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A Numerical Study on the
Influence of Cerebrospinal Fluid
Pressure on Brain Folding
Over the past decades, the buckling instability of layered materials has been the subject of
analytical, experimental, and numerical research. These systems have traditionally been
considered with stress-free surfaces, and the influence of surface pressure is understudied.
In this study, we developed a finite element model of a bilayer experiencing compression,
and found that it behaves differently under surface pressure. We investigated the onset of
buckling, the initial wavelength, and the post-buckling behavior of a bilayer system
under two modes of compression (externally applied and internally generated by
growth). Across a wide range of stiffness ratios, 1 < μf /μs < 100, we observed decreased
stability in the presence of surface pressure, especially in the low-stiffness-contrast
regime, μf /μs < 10. Our results suggest the importance of pressure boundary conditions
for the stability analysis of bilayered systems, especially in soft and living matter physics,
such as folding of the cerebral cortex under cerebrospinal fluid pressure, where pressure
may affect morphogenesis and buckling patterns. [DOI: 10.1115/1.4057020]
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1 Introduction
Layered materials can become unstable under compressive strain,

forming different buckling patterns such as wrinkles [1,2], folds
[3,4], and creases [5–8]. The formation of wrinkles and folds is
sometimes considered a mode of failure, but in some cases, it is
actually a desirable behavior that enhances functionality [9–12].
For example, many biological systems experience instability
throughout their development or during some functions, including
cell membranes, leaves, skin, intestines, and the lungs [10,13–16].
The brain is another example of a layered material experiencing

instability, resulting in prominent peaks, called gyri, and valleys,
called sulci. The brain is composed primarily of two tissues, gray
matter and white matter. The outer gray matter layer of the brain,
also known as the cortex, begins its transition from smooth to
highly folded during the third trimester of gestation. Neuron cell
bodies, responsible for the brain’s information processing abilities,
are primarily housed in the gray matter, while axons that connect
neurons spread throughout the white matter. The cortical folding
process, also called gyrification, appears to stem from instabilities
induced by compressive stresses arising in the gray or white
matter. Several theories have been developed to describe the mech-
anism of cortical folding, including different growth rates in cortical
layers [17] and tension in white matter axons [18]. Understanding
the process of cortical folding is crucial because folding patterns
are associated with the functionality of the brain. Abnormalities
in gyrification have been associated with epilepsy, lissencephaly,
polymicrogyria, and autism spectrum disorder [19–22].
Instabilities in bilayered structures have been investigated using

various approaches including theoretical, experimental, and numer-
ical studies [23–25], including both finite element and incremental
methods [26–28]. The influence of compression modes—e.g., due
to external constraints, growth, prestretch, or shrinking—on the crit-
ical strain has also been studied both analytically [29,30] and
numerically [31]. Computational models of the developing brain

have led to a comprehensive understanding of internal factors gov-
erning the formation of gyri and sulci, and have highlighted the
importance of growth rate, cortical thickness, and stiffness ratio
between gray and white matter in brain folding [25,32–37].
The main focus of this research has been the instability behavior

under a zero-stress boundary condition. However, many layered
structures are subjected to a pressure boundary condition, either
constant or variable, from huge geological formations (e.g., water
pressure on the Earth’s crust) to barely macroscopic biological
systems (e.g., air pressure on the lungs and fluid pressure on the
digestive tract). Inside the skull, the brain is subject to pressure
from the cerebrospinal fluid (CSF). CSF is a body liquid that circu-
lates in the space between the brain surface and meninges, protect-
ing the brain from external damage. Normal CSF pressure is from
0.2 kPa to 0.8 kPa in an infant, and 1.3 kPa to 2 kPa in an adult
[38,39], although it can increase up to 6 kPa [40,41] in severe
cases. Several neurodevelopmental disorders are associated with
abnormalities in CSF circulation, such as hydrocephalus, which is
an abnormal accumulation of CSF that results in larger ventricles.
Excessive pressure over the brain surface in hydrocephalus causes
changes in cortical pattern, including flattened gyri and narrow
sulci regions. Other neurodevelopmental disorders associated with
abnormal CSF also show variations in cortical thickness and signif-
icant changes in folding patterns [42–45].
Most models of cortical folding have primarily concentrated on

