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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/mholla/BMPH The neuron serves as the basic computational unit for the brain. Altered neuronal morphologies are usually
123 found in various neurological diseases, such as Down syndrome, Williams syndrome, and idiopathic autism.
Compelling biological evidence demonstrates that neuronal morphology can be dynamically regulated by
neuronal activity through the mediation of calcium signaling pathways. Moreover, studies have revealed that
exposure to an applied electric field can induce directional migration of neurites toward the cathode. In
this study, we developed a coupled system that combines an advective Gray-Scott model with Gauss’s law
to gain a better understanding of dendrite growth and response to electrical polarization. Our simulation
results successfully capture key features such as dendrite branching, space-filling, self-avoidance, and electrical
polarization. With the help of the convolutional neural network, we inversely identified model parameters of
real dendrite morphologies from an online open source. Finally, we calibrated our model using experimental
data on growing neurons under applied electric fields.
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1. Introduction

The nervous system comprises a vast number of neurons with differ-
ent morphologies [1]. A typically-developed neuron roughly consists of
a soma or cell body, multiple dendrites, a single axon, and synapses [2].
Neuronal dendrites are tree-like protrusions from the soma and receive
incoming electrical signals from other neurons’ synapses. The axon also
protrudes from the soma and can extend as far as one meter in humans
under stretch growth [3]. At the other end of the axon are synapses,
where the fired electrical signal goes across and passes down to the
subsequent neurons.

Dendrites are a unique neural component, distinguished by their
intricate morphologies, which enable them to perform vital functions.
Their signature branching feature allows multiple connections between
neurons, thus facilitating high connectivity in the brain [4]. Another
critical feature of dendrite morphology is “tiling” — nonredundant
innervation of a receptive area by the same type of neurons — which
serves as a universal organizing principle across species. With the
help of the photo-filling technique, MacNeil and Masland (1998) [5]
discovered that similar visual neurons in rabbits form their territories
and barely overlap. This arrangement makes functional sense because
it allows the incoming light to fall onto as many different types of
visual neurons as possible [6]. In Drosophila, the dendrites of class
IIT and IV neurons also exhibit the “tiling” phenomenon, occupying
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their individual spaces while preventing overlap at the borders [7,8].

Extensive studies in computational neuroscience have been aimed at
unraveling the relationship between dendrite morphology and their
transmission of electrical signals [9-11]. However, the question of how
dendrite morphology is formed during neural development needs to be
better understood.

While various mechanisms can impact dendritic development, neu-
ronal activity plays a crucial role in shaping dendritic morphology
through the process of calcium signaling [12]. Calcium ions (Ca*) are
essential for neuronal signaling (Fig. 1), and they enter neurons through
various channels, including ligand-gated channels (LGCs), N-methyl-
D-aspartate receptors (NMDARs), and voltage-gated calcium channels
(VGCCs). When Ca2* enters, it binds to calmodulin, which in turn
binds to the calcium/calmodulin-dependent protein kinases (CaMKs),
leading to their activation and phosphorylation. Studies have shown
that activated CaMKII exerts a positive impact on the extension of
filopodia and the growth of fine dendrites through its direct interaction
with cytoskeletal actin, in contrast to other CaMKs that have differing
effects on dendrites [13-15].

Dendrite growth could also be influenced by many extrinsic factors.
It has been found that brain-derived neurotrophic factor (BDNF), Neu-
rotrophin 3, and nerve growth factor (NGF) could either promote or
inhibit dendrite outgrowth in vertebrates [16]. Numerous molecules
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Fig. 1. Schematics of the biological process that might regulate dendritic growth. When calcium Ca?* enters the neuron through different channels, it activates calcium/calmodulin-
dependent protein kinase II (CaMKII), phosphorylating the cytoskeleton. LGC, ligand-gated channels; NMDAR, N-methyl-D-aspartate receptor; VGCC, voltage-gated calcium

channels.

have been discovered for their roles in pathfinding and guidance, such
as the chemoattractant Semaphorin 3 A, whose spatial gradient may
pattern the growth of apical dendrites towards the pial surface [17,18].
The endogenous electric field also changes in space and time through-
out embryonic development, guiding neuronal migration [19]. Early
work showed that neurites in embryonic chicks grow faster towards the
cathode than the anode in an applied electric field [20]. More sophis-
ticated experiments have provided evidence of electric field-induced
polarization in human neural stem cells as well [21]. Nevertheless, the
electric field does not stand alone in neural polarization; the work by
McCaig et al. (2000) [22] hinted that neurotrophins and endogenous
electric fields are likely to interact in vivo during nervous system
development.

