as 
calculated from the handbook c/a ratio as described in referen
ces MacLaren et al., 2005; Farooq et al., 2008. The discrepan
cies between these numbers likely reflects small miscalibration 
of the detector and slight differences in the directions of the 
projector lenses.

The dipole lengths and directions in the EWIC patterns can 
be used to extract polar displacements, plotted as vectors in 
Figure 6e. The arrow color reflects the dipole angle, as shown 
in the histogram of dipole angles in Figure 6e, with the blue 
and red arrows corresponding to c-domains and a-domains, 
respectively. The polarization angle exhibits a broad distribu
tion with a standard deviation of about ±15°. This spread in 
polarization is likely due to a combination of flexoelectric ro
tations, as seen by Catalan et al., 2011, strain relaxation that 
occurs during TEM lift-out into a thin lamella, and significant 
spread from the measurement technique. In the middle of the 
c-domains relatively far from the domain walls, the measured 
spread in polarization is 10°. The dipole length is (19 ± 4) pm, 
slightly larger than the displacement of 15 pm expected for 
PbTiO3. The reported spread is the standard deviation of the 
measurements. We attribute this discrepancy to the EWIC 
overestimating the measured distances when the separation 
of spots in the dipole is small, leading to overlapping tails 
(as shown in Fig. 3c). This issue could be caused by undersam
pling because of a lack of higher-order spots due to the short 
sampling time and the sample thickness limiting the extent 
of the Ewald sphere intersection with the diffraction pattern 
plane. This illustrates how it is critical for the EWIC method 
to have proper sampling to measure small displacements, 
and how during data processing we should check the spacings 
compared to the sampling size and cepstral peak width to en
sure the dipole lengths are not overestimated.

Discussion
In this paper, we describe the use of the imaginary part of the 
exit wave cepstrum to map polarization in crystals. Because 
this EWIC approach is based on measuring asymmetries pre
sent due to the breakdown of Friedel’s law by dynamical 
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diffraction, it can produce spurious results for specimens with 
crystal mistilt, high thicknesses, and those with very small po
lar displacements. This contrasts with the EWPC algorithm, 
which was remarkably robust to crystal mistilt and thickness.

All diffraction-based methods for measuring polarization 
fundamentally rely on the breaking of Friedel’s law and as 
such are reliant on the intensity differences of the diffraction 
pattern (Wicks & Lewis, 1968; Serneels et al., 1973; 
Tanaka, 1975; Lebeau et al., 2011; Tsuda et al., 2013; 
Yadav et al., 2019; Deb et al., 2020). Measurement of the in
tensity differences in diffraction disks can directly provide po
larization direction, but additional calculations and 
simulations are necessary in order to relate that to polarization 
magnitude (Spence, 1993). The EWIC approach requires no 
simulations to pull out the magnitude of polar displacements 
in addition to their directions, making it computationally 
more convenient. By compiling data from the overall diffrac
tion pattern, not just individual spots, the EWIC technique 
is also relatively dose efficient. However, to avoid spurious re
sults for very small displacements, either appropriate sampling 
of EWIC or additional verification from disk intensities and/or 
simulations is required.

Friedel law breaking can also produce intensity differences 
in the Kikuchi bands (Marthinsen & Høier, 1988; Bird & 
Wright, 1989). Recent comparison of Kikuchi band polariza
tion mapping and diffraction intensity mapping suggests that 
contrast reversal happens for Bragg disks around 0.04° 
(∼0.7 mrad), whereas Kikuchi mapping can tolerate mistilt 
of up to 0.23° (4 mrad) (Shao et al., 2023). Because EWIC is 
comparing symmetry breaking in Bragg disk intensities, 
EWIC is also susceptible to thickness and mistilt artifacts. 
However, we did not observe a reversal in dipole direction 
for the EWIC method across the 10 mrad of specimen tilt cal
culated for the polar spots in Figure 5, or for similar calcula
tions and Blochwave simulations for GaN in Supplementary 
Figure 2. This apparent suppression of sensitivity to tilt may 
in part be due to the logarithm, which flattens and separates 
components such as the Ewald sphere and the lattice. In the 
EWIC, the Ewald sphere term acts as a convolution on each 
lattice point, deviating the angle of tilt (not flipping it). The po
larization magnitude measured by EWIC deviates less than 
5% within 5 mrad of specimen tilt.

Additional scanning diffraction methods to determine po
larization include ptychographic reconstruction, which can 
extract atomic positions, even in the projection direction 
(Chen et al., 2021). While incredibly powerful, in that it 
can achieve resolutions limited by thermal vibrations in the 
crystal, advanced reconstruction techniques are necessary, 
especially for thicker specimens. Furthermore, it requires sig
nificant dose and high sampling (similar to atomic resolution 
ADF-STEM), compared to NBED-based methods which typ
ically require lower doses and can sample larger regions, at 
the cost of lower spatial resolution.

Conclusion
Here, we outline an algorithm that utilizes the EWIC trans
form of NBED patterns to map polar displacements at the 
nanoscale. This technique applies to large classes of techno
logically relevant materials including ferroelectrics, piezoelec
trics, and many two-dimensional materials. The EWIC 
transform distills the breaking of inversion symmetry in 
NBED, extracting the directions and magnitudes of the polar 

displacements with near-picometer precision. Because EWIC 
relies on relative diffraction spot intensities, it is sensitive to 
dynamical diffraction and multiple scattering. Here, it is dem
onstrated for GaN that we can extract accurate polarity infor
mation for thicknesses of up to half of an elastic mean free 
path. Furthermore, specimen misorientation must be mini
mized because it introduces additional asymmetry into 
NBED patterns; fortunately, such artifacts are easy to identify 
and introduce minimal artifacts below 5 mrad of specimen mi
sorientation. Precession of the electron beam or postprocess
ing of NBED patterns may mitigate the effects of tilt. The 
EWIC technique is somewhat less robust to specimen thick
ness and mistilt compared to the EWPC technique but is still 
suitable for high-quality STEM samples. We experimentally 
demonstrate this mapping technique using a PbTiO3 thin-film 
specimen with an a/c domain structure to determine the direc
tion and magnitude of the local polarization in a single data
set. The ability of EWIC to provide quantitative and direct 
measurements of polar displacements over a wide range of 
length scales makes it useful for characterization of polar ma
terials and devices.
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