intrinsic factors, assuming that gray and white matter act as an iso-
lated bilayer system [35,46,47]. Indeed, while an early theory hypoth-
esized that cortical folding happens because of the constraint of the
skull [48], experiments demonstrated that the folding of the cortex
does not rely on a disproportionate increase in the size of the brain
with respect to the capacity of the cranial cavity [49]. Despite this,
more recent research has suggested that factors outside the brain
itself can also affect cortical folding. Several studies have shown
that the skull constraint influences the shape of the cortical layers, flat-
tening them as they make contact with the skull [25,50]. Beyond the
skull, the mechanical properties of the pia mater have also been found
to influence cortical folding, increasing the wavelength [51]. Finally,
including CSF pressure improves the predictions of absolute Gauss-
ian curvature compared to a brain bilayer model in isolation [52].
Recently, some studies on cortical folding have moved beyond a

narrow focus on instability characteristics, such as critical strain and
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wavelength, and have investigated more subtle features of the brain.
For instance, during brain development, a consistent thickness dif-
ference between the gyri and sulci emerges. This phenomenon has
been the object of study for nearly a century [53], has continued to
attract interest. Our recent work has shown that this is the result of
the mechanical forces acting on the cortex during growth and
folding [36,54], and is further affected by increased growth in
gyri [55]. Cortical thickness is an important biomarker of neurolog-
ical health, and small regional variations in cortical thickness have
been associated with disorders such as autism spectrum disorder
[21].
We have previously studied the influence of surface pressure on

instabilities via a linear instability analysis of an inhomogeneous
bilayer with pressure applied to the top surface [56]. Our results
showed that a bilayer with surface pressure is always more unstable
than an equivalent system in isolation. While the effect of external
surface pressure on instability has been theoretically investigated in
cylindrical [57] and spherical geometries [58], a comprehensive
numerical study in flat systems has not been conducted. In this
study, we consider the cerebrospinal fluid as an external constraint
over the brain surface, and investigate the stability criteria and post-
buckling behavior of the brain bilayer using a numerical method.
Finally, we aim to understand how the cerebrospinal fluid pressure
influences thickness variation throughout the brain.

2 Method
2.1 Mathematical Model. Here, we investigate the behavior

of a bilayer system that undergoes a homogeneous deformation
under compression and surface pressures. We consider points in
the reference configuration, X, which undergo a motion φ to their
corresponding location in the deformed configuration, x=φ(X, t).
The deformation gradient is given by

F =
∂x
∂X

(1)

following the framework of finite growth [59], the deformation gra-
dient can be multiplicatively decomposed into a growth deforma-
tion and an elastic deformation, F=FeFg. Here, Fg irreversibly
maps the initial state to the stress-free grown intermediate configu-
ration representing how the body changes through the addition or

removal of material, while F e elastically deforms the intermediate
state to the final stressed state to ensure compatibility.
Both film and substrate are assumed to be neo-Hookean hypere-

lastic materials with strain energy

ψ =
L

2
ln2 (Je) +

μ

2
tr(Ce) − 3 − 2 ln (Je)[ ] (2)

where L and μ are the Lamé constants, and Ce = FeTFeC e=F eTF e

is the elastic right Cauchy–Green deformation tensor. The Cauchy
stress is thus given by

σ =
1
Je

L ln(Je) − μI + μBe[ ] (3)

where B e=F eFeT is the elastic left Cauchy–Green deformation
tensor.
Finally, assuming quasi-static deformation, negligible accelera-

tion, and no body forces, the balance of linear momentum is
given by

∇ · σ = 0 (4)

