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Abstract 1 

Many genetic models (including models for epistatic effects as well as genetic-by-environment) involve 2 

covariance structures that are Hadamard products of lower rank matrices. Implementing these models 3 

require factorizing large Hadamard product matrices. The available algorithms for factorization do not 4 

scale well for big data, making the use of some of these models not feasible with large sample sizes. 5 

Here, based on properties of Hadamard products and (related) Kronecker products we propose an 6 

algorithm that produces an approximate decomposition that is orders of magnitude faster than the 7 

standard eigenvalue decomposition. In this article, we describe the algorithm, show how it can be used 8 

to factorize large Hadamard product matrices, present benchmarks, and illustrate the use of the method 9 

by presenting an analysis of data from the northern testing locations of the GE project from the 10 

Genomes-to-Fields Initiative (n~60,000). We implemented the proposed algorithm in the open-source 11 

‘tensorEVD’ R-package. 12 

 13 

Introduction 14 

Hadamard products of positive definite matrices appear in many genetic models including gene-by-gene 15 

(e.g., additive-by-additive or additive-by-dominance, Henderson 1985) and gene-by-environment 16 

interactions (Crossa et al. 2006) as well as in hybrid prediction models (Bernardo 1998). In this article, 17 

we focus on high-dimensional Hadamard products derived from two positive semi-definite matrices, 18 

each with a dimension considerably smaller than the resulting Hadamard product.  19 

To motivate this problem, consider a reaction norm infinitesimal model (Falconer and Mackay 1996) 20 

for 𝑛𝐺  genotypes tested over 𝑛𝐸  locations (environments). Following Jarquín et al. (2014), interactions 21 

between genetic and environmental factors can be modeled using a Gaussian random effect with a 22 

covariance matrix 𝐊 which is the product of a genetic (𝐊𝐺, derived from DNA or pedigree data) and an 23 

environmental (𝐊𝐸, typically derived from environmental covariates) relationship matrix. If all 24 

genotypes are tested in all environments, 𝐊 is a Kronecker product 𝐊 = 𝐊𝐺 ⊗ 𝐊𝐸 of dimension 𝑛 =25 

𝑛𝐺 × 𝑛𝐸 . However, usually, not all genotypes are tested in all environments and genotypes may be 26 

replicated. In these cases, the 𝐊 matrix takes the form 𝐊 = (𝐙1𝐊𝐺 𝐙1
′ ) ∘ (𝐙2𝐊𝐸𝐙2

′ ) where 𝐙1 and 𝐙2  are 27 

incidence matrices connecting phenotypes with the rows (and columns) of 𝐊𝐺 and 𝐊𝐸, respectively, and 28 

‘∘’ denotes the Hadamard product. A very similar problem arises when modelling hybrids’ effects where 29 
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𝐊𝐺 and 𝐊𝐸 are replaced by additive relationship matrices between the female and male parental lines 1 

(Bernardo 1998). 2 

Fitting Gaussian models with dense covariance structures such as the one presented above requires 3 

factorizing 𝐊 using, for example, the eigenvalue decomposition (EVD) of K. The EVD has an 𝑂(𝑛3) 4 

computational complexity; therefore, a standard decomposition of K does not scale well to large sample 5 

sizes. To tackle this problem, we use results about the EVD of Kronecker products, and the fact that 6 

Hadamard products are sub-matrices of Kronecker products, to propose an algorithm that derives a basis 7 

for 𝐊 which only requires factorizing 𝐊𝐺 and 𝐊𝐸 matrices which usually are much smaller than 𝐊. We 8 

show that the proposed approach provides a very good approximation to the target matrix (𝐊) and that, 9 

in large-n problems, the proposed approach can be orders of magnitude faster than performing EVD on 10 