There are many diverse mathematical models of neural develop-
ment [23-25]. Early works attempted to generate artificial dendrites
by following statistical distributions of geometrical properties gathered
from experiments [26,27]. More recently, agent-based models have
provided more realistic results by using measured tip growth dynam-
ics as input data [8]. Models that minimize wiring capture dendrite
morphology reasonably well, but need more plausible explanations
for the underlying cellular processes [28,29]. Continuum models that
incorporate the idea of the like-repel-like mechanism resemble a Turing
system (diffusion-reaction of two morphogens), which could capture
the space-filling and “tiling” in Drosophila [30,31]. Recently, a phase-
field model based on isogeometric collocation captured the neural
growth process, including initial neurite outgrowth, axon differenti-
ation, and dendrite formation [32]. Axon guidance is influenced by
chemoattractants, chemorepellents, and contact signals [33,34], and
various models have been developed to capture these interactions,
including finite-dimensional state vector models, probabilistic mod-
els, and hybrid models that combine a random walk method with
the diffusion of chemical species [35-37]. A few studies have in-
corporated mechanics into the framework, studying the viscoelastic
deformation of the axonal shaft [38] and durotaxis [39] - cell migration
guided by stiffness gradients — to understand how axons navigate their
environment.

The objective of this research is to gain insights into the intricate
biological processes that underlie dendritic growth through employing

a multi-physics model and numerical simulations. Our model builds
upon the diffusion-reaction framework proposed by Sugimura et al.
(2007) [30] but the biological relevance is enhanced by new evi-
dence highlighting the impact of CaMKII activation via Ca?* signal-
ing on dendrite growth. Our model formulation differs from previous
diffusion-reaction models by adopting a precursor—product relationship
between Ca2* and activated CaMKII, as opposed to the conventional
activator-inhibitor relationship. We incorporated electrical polarization
as a simple advection term in our system. Meanwhile, our model
is implemented numerically using the finite-element method, which
enables us to accurately solve for patterns in arbitrary geometries, as
opposed to using the finite difference method [30]. Finally, we set up
a convolutional neural network to relate our model to reality, which
inversely identifies model parameters from real neuron images.

2. Methods

This section introduces our proposed multi-physics model that cap-
tures dendrite growth under the influence of the applied electric field.
We also discuss the details of our finite-element implementations and
convolutional neural network setup for inverse neural pattern recogni-
tions.

2.1. Mathematical modeling

Evolution of neuronal dendrites: Dendritic growth may be modu-
lated by calcium signaling. As reported in the biological literature [12-
14], calcium ions enter neurons through multiple channels and then
bind with calmodulin, leading to the activation of CaMKII. Ultimately,
activated CaMKII phosphorylates the cytoskeleton, a crucial constituent
of the dendrite (Fig. 1).

Our model considers Ca?* and activated CaMKII as two mor-
phogens, denoted as U and V, respectively, which can diffuse and mu-
tually influence each other. In contrast to the conventional activator—
inhibitor relationship between two morphogens [30], we propose a
hypothetical precursor-product association between Ca®* and activated
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Fig. 2. Schematic of the Gray-Scott model. Two molecules of morphogen V react with one molecule of morphogen U to form three molecules of morphogen V. Morphogen U is
fed into the reaction at a given “feed” rate F, while morphogen V is removed and turned into product P at a given “kill” rate k.

CaMKII, which forms the basis of the Gray-Scott model [40,41] in our
study. The model has the following reaction,

U+2V — 3V,
V — P

(2.1)

in the domain B (Fig. 2). The first reaction requires one unit of U to
react with two units of V' to produce three units of V. The second
reaction turns one unit of ¥ into one unit of product P. By continuously
adding U with a “feed” rate F and removing product P and excessive
V with a “kill” rate k, the system will drift away from the equilibrium,
producing intricate patterns as nonlinear dynamics unfolds [42].