2.2 Computational Model. We implemented our computa-
tional model in commercial software ABAQUS/EXPLICIT [60] with an
explicit dynamic solver for large strains. To ensure the quasi-static
equilibrium of the system, the kinetic energy needs to be less than
5% of the internal energy. To ensure this, we define a small viscous
pressure, 1 × 10−5 kPa, compared to the values for the external pres-
sure, at the top surface of the bilayer. Additionally, both film and
substrate are given a density of 1 kg/m3. In order to approximate
incompressibility, we considered the bulk modulus of the materials
to be much larger than the shear modulus (K= 1000μ).
We created a three-dimensional finite element model of a bilayer

rectangle with ℓ= 100 mm, H= 20 mm, W= 0.25 mm. The initial
thickness of the film is T= 1 mm, (Fig. 1). For both cases, the
film’s top surface is allowed to make sliding, frictionless, contact
with itself without penetration. The non-zero stress boundary is
added as a follower surface traction in the X2 direction, and the
values are normalized by the film stiffness as P/μ f .
The computational domains were discretized into 6720 eight-

noded brick solid elements (C3D8) for the whole-domain com-
pression model and 6720 eight-noded brick element with reduced

Fig. 1 In vivo anatomy and in silico geometry. Left: brain anatomy, including depicted with cortex, subcortex, cerebrospinal
fluid, meninges, and skull. Right: The computational domain, consisting of a rectangular slice approximating the cortex and
subcortex, subject to surface pressure representing the cerebrospinal fluid. Two modes of compression are investigated:
whole-domain compression and film growth. Boundary conditions are shown in black, dimensions in gray, and the internal
axial stress state in the deformed configuration is shown by white arrows.
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integration points (C3D8R) for the film growth model. To attain a
sufficient mesh density while minimizing the computational time,
we use a fine mesh with four elements across the film, 240 elements
across the length, and one element in the X3 direction. To trigger the
buckling over the surface, a small imperfection, either in the geom-
etry or the material properties, is needed [55,61]. For our simula-
tions, we introduced a geometric imperfection in a small region
(2% of the length) in the middle of the domain by slightly changing
the X2 coordinates of nodes on the interface of the two layers
according to

X2
p = X2 − uT cos

2π
ℓ
X1

( )
(5)

where X2
p is the new y coordinate, X2 is the original y coordinate,

and u is the magnitude of the imperfection as a fraction of the
film thickness. Our results were found to be independent of the
magnitude, with u ranging from 0.02 to 0.1, and the location
along the length of the model. The following results use a perturba-
tion of 2% in the center of the domain.
We modeled two modes of compression, whole-domain com-

pression and film growth (Fig. 1). For the case of whole-domain
compression, there is no growth (i.e., the growth tensor is Fg = I
throughout the entire domain). Compression is applied on one
side, reducing the length to λℓ, while the other is fixed in the X1

direction due to the symmetry of the problem. The front and back
faces are fixed in the X3 direction, and the bottom is fixed in the
X2 direction. The axial strain in the domain is then calculated as
ε = 1 − λ.
For the case of the growing film, the material behavior is defined

in a user subroutine (VUMAT). The film experiences areal growth

Fg =
���
ϑg

√
I + (1 −

���
ϑg

√
)n0 ⊗ n0 (6)

where ϑg and n0 represent the growth parameter and the unit vector
normal to the plane of growth in the reference configuration, respec-
tively. The growth parameter quantifies the area change in the
growing film, detFg = ϑg. To establish a simple correspondence
between simulation time and volume growth, we assume the evolu-
tion of ϑg is constant in time, such that ϑg = 1 + ϑ̇

g
t. The axial

strain in the film is then calculated as ε = 1 − 1/
���
ϑg

√
. The substrate

is purely elastic, i.e., Fg = I. Finally, roller conditions are assigned
to the side, front, and back faces, and the bottom is fixed in all
directions.
We explored a wide range of stiffness ratios, β = μ f/μs=

[1, 1000], along with different values of normalized pressure,
P/μ f = [0.5, 4], for both compression modes. We found the critical
strain for each stiffness ratio by looking at the total strain energy of
the film; the strain energy reaches a peak value when the bilayer

becomes unstable, and decreases after the buckling point. The
initial wavelength was calculated by counting the number of apparent
waves, kc, shortly after the buckling point, and then normalized
by the film thickness, Lc/T = L/kc/T , throughout our simulations.
Finally, thickness was calculated at each node on the top surface as
the minimum distance to a node on the film-substrate interface. To
identify gyral and sulcal points, a horizontal threshold was identified
at each time point that divided the nodes into roughly half above and
half below. From this, we calculated the average gyral and sulcal
thicknesses and the thickness ratio, tg/ts.