𝐊 directly. Finally, we provide real data analyses showing that the proposed approach yields very close 11 

variance components estimates and almost an identical prediction accuracy in cross-validation that an 12 

exact EVD. The methods described in this article are implemented in the open-source ‘tensorEVD’ R-13 

package which is available through CRAN and the GitHub repository. 14 

 15 

Methods 16 

Recall the eigenvalue decomposition (EVD) of an 𝑁 × 𝑁 positive semi-definite matrix 𝐊 which has the 17 

form 18 

𝐊 = 𝐕𝐃𝐕′ 19 

where 𝐕 = [𝒗1, . . . , 𝒗𝑁] is an orthonormal matrix (i.e., 𝐕′𝐕 = 𝐈) whose columns 𝒗𝑘 (𝑘 = 1, … , 𝑁) are the 20 

eigenvectors and 𝐃 = 𝑑𝑖𝑎𝑔(𝑑1, . . . , 𝑑𝑁 ) is a diagonal matrix with the eigenvalues 𝑑1 ≥ ⋯ ≥ 𝑑𝑁 ≥ 0. 21 

Consider the Kronecker product (‘⨂’) of two symmetric positive semi-definite matrices, 𝐊1 and 𝐊2, 22 

𝐊 = 𝐊1⨂𝐊2.                                                                  (1) 23 

Let the EVD of the two matrices in the right-hand side be 𝐊1 = 𝐕1𝐃1𝐕1
′ and 𝐊2 = 𝐕2𝐃2𝐕2

′, 24 

respectively. Replacing these matrices with their EVD we get: 25 

𝐊 = (𝐕1𝐃1𝐕1
′)⨂(𝐕2𝐃2𝐕2

′). 26 

Using properties of Kronecker products (e.g., Searle 1982, p. 265), it can be shown that the 27 

eigenvectors of 𝐊 are Kronecker products of the eigenvectors of 𝐊1 and 𝐊2. Likewise, the eigenvalues 28 
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of 𝐊 are Kronecker products of the eigenvalues of 𝐊1 and 𝐊2 (see Supplementary Note 1 for a proof). 1 

Specifically, we have that (a numerical example of the above results is presented in Supplementary Note 2 

2): 3 

𝐊 = 𝐕𝐃𝐕′ = (𝐕1⨂𝐕2)(𝐃1⨂𝐃2)(𝐕1⨂𝐕2)′. 4 

A Hadamard product (‘∘’) of two matrices is a sub-matrix of the corresponding Kronecker product. 5 

For example, an 𝑛 × 𝑛 matrix:  6 

𝐊0 = (𝐙1𝐊1𝐙1
′ ) ∘ (𝐙2𝐊2𝐙2

′ ),                                                            (2) 7 

is a sub-matrix of 𝐊1⨂𝐊2 in Equation (1). Therefore, the linear space spanned by (𝐙1𝐊1𝐙1
′ ) ∘ (𝐙2𝐊2𝐙2

′ ) 8 

in Equation (2) is a sub-space of the linear space spanned by 𝐊1⨂𝐊2. This suggests that we can find a 9 

basis for a Hadamard product from the EVD of the corresponding Kronecker product. The Tensor EVD 10 

algorithm is inspired by this idea. 11 

Tensor EVD algorithm 12 

We assume that the input data consist of the following: 13 

• Covariance structures: 𝐊1 and 𝐊2 of dimensions 𝑛1 × 𝑛1  and 𝑛2 × 𝑛2, respectively. For example, 14 

𝐊1 may be a genomic relationship matrix and 𝐊2 may be an environmental relationship matrix 15 

describing environmental similarity between testing environments.  16 

• IDs: 𝐈𝐃1 and 𝐈𝐃2 are 𝑛-vectors (n here is the sample size) mapping from observations to the rows 17 

and columns of 𝐊1 and 𝐊2, respectively. (The row- and column-names of  𝐊1 and 𝐊2 are the 18 

unique entries of 𝐈𝐃1 and 𝐈𝐃2, respectively.) These IDs are used to form the incidence matrices 𝐙1 19 

and 𝐙2  in Equation (2). For instance, the matrix 𝐙1 𝐊1𝐙1
′ can be obtained by indexing rows and 20 

columns of 𝐊1 by 𝐈𝐃1, in R’s (R Core Team 2021) notation this is 𝐊1[𝐈𝐃1, 𝐈𝐃1]. 21 

Using the above-described inputs, our algorithm (which we named tensorEVD) proceeds as follows: 22 