Calcium signaling can also explain the behavior of dendrites under
an electric field. When an electric field is applied, dendrites tend
to move toward the cathode. This is due to the entry of calcium
ions through depolarized VGCCs, which activate more CaMKII [19—
22,43,44]. In order to effectively represent the electrical polarization
in our model, we have introduced an advection term exclusively to the
morphogen V, representing CaMKII, which more directly contributes
to the formation of the dendrite structure than Ca?*. This modification
has resulted in an advective Gray-Scott model,

u= Duvzu—uu2 + F(1 —u),

—— —

g(u,v)

0+ 6E - Vo = D,Vv+u® — (F + k),

| ——
h(u,v)

(2.2)

where « and v are spatial densities of the diffusive and reactive mor-
phogens; D, and D, are the corresponding diffusion coefficients; g(u, v)
and h(u,v) are reaction terms; F and k are the feeding rate of u and
the draining rate of v, respectively; and E is the electric field with
parameter ¢ controlling the polarization strength. The stability analysis
of the above system without advection is elaborated in Appendix A.

Next, we introduce a phase variable ¢ to represent the dendritic
region primarily composed of the cytoskeleton. Because cytoskeletal
components diffuse only limited distances in dendrites [45], it is
possible to solve this moving boundary problem using an ordinary
differential equation rather than a phase-field partial differential equa-
tion. From Sugimura et al. (2007) [30], we adopt a piecewise ODE to
describe the transition between the bistable states of the absence or
presence of the dendrite,

0.49 when v<T,,
0.49-25(w-T,) when v>T,,
(2.3)

¢ =yc(a(v)—c)c—1) with a(v)= {

where y is a rate constant, a(v) < 1 is decreasing function of morphogen
v, and T, is a threshold value for morphogen v. Dendritic growth occurs
only when a(v) < 0. It is worth noting that the phase variable ¢ has
two stable states, namely 0 and 1, corresponding to the absence and
presence of the dendritic region, respectively.

Gauss’s law: Neglecting electrodynamics effects, Gauss’s law in the
domain B is given by

where the vector field D = ¢E is the electric displacement with ¢
denoting the permittivity. By the standard definition, the electric field is
given by the negative of the gradient of the electric potential, E = —V®.

The quantity ¢ on the RHS of Eq. (2.4) is the free charge density per
unit volume. We simplify the brain tissue as an electrically insulating
dielectric material, i.e., g = 0.

2.2. Initial boundary value problem and finite-element implementation

Here we briefly summarize the coupled partial differential equations
and their strong forms given by
u= Duvzu— w?+ F(l—-u) in B,
Transport of morphogens
v+0E-Vo=D,Vv+u? —(F+kv in B,
Vo =0 in B,

. Gauss’s law
D=d on S,

(2.5)

where S, is the portion of the boundary with the prescribed electric
potential .

Next, we let w;, w,, and w; denote three test fields that vanish on
domain boundary S. After multiplying the PDEs with three test fields
and performing integration by parts, the weak form can be expressed

as
/wludv+/Vw1 ~DuVudv+/w1uvsz—/wlF(l—u)dv=0,
B B B B

/wzz'zdv—/w20V¢~Vvdu+/Vw2~DUVvdu
B B B

—/wzuuzdu+/w2(F+k)UdU:0,
B B

/ Vi, - Vébdv = 0.
B
(2.6)

As is routine, the body is discretized into finite elements such that
B = uB¢, and the nodal variables are taken to be concentrations of
morphogen u, v, and electric potential @, which are interpolated inside

each element by
v= Z VAN A,

u= Z uAN A,
with the index A = 1,2, ... denoting the nodes of the element; N4 the
shape functions; and u”, v4, and ®* representing the nodal concentra-
tions of morphogens « and v and the electric potential @, respectively.
Next, the test fields w,, w,, and w; are interpolated by the same shape
functions in the Galerkin approach,

w :waNA, WZZZW?NA,
After substitution of Eq. (2.7) and Eq. (2.8) into the weak forms

in Eq. (2.6), we arrive at element-level residuals of morphogen u(x, 1),
morphogen v(x,1), and electric field &(x, 1),

and @ = Z dANA 2.7)

and ug:Ew?NA‘ 2.8)

R: =/ NAudv+/ VNA.D,Vudv+ [ NAuldv
BE Be BE
—/ NAF(1 —wdv, (2.9
RY=[ N*dv- [ NAcVo- Vvdu+/ VNA. D, Vvdv
Be Be Be
- | NA’dv+ | NAF+kuvdv, and (2.10)

Be Be
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Fig. 3. Proposed CNN architecture for dendrites pattern recognitions. The input shown here
The labels above each layer are corresponding data dimension settings in Tensorflow [46].

