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A B S T R A C T   

Certain urban neighborhoods are more susceptible to heat than others, primarily because of the 
unequal distribution of imperviousness, building and vegetation morphology, social vulnerability, 
and anthropogenic heat release. Here, we demonstrate that using the surface urban heat island 
intensity obtained through remote sensing approaches to evaluate urban heat vulnerability (UHV) 
can be misleading due to the interannual and seasonal variability of rural land surface temper
ature (LST). We present the disparity in the heat vulnerability index (HVI) when LST and air 
temperature are used as hazards and show that the LST-based approach overestimates the HVI 
during daytime. Thus, we contend that while HVI may be appropriate for comparing the relative 
UHV of different neighborhoods, it should not be used to assess absolute daytime heat vulnera
bility. To address this limitation, we propose a new metric: human heat health index (H3I) that 
can be utilized to (i) assess and compare heat hazard in different neighborhoods and (ii) evaluate 
the effectiveness of environmental interventions for heat mitigation. H3I was applied to 
demonstrate the reduction in heat hazard due to 3-D urban structures using street-level modeling 
in Austin, Texas. Our findings emphasize the need for combining 3-D urban data, modeling, and 
community feedbacks efforts to assess daytime UHV for prioritizing the implementation of heat 
mitigation strategies.   

1. Introduction 

Urban areas are subject to various local stressors that are compounded by heat stress. In the United States alone, extreme heat was 
the leading cause of weather-related deaths, especially in urban areas for the year 2021 (NOAA, 2021). As a result, efforts are un
derway to develop heat mitigation strategies at the neighborhood as well as street scales, and for improving city-scale weather 
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predictions to combat the health and socioeconomic impacts of heat. Urban heat islands (UHI) cause thermal discomfort and increase 
the energy demand for cooling because the land surface temperature (LST) and near-surface 2-m air temperature (T2M) in cities are 
greater than those in the surrounding rural regions, especially at night. UHI intensity is often characterized by the differences in LST 
and/or T2M between urban and neighboring rural areas (Chow and Roth, 2006; Peng et al., 2012). Therefore, the UHI intensity is 
influenced not only by urban characteristics such as the thermal properties of building materials, anthropogenic heat emissions, 
reduced evapotranspiration, reduced air circulation due to built-up land, and longwave emissions from the surrounding warm envi
ronment (Oke, 1982), but also by rural characteristics such as soil moisture deficit, which modulate the rural diurnal temperature 
range (Niyogi et al., 2006). Since the UHI effect is predominantly a nighttime phenomenon and heat stress is greatest during the day, 
the UHI intensity is not a suitable measure of daytime heat hazard in urban settings. Therefore, regardless of the temperature in rural 
areas, absolute urban temperatures must be utilized to assess heat hazard (Martilli et al., 2020). Hence, it is apparent that a better 
approach than using UHI intensity is needed to highlight the daytime urban heat hazard. Nonetheless, UHI intensity can help address 
the negative impact of nocturnal temperatures on humans during prolonged heatwave episodes, as nighttime elevated temperatures do 
not allow the body to recover from daytime heat stress (Laaidi et al., 2012). 

Urban areas have a higher population concentration relative to rural areas and heat affects urban communities disproportionately, 
mainly because of the following:  

1. The non-uniform distribution of urban heat (hazard): This led to the development of local climate zones (LCZ) as an extended list of 
land use classifications that consider physical characteristics, such as the sky view factor (SVF), which are relatively homogeneous 
over an urban block (Stewart and Oke, 2012). Using a supervised classification algorithm and training labels from local city experts 
or Google Earth photos, LCZ maps for a city can be generated from Landsat-8 data (Ching et al., 2018; Fung et al., 2022). This 
approach allows for reporting of typical LST and/or T2M over an urban block.  

2. Sensitivity to heat: Urban heat vulnerability cannot be determined solely by LST and/or T2M because certain social groups may be 
more sensitive to heat stress than others, while some may be more adaptable. Therefore, assessing urban heat vulnerability requires 
considering both the hazard and social vulnerability. A popular approach to quantifying population vulnerablity that accounts for 
sensitivity and adaptive capacity is the social vulnerability index (SoVI) (Cutter et al., 2003). 