1. Perform the EVD of  𝐊1 = 𝐕1𝐃1𝐕1
′ and 𝐊2 = 𝐕2𝐃2𝐕2

′. 23 

2. Derive the 𝑁 = 𝑛1 × 𝑛2 eigenvalues of the Kronecker product as 𝐃̃ = 𝑑𝑖𝑎𝑔(𝑑̃1, . . . , 𝑑̃𝑁 ) =24 

𝐃1⨂𝐃2. 25 

3. Derive the 𝑁 eigenvectors 𝐕 = [𝒗1, . . . , 𝒗𝑁] of the Kronecker product. Each column 𝒗𝑘 (𝑘 =26 

1, … ,𝑁) is the Hadamard product of the 𝑖𝑘
th and 𝑗𝑘

th eigenvectors of  𝐕1 and 𝐕2, respectively, that is 27 
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𝒗𝑘 = (𝐙1 𝒗1𝑖𝑘
) ∘ (𝐙2 𝒗2𝑗𝑘

). As before, the terms 𝐙1𝒗1𝑖𝑘
 and 𝐙2 𝒗2𝑖𝑘

 are obtained using indexing, 1 

i.e., 𝒗1𝑖𝑘
[𝐈𝐃1] and 𝒗2𝑗𝑘

[𝐈𝐃2]. 2 

4. For unbalanced or replicated data, the eigenvectors in 𝐕 may not have a norm equal to one; thus, 3 

the sum of the eigenvalues 𝑑̃𝑘  will no longer be equal to 𝑡𝑟𝑎𝑐𝑒(𝐊). Therefore, we normalize each 4 

eigenvector 𝒗𝑘 to have unit norm. 5 

5. Order the eigenvalues 𝑑̃𝑘  and eigenvectors 𝒗𝑘 according to 𝑑̃𝑘 . 6 

The tensorEVD algorithm described above renders orthonormal vectors only for the balanced case 7 

(i.e., for the Kronecker product of 𝐊1 and 𝐊2). For unbalanced cases the eigenvectors are not guaranteed 8 

to be mutually orthogonal; however, they provide a basis for the Kronecker product. Therefore, the 9 

eigenvectors are also a basis for Hadamard products which spans a sub-space of the corresponding 10 

Kronecker product.  11 

Note that the tensorEVD algorithm produces the complete basis containing 𝑁 = 𝑛1 ×12 

𝑛2 eigenvectors for the Kronecker matrix product 𝐊1⨂𝐊2. As consequence, this basis can include more 13 

vectors than the ones needed to span (𝐙1𝐊1𝐙1
′ ) ∘ (𝐙2𝐊2𝐙2

′ ). This can be particularly relevant if the size 14 

of the Hadamard product is considerably smaller than the corresponding Kronecker product . 15 

Furthermore, most of those vectors will have a very small eigenvalue (resulting from the product of a 16 

small eigenvalue of 𝐊1 and a small eigenvalue from 𝐊2). Therefore, instead of forming all possible 17 

eigenvectors, we allow for the user to specify a proportion of variance explained (0 < 𝛼 ≤ 1, e.g., 𝛼 =18 

0.95) and build only the eigenvectors needed to achieve such proportion of variance.  19 

The ‘tensorEVD’ R-package can be installed from CRAN using the following instruction: 20 

install.packages('tensorEVD') 

Alternatively, it can be installed from the GitHub platform via, for instance, the ‘remotes’ R-package 21 

(Csárdi et al. 2023) using the instructions below: 22 

install.packages('remotes')               
library(remotes)                         
install_github('MarcooLopez/tensorEVD')  # Install tensorEVD  

The following script shows how to perform EVD using the tensorEVD function (see Supplementary 23 

Note 3 for an actual numerical example).  24 
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EVD = tensorEVD(K1, K2, ID1, ID2, alpha = 0.95) 
ncol(EVD$vectors)             # Number of eigenvectors 
sum(EVD$values)/EVD$totalVar  # Variance explained  

 1 

Results and Discussion 2 

We benchmarked the tensorEVD routine against the eigen function of the ‘base’ R-package (R Core 3 

Team 2021) in terms of the computational time used to derive eigenvectors, the accuracy of the 4 

approximation provided by tensorEVD, and the dimension of the resulting basis. All the analyses were 5 

performed in R v4.2.0 (R Core Team 2021) run on the High-Performance Computing Center (HPCC) 6 

from Michigan State University (https://icer.msu.edu/hpcc/hardware) using nodes equipped with Intel 7 

Xeon Gold 6148 CPUs at 2.40 GHz with 84 GB of RAM memory in a single computing thread.  8 