/ VN4 . Vddu.
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These three element-level residuals are assembled into a global resid-
ual, which, when set to zero, represents a system of nonlinear equations
for the nodal degrees of freedom.

The following tangents

A
RA= 2.11)

A A A
(K )AB__aRu ( AB _ u (K )AB__aRM
uu - ouB s uv JuB ’ ud - obB
A A A
(K, )AB:_aRU (K AB _ v ( AB:_aRU
vu ()MB’ vU ()UB, v ad)B’
oRA oR4 oR4
Ky B=—r® (K ,)yAB=__® (g yAB___"@
Ko s Koo oon> (Koo 0B

are required by the iterative Newton-Raphson procedure for conver-
gence. More specifically, the diagonal tangents are given by

KA =— [ NANPAr'dv —/ VN*.D,VN8dv —/ (F +v)NANBdv,
Be Be Be
(2.12)
KAP =— NANBAf‘du+/ NA6V45~VNBdU—/ VN*.D,VN®dv
Be Be Be
+ / 2uuNANBdv— [ (F+kNAN®dv, and (2.13)
’ B
K, =—/ VN4 .VNBqu, (2.14)
Be
and the off-diagonal tangents are given by
KAB = —/ 2uvNANBdv, KAB =/ ’N4N8dv, and
Be B (2.15)
K48 = | NAVNE . vVodo.

Be
Note the electric field E is not coupled with morphogen u and only
“one-way” coupled with the morphogen v; thus, we set off-diagonal
tangents K48, K25, and K2 equal to zero.

The time integrations in Egs. (2.2) and (2.3) are computed via the

backward Euler method,

Uppg =u,+A4ti, ., v, =v,+4t0,,, and ¢, =c,+41¢,,, (2.16)

where n and n+1 are the previous (known) and current (unknown) time
steps, respectively.

We have implemented two-noded linear, four-noded quadrilateral
(UPE4), and eight-noded brick (U3D8) elements, the first in Matlab and
the latter two in Abaqus/Standard [47] by writing user-defined element
(UEL) subroutines, following our previous work [48-52]. For a detailed

is simulated phase variable ¢ obtained from a 2-D simulation with 100 X 100 elements.

Table 1

Summary of material parameters.
Parameter [units] Value Source
Diffusivity D, [pm?s~'] 0.1 [54]
Diffusivity ratio D,/D, [-] [1-6] [54]
Feeding rate F[s7'] [0-0.3] [42]
Killing rate k[s™'] [0-0.08] [42]
Polarization strength o [pm?>mV~'s~'] 0.25
Threshold value Tr([-] 0.1 [30]
Rate constant y [s™!] 10 [30]

verification procedure for our numerical implementation, readers could
refer to Appendix B.

2.3. Inverse pattern recognition via convolutional neural network

To inversely obtain parameters of F and k from real dendrite
images, we utilized a convolutional neural network (CNN) - a machine
learning method that is widely used for image recognition, speech
translation, etc. [53] — as a surrogate model, and trained it with our
finite-element simulations. Our CNN consists of feature-learning and
prediction portions (Fig. 3). The feature-learning portion is a hierar-
chical structure built by repeatable convolutional layers with ReLU
activation functions and max pooling layers. In contrast, the prediction
portion is a fully connected neural network that collects information
from the previous feature-learning portion. The detailed data structure
settings used in each layer are shown in Fig. 3.

For our CNN training, the inputs are binary data of phase variable
¢ obtained at each finite element. Correspondingly, the labeled outputs
are rate constant pairs (F, k) used in the simulations. We have set up
our CNN structure and training pipeline in Tensorflow [46].

