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ABSTRACT

We propose a video retrieval system for everyday scenes with com-
mon objects. Our system exploits the predictions made by deep neu-
ral networks for image understanding tasks using natural language
processing (NLP). It aims to capture the relationships between ob-
jects in a video scene as well as the ordering of the matching scenes.
For each video in the database, it identifies and generates a sequence
of key scene images. For each such scene, it generates most prob-
able captions using state-of-the-art models for image captioning.
The captions are parsed and represented by tree structures using
NLP techniques. These are then stored and indexed in a database
system. When a user poses a query video, a sequence of key scenes
are generated. For each scene, its caption is generated using deep
learning and parsed into its corresponding tree structure. After
that, optimized tree-pattern queries are constructed and executed
on the database to retrieve a set of candidate videos. Finally, these
candidate videos are ranked using a combination of longest com-
mon subsequence of scene matches and tree-edit distance between
parse trees. We evaluated the performance of our system using the
MSR-VTT dataset, which contained everyday scenes. We observed
that our system achieved higher mean average precision (mAP)
compared to two recent techniques, namely, CSQ and DnS.
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1 INTRODUCTION

Video data possess a multitude of information with applications in
e-commerce, healthcare, defense, education, social media, and enter-
tainment. The commercial success of companies such as YouTube,
Instagram, and TikTok, have resulted in enormous amount of video
data on the Web. Hence, video retrieval continues to be challenged
by the volume and variety of video data. In content-based video
retrieval (CBVR), we aim to find videos in a given database that are
similar to a query video [3]. Content may refer to colors, shapes,
textures, objects, faces, and audio in the frames of a given video.
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Coarse-grained approaches (7, 9, 12, 22, 23, 27, 32, 37, 42, 48] for
CBVR aggregate frame-level features into a single vector represen-
tation or a hash code for each video, when are then indexed; during
retrieval, a similarity metric is computed to obtain relevant videos.
While coarse-grained approaches are efficient for retrieval, their
performance is often limited. Fine-grained approaches [4, 6, 11, 18,
19, 28, 31, 34, 39, 41], on the other hand, extract representations
to capture the spatio-temporal structure in the videos, use them
during indexing, and perform similarity computation during re-
trieval. The sequence of frames is considered during similarity com-
putation. While fine-grained approaches achieve higher retrieval
performance than coarse-grained approaches, they are less efficient
on large-scale datasets. Re-ranking approaches [9, 24, 26, 43, 46]
combine the merits of coarse-grained and fine-grained approaches
by first ranking via a coarse-grained approach to filter out irrelevant
videos followed by re-ranking via a fine-grained approach.

Recently, a technique called QIK [49, 50] was proposed for content-
based image retrieval on everyday scenes with common objects.
Unlike prior approaches that relied on features constructed from
CNNs, QIK showed that predictions made by deep neural networks
for image captioning [40, 45] can be used for efficient image re-
trieval after exploiting NLP techniques on the image captions. QIK
outperformed techniques such as CroW [21], FR-CNN [33], DIR [13],
and DELF [30]. One may wonder if image captioning and NLP can
be leveraged for effective video retrieval instead of the popular ap-
proach of indexing and similarity computation over spatio-temporal
representations of videos (using CNN-based features).

Motivated by the above reason, we propose QIK+ for retrieval
of videos with everyday scenes (containing common objects) by
extending QIK in a novel way. By design, QIK+ captures both the
relationship between objects in a scene as well as the ordering of
the matched scenes in a video. Our key contributions are as follows:

e We propose a new way of indexing videos by identifying key
scenes in them and generating the most probable captions for these
scenes using state-of-the-art image captioning models. Using NLP
techniques, the captions are transformed into parse trees and repre-
sented in XML (Extensible Markup Language). The ordering of the
key scenes in a video is also preserved in the XML representation,
which is then indexed by a database system.

e We propose a new filtering step to identify candidate videos.
Given a query video, we first extract the key scenes of the video
and generate the most probable captions as before. Optimized tree-
structured queries are generated in XPath [5] for the query key
scenes (based on their captions) and executed by the database sys-
tem to identify the candidate videos.