The data used in these benchmarks was generated by the Genomes-To-Fields (G2F) Initiative (Lima 9 

et al. 2023) which was curated and expanded by adding environmental covariates by Lopez-Cruz et al. 10 

(2023). This data set was used to derive a genetic (GRM) and an environmental relationship matrix 11 

(ERM, from the environmental covariates, see Supplementary Note 4) for 4,344 maize hybrids and 97 12 

environments (year-locations), respectively, corresponding to the northern testing locations. We formed 13 

Hadamard products (𝐊 in Equation (2)) between the GRM (as 𝐊1) and the ERM (as 𝐊2) matrix of 14 

various sizes by sampling hybrids (𝑛𝐺 = 100,500, and 1000), environments (𝑛𝐸 = 10, 30, and 50), and 15 

the level of replication needed to complete a total sample size ranging from 𝑛 =10,000 to 30,000. Then, 16 

we factorized the resulting Hadamard product matrix using the R-base function eigen (R Core Team 17 

2021) as well as using tensorEVD, deriving as many eigenvectors as needed to explain 90%, 95%, and 18 

98% of the total variance.  19 

The tensorEVD method was consistently orders of magnitude faster than eigen (see Supplementary 20 

Figures 1-3). The difference in computation time is particularly clear (e.g., tensorEVD ~10,000 faster 21 

than eigen) when the product of the dimensions of each of the relationship matrices (𝑛𝐺 × 𝑛𝐸 ) was 22 

smaller than sample size (n)–compare the left, middle, and right columns of Figure 1. 23 

The Cholesky decomposition is an alternative factorization that can be used to implement the models 24 

discussed in this study. This factorization has a computational complexity of 𝑂(1
3𝑛3) which is smaller 25 

than the complexity of the EVD (𝑂(𝑛3 )). However, the Cholesky decomposition can be numerically 26 
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unstable for matrices that are (near) singular, a situation that is not uncommon in GE models. Another 1 

approach would be to use partial EVD methods that compute only a fraction of the eigenvectors. To 2 

evaluate these approaches we benchmarked tensorEVD against Cholesky decomposition as per the chol 3 

function from the ’base’ R-package (R Core Team 2021), and against partial eigenvalue decompositions 4 

computed using the trlan.eigen and eigs_sym functions from the ‘svd’ (Korobeynikov et al. 2023) and 5 

‘RSpectra’ (Qiu and Mei 2022) R-packages, respectively. As expected, partial SVD methods were faster 6 

than eigen only when the product 𝑛𝐺 × 𝑛𝐸  was smaller than n (see Supplementary Figures 1-3); 7 

however, tensorEVD was much faster than the partial EVD methods (Supplementary Figure 4). 8 

Likewise, tensorEVD was faster than chol only in cases where 𝑛𝐺 × 𝑛𝐸 < 𝑛. 9 

Approximation Accuracy 10 

We measured the accuracy of the approximation of the basis derived by the eigen and tensorEVD  11 

routines for each of the 𝛼-values by evaluating the Frobenius norm (i.e., a matrix-generalization of the 12 

Euclidean norm, Golub and Van Loan 1996) of the difference between the Hadamard product matrix 13 

(K) and the approximation (𝐊̂ 𝛼 = 𝐕𝛼𝐃̃𝛼𝐕𝛼
′ , where 𝐕𝛼 and 𝐃̃𝛼 are the eigenvectors and eigenvalues 14 

derived by each method and 𝛼-value, see Supplementary Note 5 for more details). In general, both 15 

methods provided a very good and similar approximations (Figure 2). As expected, the values of the 16 

norm decrease when 𝛼 increased (smaller norm indicates better approximation). The values of the norm 17 

for different sample sizes cannot be compared because the Frobenius norm is a cumulative sum of 𝑛 × 𝑛 18 

elements. Therefore, we also computed the Correlation Matrix Distance (CMD, Herdin et al. 2005) 19 

between the Hadamard product matrix (K) and the approximation provided by each method and 𝛼-value 20 

(𝐊̂𝛼, see Supplementary Note 5, Supplementary Figure 5). These CMD values are always between 0 and 21 

