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ARTICLEINFO ABSTRACT

Keywords Varying the chemical composition and cooling rates during additive manufacturing (AM) can enable the for-
Additive manufacturing mation and, in some cases, the retention of metastable phases affecting the solidificarion pathways. Altering the
i::‘_{"-:;_:""?““"i? solidifieation pathways directly affects the microstructure and in tum the mechanical properties of the parts. In

. thiz study, we show that modifying the zolidification pathway through the deliberate retention of metastable
]]l"’I ]"".““]‘“" ) anstenite in PH 17-4 stainless steel (55) leads to significant grain refinement {one order of magnitude smaller

grains) and improvement in tensile strength (30% higher ultimate tensile strength) of parts printed using Laser-
Powder Bed Fusion (LPEF). Mitrogen (Mz)-atomized feedstock powder containing higher concentrations of
auztenite-stabilizing elemental nitrogen was used to print parts with retained austenite. Parts abzent of retained
austenite printed using argon-atomized feedstock powder were uzed for comparizon of microstruciure and tenzile
properties. The grain refinement haz been atributed to the “crowding effect” obzerved due to the simultaneows
growth and coexistence of metastable austenitic phase with the stable ferrite. We alzo show that employing a
three-step heat treatment procedure can eliminate the unwanted yield point behavior aszsociated with the zofter

heat treatment:

auztenite while preserving the superior tensile properties in N2-atomized samples.

1. Introduction

Precipitation hardened Fe-17Cr-4Ni-4Cu steel or simply PH 17-4
stainless steel (55), iz one of the most commonly used martensitic steel
which combines high strength with excellent corrosion resistance [1-3].
Owing to ite excellent mechamieal properties, PH 17-4 55 has widespread
applications in the energy, defense, food storage and naval industries
[4-10]. PH 17-4 55 15 aleo widely used in the fabrication of injection
molds [11-12] which require a combination of high strength and high
wear resistance. When produced through conventional methods, PH
17-4 55 microstructure consiste primarily of a body centered tetragonal
(BCT) martensitic phase along with emall quantities of the body centered
cubic (BCC) &-fernite phase. PH 17-4 55 1z uzually strengthened through
an aging process via the formation of sphencal Cu-rich precipitates
[14-17]-

With the rapid growth of the additive manufacturing (AM) industry
and its promize to produce near-net-shape parts, there has been a
growing interest in production of steels through AM [15-27]. The good
printabality of PH 17-4 55 along with itz versatile application In many
industries have made it one of the most popular steels in AM. In the case
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of AM PH 17-4 55, a wide range of phase compositions have been re-
ported for parts printed using powder bed fusion (PBF) [1,2,7-17].
Unliks conventionally manufactured PH 17-4 55, PBF prnted PH 17-4
55 can retain metastable austenite at room temperatures. Large vana-
tions in the volume fraction of retained austenite (0-97%) has been
obeerved based on vanations In process parameters, particularly the
elemental compesition of the fredstock powder [28,22-22]. Although
the concentration of each alloyving element iz controlled bazed on stan-
dard specifications, slight variation within the speecified limite iz shown
to have a significant impact on the mierostructure of PBF printed parts.
Even the type of shielding gas used during printing 1= shown to have
altered the microstructure of PBF printed PH 17-4 58 [5,32].The pres-
ence of retained austenite has shown to greatly affect the mechanical
properties of the AM PH 17-4 55. Based on the austemitic volume frac-
tion, a wide range of strength-ductlity combinations have been
obeerved in AM PH17-4 55 [39-42]. The retained austenite’s ability to
ecasily transform into martensite upon deformation enhances the
ductility of the printed part. The improved ductility, however, comes at
the cost of reduced yield strength as the softer austenitic phase deforms
at lower stress values. Owing to thiz poor vield strength, the retained
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austenite is often viewed as a deleterious phase and efforts are usually
focused on preventing its retention during printing.

While the effect of retained austenite on the mechanical properties of
PBF printed PH 17-4 SS has been studied extensively, the impact of the
retained metastable phase on the microstructure of the as-deposited
parts is not well-understood. This study aims to fill that gap by inves-
tigating the impact of retained austenite on the grain morphology in
laser PBF printed PH 17-4 SS. Metastable austenite was deliberately
retained through the use of Ny-atomized feedstock powders while parts
printed with powders atomized in Ar were used for comparison. Based
on detailed metallographic characterization, we propose the solidifica-
tion pathways and dynamics of grain growth in the two aforementioned
samples. The tensile behavior of the as printed samples is investigated to
understand the impact of different microstructures on the mechanical
performance of printed parts. Moreover, we employ a standard three-
step heat treatment procedure to eliminate the metastable austenite
and further study the tensile behavior of the heat-treated samples.