To address the heat hazard, mitigation strategies such as cool roofs and pavements are often designed. Also, community strategies 
like public cooling centers are aimed to reduce SoVI by increasing the adaptive capacity. Krayenhoff and Voogt (2010) suggested that 
heat mitigation strategies should focus on reducing the negative consequences of heat rather than mitigating the UHI effect. 

We contend that a heat hazard assessment should account for full urban geometry and its thermal effects through shortwave and 
longwave radiation, winds, and humidity. Despite the existence of measures like the universal thermal climate index (UTCI) (Jen
dritzky et al., 2012) to address this, city-scale UTCI simulations are rare due to the limited availability of urban data and the spatial 
scale of simulations. Alternatively, the US national weather service (NWS) uses the heat index (HI) (Rothfusz and Headquarters, 1990), 
which combines T2M and relative humidity (RH) to account for reduced heat loss from perspiration when RH is high, thereby 
increasing thermal stress. Thus, HI can be used for heat hazard assessment when the air in an urban area is not supersaturated. 

The main goal of this study is to draw attention to and build on the limitations of using urban LST and/or T2M alone for assessing 
heat health risks and to propose a new metric for better urban heat vulnerability assessment and planning of heat mitigation strategies. 
We also emphasize the importance of community engagement in the planning of heat mitigation strategies and compare community 
perceptions of heat with observed T2M. In this work, the city of Austin Texas, was used as a representative sprawling city due to its 

Fig. 1. (a) Austin local climate zones (LCZ) classification. Black and purple polygons show Austin city limit and region where vehicle traverse 
temperature data was collected, respectively. Neighborhoods in different LCZs that were chosen for model-based study are also shown. (b) fraction 
of vegetation (λv), building (λb) and impervious (λi) area within each LCZ. (c) NASA’s socioeconomic data and application center (SEDAC) pop
ulation density for the year 2020. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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ongoing activities and plans for implementing heat mitigation strategies that required high-resolution information for vulnerable 
neighborhoods. 

2. Study area 

The city of Austin Texas, United States, spans approximately 772 km2 and has nearly one million residents (US Census Bureau, 
2022). With the effects of global warming and urbanization, the city has seen an increase in the number of days with high temperatures 
exceeding the 95th percentile of climatological values. This has led to severe heat stress in neighborhoods that are vulnerable, often 
populated by low-income Hispanic communities (Lanza et al., 2023)(Bixler et al., 2022). According to the Köppen-Geiger climate 
classification (Beck et al., 2018), which takes into account both yearly and seasonal variations in temperature and precipitation, Austin 
is located within the humid sub-tropical climatic zone. While July and August are often the warmest months of the year, the city sees 
two rainfall maxima before and after the summer season. 

Cities create microclimates due to their diverse land cover. It is therefore important to have an understanding of the spatial 
characteristics of a city using LCZs to make an initial assessment of heat vulnerability. For example, an area with intense urban 
development but with well-irrigated parks and vegetation may have a lower temperature on average compared to a neighborhood 
surrounded completely by impervious surfaces. In this study, LCZ data for the year 2019 shown in Fig. 1a was processed at 100-m 
spatial resolution using Landsat-8 sensor data, impervious area, and building data as inputs to a random forest model that was 
trained to predict LCZs using labels from Google Earth (Fung et al., 2022). The combined proportion of buildings and paved areas is 
denoted by the impervious fraction (λi), while the vegetation fraction combines trees and grass and is represented by λv. These fractions 
were obtained from a 1-m resolution land cover dataset created by fusing the 2020 European Space Agency (ESA) world-cover data 
with building footprints and road network from the city. The land cover dataset has 7 categories: buildings, paved surfaces, deciduous 
trees, evergreen trees, grass, soil, and water. This dataset is further used for modeling as discussed ahead. 

Austin has predominantly open-low (LCZ6) land cover. Fig. 1b shows a decrease in λi and an increase in λv as we go from urban 
regions to more natural land types. These fractions affect T2M through the surface energy balance (SEB) as they dictate the partitioning 
of turbulent heat fluxes. Fig. 1c displays the population density for the year 2020 using data from the NASA SEDAC (2018) gridded 
dataset. Population density is strongly correlated with energy consumption and therefore the release of anthropogenic heat (AH). AH is 
an important component of the urban surface energy balance that influences temperature. 