3 Results and Discussion
3.1 Critical Strain. To verify our results, we first compared

them against the analytical solution of the zero-pressure case [29],
finding good agreement (Fig. 2). To investigate the effect of
surface pressure on the stability of our bilayer system, we then
further compared the critical strains in the zero-pressure cases
with various normalized pressure values (Fig. 2). As expected,
adding pressure accelerates the initiation of buckling. This is espe-
cially true for softer films; when adding a high pressure (P/μ f = 4)
to a bilayer with low stiffness ratio (β= 3), the critical strain
decreases by 28% and 13% for the whole-domain compression
and film growth, respectively. However, increasing the stiffness
ratio reduces the pressure effect gradually.
Increasing the pressure makes the system more unstable in both

compression modes, but it clearly has a more significant impact
on the whole-domain compression (Fig. 2(a)) models while the
effect on growth-induced compression models is much smaller
(Fig. 2(b)).
Also, we aimed to compare the analytical data from Ref. [56]

with our finite element results for the whole-domain compression
case. The general trend is similar in both sets of results, with stiff-
ness ratio playing a dominant role, correlating inversely with buck-
ling point, and increasing pressure further reducing the stability.
However, that work found a discontinuity in critical strain when
the pressure is more than two times the film’s stiffness and sug-
gested further exploration of this phenomenon in numerical simula-
tions. Our simulations did not reveal the discontinuities predicted by
Ref. [56]. As those discontinuities occurred when the system was
very nearly, but not quite, unstable at strain values that caused insta-
bility for nearby parameter combinations, it is likely that, in both
numerical simulations and physical systems, natural or prescribed
perturbations push the system over into instability.

3.2 Critical Wavelength. To investigate the effect of surface
pressure on the resulting buckling characteristics of our bilayer

Fig. 2 Critical strain for stiffness ratios between 1 and 1000 for two compression modes (the
dashed lines are the analytical results for the zero-pressure case from Ref. [36])
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Fig. 3 Critical normalized wavelength for stiffness ratios between 1 and 1000 (the dashed
lines are the analytical results for the zero-pressure case from Ref. [36])

Fig. 4 Top: effect of normalized pressure for β=3 at different growth values on (a) average thickness and (b) gyral (solid lines)
and sulcal (dashed lines) thicknesses. Bottom: effects of normalized pressure on the gyral-sulcal thickness ratio: (c) β=3
throughout growth ϑg = [1, 3] and (d ) β= [1, 1000] at a cortical growth of ϑg = 2.2.
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system, we compared the initial buckling wavelengths in the zero-
pressure cases with various normalized pressure values (Fig. 3). Our
results agree with the analytical results from Ref. [29], showing that
a higher stiffness ratio leads to a larger normalized wavelength for
both compression cases. Adding the pressure to our bilayer model
results in slightly smaller normalized wavelengths compared to
the zero-pressure bilayer, in agreement with analytical predictions
from Ref. [56]. However, these effects are more modest than
those seen in the critical strain; for example, for relatively small
stiffness ratios (β= 3), high pressure (P/μ f = 4) results in a 15%
and 5% decrease in the critical wavelength for whole-domain com-
pression (Fig. 3(a)) and film growth (Fig. 3(b)), respectively.