o We propose a new ranking scheme to identify the top-k matches
by synergistically combining the longest common subsequence
(LCS) of scene matches (between the query key scenes and the can-
didate’s key scenes) and tree-edit distance (TED) computed between
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the parse tree of a query key scene’s caption and the candidate key
scene’s caption that was considered a match.

e We compared the performance of QIK+ with state-of-the-art
video retrieval techniques, namely, CSQ [48] and DnS [24] on the
MSR-VTT dataset [44]. We observed that QIK+ achieved higher
mAP compared to its competitors.

2 RELATED WORK

In this section, we briefly discuss relevant techniques that use CNN-
based features for video retrieval.

MFH [38] learned a group of hash functions for extracting global
and local features that mapped the vital video frames into a Ham-
ming space. Cao et al. [8] proposed a hashing framework that
combined hashing and feature pooling for powerful search. The
hashes were obtained from heterogeneous hash codes and stored
in a hash table to speed up the search. Revaud et al. [32] used prop-
erties of circulant matrices on features extracted using a CNN to
encode frames. Ye et al. [47] developed a video hashing method to
transform high-dimensional data into compact binary hash codes
using the spatio-temporal information embedded in a video.

Recently, DVH [27] fused temporal information across different
frames within a video to learn its feature representation. ViSil [22]
calculated video-to-video similarity by considering fine-grained
spatio-temporal relations between pairs of videos. On the other
hand, DPC [15] followed a self-supervised approach that learned
encoding video blocks of an equal number of frames. The video
blocks were mapped to a latent space, and the next set of blocks were
predicted using a predictive function. MemDPC [16] was later pro-
posed to improve upon DPC’s memory and architecture. CSQ [48]
mapped video features to hash codes in a Hamming space and
grouped similar data pairs to a common hash center by leveraging
properties of a Hadamard matrix. Dissimilar pairs would converge
to different centers improving learning efficiency and retrieval
accuracy. More recently, DnS [24] used a Knowledge Distillation
framework around ViSil to achieve high performance and efficiency
using three different networks: a coarse-grained student network, a
fine-grained student network, and a selection network. On the other
hand, TCA [35] used higher-level video representation describing
the long-range semantic dependencies of the temporal informa-
tion among frame features. VCLR [25] proposed a self-supervised
video-level contrastive learning framework to formulate positive
and negative pairs using pairs of similar and augmented dissimilar
images to learn high-level features with videos.

Unlike the aforementioned techniques, QIK+ aims to leverage
scene captioning and NLP techniques for the indexing, filtering,
and ranking steps involved during video retrieval.

3 BACKGROUND ON QIK

Due to space contraints, we briefly introduce the key features of
QIK [49, 50] for image retrieval on everyday scenes with common
objects. During indexing, for each image in the database, QIK gener-
ates its most probable caption using state-of-the-art image caption-
ing models [40]. This enables QIK to capture the context of everyday
scenes and learn the relationships between objects in them. For
each caption, a parse tree [20] is constructed. A parse tree captures
the syntactic structure of a caption using parts-of-speech (POS)
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tagging by identifying noun phrases/nouns, verb phrases/verbs,
adjectives, etc. The collection of these ordered trees are represented
as XML documents, which are indexed by an XML database system.

During query processing, QIK generates the most probable cap-
tion of a query image and the corresponding parse tree. The parse
tree is processed to construct an optimized XPath query containing
only essential keywords in the caption whilst preserving the order-
ing between these keywords and their relationships. (Prepositions,
determiners, conjunctions, etc., in the caption are ignored.) The
candidate images are retrieved by executing the optimized XPath
query on the XML documents. During the ranking step, the tree
edit distance between the parse tree of a candidate image’s caption
and the parse tree of the query image’s caption is computed. The
candidates are ranked by tree edit distance (low to high), and the
top-k matches are output.

