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Abstract

Many genetic models (including models for epistatic effects as well as genetic-by-environment) involve
covariance structures that are Hadamard products of lower rank matrices. Implementing these models
require factorizing large Hadamard product matrices. The available algorithms for factorization do not
scale well for big data, making the use of some of these models not feasible with large sample sizes.
Here, based on properties of Hadamard products and (related) Kronecker products we propose an
algorithm that produces an approximate decomposition that is orders of magnitude faster than the
standard eigenvalue decomposition. In this article, we describe the algorithm, show how it can be used
to factorize large Hadamard product matrices, present benchmarks, and illustrate the use of the method
by presenting an analysis of data from the northern testing locations of the GxE project from the
Genomes-to-Fields Initiative (n~60,000). We implemented the proposed algorithm in the open-source

‘tensorEVD’ R-package.

Introduction

Hadamard products of positive definite matrices appear in many genetic models including gene-by-gene
(e.g., additive-by-additive or additive-by-dominance, Henderson 1985) and gene-by-environment
interactions (Crossa et al. 2006) as well as in hybrid prediction models (Bernardo 1998). In this article,
we focus on high-dimensional Hadamard products derived from two positive semi-definite matrices,

each with a dimension considerably smaller than the resulting Hadamard product.

To motivate this problem, consider a reaction norm infinitesimal model (Falconer and Mackay 1996)
for n; genotypes tested over ny locations (environments). Following Jarquin ef al. (2014), interactions
between genetic and environmental factors can be modeled using a Gaussian random effect with a
covariance matrix K which is the product of a genetic (K, derived from DNA or pedigree data) and an
environmental (K, typically derived from environmental covariates) relationship matrix. If all
genotypes are tested in all environments, K is a Kronecker product K= K; @ K of dimension n =
ng; X ng. However, usually, not all genotypes are tested in all environments and genotypes may be
replicated. In these cases, the K matrix takes the form K = (Z,;K;Z]) o (Z,K;Z;) where Z, and Z, are
incidence matrices connecting phenotypes with the rows (and columns) of K, and K, respectively, and

‘o’ denotes the Hadamard product. A very similar problem arises when modelling hybrids’ effects where
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K; and K are replaced by additive relationship matrices between the female and male parental lines
(Bernardo 1998).

Fitting Gaussian models with dense covariance structures such as the one presented above requires
factorizing K using, for example, the eigenvalue decomposition (EVD) of K. The EVD has an 0(n?)
computational complexity; therefore, a standard decomposition of K does not scale well to large sample
sizes. To tackle this problem, we use results about the EVD of Kronecker products, and the fact that

Hadamard products are sub-matrices of Kronecker products, to propose an algorithm that derives a basis

for K which only requires factorizing K, and K, matrices which usually are much smaller than K. We
show that the proposed approach provides a very good approximation to the target matrix (K) and that,

in large-n problems, the proposed approach can be orders of magnitude faster than performing EVD on

K directly. Finally, we provide real data analyses showing that the proposed approach yields very close
variance components estimates and almost an identical prediction accuracy in cross-validation that an
exact EVD. The methods described in this article are implemented in the open-source ‘tensorEVD’ R-

package which is available through CRAN and the GitHub repository.

Methods

Recall the eigenvalue decomposition (EVD) of an N X N positive semi-definite matrix K which has the
form
K =VDV’
where V = [v,,...,v,] is an orthonormal matrix (i.e., V'V = I) whose columns v,, (k = 1, ..., N) are the
eigenvectors and D = diag (d,,...,dy) is a diagonal matrix with the eigenvalues d;, = --- > dy = 0.
Consider the Kronecker product (‘®’) of two symmetric positive semi-definite matrices, K, and K,
K = K,®K,. (1)
Let the EVD of the two matrices in the right-hand side be K; = V;D,V] and K, =V,D,V;,
respectively. Replacing these matrices with their EVD we get:
K= (V;D,V))®(V,D,V,).

Using properties of Kronecker products (e.g., Searle 1982, p. 265), it can be shown that the

eigenvectors of K are Kronecker products of the eigenvectors of K; and K,. Likewise, the eigenvalues
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of K are Kronecker products of the eigenvalues of K; and K, (see Supplementary Note 1 for a proof).
Specifically, we have that (a numerical example of the above results is presented in Supplementary Note
2):
K=VDV' = (V,®V,)(D,®D,)(V,®V,)".

A Hadamard product (‘o’) of two matrices is a sub-matrix of the corresponding Kronecker product.