3. Results and discussion

We simulate dendrite growth with electrical polarization using our
proposed multi-physics model. We also demonstrate our model calibra-
tion to real neuron images via a CNN. Our intent here is to capture
the phenomenon of dendrite growth via our modeling and simulation
capabilities. Table 1 summarizes the model parameters used in the
following simulations.



S. Wang et al.

Brain Multiphysics 4 (2023) 100071

|
(-]
0 0.5 10 0.5 10 0.5 1 1
] 'Y J )
vo=t 0.5
0
c =
0. 0.5 0.5
z/l z/l z/l
D,/D,

1 2 3

Fig. 4. The impact of diffusivity ratio D,/D, on spatial-temporal evolution of morphogens « and v, and phase variable ¢ in 1-D problem.

3.1. Neuronal dendrite growth without polarization

Parametric study: Here we study the impact of various material
parameters, including diffusivity ratio D,/D, and rate constant pair
(F, k) on dendrite growth in the absence of applied electric fields. We
start with a 1-D dendrite growth simulation that lasts for time z. The
computational domain with a length of / was discretized into 300 two-
noded linear elements in Matlab. Initially, the soma covers a region of
0 < x < (4/300)/, inside which we assigned (u,v) = (0.5,0.25), with
(u,v) = (1,0) assigned to the rest of the domain. Note that a non-
zero initial phase variable ¢, = 10~ was chosen to make Eq. (2.3)
numerically solvable. Additionally, we imposed zero flux boundary
conditions at both ends of the domain to restrict any mass transfer
across these boundaries.

For the parametric study, we first varied the diffusivity ratio D,/D,
while keeping the rate constant pair fixed at (F,k) = (0.028,0.06)
(Fig. 4). We observe that wave-splitting occurs at a diffusivity ratio
around D, /D, = 3, which agrees with other results in the literature [55,
56]. Additionally, both the speed and the number of wave-splitting (or
branching) events increase with an increasing diffusivity ratio.

Next, we study the impact of rate constant pair (F, k) on dendrite
growth at a fixed diffusivity ratio of D,/D, = 4, which is in line with
the biological evidence that Ca*+ diffuse faster than CaMKII [54]. As
expected, the whole domain is overwhelmed by morphogen u when
either F or k dominates (Fig. 5), because either the calcium ion sat-
urates or there is not enough CaMKII to consume it via reaction. When
the rate constant pair (F, k) falls into an appropriate range, however,
wave-splitting patterns with different “spacings” emerge.

As we extend the same analysis to 2-D cases with a fixed diffusivity
ratio of D, /D, = 3, the system tends to exhibit an array of more vibrant
patterns (Fig. 6, left). To explore all possible patterns compactly, we set
the rate constant pair (F, k) as a function of 2-D space,

k(x) = kmin+(kmax_kmin)x/l and F(y)= Fmin+(Fmax_Fmin)y/I’ B.D

where ki, = 0, k. = 0.08, Fi, =0, and F,,, = 0.3 are parameters
used to bound k € [0,0.08] and F € [0,0.3] inside a square domain with
a length of /. The simulated contour of u confirms that our stabilized
boundary aligns with the bifurcation curve F = 4(F +k)?, with intricate
patterns emerging around the point (F,k) = (1/16,1/16), which is in
agreement with previous stability analyses [55,57].

Following the seminal work on the Gray-Scott model [42], we
located six representative patterns in our zoom-in F —k diagram (Fig. 6,

right) and simulated their pattern evolutions over time (Fig. 7). As an
initial condition, all six cases start with soma seeds placed at the center,
inside which we assigned (u, v) = (0.5, 0.25), with (4, v) = (1,0) assigned
to the rest of the domain (Fig. 7). Furthermore, to prevent any mass
transport across the boundaries, zero flux conditions are applied to the
edges of the domain for all cases (Fig. 7). The case of “Mitosis” mimics
a “cell division” process, in which the morphogen u tends to form
dots and phase variable ¢ creates the branching features of the neuron
dendrites at the final stage. In the “Soliton” case, the morphogen u
forms a mixture of dots and stripes, while the phase variable ¢ captures
thicker branching of dendrites. For the rest of the cases, the morphogen
u tends to form mostly solid curves, while the phase variable ¢ displays
branching features with only small variations in the branch thickness.
Space-filling and self-avoidance: Here we examine our model’s abil-
ity to reproduce features of space-filling and self-avoidance observed
in dendrites [8,31]. To begin with, we conducted simulations of den-
drite growth on ideal geometries featuring multiple soma seeds while
enforcing zero flux conditions at the boundary (Fig. 8). During growth,
dendrite arms extend spherically from each soma seed, undergo branch-
ing, and form boundaries once nearby dendrites are present. Two
neurons in an oval domain form a “flat” boundary in between, while
the five neurons in a pentagon form a pentagonal “pizza” (Fig. 8).