3. Datasets and models 

When using observational T2M datasets, there is a trade-off between spatial and temporal coverage. Weather stations provide high 
temporal resolution but only represent a small area of urban microclimate rather than the entire city. In contrast, vehicle traverse T2M 
observations provide greater spatial coverage but may lack temporal resolution. Similarly, when using remotely sensed LST, sensors 
that offer high spatial resolution typically provide data in a return cycle of ~4–5 days. Therefore, a combination of different datasets is 
necessary for mapping the urban thermal environment. 

Fig. 2. ECOSTRESS land surface temperature (LST) for summer 2020 at ~70-m spatial resolution over Austin. All times indicated are local.  
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3.1. Remote sensing 

This study used Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua to understand the interannual variability of LST in 
urban and surrounding rural areas in Austin. MODIS-Aqua is a sun-synchronous imager with 36 spectral bands in various wavelengths 
ranging from visible to thermal infrared, and it has a spatial resolution of ~1 km. Data is acquired daily during the daytime (1.30 PM 
local) and nighttime (1.30 AM local), and the improved MYD21 LST product was used in this study. Although MODIS has a relatively 
coarse spatial resolution for neighborhood scale analysis, it has LST records going back to the year 2002. 

The ECO2LSTE product from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) was used 
to analyze LST at the scale of a city block. ECOSTRESS is a radiometer that is installed on the International Space Station and operates 
in a non-sun-synchronous orbit with a repetition cycle of approximately 4–5 days. Data from ECOSTRESS is accessible starting in 2019, 
and its spatial resolution is ~70 m.` 

It is important to note that remotely sensed LST data do not represent the temperature of the entire urban surface (Voogt and Oke, 
1997). As a result, the LST values obtained through remote sensing may be higher during the day and lower during the night compared 
to the temperature of the complete urban surface. This is because roofs tend to be hotter during the day and cooler during the night due 
to their thermal properties and SVF (Oke et al., 2017). Further, there is uncertainty in LST estimation at large off-nadir viewing angles. 
In this study, however, we have not filtered data based on viewing angles. The LST retrievals might also be affected by the local 
weather prior to data collection. For example, cloudy conditions before image acquisition may result in lower LST estimations due to 
the cloud shadow effect. Lastly, ECOSTRESS geolocation accuracy may suffer under cloudy conditions, which can impact street scale 
analysis. These factors play a role while studying the surface UHI intensity (SUHII). 

Fig. 2 presents the LST for summer of 2020, considering only cloud-free images over our extended study area to avoid the cloud 
shadow effect. The Figure illustrates how the LST decreases after sunset. Note that we cannot create a diurnal profile of LST from the 
subplots in Fig. 2 because they are from separate days. 

3.2. Mobile traverse 

On a clear and calm day (August 7, 2020), a urban heat mapping campaign was conducted in Austin, with 17 volunteers 
participating in vehicle traverse heat mapping. Fig. 1 shows that the campaign concentrated on the eastern part of the city since it 
included a larger proportion of low-income groups, and less tree cover, making its residents more at risk from the heat (Lanza et al., 
2023). Vehicle traversal measurements were taken in the early morning (between 6 and 7 AM), afternoon (between 3 and 4 PM), and 
evening (between 7 and 8 PM) along the pathways depicted in Fig. S1 in the supplementary material. For the analysis in this paper, we 
used spatially interpolated T2M data according to Shandas et al. (2019). The interpolated air temperature is shown in Fig. 3. However, 
it should be noted that spatial interpolation may introduce some bias in the T2M analysis. 

