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Fusion protocol for Majorana modes in coupled quantum dots
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In a recent breakthrough experiment [Nature (London) 614, 445 (2023)], signatures of Majorana zero modes
have been observed in tunnel spectroscopy for a minimal Kitaev chain constructed from coupled quantum
dots. However, as Ising anyons, Majoranas’ most fundamental property of non-Abelian statistics is yet to be
detected. Moreover, the minimal Kitaev chain is qualitatively different from topological superconductors in that
it supports Majoranas only at a sweet spot. Therefore, it is not obvious whether non-Abelian characteristics such
as braiding and fusion can be demonstrated in this platform with a reasonable level of robustness. In this work, we
theoretically propose a protocol for detecting the Majorana fusion rules in an artificial Kitaev chain consisting of
four quantum dots. In contrast with the previous proposals for semiconductor-superconductor hybrid nanowire
platforms, here we do not rely on mesoscopic superconducting islands, which are difficult to implement in
quantum dot chains. To show the robustness of the fusion protocol, we discuss the effects of three types of
realistic imperfections on the fusion outcomes, e.g., diabatic errors, dephasing errors, and calibration errors. We
also propose a fermion parity readout scheme using quantum capacitance. Our work will shed light on future
experiments on detecting the non-Abelian properties of Majorana modes in a quantum dot chain.
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I. INTRODUCTION

Majorana zero modes are midgap, charge-neutral quasipar-
ticle excitations localized at the end points of a topological
superconductor [1–12]. They obey non-Abelian statistics,
namely, swapping two Majoranas would transform the many-
body wave function into a new one within the degenerate
ground-state manifold and thereby can be utilized as the
building block for error-resilient topological quantum com-
putation [13,14]. In a very recent experiment [15], following
the theoretical proposals [16–19], Majoranas were observed
in a minimal Kitaev chain constructed from coupled quan-
tum dots. In particular, Majoranas emerge only at the sweet
spot of the system, i.e., when dot energies are placed at the
Fermi level of the superconductor, and the normal and su-
perconducting couplings are made equal in strength. While
such Majoranas do not have the exponential protection against
parameter changes expected for an ideal long topological su-
perconducting wire, they still possess topological properties
near the sweet spot.

Motivated by such experimental progress, one may hope
to demonstrate some of the defining properties of Majo-
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ranas as non-Abelian anyons in quantum dot chains. Two
equally fundamental properties of non-Abelian anyons are (i)
non-Abelian exchange statistics, which exhibits in braiding
experiments, and (ii) nontrivial fusion rules which can be
detected in fusion experiments. Specifically, Majoranas which
are Ising anyons obey the fusion rule

σ × σ = I + �, (1)

where two Ising anyons (σ ) fuse into either a vacuum (I) or
a regular fermion (�). In this work, we focus on the fusion
rule detection experiment, which in general requires a much
simpler device setup than braiding experiments, and hence
is a more attainable goal to pursue in the near future. In
the nanowire setup [20–31], different approaches have been
proposed to demonstrate the Majorana fusion rules [32–36],
most of which require a floating superconducting island with
finite charging energy for parity-to-charge conversion that is
central to manipulation and readout schemes [32,33,36]. For
the coupled-dot platform, however, the superconductor has
to be grounded to induce cross Andreev reflection between
quantum dots [16,17,19,37], making it difficult to implement
finite charging energy [15,38,39]. Therefore, a new method to
manipulate and read out Majoranas in the quantum dot chain
is urgently needed.

In this work, we propose a minimal setup for detecting the
Majorana fusion rules; see Fig. 1. This architecture is also
the shortest chain that can support four Majoranas compris-
ing a qubit. Here, Majoranas are manipulated by changing
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FIG. 1. Upper panel: schematic of a minimal setup for detecting
the Majorana fusion rules. Initialization: the system is initialized with
ε j > 0 and t j, j+1 = � j, j+1 > 0 corresponding to a vacuum state with
even fermion parity. Left panels: fusion protocol. In the first step F1,
all four dot energies are tuned from finite to zero, followed by F2
where both the normal and superconducting couplings between dot
D2 and D3 are turned off. It yields a probabilistic fermion parity
readout of p12 = ±1 with an average of zero. Right panels: refer-
ence protocol, which yields a deterministic parity readout p12 = +1.
Boxes in gray: fusion diagrams of anyons for the two protocols.

the effective couplings and dot energies via the electrostatic
gates nearby. Meanwhile, the readout of the fusion outcome is
implemented by quantum capacitance measurement. All the
operations in our protocol are performed in an electrostatic
way without the need of floating superconducting islands and
without moving Majoranas spatially. To connect to realistic
situations and to show the robustness of our protocol, we
analyze the effects of realistic imperfections on the fusion
outcomes. Our realistic simulation also allows us to predict
the optimal parameter regime for future fusion experiments.

II. SETUP AND HAMILTONIAN

The setup consists of an array of four dots connected by
three hybrid segments in between, as shown in Fig. 1. The
effective Hamiltonian of the system is

Ĥ =
4∑
j=1

ε j n̂ j +
3∑
j=1

(t j, j+1ĉ
†
j+1ĉ j + � j, j+1ĉ j+1ĉ j + H.c.),

(2)

where ε j is the dot level energy, n̂ j is the occupancy, and t j, j+1

and � j, j+1 denote the normal and superconducting couplings
between adjacent dots, respectively. In practice, the dots are
spin polarized under a strong magnetic field and the interdot
couplings are tunable by changing the properties of Andreev
bound states in the hybrid segment [19]. Here, we assume that
all t j, j+1 and � j, j+1 are real, which is a good approximation
for one-dimensional nanowires in the symmetry class BDI
[40]. Under these assumptions, when the system is tuned into
its sweet spot, i.e., ε j = 0 and t j, j+1 = � j, j+1 = �0 > 0 [41],

a pair of Majorana zero modes will emerge and be localized
completely at the outermost quantum dots.