Next, we simulated the growth of class IV neurons in Drosophila
larva and compared it qualitatively to experimental data [8]. The
neurons in a Drosophila larva at 120 h were imaged in a 2-D slice viewed
from the dorsal side by tagging transmembrane protein CD4 with a
green fluorescent protein (GFP) (Fig. 9, right). We reproduced the 2-
D geometry in our simulation, with a zero flux boundary condition at
the larva’s boundary, and placed 20 initial soma seeds according to the
experiments.

Over the course of 96 hours, the dendrites migrate isotopically
and occupy the entire domain, as expected. More interestingly, at
120h, each simulated neuron has formed a rectangular-shaped com-
partment centered at its initial soma seed, which is in good qualitative
agreement with the experiments (Fig. 9, left). These findings sug-
gest that the Gray-Scott model, while phenomenological, captures the
plausible morphogen interactions that lead to the dendrite patterns
in the Drosophila larva. Further experimental research is needed to
fully understand the underlying mechanisms that drive this neuronal
development process.

Morphology analysis of real neurons via convolutional neural
network: As mentioned before, we used a machine learning method —
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Fig. 5. The impact of rate constant pair (F,k) on spatial-temporal evolution of morphogen u in 1-D problem.
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Experiment

72 h

Fig. 9. Qualitative comparison between simulation and experiment [8] of class IV neurons in Drosophila larva during development (from 24h to 120h with egg lay defined as
time zero). Neurons in the experiment are marked with the transmembrane protein CD4 tagged with a green fluorescent protein (GFP). The coordinates are added to show that
the larva is viewed from the Dorsal (D) side, the Anterior (A) is up, the Posterior (P) is down, and the dashed arrow points in the Ventral (V) direction. Scale bar, 200 pm. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

convolutional neural network — to inversely obtain physical parameters
from real dendrite morphologies.

For our initial training data pool, we prepared 100 2-D simulations
with a fixed diffusivity ratio of D,/D, = 3, and covering a parameter
space of k € [0.05,0.07] and F € [0,0.1] (Fig. 10a). Note that each
simulation has 100 x 100 elements, and we used the elemental phase
variable ¢ at the final frame, when the system is in equilibrium, as
training data. We then removed simulations that yield no patterns (¢ =
Oor1 throughout the domain) since they are trivial and will confuse
CNN with non-unique training labels. After data removal, the available
training data pool was reduced to a dimension of 100? x 40. We then
prepared a testing data pool with a dimension of 100?x 16, intentionally
offsetting the training dataset in order to test the model’s ability to
extrapolate. We downloaded real images of dendrites in Drosophila
larva, from which the CNN will eventually extract model parameters
(Fig. 10b).

During training, the loss function (mean squared error) is minimized
as the program iteratively optimizes the neural network weights [46].
The training history indicated that the loss function decays quickly after
about the first 10 epochs (Fig. 11a). The neural network’s performance
on the testing dataset was recorded for later evaluation after each
epoch, or a single iteration over the entire training dataset. We showed
that the predicted rate constant pairs (F, k) are mostly sitting on top of
the training ones (Fig. 11b). The CNN was also demonstrated to make
reasonable extrapolations by yielding minor “displacements” between
the testing and predicted dataset (Fig. 11c, green lines).

Finally, we used our fully-trained CNN to extract the rate constant
pair (F, k) from five real neuron images. The results show that extracted
parameters are all clustered at one spot in the F — k diagram, which is
to be expected because these five neurons were taken from a consistent
region in Drosophila larva and thus share similar patterns (Fig. 11c).
More importantly, our fully-trained CNN can provide consistent results

even with noticeable differences like rotation angle and position among
images (Fig. 10b).