3.3. Models 

In Austin, where there is a dearth of ground-based weather stations in various LCZs, we employed the surface urban energy and 
water balancing scheme (SUEWS) (Sun and Grimmond, 2019) to estimate T2M and RH at a local scale (400 × 400-m grid box). The 
SUEWS model has been validated in prior studies (Järvi et al., 2011; Ward et al., 2016). We used ERA-5 hourly reanalysis data for T2M, 
wind speed, and humidity in the inertial sub-layer for forcing SUEWS following Tang et al. (2021). Due to the low spatial resolution of 
ERA-5 (0.25◦ × 0.25◦), forcing for all the neighborhoods simulated were contained within a single ERA-5 grid cell. To calculate the 
urban canopy parameters for SUEWS, we rasterized building and vegetation layers from the United States Geological Survey 3DEP 
LiDAR point cloud data. Additionally, we used the 7-class land use data as described in section 2. The SUEWS physics parametrizations 
used were the same as Tang et al. (2021). 

The solar and longwave environmental irradiance geometry (SOLWEIG) model was used to simulate shadows, mean radiant 

Fig. 3. Interpolated vehicle traversed 2-meter air temperature (T2M) for 7th August 2020 (summer season, June - August). Note the range of the 
temperature scale is different for all the plots in order to better represent the spatial variability. 
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temperature (TMRT), and the universal thermal climate index (UTCI) (Lindberg et al., 2008; Lindberg and Grimmond, 2011). TMRT is 
the equivalent temperature due to exposure to absorbed shortwave and longwave radiation from all directions in a standing position. 
SOLWEIG was forced using near-surface ERA-5 data. Building, vegetation heights, and digital terrain model were again derived from 
3DEP LiDAR point cloud data. Both SUEWS and SOLWEIG were run using the urban multi-scale environment predictor (UMEP) 
(Lindberg et al., 2018) plug-in with QGIS. 

3.4. Social vulnerability index (SoVI) 

SoVI employs principal component analysis (PCA) to extract important information from socio-demographic factors from the most 
recent five-year complete US census data (2015-2020). In this study, we mapped SoVI for each census tract in Austin. The socio- 
demographic variables used in the PCA analysis are presented in section S2 of the supplementary material. If census data was not 
available at the tract level, data for the census block group was used. All data used for PCA analysis and calculated SoVI were 
normalized between 0 and 1 using the maxmin normalization method. Correlation tests were performed before PCA analysis to reduce 
the data volume, as some socio-demographic factors were autocorrelated in Austin. It should be noted, however, that assumptions 
about such correlations in other cities may not be valid. By calculating SoVI based solely on socio-demographic data from Austin, we 
can directly compare SoVI values across different neighborhoods. The map of SoVI in Fig. 4, shows high vulnerability in the eastern 
part of the city where historically, industries and low-income groups have been located. 

4. Results and discussions 

The heat hazard analysis presented here encompasses both historical and present-day scenarios. Heat vulnerability estimates, 
however, are only done for the current conditions, as the estimated SoVI is based on census data from 2015 to 2020. 

4.1. Historical heat characterization 

In Fig. 5, we analyzed the correlation between MODIS LST and impervious fraction (λi) for the years 2004, 2008, 2013, and 2019 as 
NLCD λi was available at a spatial resolution of 30 m for these years. Due to a discrepancy between MODIS LST grid cells and λi, we 
aggregated λi within the MODIS grid cell for analysis. The positive correlation between LST and λi is a result of urban surface energy 
balance, reduced sky-view factor for walls and streets, shading, and evaporative cooling due to vegetation. The insets in Fig. 5 depict 
the data only for summers. The coefficient of determination (r2) varies over the years, as LST also depends on annual synoptic scale 
features such as droughts and seasonal changes in the thermal characteristics of rural areas. Here, rural area is classified based on the 
value of λi. The results show that neighborhoods with high λi are warmer, but the LST for neighborhoods with smaller λi is not 
necessarily cooler; instead, it depends on interannual variability. For example, during the El Nino years (2004 and 2019) when Austin 

Fig. 4. Social vulnerability index (SoVI) for Austin calculated using US census data from 2015-2020. The box indicates the approximate location of 
the historically disadvantaged eastern Austin communities. 
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is wetter than normal with a lower soil moisture deficit, there is a better correlation between λi and LST, while during the La-Nina years 
(2008 and 2013) when it is drier than normal, this correlation is marginally weak, especially during summers. Therefore, we conclude 
that using surface urban heat island intensity as a proxy for heat hazard can sometimes be misleading, as high urban and rural LSTs 
during dry conditions may result in a small value of heat island intensity. 