III. FUSION RULE PROTOCOL

We first outline our protocols for fusion rule detection
in the ideal case, i.e., the system is subject to no noise,
and all operations are performed with perfect precision in
the adiabatic limit. The key idea behind testing fusion is to
measure a different pairing of Majoranas from the one which
was initialized [32]. Our system is initialized with t j, j+1 =
� j, j+1 = �0 > 0 and ε j > 0, which is a topologically trivial
phase corresponding to a vacuum with even fermion parity.
The final measurement is on the fermion parity p12 at one end
of the chain, after the system is “cut” into two halves, with
each half being tuned to the topological phase. Specifically,
we create the outermost Majoranas γ1,4 (F1) first, by driving
the whole array into the sweet spot where all the dot energies
are tuned from finite to zero. Since the total parity of the initial
state was even, i.e., p14 = +1, the pair of γ1,4 is initialized to
be in the state |+14〉. We then cut the middle of the chain, i.e.,
t23 = �23 → 0, to reach the measurement step (F2 in Fig. 1).
This nucleates the other pair of Majoranas γ2,3, which is again
constrained to be an even state to conserve total parity. The
resulting final state is

|ψ f 〉F = |+14,+23〉 = (|+12,+34〉 + |−12,−34〉)/
√

2, (3)

where the second equality is obtained by a basis change re-
lated to the F symbols for Ising anyons [32]. Equation (3)
shows that the measurement of the end parity p12 yields an
indeterministic result where p12 = +1 or −1 has equal prob-
ability. This result can be viewed as evidence for a successful
test of the fusion protocol [32], even though the nondetermin-
istic result is not uniquely associated with Majoranas [34].

The fusion protocol test (F in Fig. 1) should be contrasted
with a reference protocol (R in Fig. 1), where the Majoranas
γ1,2,3,4 are initialized in the same basis that they are measured
in. As a result, it gives a deterministic result where the mea-
sured parity p12 = +1 and the final state is

|ψ f 〉R = |+12,+34〉. (4)

This reference protocol serves as a baseline since it differs
from the fusion protocol F only in whether the chain is cut
before or after the dot energies are tuned to zero.

IV. DIABATIC ERRORS

In realistic experiments, errors will inevitably occur due
to imperfect quantum control or noise from the environment,
both of which may blur the distinction between the outcomes
of the fusion protocol relative to the reference one. We first
consider the diabatic errors because the fusion protocols have
to be completed within a time scale shorter than the decoher-
ence time of the Majorana system. Our protocol is composed
of two basic operations: (1) tuning the dot energies from finite
to zero and (2) switching off the couplings between D2 and
D3. We assume that each operation takes half of the total
protocol time, i.e., τpro/2, and that the operations obey the
same control function f (x) which decreases monotonically
from f (0) = 1 to f (1) = 0. Here, x = 2τ/τpro ∈ [0, 1] is the
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FIG. 2. Fusion and reference protocols with diabatic errors.
(a), (b) Parity expectation 〈 p̂12〉 as a function of protocol time τpro.
(c), (d) Infidelity 1 − F as a function of τpro. Here, light-color curves
use f (x) = 1 − x with smoothness k = 0, while normal-color ones
use f (x) = 1 − sin2(πx/2) with k = 1.

dimensionless time. As two concrete examples, we consider
f (x) = 1 − x with k = 0 and f (x) = 1 − sin2(πx/2) with
k = 1, where k denotes the smoothness of Hamiltonian evolu-
tion, i.e., H (τ ) is continuous and differentiable up to the first
k derivatives. The dynamics of the system is governed by the
time-dependent Schrödinger equation and is calculated using
the covariance matrix method [42–45]. We will compute the
expectation value of the parity p̂12, which is the quantity to be
measured to verify the success of the fusion protocol and is
defined as

〈p̂12〉 ≡ 〈ψ f |(iγ̂1γ̂2)|ψ f 〉, (5)

where γ̂1 = ĉ1 + ĉ†
1 and γ̂2 = −i(ĉ2 − ĉ†

2) denote the Majo-
rana modes localized at dots D1 and D2, respectively, and
|ψ f 〉 is the final state at τ = τpro. In addition, we will compute
the state infidelity, defined as

1 − F ≡ 1 − |〈φ|ψ f 〉|2, (6)

where |φ〉 is the target state in the idealized consideration. The
infidelity, though difficult to measure, is a more precise metric
of errors incurred in the protocol such as decoherence, which
may not affect the parity outcome p12.

Figures 2(a) and 2(b) show the numerically calculated
parity expectation as a function of the protocol time. For
sufficiently long protocol time, 〈p̂12〉 approaches 0 and +1
for fusion and reference protocols, respectively, consistent
with our analysis in the adiabatic limit. Additionally, the
convergence is reached faster for a smoother control func-
tion [see Fig. 2(a) in particular]. Specifically, Fig. 2 shows
that a protocol time of τpro ∼ 25h̄/�0 shows a parity 〈p̂12〉,
which is quite close to zero in the fusion protocol compared

to the reference value of one. This implies that a Majorana
decay rate of approximately 5% of the topological gap �0

(set by cotunneling through the superconductor), if achieved
in experiments, should allow for a convincing distinction
between fusion and reference protocols. Additionally, the in-
fidelities for both protocols, as shown in Figs. 2(c) and 2(d),
decay with the protocol time in a power-law fashion, i.e.,
1 − F ∝ τ−2k−2

pro , in the long-time limit, with its exponent
depending only on the smoothness k and not on other de-
tails. Interestingly, the universal scaling behaviors of infidelity
in anyon fusion are identical to those in anyon braiding or
holonomy [46].