For example, an n X n matrix:
K, = (Z,K,Z}) - (Z,K,Z,), ()

is a sub-matrix of K, ®K, in Equation (1). Therefore, the linear space spanned by (Z,K,Z;) o (Z,K,Z;)
in Equation (2) is a sub-space of the linear space spanned by K; ®K,. This suggests that we can find a
basis for a Hadamard product from the EVD of the corresponding Kronecker product. The Tensor EVD
algorithm is inspired by this idea.
Tensor EVD algorithm
We assume that the input data consist of the following:

* Covariance structures: K, and K, of dimensions n, X n; and n, X n,, respectively. For example,
K, may be a genomic relationship matrix and K, may be an environmental relationship matrix
describing environmental similarity between testing environments.

* IDs: ID, and ID, are n-vectors (n here is the sample size) mapping from observations to the rows
and columns of K, and K,, respectively. (The row- and column-names of K, and K, are the
unique entries of ID; and ID,, respectively.) These IDs are used to form the incidence matrices Z,
and Z, in Equation (2). For instance, the matrix Z,K,Z] can be obtained by indexing rows and
columns of K; by ID,, in R’s (R Core Team 2021) notation this is K, [ID,,ID,].

Using the above-described inputs, our algorithm (which we named tensorEVD) proceeds as follows:

1. Perform the EVD of K, = V,D,V/and K, = V,D,V,.

2. Derive the N =n, Xn, eigenvalues of the Kronecker product as D =diag(d,,...,dy) =
D,®D,.

3. Derive the N eigenvectors V = [¥,,...,¥,] of the Kronecker product. Each column ¥, (k =

1, ...,N) is the Hadamard product of the i,tch and j eigenvectors of V, and V,, respectively, that is
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v, = (Z1‘71ik) ° (szzjk ) As before, the terms Z,v,; and Z,v,; are obtained using indexing,

ie., vy [ID;] and v,; [ID,].

4. For unbalanced or replicated data, the eigenvectors in V may not have a norm equal to one; thus,
the sum of the eigenvalues d, will no longer be equal to trace(K). Therefore, we normalize each

eigenvector ¥, to have unit norm.
5. Order the eigenvalues d,, and eigenvectors ¥, according to d,.

The tensorEVD algorithm described above renders orthonormal vectors only for the balanced case
(i.e., for the Kronecker product of K, and K,). For unbalanced cases the eigenvectors are not guaranteed
to be mutually orthogonal; however, they provide a basis for the Kronecker product. Therefore, the
eigenvectors are also a basis for Hadamard products which spans a sub-space of the corresponding
Kronecker product.

Note that the tensorEVD algorithm produces the complete basis containing N =n; X
n, eigenvectors for the Kronecker matrix product K; ®K,. As consequence, this basis can include more
vectors than the ones needed to span (Z;K;Z]) o (Z,K,Z;). This can be particularly relevant if the size
of the Hadamard product is considerably smaller than the corresponding Kronecker product.
Furthermore, most of those vectors will have a very small eigenvalue (resulting from the product of a
small eigenvalue of K, and a small eigenvalue from K,). Therefore, instead of forming all possible
eigenvectors, we allow for the user to specify a proportion of variance explained (0 < a < 1,e.g., a =

0.95) and build only the eigenvectors needed to achieve such proportion of variance.

The ‘tensorEVD’ R-package can be installed from CRAN using the following instruction:

install.packages('tensorEVD')

Alternatively, it can be installed from the GitHub platform via, for instance, the ‘remotes’ R -package

(Csérdi et al. 2023) using the instructions below:

install.packages('remotes')
library(remotes)
install_github('MarcooLopez/tensorEVD") # Install tensorEVD

The following script shows how to perform EVD using the tensorEVD function (see Supplementary

Note 3 for an actual numerical example).
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EVD = tensorEVD(K1, K2, ID1, ID2, alpha = 0.95)
ncol(EVD$vectors) # Number of eigenvectors
sum(EVD$values)/EVDS$totalVar # Variance explained

Results and Discussion

We benchmarked the fensorEVD routine against the eigen function of the ‘base’ R-package (R Core
Team 2021) in terms of the computational time used to derive eigenvectors, the accuracy of the
approximation provided by tensorEVD, and the dimension of the resulting basis. All the analyses were
performed in R v4.2.0 (R Core Team 2021) run on the High-Performance Computing Center (HPCC)
from Michigan State University (https://icer.msu.edu/hpcc/hardware) using nodes equipped with Intel
Xeon Gold 6148 CPUs at 2.40 GHz with 84 GB of RAM memory in a single computing thread.