4 DESIGN OF QIK+

In this section, we introduce the design of QIK+ and highlight its
novelty for video retrieval. We begin with the indexing strategy of
QIK+ followed by its filtering and ranking strategies.

4.1 Index Construction

QIK+ processes each video in the database and extracts its key
scenes. A key scene is a representative frame in a video identified
by a scene dectection algorithm [2]. For each key scene, the most
probable caption is generated using a state-of-the-art image cap-
tioning model (e.g., ClipCap [29]). The parse tree of the caption
is then generated and represented as an XML document. As the
ordering of the key scenes must be captured for a video, the final
XML document for each key scene includes the scene ID and the
video ID. The collection of XML documents for each video is then
indexed by a database system. Figure 1(a) shows a scene of a video
along with its most probable caption and its XML representation.
Algorithm 1 summarizes the steps involved during indexing.

(_a man standing next to a parked car |

<ROOT><NP><NP><DT>a</DT><NN>man</NN>
<NN>standing</NN></NP><NP><NP><JJ>next
</JJ></NP><PP><TO>t0</T0></PP><NP><DT>
a</DT><JJ>parked</JJ><NN>car</NN></NP>
</NP></NP></ROOT>

Key scene D,
Figure 1: A video scene, its caption and XML representation

Algorithm 1 IndexVideos(V)

Input: V denotes a list of videos in the database
1: for each videov € V do
2. Extract the key scenes in v; let (s1, ..., s5v) denote them
3 for each scene s; do
4 Predict the most probable caption ¢ of s;
5
6

Generate the parse tree p of ¢
Represent p in XML, include scene ID i and video ID v,
and index the final XML document

4.2 Video Retrieval

During video retrieval, QIK+ employs a filtering and ranking strat-
egy. It first extracts the key scenes in a query video. For each key
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scene, the most probable caption is generated using image caption-
ing. An optimized XPath expression is generated for each caption
using the strategy proposed by QIK [49]. Note that an XPath query
consists of different axes that enable the traversal of a parse tree
in a specific order to match nodes with specific labels. The XPath
queries are executed on the XML database to retrieve a set of candi-
date scene IDs and their video IDs. A dictionary is created to group
the matched scene IDs by their video ID. A (key, value) pair in the
dictionary consists of a video ID as the key and a sorted list of scene
IDs for that video as the value. The candidate videos are ranked
to output the top-k matches. Algorithm 2 shows the main steps
involved during video retrieval.

Algorithm 2 RetrieveVideos(k, q)

Input: k denotes the top-k videos to output; g denotes the query
video

: Let (q1, ..., qn) denote the key scenes in ¢

: for each gq; do

Predict the most probable caption C;

xp « GenerateOptimizedXPath(C;) // Using QIK [49]

Execute xp on the XML database to retrieve a set of candidate

scene IDs and their video IDs

6: Create a dictionary D with key as a candidate video ID and
value as a sorted list of matched scene IDs for that video (sorted
by scene ID)

7: O « RankBasic(D) OR RankLCS(g, D) OR RankLCS+TED(q, D)

8: return top-k matches in O

Do Wy e

Algorithm 3 RankBasic(D)

Input: D denotes the dictionary of candidate video IDs and their

key scene matches

1: for each (k,v) € D do

2. Leto=(s1,....,5m)

3:  scoreBy «— m

4: Let O denote the sorted list of candidate video IDs based on
scoreBy (in descending order)

5. return O

Algorithm 4 RankLCS(g, D)

Input: g denotes the query video; D denotes the dictionary of

candidates

1: Let (q1, ... qn) denote the IDs of key scenes in q

2: for each (k,v) € D do

3. Leto=(s1,....,5m)

4. scoreLp < length(LCS((q1,---»qn), (15 - Sm))

s: Let O denote the sorted list of candidate video IDs in D based
on scoreLy (in descending order)