2. Experimental

PH 17-4 powders atomized in argon and nitrogen atmospheres were
procured from Carpenter Technology Corporations, UK. The elemental
compositions of both feedstock powders are presented in Table 1. All
samples were printed using a SLM280 Twin Laser machine with argon as
the shielding gas. Both samples were printed with a 40 m layer thick-
ness at a volumetric energy density of 66.7 J/mm®. The volumetric
energy density (VED) was calculated using VED  P/(v x d x h) where P
is the laser power, v is the laser scanning speed, d is thickness of the
powder layer and h is the hatch spacing. The printed samples were
sectioned and polished using a standard polishing procedure. Some
polished samples were etched with Kalling s reagent to reveal the mi-
crostructures for observation by optical microscopy (OM). Microstruc-
ture, grain size, grain orientation and phase compositions were
evaluated with a Tescan Mira field-emission scanning electron micro-
scope (FE-SEM) via electron backscattering diffraction (EBSD) equipped
with a QUANTAX EBSD apparatus. The EBSD data was analyzed using
ATEX software [43]. The Scheil-Gulliver simulations were performed
using the “pycalphad-scheil package in the pycalhad toolbox [44,45].
To study the effect of heat treatment, some as-built samples from both Ar
and N atomized conditions were exposed to a three-step heating pro-
cess. The samples first undergo homogenization at 1176 C for 90 mins
in vacuum, followed by a solution treatment at 1040 C for 60 mins with
a subsequent final aging treatment at 551 C for 4 h. Tensile experiments
were carried out on using a Deben MT2000 micro-tensile stage with a 2
kN load cell (Deben UK Ltd, Suffolk, UK) and digital image correlation
(DIC) was used to capture the tensile strains. The error bars on the
tensile data were calculated based on deviation from the mean value.

3. Results and discussion
3.1. Microstructure and phase composition

The OM images for the Ar- and Ny-atomized samples parallel to the
build direction are shown in Fig 1. Large columnar grains can be easily
observed in the Ar-atomized samples whereas the grain shape isnt
clearly resolved at the same magnification in the case of Ny-atomized
samples. Moreover, the grains in the Ar-atomized samples span across
multiple melt pool boundaries showing the epitaxial nature of the grain
growth. The formation of such columnar grains oriented along the build
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direction is a direct consequence of the cyclic thermal history and the
directional heat flow experienced during the laser PBF process [11].
Furthermore, different defect types were observed in the OM images of
the two samples. The defect type observed throughout the Ar-atomized
samples was gas porosities (encircled with solid red line) whereas larger
lack of fusion (shown with dotted lines) defect was primarily observed at
multiple locations in the Nj-atomized samples. Further microscopic
characterization at higher magnifications using EBSD was conducted to
study the morphology and orientation of the grains in the two samples.

The inverse pole figure (IPF) maps obtained from the EBSD analysis
of both Ar and N atomized samples are shown in Fig 2. It is important to
note here that the scale of the Ar-atomized samples is an order of
magnitude higher than that of Ny-atomized counterpart. Similar to the
OM images, large columnar grains oriented parallel to the build direc-
tion were observed in the Ar-atomized samples. The median size of the
grains was estimated to be 10.40 m with a standard deviation 15.78

m. The grain morphology observed in the Ny-atomized samples was
strikingly different.

The Nj-atomized samples show significant grain refinement with a
median grain size of 0.74 m (standard deviation 0.80 m), which is
one order of magnitude smaller than the grain size in the Ar-atomized
case. Furthermore, the orientation of the grains in the Nj-atomized
samples is more random when compared to the highly oriented grains
observed in the Ar-atomized samples. The multiples of uniform distri-
bution (MUD) values obtained from the pole figures of specific planes
was used to quantify and compare the crystallographic texture [46 48].
The pole figure for the (100) plane for both cases is plotted in Fig 2(c, d)
and the corresponding MUD values confirm that the grains in the
Ny-atomized sample are oriented more randomly (max MUD  3.34)
when compared to the highly textured grains in the Ar-atomized samples
(max MUD 6.78).