The data used in these benchmarks was generated by the Genomes-To-Fields (G2F) Initiative (Lima
et al. 2023) which was curated and expanded by adding environmental covariates by Lopez-Cruz et al.
(2023). This data set was used to derive a genetic (GRM) and an environmental relationship matrix
(ERM, from the environmental covariates, see Supplementary Note 4) for 4,344 maize hybrids and 97
environments (year-locations), respectively, corresponding to the northern testing locations. We formed
Hadamard products (K in Equation (2)) between the GRM (as K,) and the ERM (as K,) matrix of
various sizes by sampling hybrids (n; = 100,500, and 1000), environments (n; = 10, 30, and 50), and
the level of replication needed to complete a total sample size ranging from n =10,000 to 30,000. Then,
we factorized the resulting Hadamard product matrix using the R-base function eigen (R Core Team
2021) as well as using fensorEVD, deriving as many eigenvectors as needed to explain 90%, 95%, and
98% of the total variance.

The tensorEVD method was consistently orders of magnitude faster than eigen (see Supplementary
Figures 1-3). The difference in computation time is particularly clear (e.g., tensorEVD ~10,000 faster
than eigen) when the product of the dimensions of each of the relationship matrices (n,; X ny) was
smaller than sample size (n)—compare the left, middle, and right columns of Figure 1.

The Cholesky decomposition is an alternative factorization that can be used to implement the models
discussed in this study. This factorization has a computational complexity of 0(%713) which is smaller

than the complexity of the EVD (0(n®)). However, the Cholesky decomposition can be numerically
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unstable for matrices that are (near) singular, a situation that is not uncommon in G xE models. Another
approach would be to use partial EVD methods that compute only a fraction of the eigenvectors. To
evaluate these approaches we benchmarked tensorEVD against Cholesky decomposition as per the chol
function from the ’base’ R-package (R Core Team 2021), and against partial eigenvalue decompositions
computed using the trlan.eigen and eigs sym functions from the ‘svd’ (Korobeynikov et al. 2023) and
‘RSpectra’ (Qiu and Mei 2022) R-packages, respectively. As expected, partial SVD methods were faster
than eigen only when the product n; X n; was smaller than n (see Supplementary Figures 1-3);

however, tensorEVD was much faster than the partial EVD methods (Supplementary Figure 4).

Likewise, tensorEVD was faster than chol only in cases where n; X ny < n.

Approximation Accuracy
We measured the accuracy of the approximation of the basis derived by the eigen and ftensorEVD
routines for each of the a-values by evaluating the Frobenius norm (i.e., a matrix-generalization of the

Euclidean norm, Golub and Van Loan 1996) of the difference between the Hadamard product matrix
(K) and the approximation (K, = V,D,V/, where V, and D, are the eigenvectors and eigenvalues
derived by each method and a-value, see Supplementary Note 5 for more details). In general, both
methods provided a very good and similar approximations (Figure 2). As expected, the values of the
norm decrease when a increased (smaller norm indicates better approximation). The values of the norm
for different sample sizes cannot be compared because the Frobenius norm is a cumulative sum of n X n
elements. Therefore, we also computed the Correlation Matrix Distance (CMD, Herdin et al. 2005)
between the Hadamard product matrix (K) and the approximation provided by each method and a-value
(K, see Supplementary Note 5, Supplementary Figure 5). These CMD values are always between 0 and
1. In all the cases, the CMD was very small (<0.006), which indicates that both approximations were

very good. As with the Frobenius norm metric, the CMD shows that both methods provide similar

approximations (Supplementary Figure 5); however, there is evidence that whenever n; X n; becomes
larger than sample size n, tensorEVD provides a slightly better approximation than the eigen method

(e.g., bottom-right panel in Figure 2 and Supplementary Figure 5, see Supplementary Figure 6).

Dimension reduction

We also compared eigen and tensorEVD in terms of the number of eigenvectors provided by each

method for a given a-value, relative to the rank of the K (i.e., the number of eigenvectors of K with

positive eigenvalue). By construction, eigen is very efficient at maximizing the proportion of variance

7
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explained in the derivation of eigenvectors. The fensorEVD function is as effective as the eigen method
at dimension reduction only for cases where n; X n; < n, for example the case n; = 100 and n; = 10

(top-left panel in Figure 3). However, tensorEVD becomes less effective at dimension reduction when

ng; X ng exceeds sample size n (e.g., bottom-right panel in Figure 3, see Supplementary Figure 7).