Following the approach of Hulley et al. (2019), we produced two additional maps for Austin using MODIS-Aqua LST. The first map 
shows the average LST on days of heat waves from 2003 to 2020, revealing which areas have historically been subjected to high LST. 
The second map shows the trend in the number of days in a year with a daily average LST greater than the 95th percentile of 
climatological value, identifying locations with a rapid increase in LST. We used T2M readings from the Austin Camp Mabry weather 
station and the excess heat factor (EHF) approach (Nairn and Fawcett, 2014) to detect heatwave episodes to create the first map. Camp 

Fig. 5. Scatter plots between impervious fration (λi) and MODIS land surface temperature (LST) for the years 2004, 2008, 2013 and 2019. Insets 
show the data only for summer seasons (June-August). 

Fig. 6. MODIS-derived mean land surface temperature (LST) during heatwave day and night (left and center). Trend in number of days with LST 
exceeding the 95th percentile of mean day-time temperature for the period 2003 and 2020 (right). Note the different temperature scales for day- and 
night-time LST plots; this, was done to highlight the spatial variability. 
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Mabry is an operational, urban representative station, with λi = 0.34, λv = 0.58 and bare soil (λbc) = 0.08 within a 400-m vicinity. The 
EHF method compares the 3-day averaged daily mean temperature with the 95th percentile of climatological values and also considers 
the acclimatization factor calculated by comparing the 3-day averaged mean daily temperature with the mean temperature of the past 
30 days. We chose heatwave days because they are often associated with anticyclonic and dry weather conditions that bring clear skies 
and calm conditions, ideal for urban temperature studies. Fig. 6 shows the spatial maps of daytime and nighttime LST during heat
waves along with the spatial trend for increasing hot days in Austin. 

Fig. 6 shows that most of the built-up areas of Austin, as shown in the LCZs of Fig. 1, are warmer during the day, while downtown 
Austin is hotter during the night. This is due to the tall buildings in downtown that reduce the sky-view factor and increased storage 
and anthropogenic heat flux, leading to reduced cooling efficiency. Additionally, the northeastern part of Austin is hot during the day 
as this region turns into bare soil under dry conditions. However, most LCZ classifiers mark this area as LCZD. Thus, if we use the 
definition of surface heat island intensity by Bechtel et al. (2019) during dry conditions, we will see that Austin shows a small heat 
island intensity or may even exhibit an urban cool island effect. This discussion supports the argument of using heat island intensity for 
heat assessment from Fig. 5 and reinforces the role of rural characteristics. 

The trend plot shows that the northern and southern neighborhoods of the city are experiencing the most rapid increase in LST, 
which is consistent given the city’s sprawl in these directions. Fig. 6 also illustrates that Austin’s LST is increasing on average. 

4.2. Present-day heat characterization 

Vehicle traverse data is used to show the T2M anomaly for each LCZ in Fig. 7b. Each LCZ’s mean T2M was subtracted from the 
traverse’s overall mean T2M to calculate the anomaly. As can be seen in Fig. 7b, urban areas tend to be warmer than their rural 
counterparts. Fig. 7a shows that the value of T2M is very stable during the afternoon when heat stress is normally at its peak. This is 
because the urban and rural areas are warmed almost equally by mid-afternoon. However, the highest anomaly was observed during 
the morning, likely due to the thermal properties of urban features, reduced sky-view factor, and anthropogenic heat flux. Overall, the 
LCZ approach provides a useful framework for analyzing microclimates within urban areas (Ching et al., 2018; Stewart and Oke, 
2012). 

Fig. 7 also shows that it is possible to get the wrong conclusions when relying on temperature anomalies or canopy urban heat 
island intensity (CUHII) for heat vulnerability assessments. The intensity of CUHII decreases significantly towards the afternoon, 
suggesting that the UHI effect is lessened at this time. Conversely, the CUHII is highest during the early morning. If one were to rely 
solely on CUHII as an indicator for heat vulnerability, one would mistakenly conclude that early morning is when mitigation efforts are 
necessary. However, during mornings, the temperature is approximately 297 K (23.85 ◦C), which is considered comfortable, and 
therefore does not necessarily require mitigation. On the other hand, in the afternoon, when the CUHII is at its minimum, the tem
peratures rise to around 309 K (35.85 ◦C), indicating the need for heat mitigation measures. 