6: return O

Next, we discuss the ranking strategy of QIK+ by introducing
three different schemes (Line 7 in Algorithm 2). The basic scheme
shown in Algorithm 3 assigns the number of scenes matched for
a video as its score and ranks videos based on these scores (high
to low). The ordering of the scene matches is completely ignored.
The next scheme shown in Algorithm 4 computes the LCS between
the query key scenes and the candidate’s key scenes that were
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matched for each candidate video. The intuition is that the ordering
of key scenes in the query video should match the ordering of the
matching key scenes in a candidate video for the best result. (Unlike
LCS on strings where we match identical characters between two
strings, we treat a query key scene g; as a match for a candidate
video’s key scene s; when the XPath query on g;’s caption returns
sj as a match.) The length of the LCS denotes a candidate video’s
score. Here, we aim to maximize the number of key scene matches.
Also, the ordering between key scene matches is incorporated. The
candidate videos are ranked based on this score (high to low). The
final scheme (and the best one) shown in Algorithm 5 combines
LCS and TED in an innovative way to account for the ordering of
scene matches as well as the similarity between the matched scenes
by comparing the parse trees of their captions. As a result, the
relationship between objects in a matched scene is also considered
by checking the ordering between essential keywords in captions
and their relationships via TED. Specifically, the TED is computed
only between the parse tree of a query scene’s caption and the
parse tree of candidate video scene’s caption that appear in the LCS
of scene matches (Lines 6-9 in Algorithm 5). The key idea is the
provide a weighted score for the LCS of scene matches based on
similarity of the matched scenes instead of just the length of the
LCS. Ties can be broken during sorting using scoreLy or scoreBy.

Algorithm 5 RankLCS+TED(q, D)

Input: g denotes the query video; D denotes the dictionary of
candidates

1: Let (q1, ..., qn) denote the IDs of key scenes in q

2. for each (k,v) € D do

3 Leto=(s1,....5m)

4 (1,5 lo) «— LCS((q1, - qn)s (515 -5 Sm))
5. scorelp <« 0
6
7

for each /; do
Let s, denote the candidate video’s scene that matched
the query scene g, in I;

8 Compute tree edit distance T between the parse tree of
sq’s caption and the parse tree g;’s caption
9 scoreTy « scoreT + (1+T) 7!

10: Let O denote the sorted list of candidate video IDs in D based
on scoreT}. (in descending order)
11: return O

Example 4.1. Figure 2 shows two key scenes of a query video,
their corresponding captions, and optimized XPath queries. Figure 3
shows how the two key scenes of a query video Q are matched to
key scenes of three candidate videos Vi, V5, and V3. The matched
scenes are shown as green and blue boxes. Algorithm 3 ranks them
in the order V3 — V; — V5. Algorithm 4 ranks them in the order
Vi — V3 — V; based on LCS assuming ties are broken using scoreB.
Algorithm 5 ranks them in the order Vi — V, — V3 if scoreT}. for the
videos are 0.2, 0.2, and 0.1, assuming ties are broken via scoreLy.

5 PERFORMANCE EVALUATION

We compared QIK+ with two different video retrieval techniques,
namely, CSQ [48] and DnS [24]. CSQ is a supervised video hashing
technique that uses Hamming distance for video ranking. DnS
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(acar is parked on the side of the road |

/descendant: :NN[text()='car']/followi
ng::VBZ[text()='is']/following::VBN[t
ext()='parked']/following::NN[text()=
'side']/following: :NN[text()='road']

(_a woman standing next to a parked car |

/descendant: :NN[text()='woman']/follow
ing::VBG[text()='standing']/following:
:JJ[text()="next']/following::TO[text(
)="to']/following::VBN[text()="'parked"'
]/following-sibling::NN[text()='car']

Key scene S, -
Figure 2: Query video scenes and optimized XPath queries

Key scenes
in the
query video

= . D Y
(R B EEEEERNENENEEERNENENRENENNENN]

|

Figure 3: Example of scene matches after filtering

employs a Knowledge Distillation framework [17] to attain high
retrieval performance and high computational efficiency. We used
the original code published by the authors of CSQ and DnS.