1. In all the cases, the CMD was very small (<0.006), which indicates that both approximations were 22 

very good. As with the Frobenius norm metric, the CMD shows that both methods provide similar 23 

approximations (Supplementary Figure 5); however, there is evidence that whenever 𝑛𝐺 × 𝑛𝐸  becomes 24 

larger than sample size 𝑛, tensorEVD provides a slightly better approximation than the eigen method 25 

(e.g., bottom-right panel in Figure 2 and Supplementary Figure 5, see Supplementary Figure 6).  26 

Dimension reduction 27 

We also compared eigen and tensorEVD in terms of the number of eigenvectors provided by each 28 

method for a given 𝛼-value, relative to the rank of the K (i.e., the number of eigenvectors of K with 29 

positive eigenvalue). By construction, eigen is very efficient at maximizing the proportion of variance 30 
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explained in the derivation of eigenvectors. The tensorEVD function is as effective as the eigen method 1 

at dimension reduction only for cases where 𝑛𝐺 × 𝑛𝐸 < 𝑛, for example the case 𝑛𝐺 = 100 and 𝑛𝐸 = 10 2 

(top-left panel in Figure 3). However, tensorEVD becomes less effective at dimension reduction when 3 

𝑛𝐺 × 𝑛𝐸  exceeds sample size 𝑛 (e.g., bottom-right panel in Figure 3, see Supplementary Figure 7).  4 

Application in Genomic Prediction 5 

Finally, we evaluated the performance of the approximation of 𝐊 provided by the tensorEVD method in 6 

Gaussian linear models in terms of variance components estimates and cross-validation prediction 7 

accuracies. For this evaluation, we used all the G2F data from the northern testing locations included in 8 

the data set presented by Lopez-Cruz et al. (2023). For the northern testing locations, this data set 9 

includes 𝑛 = 59,069 records for 4 traits (grain yield, anthesis, silking, and anthesis-silking interval) 10 

from 𝑛𝐺 = 4,344 hybrids and 𝑛𝐸 = 97 environments. 11 

We analyzed this data with a Gaussian reaction norm model (Jarquín et al. 2014) in which the 12 

response (𝑦𝑖𝑗𝑘) is modeled as the sum of the main effect of hybrid (𝐺𝑖), main effect of environment (𝐸𝑗), 13 

and the interaction hybrid×environment (𝐺𝐸𝑖𝑗 ) term, this is 14 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝐺𝐸𝑖𝑗 + 𝜀𝑖𝑗𝑘 .                                                  (3) 15 

Above, 𝜇 is an intercept and 𝑖, 𝑗, and 𝑘 are indices for the hybrids, environment, and replicate, 16 

respectively. The term 𝜀𝑖𝑗𝑘  is an error term assumed to be Gaussian distributed as 𝜀𝑖𝑗𝑘 ~𝑖𝑖𝑑𝑁(0,𝜎𝜀
2), with 17 

𝜎𝜀
2 variance parameter associated to the error. Hybrid, environment, and interaction effects were 18 

assumed to be multivariate normally distributed with zero mean and effect-specific covariance matrices, 19 

specifically 𝐆~𝑀𝑉𝑁(𝟎,𝜎𝐺
2𝐊𝐺), 𝐄~𝑀𝑉𝑁(𝟎,𝜎𝐸

2𝐊𝐸), and 𝐆𝐄~𝑀𝑉𝑁(𝟎,𝜎𝐺𝐸
2 𝐊), where 𝐊 takes the 20 

Hadamard form in Equation (2), 𝐊 = (𝐙1𝐊𝐺 𝐙1
′ ) ∘ (𝐙2𝐊𝐸𝐙2

′ ) and 𝜎𝐺
2, 𝜎𝐸

2, and 𝜎𝐺𝐸
2  are variance 21 

parameters associated to 𝐆, 𝐄  and 𝐆𝐄, respectively. We fitted the model in Equation (3) to each trait in 22 

a Bayesian fashion using the ‘BGLR’ R-package (Pérez-Rodríguez and de los Campos 2022) with the 23 

decomposition of the GE kernel (𝐊) computed using eigen and tensorEVD methods for different 24 

percentages of variance of 𝐊 explained (𝛼 = 0.90, 0.95, and 0.98). For these analyses we used 25 

computing nodes equipped with Intel Xeon E5-2680 v4 CPUs at 2.40 GHz with 96 GB of RAM 26 