V. DEPHASING ERRORS

The Majorana decoherence process in the quantum dot
chain, which was expected to limit the protocol time, is partly
a result of fluctuation in the system parameters. In a realistic
setup, these fluctuations are possibly induced by noises in
the electrostatic gate voltages that control dot energies and
effective couplings [15]. Such noise combined with relaxation
can lead to fluctuations of the fermion occupation out of the
ground state and has been shown to limit the fidelity of braid-
ing, even in the case of ideal Majorana nanowires [47,48].
The quantum dot chain is potentially more susceptible to
such noise given its lack of robustness to parameter changes.
Here, we define λα (τ ) as the temporal fluctuation around the
idealized value of a particular Hamiltonian parameter and we
assume that the fluctuations have zero mean and temporal
correlations

λα (τ ) = 0, λα (τ )λβ (τ ′) = δαβSα (τ − τ ′), (7)

where Sα (τ ) = D2
αe

−τ 2/(2τc,α )2
is the correlation function, with

Dα the fluctuation amplitude and τc,α the characteristic cor-
relation time of λα (τ ). We assume that the fluctuations in all
the ten parameters of the Hamiltonian defined in Eq. (2) are
completely independent of each other and the final outcomes
are averaged over 1000 different noise realizations. Since the
dephasing noise does not affect the fusion protocol in a sig-
nificant way, we focus only on the reference protocol, leaving
the discussion of the fusion protocol in the Appendixes. The
results of calibration errors from the ideal parameter values
are also discussed in the Appendixes and will be summarized
at the end of the manuscript.

Figure 3(a) shows the noise-averaged parity 〈p̂12〉 as a
function of protocol time with noise added only to the four dot
energies. In the long time limit, instead of approaching +1,
the parity expectation now decays to zero due to random phase
accumulation owing to noise and the decay rate increases with
the fluctuation amplitude Dε. The infidelity [see Fig. 3(b)] is
a nonmonotonic function of protocol time, where the errors
in the short and long protocol time regimes are dominated
by diabatic and dephasing errors, respectively. Interestingly,
the effect of dephasing errors on the parity expectation is
well described by an exponential decay envelope g(τpro)
[see Fig. 3(c)] defined as

g(τpro) ≡ 〈p̂12(τpro)〉s/〈p̂12(τpro)〉 ≈ e−τpro/Tϕ , (8)

where s = ε, t or � denotes the type of parameter fluctuations,
〈p̂12(τpro)〉 is subject to no noise [see Fig. 2(b)], and Tϕ is the
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FIG. 3. Dephasing effects due to noises in ε j (upper panels) and in � j, j+1 (lower panels). (a), (f) Noise-averaged parity versus τpro for
D = 0.1�0 (darkest blue) to D = 0.5�0 (lightest blue) in the step of 0.1�0 and fixed correlation time τc = h̄/�0. (b), (g) Noise-averaged
infidelity versus τpro. (c), (h) Envelope function versus τpro. (d), (i) Dephasing rate T −1

ϕ versus noise amplitudes D2 at τc = h̄/�0. The black
markers are extracted from (c) and (h) using Eq. (8) and the dashed lines are linear fitting. (e), (j) Dephasing rate T −1

ϕ versus correlation time
τc at D2 = 0.25�2

0.

dephasing time. In the weak fluctuation regime, the dephasing
rate T−1

ϕ follows scaling behavior (see the Appendixes)

T−1
ϕ ≈

∑
α

Cατc,αD
2
α, (9)

where Cα is a proportionality constant. Equation (9) says that
the dephasing rate is proportional to the correlation time τc,α
and variance D2

α , consistent with the numerical simulations
shown in Figs. 3(d) and 3(e). These results validate the as-
sumption in our analysis for diabatic errors, where we assume
that the protocol time would be limited by dephasing.

To compare the effect of noises in dot energies with that
in couplings, we repeat the same calculations, only including
fluctuations in � j, j+1. As shown in the lower panels of Fig. 3,
all the qualitative features discussed previously remain the
same, but with a faster dephasing rate and hence larger infi-
delity. This indicates that the Kitaev chain as well as the fusion
protocols are more resilient against noises in dot energies than
in coupling strengths.

FIG. 4. (a) Schematic for parity readout on double quantum dots.
(b) Quantum capacitance Cq for even- and odd-parity ground states
at the sweet spot as a function of the relative lever arm strengths.

VI. PARITY READOUT

We finally discuss a readout scheme for the fermion par-
ity encoded in a pair of Majoranas, which would be used
to determine the fusion outcomes. Our scheme is based on
measuring the quantum capacitance [49,50] of double quan-
tum dots [see Fig. 4(a)], which measures the response of the
even- and odd-parity ground states to gate voltage variations
[51–53]. Here, we consider the Hamiltonian ĤDQD = ε1n̂1 +
ε2n̂2 + t ĉ†

2ĉ1 + �ĉ2ĉ1 + H.c. Crucially, the two dot energies
are controlled by a common electrostatic gate with generally
different strengths of lever arms, i.e., ε1,2 = α1,2 ·Vg. At the
sweet spot, the zero-temperature quantum capacitance is

Cq = −∂2Egs

∂V 2
g

= 1 + p12 sin(2θ )

4
· α2

�0
, (10)

where p12 = ±1 denotes the joint fermion parity of γ1,2 lo-
cated on dots D1 and D2, α =√

α2
1+α2

2 is the characteristic level
arm strength, and θ = tan−1(α2/α1) denotes the ratio of two
lever arm strengths. As shown in Fig. 4(b), Cq is a sinusoidal
function of θ and has a π/2-phase shift between p12 = ±1,
providing different readout results for ground states with op-
posite parity. In particular, the readout visibility is maximal
at θ = π/4 or 3π/4, where the two lever arms are equal
in strength. By contrast, at θ = 0 or π/2 corresponding to
α2 = 0 or α1 = 0, respectively, the two parity states become
indistinguishable at the sweet spot. With one of the lever arms
strength being zero, the quantum capacitance measurement is
on only one dot and therefore is incapable of reading out the
nonlocal parity information encoded in two dots. As shown in
the Appendixes, the measurement results in Fig. 4 are robust
against substantial calibration errors in parameters.