3.2. Neuronal dendrite growth with electrical polarization

Homogeneous electric field: It has been reported that polarizations
of dendrites could be guided by stimuli, such as chemo-attractant gradi-
ents, electric fields, and mechanical deformations [18,22,58]. Here we
focus on simulating electric field-induced polarizations and calibrating
our model to experiments by McCaig et al. (2000) [22].

In their experiment, neurons obtained from Xenopus laevis embryos
were grown for ¢ = 5h in a uniform electric field with a magnitude
of |E| = 150mV mm~!. Neurons without any external stimulus served
as controls. The experiments showed that the control samples grew
relatively spherical, while stimulated neurons tended to grow towards
the cathode (Fig. 12, upper panels). More importantly, the degree
of polarization correlates positively with the strength of the electric
field [22].

We captured the same observation in our simulation by turning po-

larization strength parameter ¢ on and off in Eq. (2.2) (Fig. 12, bottom
panels). We also quantitatively compared our model against experi-
ments in terms of the orientation distributions of dendrites (Fig. 13a,
b). Our simple formulation allows us to vary polarization strength
parameter o, and we found that o7 = 500 pm? mV~! yielded the lowest
mean squared error (Fig. 13c) and captured the experiments reasonably
well.
Inhomogeneous electric field: Here we run full 3-D simulations with
inhomogeneous electrical polarizations. We demonstrate four different
electrode setups in which the anode and cathode have potentials of @ =
+75mV, respectively (Fig. 14). As expected, our electrode setups yield
highly inhomogeneous electric potential distributions. The dendrites’
growth aligns with the electric field E (red unit vectors) pointing
toward the cathode.
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Fig. 10. Input data for CNN. (a) Initial training data pool, (b) real images of IV dendrites in Drosophila larva downloaded from an online open source [1]: https://neuromorpho.org/.
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Fig. 11. Results of inverse dendrite pattern detection via CNN. (a) Loss/mean squared error as a function of epoch/iteration during training, (b) comparison between training data
and predicted data, and (c) model’s extrapolation and prediction of physical parameters from real neurons.
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Fig. 12. Comparison between real and simulated dendrites at = = 5 h with contour plot showing orientations. without any applied electric field, the dendrites are more isotropically
distributed, while a clear cathodal reorientation is observed when an electric field with a field strength of |E| = 150mV mm™' is applied horizontally. Top images are taken from [22].
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4. Limitations and potential improvements

Our study of dendrite development is still in its infancy. Much has
to be done to advance our understanding of the process and refine
our mathematical formulations. First, while the Gray—Scott model pro-
duces patterns that are comparable to real dendrite morphologies, it is
imperative to validate the biological mechanism our model represents
through well-designed experiments. Secondly, the convolutional neural
network is not inherently scale- and rotation-invariant. Hence, for more
accurate training and extrapolation, we will need to extract scale-
and rotation-independent information from dendrite patterns to use
as training data. Thirdly, in this paper we focused on modeling the
polarization of dendrites induced by electric fields only. However,
neuronal growth is sensitive to various stimuli, including gradients
of chemo-attractants, mechanical environments, and their couplings.
Future multi-physics modeling endeavors should include these factors
as well.

5. Concluding remarks

In this study, we have developed a dendrite growth model in-
spired by the activation of CaMKII via Ca?* signaling. Unlike the
conventional activator-inhibitor diffusion-reaction system, the model
incorporates Ca2t and CaMKII as a precursor and product relations.
Furthermore, we incorporated electrical polarization as an advection
term in our model. We implemented our model numerically using
the finite-element method, which enabled us to replicate essential
characteristics of dendrite growth, including self-avoidance, branching,
space-filling, and electrical polarization in arbitrary geometry. Finally,
we designed a convolutional neural network to inversely extract model
parameters from real dendrite patterns. Overall, our work leverages
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modeling and simulation capabilities to unravel the possible biological
mechanisms that govern the dendrite growth process.
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Appendix A. Stability analysis of Gray-Scott model
Neglecting diffusion and advection terms for a moment, the reaction

terms of g(u, v) and h(u, v) in Eq. (2.2) allows for a trivial homogeneous
steady state of