5.1 Implementation and Experimental Setup

As QIK was written in Java, QIK+ was also implemented in Java
and compiled using Java 1.8. BaseX (version 9.2) [1, 14], a high
performance XML engine, was used to manage the XML data. For
identifying and extracting the key scenes from a video, QIK+ used
the content-aware detection in PySceneDetect [2] that detects jump
cuts in a video. QIK+ used the pre-trained ClipCap [29] model for
generating captions of images. The model was trained on the Con-
ceptual Captions [36] dataset consisting of 3.3 million images and
their descriptions extracted from the Web. We ran the experiments
on CloudLab [10] and used hardware that had a 10-core Intel E5-
2640v4 CPU (2.20 GHz) and 64 GB of RAM running Ubuntu 18.04.

5.2 Dataset & Queries

For evaluating the video retrieval performance, we used MSR-
VTT [44], which contained 10K Web video clips totaling 41.2 hours.
This dataset was curated by filtering the top 150 videos obtained
after executing 257 queries (corresponding to 20 categories) on a
commercial video search engine. The database of videos for index-
ing consisted of 7K videos in MSR-VTT that formed the training
and validation set. For the query videos, we selected 1,031 videos
from the test set with an average 12 scenes per video. All the videos
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that belonged to the query video category were considered as true
matches. We computed the mAP value for different top-k matches.

5.3 Results

We first evaluated the retrieval performance of QIK+ for the different
ranking schemes described in Section 4.2. Hereinafter, we denote
the scheme based on Algorithm 3 as QIK+j, Algorithm 4 as QIK+;,
and Algorithm 5 as QIK+;. Our goal was to show that ranking
candidate videos based on a combination of LCS and TED would
provide the best performance as it can capture the relationships
between scenes and between important objects in a scene. Table 1
show the average of the mAP values (computed over the query
videos) for the various ranking procedures. (The winner is shown
in bold.) QIK+; outperformed QIK+;, validating the importance of
maximizing the matching of scene ordering. QIK+; outperformed
QIK+, and QIK+; validating our claim that by combining the scene
ordering and captions (to capture object relationships in a scene)
can provide the best video retrieval performance.
Table 1: Comparison of QIK+, CSQ, and DnS (avg. of mAP)
| | k=2 [ k=4 [ k=8 [ k=16 |
QIK+, | 0.416 | 0.437 | 0.433 | 0.423

QIK+; | 0.428 | 0.448 | 0.447 | 0.434
QIK+; | 0.434 | 0.456 | 0.452 | 0.437

DnS | 0.369 | 0.396 | 0.391 | 0.365
CSQ | 0.402 | 0.416 | 0.411 | 0.403

Next, we compared the best retrieval performance of QIK+ (i.e.,
QIK+;) with its competitors. For fair evaluation, we used the default
parameters of CSQ and DnS. CSQ, a supervised learning algorithm,
was re-trained on MSR-VTT to identify, hash, and cluster the videos.
Table 1 reports the average of mAP values of QIK+ compared with
its competitors for different values of k. (The winner is shown
in bold.) Clearly, QIK+ was able to outperform its competitors by
virtue of its design by capturing the relationships between objects
in a scene and maximizing the matches based on scene ordering.

6 CONCLUSION

We presented QIK+ for video retrieval on everyday scenes with
common objects. By design, QIK+ captures both the relationship
between objects in a scene as well as the ordering of scenes in a
video. Rather than using CNN-based features, QIK+ relies on the cap-
tions of key scenes and their parse trees for indexing, filtering, and
ranking. It maps the parse trees into XML and leverages optimized
XPath queries to find candidate videos and their scene matches. By
considering the relationship between objects in different scenes as
well as within the same scene, QIK+ achieved better mAP than its
competitors (on MSR-VTT) demonstrating its effectiveness on ev-
eryday scenes with common objects. Note that QIK+ cannot capture
the relationships between objects that span multiple key scenes in a
video. In the future, we would like to optimize the execution time of
queries in QIK+and investigate how it can be used for lifelog search.
QIK+ is available at https://github.com/MU-Data-Science/QIK.
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