VII. DISCUSSION AND SUMMARY

In this work, we give concrete protocols for detecting
the Majorana fusion rules in quantum dots. Manipulation
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and readout of Majoranas are implemented in a fully elec-
trostatic way, i.e., either the dot energies or the effective
coupling strengths can be tuned by varying the voltage of
the electrostatic gate individually [15]. Removing the need
of superconducting islands makes our proposal particularly
relevant and suitable for the ongoing experimental efforts
[15]. Using numerical simulations, we show that diabatic and
dephasing errors altogether set the constraint for the protocol
time, i.e., the operations should neither be too fast to break
the adiabatic condition nor too slow to accumulate dephasing
errors. In this aspect, although not directly demonstrating the
fusion rules, the reference protocol is of paramount impor-
tance in extracting the dephasing time and in excluding the
potentially false-positive interpretations of the fusion results
[34]. Specifically, we find that demonstration of the fusion
protocol should be feasible even for a 10% noise-induced vari-
ation (or calibration errors) in parameters. We also propose a
quantum capacitance measurement of the parity encoded in
double quantum dots, which is applicable to either dot D1
and D2 or dot D3 and D4, eliminating the need of an extra
quantum dot in the charge-parity transfer method [54,55].
Taking the parameter values from Ref. [15], we estimate that
Cq ∼ α2/�0 ∼ 0.75 fF, with α ≈ 0.3 e, and �0 ≈ 20 μeV,
within the reach of the state-of-the-art measurement tech-
niques [56–59].

Since this architecture is the minimal setup for realizing
a Majorana qubit in an artifical Kitaev chain, the first mea-
surement would be the Majorana coherence time. This can
be measured using the parity readout scheme we propose by
looking for photon assisted tunneling or Rabi oscillations [60]
in the parity of the chain in the four Majorana configurations
(i.e., F2 or R2) where the middle link is partially cut. The
fusion measurement we propose could then be done as long
as the decoherence time Tϕ is an order of magnitude longer
than the Rabi oscillation period which is on the scale h̄/�0 ∼
0.03 ns (i.e., the time for convincing demonstration of Rabi
oscillations in a Majorana qubit).
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APPENDIX A: NUMERICAL APPROACH TO THE
TIME-DEPENDENT SCHRÖDINGER EQUATION

In this section, we briefly introduce the details of our
numerical method to solve the time-dependent Schrödinger
equation. We construct the covariance matrix formalism to

describe the system in terms of the Majorana operations
[43], i.e.,

�̂i j = i

2
〈[χ̂i, χ̂ j]〉, (A1)

where [,] means the commutation of two operators and 〈. . . 〉
takes the expected value with respect to the ground state. χi

are Majorana operators defined as χ2n−1 = cn + c†
n and χ2n =

i(cn − c†
n ).

In our case, the ground states of two types of protocols are
Eq. (3) for the fusion protocol and Eq. (4) for the reference
protocol, which gives covariance matrices following Eq. (A1)
as per

�̂F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�̂R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

Therefore, the time evolution of the covariance matrix
�̂ under the Hamiltonian Ĥ follows the time-dependent
Schrödinger equation

h̄
d�̂

dτ
= [Â, �̂], (A3)

where Â corresponds to the matrix element of the Hamiltonian
in Majorana basis, i.e.,

ĤM = i

4

∑
i, j

Ai j χ̂iχ̂ j . (A4)

To solve the differential equation (A3), we flatten the covari-
ance matrix into a vector and feed it into a standard ODE
solver. To allow the adaptive sampling of the time in solv-
ing Eq. (A3), we interpolate the disorder profile in the time
domain.

APPENDIX B: FLUCTUATION IN THE NORMAL
COUPLING t BETWEEN THE QUANTUM DOTS

In this section, we study the dephasing noise of the nor-
mal coupling t in a similar way as we did in Fig. 3. From
Figs. 5(a)–5(c), we also present the parity, wave function
error, and decaying envelope, which all show a similar expo-
nential decay as the results from the fluctuation in � as shown
in Fig. 3. In particular, in Figs. 5(d) and 5(e), we fit the decay
exponent of the envelope and find similar slopes and intercepts
as in Figs. 3(i) and 3(j), which indicates that the response of
this protocol to the fluctuation of t and � are qualitatively the
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same, and both of them have much more significant adverse
impact than the fluctuation in ε.