3.3 Thickness Ratio. Cortical thickness is a biomarker of neu-
rological health [20,22,43]. Generally, gyral regions are thicker than
sulcal regions in the brain [36]; this can be measured by the thick-
ness ratio, tg/ts, which is generally greater than one. Here, we mea-
sured the thickness ratio by averaging the thickness of the apparent
gyral peaks and sulcal valleys, based on the vertical position of the
nodes. We changed the threshold in each time point and each simu-
lation in order to divide the film into roughly half gyral and half
sulcal nodes.
As previous results have shown that thickness ratio decreases

with increasing thickness ratio, here we consider a soft film, with
β= 3, in the case of growth only. As growth takes place, the
average thickness increases until buckling occurs and the thickness
abruptly decreases (Fig. 4(a)). When applying surface pressure,
instability happens earlier; then as pressure increases, the average
thickness across the domain consistently decreases, as pressure on
the surface will resist the film’s expansion in that direction after
buckling. When considering gyral and sulcal thicknesses separately
(Fig. 4(b)), we see that both gyri and sulci thin after buckling, but
that sulci thin much more. As pressure is added, this trend is exac-
erbated, with higher pressure causing larger drops in sulcal thick-
nesses. However, after a secondary instability, gyri thin further
and the two thicknesses begin to converge.
As seen previously [54,55], the thickness ratio starts from one

(representing a film with uniform thickness) and gradually increases
to reach a maximum value before decreasing (Fig. 4(c)). The dra-
matic thinning of sulci under pressure causes the thickness ratio
to increase as pressure increases; throughout the course of
growth, higher pressures correspond to higher thickness ratios.
Finally, we investigated the changes in thickness ratio across a

large range of stiffness ratios (Fig. 4(d )). Previous theoretical and
numerical predictions [36,55] suggested that this ratio decreases
with increasing stiffness ratios; in essence, this emergence of thick-
ness inhomogeneities is solely a phenomenon of soft films on soft
substrates (β< 10). Our results agree with this, showing that the
gyral-sulcal thickness ratio decreases as the stiffness ratio increases,
even in the presence of surface pressure.

3.4 Wrinkling Morphologies. Several studies have investi-
gated the formation and evolution of various instability patterns,
and the effects of stiffness ratio, thickness ratio, growth rate, and
other parameters [55,62–64]. Here, we sought to investigate the
role of surface pressure in wrinkling patterns for both whole-domain
compression (Fig. 5(a)), and film growth (Fig. 5(b)) shortly after the
initial bifurcation (critical) point.
In both cases of compression, as the normalized pressure

increases, the pattern shifts from sharper creases, with deep sulcal
fundi and wide gyral crests, to more symmetric wrinkles. Addition-
ally, the wave number increases with increasing pressure, and the
wavelength becomes smaller. Our results suggest that emergent
morphologies are sensitive to changes in boundary conditions for
low stiffness ratios, and increasing the pressure ratio modifies the
instability pattern.

4 Conclusion
The instability behavior of bilayer systems of different film-

substrate stiffness ratios has been widely investigated; however,
few studies have addressed the influence of surface pressure on
stability. Our study comprehensively examines the buckling and
post-buckling behavior of a film-substrate bilayer subjected to
two different compression modes under varying amounts of
applied surface pressure. Although we have included a wide
range of stiffness contrasts between the film and substrate, we
mainly focused on bilayer materials with smaller stiffness regimes
to recapitulate the effect of the cerebrospinal fluid pressure on
brain tissue instability. We showed that increasing pressure
always decreases the stability of the system, especially for bilayer
systems with similar stiffnesses in the film and substrate, and also
slightly decreases the wavelength. These effects are most pro-
nounced when the contrast between the film and substrate stiff-
nesses is less than ten, losing their influence when the stiffness
ratio increases. In addition, surface pressure decreases the average
film thickness, and increases the gyral-sulcal thickness ratio by
causing sulci to thin more. Finally, the addition of surface pressure
leads to the formation of shorter waves and more symmetric pat-
terns with wider sulcal fundi, sharper gyral peaks.
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Fig. 5 Simulated brain morphology for stiffness ratio β=3 and normalized surface pressure P/μf = [0, 2, 4] for (a) whole-
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