The phase composition of printed samples atomized under different
atomizing gases was markedly different. The phase maps indicate that
the Ar-atomized samples consists primarily of a single BCC phase
whereas a mixture of BCC and face centered cubic (FCC) phases were
observed in the case of Ny-atomized samples (Fig. 3). The observed FCC
phase in the Nj-atomized case can be assigned to the metastable
austenitic ( ) phase. The identification of the observed BCC phase,
however, is more involved. The lattice parameters of the ferritic (BCC)
phase and the martensitic (BCT) phase are very close to each other and
EBSD alone cannot effectively distinguish between these two phases [4].
Consequently, the areas indexed as BCC can be either ferrite, martensite
or a mixture of these two phases.

One method used to identify these phases involves the comparison of
the grain misorientation using a Kernel average misorientation (KAM)
map obtained from the EBSD data [29,30]. KAM quantifies the extent
the local deformation at a point within the grain with respect to its
nearest neighbors [49,50]. The martensitic phase in stainless steel is
formed through a solid-state transformation of the metastable austenitic
phase wherein the parent phase undergoes shape change as well as
volumetric expansion. The deformation caused as a result of these
structural changes show up as regions of high misorientations in the
KAM maps [51,52]. The KAM maps with similar view fields for both
cases are shown in Fig 4. The Np-atomized samples contains a mix of
high and low misorientation regions spread throughout the sample
confirming that both martensite and -ferrite are present in Ny-atomized
samples. In contrast, the regions of high misorientation in the
Ar-atomized samples limited only to the high-angle grain boundaries
which are expected to have higher misorientations. The absence of

Table 1

Chemical compositions of Ar and N, atomized PH 17-4 SS stainless steel powders (wt.%).
Powder C N Mo Cu Ni Cr Si Mn Fe
Ar -atomized 0.02 0.01 3.31 0.28 4.38 15.76 0.41 0.39 balance
Nq-atomized 0.05 0.09 0.05 3.17 0.26 3.35 15.45 0.64 0.30 balance
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Fig. 2. IPF-Z maps parallel to the build direction and pole figures for the (100) plane showm for (a, ¢} Ar - and (b, d) N2 -atomized PH 17-4 55 samples.
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Fig. 3. Phaze composition maps of az printed (a) Ar - and (b) N2 -atomized PH 17-4 55 printed samples.
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Filg. 4. EAM maps of az printed (a) Ar - and (b) N2 -atomized PH 17-4 55 printed samples. The color bar shows the degree of mizorientation corresponding to

each color.

regions of high mizorientation other than the grain boundaries in the
Ar-atomized samples suggest that §-ferrite 1z the majority phase.

The difference in the observed microstructures and the phase
composition is a direct consequence of the combined effects of feedstock
composition and different solidification pathways. The phase composi-
tion of PH 17-4 58 1=z strongly dependent on the elemental composition of
the feedstock powder. Certain elements such as Ni, C, N and Mn [53-56]
strongly stabilize the austenitic phase whereas other elements such Cr,
51, Nb and Mb favor the formation of the ferritic phase [57]. The
composition of the solidified phase can be predicted uzing the Schaef-
fler's equivalent equations [55,59] which provide the relationship be-
tween different alloying elements to facilitate the ecaleulation of the
Chromium (Cre,) and Mickel (Niy) equivalent values:

Cr,, = [Cr] + [Mo] + 1.5 x [Si] + 0.5x [Nb|

Nig, = [Ni] +30 x [C] + 30 = [N] + 0.5 x [Mn]

The Crey/Niy, ratio, caleulated using the above equations, serves asa
guide to predict the phase composition after solidification. The Creg/MNieg
ratio for the Ar-atomized powders was caleulated to be 2.76 while that
for the Ma-atomized powders was 2.10. A higher Creq/Niey value favors
the formation of the austematic phase. In the context of this study, the use
of N3 gas as the atomizing media instead of Ar resulted in an approxi-
mate 0.09% increaze in the N concentration of the feedstock powder.
The lower Cry/Niy, ratic in the case of Ny-atomized powders suggests a
higher poesibility of austenite retention in the M- atomized samples
when compared to ite Ar-atomized counterparte. The austenitic phase
fraction was quantified with the help of a Scheil-Gulliver simulation tool
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based on pyealphad. The Scheil-Gulliver model has shown to be more
incomplete diffusion of alloying elements in the sohd-state during =o-
Ldification. The equivalent chromivm and nickel walues calculated
using Schaeffler’s equations were used as input composition for the
Scheil simulations. Thess values served as a means for accounting the
overall influence of all the constituent elements. The predicted solidi-
fication pathway for both etz of powders 1z very similar (Fig. 5). Upon
cooling from the Liquid phase, the §-ferrite phase 1=z expected to sclidify
firet followed by the solidification of the austenitic phase at lower
temperatures. The phase fraction of austenite in the case of Nz-atomized
powders (0.07) iz, however, projected to be higher than the Ar-atomized
case (0.01).