APPENDIX C: ANALYTIC DERIVATION
OF DEPHASING TIME Tϕ

In this section, we analytically derived the dephasing time
Tϕ in Eq. (8). Our model resembles the concept of linear tetron
in Ref. [61], where the computation bases are defined as

|0〉 = |012, 034〉 = |p12 = p34 = 1〉,
|1〉 = |112, 134〉 = |p12 = p34 = −1〉 (C1)

because we adopt the convention that fixes the total parity
to be even (p12p34 = 1). Therefore, the Pauli matrix on each
qubit in the terms of the Majorana operators is

X = iγ̂2γ̂3 = iγ̂1γ̂4,

Y = iγ̂1γ̂3 = −iγ̂2γ̂4,

Z = iγ̂1γ̂2 = iγ̂3γ̂4

(C2)

up to an overall phase. In the long time limit (i.e., near the end
of the protocol time), we can approximate the Hamiltonian in
Eq. (2) as

Ĥ (τ ) = iε12(τ )γ̂1γ̂2 + iε23(τ )γ̂2γ̂3 + iε34(τ )γ̂3γ̂4

= [ε12(τ ) + ε34(τ )]Ẑ + ε23(τ )X̂ , (C3)

where εi,i+1(τ ) can be obtained by calculating the overlap
between two Majorana operators at quantum dot i and i + 1
and the wave function of the reference state as |ψi〉R = |0〉.
Note that the subscript i here indicates the initial state, which
looks contradictory to Eq. (4). However, this is intended as
we only study the behavior of the long-time limit, where the
MZMs have already formed. Equivalently, this means we can
shift the starting time from τ = 0, where the system is in the
atomic limit, to τ = τ0 � τpro. This approximation will not
affect the long-time behavior of the decaying envelope.

Therefore, the time evolution of the parity operator p̂12(τ )
for the reference state is

p̂12(τ ) = ei
∫ τ

τ0
Ĥ (τ ′ )dτ ′

p̂12(τ0)e−i
∫ τ

τ0
Ĥ (τ ′ )dτ ′

= ei[ fZ (τ )Ẑ+ fX (τ )X̂ ]X̂ e−i[ fZ (τ )Ẑ+ fX (τ )X̂]

=
fX (τ ) fZ (τ )

(
1 − cos

[
2
√
f 2
X (τ ) + f 2

Z (τ )
])

f 2
X (τ ) + f 2

Z (τ )
X̂

+
fX (τ ) sin

[
2
√
f 2
X (τ ) + f 2

Z (τ )
]

f 2
X (τ ) + f 2

Z (τ )
Ŷ

+
f 2
Z (τ ) + f 2

X (τ ) cos
[
2
√
f 2
X (τ ) + f 2

Z (τ )
]

f 2
X (τ ) + f 2

Z (τ )
Ẑ, (C4)

where fX (τ ) = ∫ τ

τ0
ε23(τ ′)dτ ′ and fZ (τ ) = ∫ τ

τ0
ε12(τ ′) +

ε34(τ ′)dτ ′. Thus the final parity of the reference state is

〈ψ f |p̂12|ψ f 〉R = 〈ψi|p̂12(τ )|ψi〉R

=
f 2
Z (τ ) + f 2

X (τ ) cos
[
2
√
f 2
X (τ ) + f 2

Z (τ )
]

f 2
X (τ ) + f 2

Z (τ )

= 1 −
2 f 2

X (τ ) sin2
√
f 2
X (τ ) + f 2

Z (τ )

f 2
X (τ ) + f 2

Z (τ )
(C5)

and the disorder-averaged parity is

〈ψ f |p̂12|ψ f 〉R = 1 −
2 f 2

X (τ ) sin2
√
f 2
X (τ ) + f 2

Z (τ )

f 2
X (τ ) + f 2

Z (τ )

≈
∑
n=0

⎛
⎜⎝ i

√
2 fX (τ ) sin

√
f 2
X (τ ) + f 2

Z (τ )√
f 2
X (τ ) + f 2

Z (τ )

⎞
⎟⎠

n

= exp

⎛
⎜⎝ i

√
2 fX (τ ) sin

√
f 2
X (τ ) + f 2

Z (τ )√
f 2
X (τ ) + f 2

Z (τ )

⎞
⎟⎠,

(C6)

where the second line holds because we can expand ε23(τ ) to
the second order of disorder δλα (τ ) as

ε23(τ ) ≈ ε
(0)
23 (τ ) +

∑
α

δλα (τ )ε̇23,α (τ )

+ 1

2

∑
α,β

δλα (τ )δλβ (τ )ε̈23,α,β (τ ), (C7)
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where

ε̇23,α (τ ) = ∂ε23,α (τ )

∂λα (τ )

∣∣∣∣
δλα=0

, ε̈23,α,β (τ ) = ∂2ε23,α (τ )

∂λα (τ )2

∣∣∣∣
δλα=0

,

(C8)

and ε
(0)
23 (τ ) is a deterministic function of time without disor-

der. Because we define the disorder to be zero mean, δλα (τ ) =
0, the term δλα (τ )ε̇23,α (τ ) vanishes up to O(δλ(τ )) and the

higher order terms in Eq. (C7) can be absorbed into the later
part in the summation with n � 2 in Eq. (C6). The remaining
term is the first term in Eq. (C7) with a constant

∫ τ

τ0
ε

(0)
23 (τ ′)dτ ′,

which, however, could be treated as zero because the coupling
between the second quantum dot and the third quantum has
already been turned off near the final stage of the protocol for
the reference protocol, which indicates fX (τ ) � fZ (τ ).