(ug, vp) = (1,0). (A.1)
For the following relationship between F and k to hold [57],
d=1-4(F +k)?/F >0, (A.2)
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Fig. 13. Quantitative comparison between real and simulated neuron dendrites in terms of orientation distributions. (a) Controlled sample, (b) stimulated neuron, and (c) the
mean squared error as a function of sz. Note that gray triangles are discrete parameter trials, the solid red curve is the shape-preserving curve fit, and the dashed vertical line
indicates the optimized parameter. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the system experiences two additional steady states of

(o) = (5 (1 = V), Sa(1 +/a) a3
and
g o) = 51+ V), Ta1 = VD, a4

where the parameter « = F/(F + k) keeps track of the rate at which u
is added in terms of the rate at which v is depleted.

To investigate the stability of all three steady states ((uy,vy) with
the subscript O denotes I, II, and III), we calculate the eigenvalues of
the Jacobian matrix,

|

The first state (uy, vy), is always linearly stable, because tr (J) = —2F—k <
0 and det(J) = F(F + k) > 0. For the second and third state, the trace
and determinant of the Jacobian are found to be tr(J) = —U% + k and
det(J) = (F + k)(u(z) — F). In the second case, considering Eq. (A.4),
tr(J) > 0 and det(J) < 0, indicating that it is always unstable. Finally,
the third case, considering Eq. (A.3), may be stable.

We overlay the bifurcation curve F = 4(F + k)? onto the simulated
morphogen u (Fig. 6). To the left of the bifurcation curve, the system
experiences three steady states, and to the right of the curve, only
state (up,vp) exists. The saddle point of the curve locates at (F,k) =
(1/16,1/16). For a more detailed study of Hopf bifurcation in the
Gray-Scott model, readers can refer to [55].

g
%

ou

—2ugvy

2ugvy — F — k| (A-5)
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Appendix B. Verification of our finite element codes

Analytically-tractable solutions for our coupled PDEs system are
not trivial to obtain. As an alternative, we verify our finite element
implementation by comparing independent solutions from Matlab and
Abaqus.

We restrict our attention to the 1-D domain with a length of /, where
the dendrite growth aligns with the applied electric field. Under the
above assumption, the PDE of morphogen u in Eq. (2.5) is now given
by

2
i=D,%Y% _u?+Fl—u) in O<x<l. B.1)
0x2
Next, the PDE for morphogen v in Eq. (2.5) is now given by
2
U—o%g—i: U%+uuz—(F+k)v in 0<x<lI. (B.2)

Finally, the PDE for electric potential @ in Eq. (2.5) is now given by

2
PP _o in 0<x<l,
0x2
P(x = 0) = D, (B.3)
dx=1)=,

where @, and @, are electric potentials prescribed at the two boundary
nodes. The soma initially occupies a range of 0 < x < (4/300)/,

inside of which we prescribe (u,v) = (0.5,0.25) and outside which we
prescribe (u,v) = (1,0). Meanwhile, the electric potential is initially
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Fig. 14. 3-D simulation of dendrites growth with four different inhomogeneous electrical polarizations (viewed from the top). The red arrows indicate the direction of the electric
field E, and the simulated contours of electric potential are shown at the corners. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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Fig. 15. Comparison of solutions using different element types of 1-D linear element in Matlab, UPE4, and U3D8 elements in Abaqus. Left: simulation with no electric potential
presence. Right: simulation with an electric potential difference of §® = &, —®, =2V applied across the domain. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

absent throughout the domain. The initial phase variable is ¢, = 107>
throughout the domain. The material parameters used for the verifica-
tion are: D, = 0.04m?s™!, D, = 0.0l m?s™!, F =0.028s5!, k = 0.06s7!,
y =10s"!, T, = 0.1, and ¢ = 0.05m?s~! V-1, We discretize the compu-
tational domain into 300 elements and consider the two-noded linear
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elements in Matlab, and four-noded quadrilateral (UPE4) and eight-
noded brick (U3D8) elements in Abaqus. As expected, both programs
produce nearly-identical results at r = 5000 s, with discrepancies due to
the slight differences between time-stepping algorithms, and thus we
consider them fully verified (Fig. 15).
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