memory using 3 computing threads.  27 

As one would expect, reducing 𝛼 from 1 to 0.98, 0.95, and 0.90, led to a slight reduction in the 28 

proportion of variance explained  by the GE term and a small increase in the error variance (Figure 4). In 29 
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general, for the same 𝛼-value, the reduction in proportion of variance explained and the increase in the 1 

error variance was smaller with the tensorEVD compared to eigen. We obtained similar patterns for 2 

anthesis, silking, and anthesis-silking interval (Supplementary Figures 8-10). 3 

To evaluate prediction performance, we conducted a 10-fold cross-validation with hybrids 4 

assigned to folds (this mimics the CV1 scheme of Burgueño et al. (2012)). For any given 𝛼-value the 5 

models fitted using the factorization derived with tensorEVD and eigen produced almost identical 6 

predictions (Figure 5). Furthermore, there was a negligible reduction in prediction accuracy associated 7 

to lower values of 𝛼. For instance, for grain yield, the prediction correlations with the tensorEVD 8 

method were 0.387, 0.386, and 0.384 for 𝛼-values of 0.98, 0.95, and 0.90, respectively (Figure 5).  9 

In the analysis presented above, the Hadamard product matrix had a dimension of 𝑛 = 59,059 and a 10 

rank (number of eigenvalues greater than zero) of 38,187. Table 1 gives the number of eigenvectors 11 

returned by eigen and tensorEVD by 𝛼-value. As previously noted, tensorEVD is less efficient than 12 

eigen at dimension reduction when 𝑛𝐺 × 𝑛𝐸 ≫ 𝑛, a condition met in the analysis just described 13 

(4,344 × 97 ≫ 59,059). However, using an 𝛼 = 0.95 tensorEVD already provides substantial 14 

dimension reduction which translates into a shorter total computation time (decomposition + model 15 

fitting, Table 1 and Supplementary Figure 11).  16 

Concluding Remarks 17 

The tensorEVD method can be used to factorize large Hadamard product matrices that are sub-matrices 18 

of Kronecker produces of smaller positive-semi-definite matrices. Examples where such matrices are 19 

key components of genomic models include hybrid prediction and GE models involving genetic and 20 

environmental relationship matrices. The proposed algorithm can be several orders of magnitude faster 21 

than a standard eigenvalue decomposition, with relatively negligible effect on variance components 22 

estimates and prediction performance. The proposed method can be very advantageous in terms of speed 23 

and dimensionality reduction in cases where the dimensions of the low-rank matrices are very small 24 

relative to the sample size.  25 

 26 

Web resources 27 

The ‘tensorEVD’ R-package is freely available on CRAN (https://CRAN.R-28 

project.org/package=tensorEVD) and on the GitHub repository 29 
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(https://github.com/MarcooLopez/tensorEVD). All the scripts used for analyses can be found in the 1 

‘tensorEVD’ R-package documentation. 2 

 3 

Data availability 4 

The data set used in this study for the simulation and genomic prediction applications is fully described 5 

in Lopez-Cruz et al. (2023) and it is publicly available in the Figshare repository 6 

(https://doi.org/10.6084/m9.figshare.22776806). All Supplementary Notes 1-5 and Supplementary 7 

Figures 1-11 are included in the Supplementary Material file which is provided along with this 8 

manuscript. 9 
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Tables and Figure legends 35 

 36 

Table 1. Number of eigenvectors and the times required to perform eigenvalue decomposition and to 37 
generate 50,000 posterior samples by method and target proportion of variance explained. 38 

𝜶 × 100% 
of variance Method 

Number of 
eigenvectors 

Time to 
compute the 
EVD (min)a 

Time in the Gibbs samplingb Total time 
(min)e Per sample Per 50,000 
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(sec)c samples (min)d 