Application in Genomic Prediction

Finally, we evaluated the performance of the approximation of K provided by the tensorEVD method in
Gaussian linear models in terms of variance components estimates and cross-validation prediction
accuracies. For this evaluation, we used all the G2F data from the northern testing locations included in
the data set presented by Lopez-Cruz et al. (2023). For the northern testing locations, this data set
includes n = 59,069 records for 4 traits (grain yield, anthesis, silking, and anthesis-silking interval)

from n; = 4,344 hybrids and n; = 97 environments.

We analyzed this data with a Gaussian reaction norm model (Jarquin ef al. 2014) in which the

response (¥;j;) is modeled as the sum of the main effect of hybrid (G;), main effect of environment (E)),

and the interaction hybrid Xenvironment (GE;;) term, this is
Yijk =+ G+ E; + GE;; + &y 3)
Above, u is an intercept and i, j, and k are indices for the hybrids, environment, and replicate,

. . T iid .
respectively. The term ¢, is an error term assumed to be Gaussian distributed as ¢€; “N(o, 02), with

ijk
02 variance parameter associated to the error. Hybrid, environment, and interaction effects were
assumed to be multivariate normally distributed with zero mean and effect-specific covariance matrices,
specifically G~MVN(0,02K;), E~MVN(0,07K;), and GE~MVN(0,0Z;K), where K takes the
Hadamard form in Equation (2), K= (Z,K;Z})° (Z,K;Z},) and o2, o2, and oj are variance
parameters associated to G, E and GE, respectively. We fitted the model in Equation (3) to each trait in
a Bayesian fashion using the ‘BGLR’ R-package (Pérez-Rodriguez and de los Campos 2022) with the
decomposition of the GE kernel (K) computed using eigen and tensorEVD methods for different
percentages of variance of K explained (a = 0.90,0.95, and 0.98). For these analyses we used

computing nodes equipped with Intel Xeon E5-2680 v4 CPUs at 2.40 GHz with 96 GB of RAM

memory using 3 computing threads.
As one would expect, reducing a from 1 to 0.98, 0.95, and 0.90, led to a slight reduction in the

proportion of variance explained by the GE term and a small increase in the error variance (Figure 4). In
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general, for the same a-value, the reduction in proportion of variance explained and the increase in the
error variance was smaller with the tensorEVD compared to eigen. We obtained similar patterns for
anthesis, silking, and anthesis-silking interval (Supplementary Figures 8-10).

To evaluate prediction performance, we conducted a 10-fold cross-validation with hybrids
assigned to folds (this mimics the CV1 scheme of Burgueno et al (2012)). For any given a-value the
models fitted using the factorization derived with tensorEVD and eigen produced almost identical
predictions (Figure 5). Furthermore, there was a negligible reduction in prediction accuracy associated
to lower values of a. For instance, for grain yield, the prediction correlations with the tensorEVD

method were 0.387, 0.386, and 0.384 for a-values of 0.98, 0.95, and 0.90, respectively (Figure 5).

In the analysis presented above, the Hadamard product matrix had a dimension of n = 59,059 and a

rank (number of eigenvalues greater than zero) of 38,187. Table 1 gives the number of eigenvectors

returned by eigen and fensorEVD by a-value. As previously noted, tensorEVD is less efficient than
eigen at dimension reduction when n; X n; > n, a condition met in the analysis just described
(4,344 x 97 > 59,059). However, using an a = 0.95 tensorEVD already provides substantial
dimension reduction which translates into a shorter total computation time (decomposition + model

fitting, Table 1 and Supplementary Figure 11).

Concluding Remarks

The tensorEVD method can be used to factorize large Hadamard product matrices that are sub-matrices
of Kronecker produces of smaller positive-semi-definite matrices. Examples where such matrices are
key components of genomic models include hybrid prediction and GxE models involving genetic and
environmental relationship matrices. The proposed algorithm can be several orders of magnitude faster
than a standard eigenvalue decomposition, with relatively negligible effect on variance components
estimates and prediction performance. The proposed method can be very advantageous in terms of speed
and dimensionality reduction in cases where the dimensions of the low-rank matrices are very small

relative to the sample size.