Therefore, the exponent in Eq. (C6) can be further simpli-
fied to

i
√

2 fX (τ )
sin[ fZ (τ )]

fZ (τ )

= i
√

2 fX (τ )
sin

( ∫ τ

τ0

[
ε

(0)
Z (τ ′) + ∑

α ε̇Z,α (τ ′)λα (τ ′)
]
dτ ′

)
∫ τ

τ0

[
ε

(0)
Z (τ ′) + ∑

α ε̇Z,α (τ ′)λα (τ ′)
]
dτ ′

≈ i
√

2 fX (τ )
sin

( ∫ τ

τ0
ε

(0)
Z (τ ′)dτ ′

)
cos

( ∑
α

∫ τ

τ0
ε̇Z,α (τ ′)λα (τ ′)dτ ′

)
+ cos

( ∫ τ

τ0
ε

(0)
Z (τ ′)dτ ′

)
sin

( ∑
α

∫ τ

τ0
ε̇Z,α (τ ′)λα (τ ′)dτ ′

)
∫ τ

τ0

[
ε

(0)
Z (τ ′)

]
dτ ′ ,

(C9)

where εZ (τ ) = ε12(τ ) + ε34(τ ) and ε̇Z,α (τ ) is defined in a similar way in Eq. (C8). Since
∫ τ

τ0
ε̇Z,α (τ ′)δλα (τ ′)dτ ′

is proportional to the small disorder δλα (τ ), we take the approximation of cos (
∑

α

∫ τ

τ0
ε̇Z,α (τ ′)δλα (τ ′)dτ ′) ≈ 1 and

sin (
∑

α

∫ τ

τ0
ε̇Z,α (τ ′)δλα (τ ′)dτ ′) ≈ ∑

α

∫ τ

τ0
ε̇Z,α (τ ′)δλα (τ ′)dτ ′. Furthermore, because fX already contains the leading order of

δλα (τ ′) as shown in Eq. (C7), the second term on the numerator of Eq. (C9) can be omitted up to O(δλα (τ ′)). Therefore, the
disorder averaged parity Eq. (C6) becomes simple,

〈ψ f |p̂12|ψ f 〉R = exp[ik fX (τ )] = exp

(
ik

∫ τ

τ0

ε23(τ ′)dτ ′
)

, (C10)

where the constant k = √
2

sin (
∫ τ

τ0
fX (τ ′ )ε(0)

Z (τ ′ )dτ ′)∫ τ

τ0
fX (τ ′ )ε(0)

Z (τ ′ )dτ ′ .

The next step is to evaluate Eq. (C10) and extract the dephasing time Tϕ . We follow the similar steps in Ref. [45] and first
discretize the time to obtain

exp

(
ik

∫ τ

τ0

ε23(τ ′)dτ ′
)

= 1

Z

∫
Dδλα (τ )eik�τ

∑τ
τ ′=τ0

ε23(τ ′ )e− 1
2

∑
τ1,τ2

∑
α S

−1
α (τ1−τ2 )δλα (τ1 )δλα (τ2 )

= eik
∫ τ

τ0
ε

(0)
23 (τ ′ )dτ ′

Z

∫
Dδλα (τ )eik�τ

∑τ
τ ′=τ0

∑
α δλα (τ ′ )ε̇23,α (τ ′ )e− 1

2

∑
τ1 ,τ2

∑
α S

−1
α (τ1−τ2 )δλα (τ1 )δλα (τ2 )

, (C11)

where

Z =
∫

Dδλα (τ )e− 1
2

∑
τ1 ,τ2

∑
α S

−1
α (τ1−τ2 )δλα (τ1 )δλα (τ2 )

. (C12)

From the n-dimensional Gaussian integral, we integrate out Dλα (t ) as

exp

(
ik

∫ τ

τ0

ε23(τ ′)dτ ′
)

= eik
∫ τ

τ0
ε

(0)
23 (τ ′ )dτ ′

e
1
2

∑
α

∑
τ1 ,τ2

[ik�τε̇23,α (τ1 )]Sα (τ1−τ2 )[ik�τε̇23,α (τ2 )]
, (C13)

where the exponent of the last term above can be integrated in
the continuous limit as

1

2

∑
α

∑
τ1,τ2

[ik�τε̇23,α (τ1)]Sα (τ1 − τ2)[ik�τε̇23,α (τ2)]

= −
∑

α

k2
∫ τ

τ0

∫ τ

τ0

dτ1dτ2Sα (τ1 − τ2)ε̇23,α (τ1)ε̇23,α (τ2)

≈ −
∑

α

(ε̇23,α )2k2
∫ τ

τ0

∫ τ

τ0

dτ1dτ2D
2
αe

−(τ1−τ2 )2/(2τc,α )2

≈ −
∑

α

(ε̇23,α )2k2D2
α2

√
πτc,ατ, (C14)

where ε̇23,α (τ ′) is considered to be slowly varying such
as it can be replaced by the averaged value ε̇23,α =

1
τ−τ0

∫ τ

τ0
ε̇23,α (τ ′)dτ ′ and the last line is reached in the long
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FIG. 6. Parity (upper panel) and fidelity (lower panel) as a function of τpro with the error amplitude of 0.1�0 for (a), (e) ti,i+1, �i,i+1,
and Ei are perfectly calibrated initially, while only E has calibration error in the final state; (b), (f) ti,i+1 and �i,i+1 are perfectly calibrated
initially, while Ei has calibration error both in the initial stage and final stage; (c), (g) ti,i+1, �i,i+1, and Ei are perfectly calibrated throughout
the protocol, while the calibration error happens only to t23 at the final state; (d), (h) Ei are perfectly calibrated throughout the protocol, while
the calibration error happens to all ti,i+1 and �i,i+1.

time limit, i.e., τ 
 τc,α . Therefore, we recover the dephasing
rate in Eq. (9) as

T−1
ϕ =

∑
α

(ε̇23,α )2k2D2
α2

√
πτc,α =

∑
α

Cατc,αD
2
α, (C15)

with Cα being a constant which can be determined from the
fitting.

APPENDIX D: CALIBRATION ERRORS

1. Fusion protocols

In this section, we study the calibration error while tuning
the parameters of ε, t , and �. The error is simulated using
a uniform distribution within ±0.1�0 independently for each
parameter. We consider four situations as shown in Fig. 6.