100% eigen 38187 267.56 (2.82) 0.670 (0.058) 576.61 (38.99) 844.17 

98% 
eigen 12294 266.39 (3.10) 0.111 (0.003) 98.64 (2.36) 365.02 

tensorEVD 37442 3.13 (0.17) 0.631 (0.023) 545.51 (18.38) 548.65 

95% 
eigen 7260 266.01 (3.55) 0.062 (0.002) 56.60 (1.08) 322.61 

tensorEVD 19843 2.78 (0.17) 0.217 (0.007) 190.53 (5.87) 193.31 

90% 
eigen 3839 267.66 (2.76) 0.035 (0.001) 33.18 (0.68) 300.85 

tensorEVD 9512 2.39 (0.11) 0.080 (0.002) 72.31 (1.12) 74.70 
aAverage (SD) across 10 replicates of the decomposition. bGibbs sampler was implemented using BGLR for 1 
model in Equation (3) fitted to each trait (grain yield, anthesis, silking, and anthesis-silking interval). Each model 2 
was run with 50,000 MCMC iterations (discarding 5,000 as burning and using a thinning of 10 samples) and 3 
replicated 5 times. cAverage (SD), across 4 traits and 5 replicates, time per iteration (median value across 4 
iterations). dAverage (SD), across 4 traits and 5 replicates, time to perform the Gibbs sampler which includes the 5 
initial over-heading time (matrices preparation and hyperparameters setting) plus time to complete all iterations. 6 
eEstimated total computing time (EVD computation + Gibbs sampling). All the computations were carried out on 7 
the MSU’s High-Performance Computing Center in nodes with Intel processors with 96 GB of RAM memory 8 
using 3 computing threads. 9 

 10 

Figure 1. Computation time ratio (log10 scale, average across 20 replicates) of the EVD of the matrix K 11 
using the eigen method relative to tensorEVD method, by sample size (𝑛 = 10000, 20000, and 30000 12 
in the x-axis) and proportion 𝛼 of variance of K explained (𝛼 = 0.90, 0.95, and 0.98). Each panel 13 
represents a combination of number of hybrids (𝑛𝐺 ) and number of environments (𝑛𝐸 ). 14 

 15 

Figure 2. Frobenius norm (average ± SD across 20 replicates) of the difference between the Hadamard 16 
matrix K and the approximation (𝐊̂𝛼) provided by the eigen and tensorEVD procedures, by sample size 17 
(𝑛 = 10000,20000, and 30000) and proportion 𝛼 of variance of K explained (𝛼 = 0.90,0.95, and 18 
0.98). Each panel represents a combination of number of hybrids (𝑛𝐺 ) and number of environments 19 
(𝑛𝐸 ). Smaller norm indicates better approximation.  20 

 21 

Figure 3. Number of eigenvectors (average ± SD across 20 replicates) produced by the eigen and 22 
tensorEVD methods, relative to the rank of matrix K, by 𝛼-value (i.e., proportion of variance explained, 23 
𝛼 = 0.90, 0.95, and 0.98) and sample size (𝑛 = 10000,20000, and 30000). Each panel represents a 24 
combination of number of hybrids (𝑛𝐺 ) and number of environments (𝑛𝐸 ). 25 

 26 

Figure 4. Proportion of the phenotypic variance (average ± SD across 5 replicates) of grain yield 27 
explained by each model term (G, E, GE, Error) in Equation (3). The EVD of the Hadamard matrix K 28 
(covariance matrix of GE) was performed using eigen and tensorEVD methods for different 𝛼-values 29 
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(𝛼 = 1.00, 0.98, 0.95, 0.90). Numbers on the top represent the percentage of change (%) relative to the 1 
variance explained by each term in the model that uses full information in K (i.e., 𝛼 = 1.00) obtained 2 
with the eigen method (horizontal dotted line). 3 

 4 

Figure 5. Within environment prediction correlation (𝑟) for the model in Equation (3) in cross-5 
validation with EVD of the Hadamard matrix K performed using the tensorEVD (x-axis) and the eigen 6 
(y-axis) method. Each point gives the prediction correlation obtained within an environment (𝑟𝑖, 𝑖 =7 
1, … ,97) with each of the methods, by trait (rows) and 𝛼-value (in columns, proportion of variance of K 8 
explained captured by the selected eigenvectors). Numbers in gray (below and above the diagonal) 9 
represent the weighted mean across the 97 environments for each of the methods. The numbers in 10 
parenthesis (in red) are 95% confidence intervals for the coefficient 𝑏 in the regression 𝑟𝑒𝑖𝑔𝑒𝑛 = 𝑎 +11 
𝑏 𝑟𝑡𝑒𝑛𝑠𝑜𝑟𝐸𝑉𝐷 + 𝜀. 12 

 13 

 14 
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