Even though these predictions match well with our experimental
findingzs, the use of Scheil-Gulliver model for the prediction of phase
composition of PBF printed parts iz not completely accurate. In the case
of metal AM, the Scheil-Gulliver model does not aceount for the changes
in the phase composition caused as a result of the high cooling rates
associated with powder bed fusion (10°-107 E/g).Higher cooling rates
can alter the solidification pathway and in turm modify the phase
composition [21,31,60]. According to the equilibrium phase diagram for
PH 17-4 55, the solidification proceeds imtially through the formation of
f-ferrite from the Liquid phase. Next, the y-austenite can either nucleate
from the hiquid or form through a solid-state transformation from
G-fernite. Upon further cooling, the §-ferrite transforms completely to the
austemitic phase which in turn transforme to the stable martensitic phase
when quenched. This solidification sequence, however, becomes inac-
curate at high eooling rates. More specifically, the higher cooling rates
lower the time awvalable for the transformation of the &-ferrite to
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Flg. 5. The predicted phase fraction as a function of temperamre(E) shown for (a) Ar-atomized amd (b) Nz-atomized PH 17-4 55 powders.
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y-austenite which iz a diffusion-controlled process. The &-fernte effee-
tively bypasses the austenite stability temperature range and existz as
the thermodynamically stable BCC phase at room temperature without
undergoing any further transformations.

This same phenomenon is observed in the case of the Ar-atomized
samples. The S-ferrite phase nucleates from the ligquid but doesn't
have enocugh time to transform to the austenite phase. At the relatively
low concentration of nitrogen present in the Ar-atomized sample,
G-ferrite iz the only phase to nucleate from the lhiquid. These ferritic
graine continue to grow for a longer duration before they are impinged
upon by another fermtic grain. This unrestricted growth results in the
formation of large grains which further increase in size as they remelt
and resolidify in response to the cyclic thermal history obeerved during
lazer PBF. The solidification pathway of the No-atomized, however, 1=
expectedly different. Unlike the Ar-atomized samples, the higher con-
centration of austenite stabilizing N in the No-atomized feedstock en-
ablez the nucleation of the austenite phase alongeide S-fermite. Upon
solidification, both phases srow simultancously from their respective
nuelel, however their coexistence stops the graine from growing freely.
We hypothesize that the coexistence of both ferritic and austenitic grains
restricts the available space for a growing grain before it encounters
another grain. We refer to this interaction between the ferrite and
austenite grains as the ~ crowding effect’”. This crowding effect results mn
esmaller grain sizes and explains the grain refinement observed in the No-
atomized samples. Higher concentration of N also explains the presence
of the metastable austenite at room temperatures. Thermodymamice-
based computations have shown that martensitie start temperature
(Mz), which iz the temperature at which the Gibbs free enersy difference
between the austemitic and martensitic phases reaches the eritical
drving foree for martensitic nucleation, decreases with an increase in
nitrogen content in stainless steel alloys [4,61]. At the hogher N
composition observed in the case of Nyatomized samples, the
martensitic transformation initiates at a lower temperature. This leads to
an incomplete transformation of austenite to martensite and results In
the retention of metastable austenite at room temperature. Conse-
quently, all three phases (S-fermte, austenite, and martensite) are
observed in the Ns-atomized samples. A schematic showing the solidi-
fication pathwayz for both atomizing conditions iz shown in Fiz. 6.
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3.2, Mechanical properties

The mechanical behavior under tensile loading was also notably
different for the Ar and N; atomized samples. The stress-strain curves of
the as-printed and the heat-treated samples for both atomizing condi-
tions are shown in Fig. 7. The as-printed Ar-atomized samples showed
continuous yielding wherein the stress inereased imtially till the point of
ultimate tensile strength (UTS) and then decreased uniformly Bl failure.
Contrarily, the tensile behavier of the az printed Na-atomized sample
was not uniform as marked by the presence of yield point elongation
(YPE) wherein the strain inereased continuously at a constant stress
value. Thiz YPE iz a consequence of the strain-induesd transformation of
the retained austenite to martensite. The deformation caused during
tensile loading leads to the formation of nuecleation zites favorable for
the transformation of the metastable austenite to the energetically
favorable martensitic phase. The strain-induced transformation of the
retained sustemite to martensite acts as an addibonal deformation mode
and rezulte in strain hardening [52,63]. This phenomenon ie similar to
the martensitic transformation obeerved iIn transformation mduced

Ar-atomized
1400 - | Ng-atomized
——Ar-atomized-HT
1200 - Ng-a’l.m'rll:u:l-HT.
-3-1 00 -
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- 800
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Flg. 7. Swmeszs smain curves for the as-printed and heat-oeated samplez for
both samples.