In Figs. 6(a) and 6(e), calibration errors only take place in
the four dot energies εi at the final state. The effects on parity
expectation and infidelity are both minimal. In Figs. 6(b) and
6(f), calibration errors only take place in the four dot ener-
gies εi, but at both the initial and the final states. Similar to
Figs. 6(a) and 6(e), the effects are also minimal. The results in
the first two columns indicate that calibration errors in dot en-
ergies have minor effects on the fusion outcome. In Figs. 6(c)
and 6(g), calibration errors only take place in t23 and �23 in the
final state of the switch-off. Interestingly, it has a much more
adverse effect on the reference protocol than the fusion one.
This is because, in the reference one, we first try to switch
off t23 and �23 but with calibration errors, introducing large
parity-breaking errors in the second step of the protocol. By
contrast, calibration errors appear only towards the very end

of the whole protocol in the fusion one, mitigating the effect
of calibration errors. In Figs. 6(d) and 6(h), calibration errors
in ti,i+1 and �i,i+1 appear in both initial and final states, giving
adverse effects on both fusion and reference protocols. To
summarize, calibration errors in couplings between dots have
a more adverse effect on the fusion outcome than errors in the
on-site energies. Particularly, calibration errors in couplings in
the initial states are more adverse than those in the final states.

2. Parity readout

In this subsection, we calculate the quantum capacitance of
parity states in double quantum dots. The Hamiltonian for the
double quantum dots is

ĤDQD = ε1ĉ
†
1ĉ1 + ε2ĉ

†
2ĉ2 + t (ĉ†

2ĉ1 + ĉ†
1ĉ2) + �(ĉ†

1ĉ
†
2 + ĉ2ĉ1),

(D1)

where ε1,2 are the on-site energies of the two dots and t and
� are the normal and superconducting couplings between
them. To calculate the ground-state energies and the quantum
capacitances (the second-order derivative of the ground-state
energies), we use the occupation number basis |n1, n2〉 =
(ĉ†

1)n1 (ĉ†
2)n2 |00〉, with |00〉 being the vacuum state. Under this

basis, the Hamiltonian can be decomposed into even- and
odd-parity subspaces as below:

Ĥeven =
(|00〉

|11〉
)ᵀ(

0 �

� ε1 + ε2

)(〈00|
〈11|

)
,

Ĥodd =
(|10〉

|01〉
)ᵀ(

ε1 t
t ε2

)(〈10|
〈01|

)
. (D2)
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After having the ground-state energies in each parity sub-
space, we take its second-order derivative with respect to gate
voltage to obtain the value of quantum capacitance as follows:

Cq = −∂2E/∂V 2
g , (D3)

where

δε1 = α1 · δVg = α cos θ · δVg,

δε2 = α2 · δVg = α sin θ · δVg. (D4)

In the calculation, we particularly consider the calibration
errors in the quantum capacitance measurement. That is,
the parameter set (EL,ER, t,�) can be off the sweet spot
to characterize the possible calibration errors in a realistic

experiment. We consider two specific scenarios. The first is
errors in EL and ER, while the second is in t and �. We
further assume that the errors in the four parameters are inde-
pendent of each other. For each parameter, its possible error
is within a range of [−δ, δ] with uniform distribution. We
take δ/�0 = 0, 0.2, 0.4, where �0 is the strength of coupling
without calibration errors. The results of the numerical cal-
culations are shown in Fig. 7. In the absence of errors, the
numerical calculations agree with the analytic results in Fig. 4.
In the presence of errors, it shows that quantum capacitance
measurement is very robust against calibration errors in the
on-site energies Ei, but more sensitive with the errors in the
couplings. This behavior is consistent with the calculations
performed for the fusion protocols in the main text.

[1] J. Alicea, New directions in the pursuit of Majorana fermions in
solid state systems, Rep. Prog. Phys. 75, 076501 (2012).

[2] M. Leijnse and K. Flensberg, Introduction to topological super-
conductivity and Majorana fermions, Semicond. Sci. Technol.
27, 124003 (2012).

[3] C. W. J. Beenakker, Search for Majorana fermions in supercon-
ductors, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).

[4] T. D. Stanescu and S. Tewari, Majorana fermions in semi-
conductor nanowires: fundamentals, modeling, and experiment,
J. Phys.: Condens. Matter 25, 233201 (2013).

[5] J.-H. Jiang and S. Wu, Non-Abelian topological superconduc-
tors from topological semimetals and related systems under the
superconducting proximity effect, J. Phys.: Condens. Matter 25,
055701 (2013).

[6] S. R. Elliott and M. Franz, Colloquium: Majorana fermions in
nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87,
137 (2015).

[7] M. Sato and S. Fujimoto, Majorana fermions and topology in
superconductors, J. Phys. Soc. Jpn. 85, 072001 (2016).

[8] M. Sato and Y. Ando, Topological superconductors: A review,
Rep. Prog. Phys. 80, 076501 (2017).

[9] R. Aguado, Majorana quasiparticles in condensed matter,
Riv. Nuovo Cimento 40, 523 (2017).

[10] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P.
Krogstrup, C. M. Marcus, and Y. Oreg, Majorana zero modes
in superconductor–semiconductor heterostructures, Nat. Rev.
Mater. 3, 52 (2018).

[11] H. Zhang, D. E. Liu, M. Wimmer, and L. P. Kouwenhoven,
Next steps of quantum transport in Majorana nanowire devices,
Nat. Commun. 10, 5128 (2019).

[12] S. M. Frolov, M. J. Manfra, and J. D. Sau, Topologi-
cal superconductivity in hybrid devices, Nat. Phys. 16, 718
(2020).

[13] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[14] S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes
and topological quantum computation, npj Quantum Inf. 1,
15001 (2015).