Web resources

The ‘tensorEVD’  R-package is  freely available on CRAN  (https:/CRAN.R-
project.org/package=tensorEVD) and on the GitHub repository
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(https://github.com/MarcooLopez/tensorEVD). All the scripts used for analyses can be found in the

‘tensorEVD’ R-package documentation.

Data availability

The data set used in this study for the simulation and genomic prediction applications is fully described
in Lopez-Cruz et al (2023) and it is publicly available in the Figshare repository
(https://doi.org/10.6084/m9.figshare.22776806). All Supplementary Notes 1-5 and Supplementary
Figures 1-11 are included in the Supplementary Material file which is provided along with this

manuscript.
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(sec)* samples (min)d
100% eigen 38187 267.56 (2.82) 0.670(0.058) 576.61(38.99) 844.17
, eigen 12294 266.39 (3.10) 0.111(0.003) 98.64 (2.36) 365.02
o8 tensorEVD 37442 3.13(0.17) 0.631(0.023)  545.51 (18.38) 548.65
, eigen 7260 266.01 (3.55) 0.062(0.002) 56.60 (1.08) 322.61
% tensorEVD 19843 2.78 (0.17) 0.217(0.007) 190.53 (5.87) 193.31
, eigen 3839 267.66 (2.76) 0.035(0.001) 33.18 (0.68) 300.85
w0 tensorEVD 9512 2.39(0.11) 0.080(0.002) 72.31 (1.12) 74.70

aAverage (SD) across 10 replicates of the decomposition. °Gibbs sampler was implemented using BGLR for
model in Equation (3) fitted to each trait (grain yield, anthesis, silking, and anthesis-silking interval). Each model
was run with 50,000 MCMC iterations (discarding 5,000 as burning and using a thinning of 10 samples) and
replicated 5 times. ‘Average (SD), across 4 traits and 5 replicates, time per iteration (median value across
iterations). Y Average (SD), across 4 traits and 5 replicates, time to perform the Gibbs sampler which includes the
initial over-heading time (matrices preparation and hyperparameters setting) plus time to complete all iterations.
*Estimated total computing time (EVD computation + Gibbs sampling). All the computations were carried out on
the MSU’s High-Performance Computing Center in nodes with Intel processors with 96 GB of RAM memory
using 3 computing threads.

Figure 1. Computation time ratio (logio scale, average across 20 replicates) of the EVD of the matrix K
using the eigen method relative to fensorEVD method, by sample size (n = 10000, 20000, and 30000
in the x-axis) and proportion a of variance of K explained (¢ = 0.90,0.95, and 0.98). Each panel
represents a combination of number of hybrids (n;) and number of environments (ny).

Figure 2. Frobenius norm (average + SD across 20 replicates) of the difference between the Hadamard
matrix K and the approximation (K,) provided by the eigen and tensorEVD procedures, by sample size
(n =10000,20000, and 30000) and proportion a of variance of K explained (¢ = 0.90,0.95, and
0.98). Each panel represents a combination of number of hybrids (n;) and number of environments
(ng). Smaller norm indicates better approximation.

Figure 3. Number of eigenvectors (average + SD across 20 replicates) produced by the eigen and
tensorEVD methods, relative to the rank of matrix K, by a-value (i.e., proportion of variance explained,
a =0.90,0.95, and 0.98) and sample size (n = 10000,20000, and 30000). Each panel represents a

combination of number of hybrids (n;) and number of environments (1 ).

Figure 4. Proportion of the phenotypic variance (average + SD across 5 replicates) of grain yield

explained by each model term (G, E, GE, Error) in Equation (3). The EVD of the Hadamard matrix K
(covariance matrix of GE) was performed using eigen and tensorEVD methods for different a-values
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(@ = 1.00,0.98,0.95,0.90). Numbers on the top represent the percentage of change (%) relative to the
variance explained by each term in the model that uses full information in K (i.e., @« = 1.00) obtained
with the eigen method (horizontal dotted line).

Figure 5. Within environment prediction correlation (r) for the model in Equation (3) in cross-
validation with EVD of the Hadamard matrix K performed using the tensorEVD (x-axis) and the eigen
(y-axis) method. Each point gives the prediction correlation obtained within an environment (r, i =
1, ...,97) with each of the methods, by trait (rows) and a-value (in columns, proportion of variance of K
explained captured by the selected eigenvectors). Numbers in gray (below and above the diagonal)
represent the weighted mean across the 97 environments for each of the methods. The numbers in
=a+

parenthesis (in red) are 95% confidence intervals for the coefficient b in the regression 7,

b rtensorEVD + €.
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