Flg. 6. Schemartic of solidification pathway and grain growith.

5



KK Singh and A. Maridi

plasticity(TRIP) steele [64-66]. As a result of the emaller grain size and
the presence of the harder martensitic phase, the UTS for the as printed
Noy-atomized sample 1186 (+ 35) MPa was expectedly higher than the
Ar-atomized samples 866 (+ 2) MPa. Interestingly though, the vield
strength of the No-atomized samples was lower when compared to the
Moatomized samples can be attnbuted to load partitioning, a
well-known phenomenon often observed in duplex stainless steels [67,
68]. The austemitic phase 1= mgnificantly softer than the martensi-
tie/ferritic phase and accommodates most of the mnitial plastic defor-
mation. As the strain iIncreases, the load gradually transfers to the harder
fernte/martenzsite phase, resulting in improved tensile strength
Owing to the YPE, the elongation at failure (EF) for the as printed Nz-
atomized samples was also larger than the az printed Ar-atomized
counterpart. However, the presenee of YPE iz detrimental for parts in
service as they can undergo significant plastic deformation well below
their UTS. Therefore, it iz imperative to eliminate thiz YPE and improve
the part’s resistance to plastic deformation. To achieve thiz, we
employed a three-step heat treatment process with the intention of
eliminating YPE while prezerving the superior mechanical properties of
the Ny-atomized eamples. Az seen in Fig. 7, the heat treated Ny-atomized
samples show a more continuous vielding behavior when compared to
the as-printed Ni-atomized samples. No regions chowing inereasing
strain at constant etress values were observed confirming that YPE was
successfully eliminated. EBSD analysiz was performed on the heat-
treated samples to study microstructural changes when compared to
the as-printed samples. The IPFZ maps of both heat-treated samples
chow lath-like structures typical of martensite (Fiz. 2a, d). High
mizorientation reglons in the KAM mape corresponding to the lath-
chaped grains confirm the presence of martensite (Fiz. Se, f). The
phase maps (Fiz. 2b, ) of the Ar-atomized sample comprise only of
BOCC/BCT phases, however, tiny fractions of austemitic phase still remain
in the Ny-atomized samples. Heat treatment has a similar effect on the
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mechanical properties of both eamples wherein the UTS increases while
the ductility decreases. Interestingly though, the UTS and ductility for
the heat-treated Ny-atomized sample iz still higher when compared to
the Ar-atomized heat-treated counterparts. The yield stress for the heat-
wherein the No-atomized samples yvielded at a much lower value. These
findings provide a nowvel pathway to produce PBF printed PH 17-4 55
with improved mechanical properties using metastable austenite az an

4. Conclusion

The effect of metastable retained austenite on the microstructure,
phase composition and mechanieal properties of PBF printed PH 17-4 55
samples hae been investigated. Detailed characterizations of PBF printed
parts with feedstock powders atomized using two different gases, Ar and
M3 show strikingly different microstructurez. The Ar-atomized sample
was characterized by the presence of large columnar grains onented
parallel to the build direction. In the abesence of austenite stabilizing N
and at the high cooling rates associated with PBF process, the solidifi-
cation bypasses the austenite stability temperature range and §-ferrite 15
the only phase observed at room temperature. Interestingly, the grain
under similar conditions was very different. The Ni-atomized samples
was composed of a mixture of §-fernte, metastable austenite and the
martensitic phase. The presence of these phases enable refinement of the
cost of iIntroducing YPE and lowering the yield stress. However, with the
implementation of an appropriate heat treatment procedure, the detri-
mental effects of YPE can be eliminated to get a final part with supenior
mechanical properties. It is important to highlight that the scope of the
methodology mentioned in thiz study extends beyvond PH 17-4 85 to
other material systems wherein the microstructure and properties of AM
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Fig. 8. IPF-Z, phaze compositon and KAM maps sthown in (ab,c) for heat-treated Ar-atomized and (d,e f) for heat-treated N2-atomized sample.
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parts can be tuned using metastable phases as an intermediary.
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