[15] T. Dvir, G. Wang, N. van Loo, C.-X. Liu, G. P. Mazur,
A. Bordin, S. L. D. ten Haaf, J.-Y. Wang, D. van Driel, F.
Zatelli, X. Li, F. K. Malinowski, S. Gazibegovic, G. Badawy,
E. P. A. M. Bakkers, M. Wimmer, and L. P. Kouwenhoven,
Realization of a minimal kitaev chain in coupled quantum dots,
Nature (London) 614, 445 (2023).

[16] J. D. Sau and S. DasSarma, Realizing a robust practical Ma-
jorana chain in a quantum-dot-superconductor linear array,
Nat. Commun. 3, 964 (2012).

[17] M. Leijnse and K. Flensberg, Parity qubits and poor man’s
Majorana bound states in double quantum dots, Phys. Rev. B
86, 134528 (2012).

[18] I. C. Fulga, A. Haim, A. R. Akhmerov, and Y. Oreg, Adaptive
tuning of Majorana fermions in a quantum dot chain, New J.
Phys. 15, 045020 (2013).

085437-9

https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1088/0953-8984/25/23/233201
https://doi.org/10.1088/0953-8984/25/5/055701
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.7566/JPSJ.85.072001
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1038/s41467-019-13133-1
https://doi.org/10.1038/s41567-020-0925-6
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/s41586-022-05585-1
https://doi.org/10.1038/ncomms1966
https://doi.org/10.1103/PhysRevB.86.134528
https://doi.org/10.1088/1367-2630/15/4/045020


LIU, PAN, SETIAWAN, WIMMER, AND SAU PHYSICAL REVIEW B 108, 085437 (2023)

[19] C.-X. Liu, G. Wang, T. Dvir, and M. Wimmer, Tunable
Superconducting Coupling of Quantum Dots via Andreev
Bound States in Semiconductor-Superconductor Nanowires,
Phys. Rev. Lett. 129, 267701 (2022).

[20] V. Mourik, K. Zuo, S. M. Frolov, S.R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
fermions in hybrid superconductor-semiconductor nanowire de-
vices, Science 336, 1003 (2012).

[21] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Zero-bias peaks and splitting in an Al-InAs
nanowire topological superconductor as a signature of Majo-
rana fermions, Nat. Phys. 8, 887 (2012).

[22] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff,
and H. Q. Xu, Anomalous zero-bias conductance peak in a
Nb-InSb nanowire-Nb hybrid device, Nano Lett. 12, 6414
(2012).

[23] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T.
Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Superconductor-
nanowire devices from tunneling to the multichannel regime:
Zero-bias oscillations and magnetoconductance crossover,
Phys. Rev. B 87, 241401(R) (2013).

[24] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung,
and X. Li, Anomalous Modulation of a Zero-Bias Peak in a
Hybrid Nanowire-Superconductor Device, Phys. Rev. Lett. 110,
126406 (2013).

[25] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus,
Exponential protection of zero modes in Majorana islands,
Nature (London) 531, 206 (2016).

[26] J. Chen, P. Yu, J. Stenger, M. Hocevar, D. Car, S. R. Plissard,
E. P. A. M. Bakkers, T. D. Stanescu, and S. M. Frolov, Ex-
perimental phase diagram of zero-bias conductance peaks in
superconductor/semiconductor nanowire devices, Sci. Adv. 3,
e1701476 (2017).

[27] M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus, Ma-
jorana bound state in a coupled quantum-dot hybrid-nanowire
system, Science 354, 1557 (2016).

[28] F. Nichele, A. C. C. Drachmann, A. M. Whiticar, E. C. T.
O’Farrell, H. J. Suominen, A. Fornieri, T. Wang, G. C. Gardner,
C. Thomas, A. T. Hatke, P. Krogstrup, M. J. Manfra, K.
Flensberg, and C. M. Marcus, Scaling of Majorana Zero-Bias
Conductance Peaks, Phys. Rev. Lett. 119, 136803 (2017).

[29] H. Zhang, M. W. A. de Moor, J. D. S. Bommer, D. Xu, G. Wang,
N. van Loo, C.-X. Liu, S. Gazibegovic, J. A. Logan, D. Car
et al., Large zero-bias peaks in InSb-Al hybrid semiconductor-
superconductor nanowire devices, arXiv:2101.11456.

[30] Z. Wang, H. Song, D. Pan, Z. Zhang, W. Miao, R. Li, Z. Cao,
G. Zhang, L. Liu, L. Wen, R. Zhuo, D. E. Liu, K. He, R.
Shang, J. Zhao, and H. Zhang, Plateau Regions for Zero-Bias
Peaks within 5% of the Quantized Conductance Value 2e2/h,
Phys. Rev. Lett. 129, 167702 (2022).

[31] M. Aghaee, A. Akkala, Z. Alam, R. Ali, A. A. Ramirez, M.
Andrzejczuk, A. E. Antipov, M. Astafev, B. Bauer, J. Becker
et al., InAs-Al hybrid devices passing the topological gap pro-
tocol, Phys. Rev. B 107, 245423 (2023).

[32] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J.
Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K.
Flensberg, and J. Alicea, Milestones Toward Majorana-Based
Quantum Computing, Phys. Rev. X 6, 031016 (2016).

[33] M. Hell, J. Danon, K. Flensberg, and M. Leijnse, Time scales
for Majorana manipulation using Coulomb blockade in gate-
controlled superconducting nanowires, Phys. Rev. B 94, 035424
(2016).

[34] D. J. Clarke, J. D. Sau, and S. Das Sarma, Probability and
braiding statistics in Majorana nanowires, Phys. Rev. B 95,
155451 (2017).

[35] T. Zhou, M. C. Dartiailh, K. Sardashti, J. E. Han, A. Matos-
Abiague, J. Shabani, and I. Žutić, Fusion of Majorana bound
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