4.3. Heat vulnerability index (HVI) 

A preliminary analysis of HVI was done using normalized ECOSTRESS LST as a hazard as it offers large geographical coverage. HVI 
was calculated as 

Fig. 7. (a) 2-meter air temperature (T2M) and (b) temperature anomalies (or canopy urban heat island intensity- CUHII) for different local climate 
zones (LCZs) in Austin. Figure style adopted from (Stewart and Oke, 2012). 
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HVI = LSTN(heat ​ hazard) × SoVI (1) 

We computed the ECOSTRESS HVI for four summertime daytime scenarios separated by around six hours to find neighborhoods 
that are typically at risk all day long. Fig. 8 shows the results for the 95th percentile of HVI, highlighting the vulnerable neighborhoods. 
For further analysis, we considered one neighborhood (Rundberg) that is highlighted using a circle in Fig. 8. It should be noted that 
although certain areas of downtown Austin experience high LST, they do not appear in Fig. 8 due to their lower SoVI owed to higher 
adaptive capacity. Additionally, another location with a lower SoVI was identified in West Austin. The three neighborhoods (Rund
berg, downtown and West Austin) discussed are marked in Fig. 1a, and later sections provide a more detailed analysis of these areas 
using a model. 

4.3.1. Comparison of HVI calculated using LST and T2M 
The LST recorded by space-borne sensors may not be representative of the temperatures experienced by humans. Therefore, to 

assess heat vulnerability, it is necessary to use T2M. As many previous studies in the literature have used LST to quantify heat 
vulnerability, for instance, Hulley et al. (2019), it is crucial to compare the HVIs calculated using ECOSTRESS LST and mobile traverse 
T2M to understand the spatial patterns and magnitudes of HVI calculated using the two hazards. Fig. 9 presents this comparison. 

To make a meaningful comparison between the ECOSTRESS LST data recorded in different years during the summer season and the 
vehicle traverse T2M in the morning and evening of 7th August 2020, we normalized the data before calculating HVI. Although the 
afternoon data is presented in Fig. 9 for illustrative purposes, it cannot be compared directly to T2M because of the time difference. 
During the morning period, the magnitude of HVI calculated using T2M is higher than that based on LST. This is because the roofs are 
cooler in the morning, but T2M inside the urban canyon is warmer due to longwave emissions from the walls. However, during the 

Fig. 8. 95th percentile of heat vulnerability index (HVI) calculated using normalized ECOSTRESS land surface temperature (LST). The black circle 
shows the Rundberg neighborhood in northeast Austin that has high social vulnerablity. 
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other two times of the day, the LST-based HVI is overestimated in many neighborhoods, as the value of LST is typically higher than 
T2M (Christen et al., 2012; Voogt and Oke, 2003). 

4.4. The daytime human heat health index (H3I) 

It is evident from Fig. 9 that HVI can only be utilized to compare vulnerability between different neighborhoods at a given time and 
does not provide information on the actual vulnerability. For example, the value of vehicle traverse-based HVI is high in the morning at 
Rundberg, but by examining the value of T2M (Figure 7), we find that the heat stress is minimal. Therefore, to comprehend urban heat 
vulnerability, the diurnal profile of National Weather Service heat index (HI) (in ◦F) that uses both temperature and RH must be 
considered. We introduce a new definition of heat hazard as follows: 

H =
∑

i
{max((HIi − 101), 0) } (2) 

The proposed definition of heat hazard is ’H’, where ’i’ is the hour of the day, and the value 101 ◦F is based on the National Weather 
Service threshold of ‘dangerous heat’. H considers the cumulative hours when the heat index exceeds the dangerous heat limit, 
allowing for a direct comparison of absolute daytime heat hazard between different neighborhoods. In addition, the definition of HVI 
was modified to account for H, resulting in the definition of the daytime human heat health index (H3I). 

H3I = H × SoVI (3) 

The weather observations required to calculate H3I for different LCZs were not available in Austin. Therefore, we relied on SUEWS 
simulations. 

Fig. 9. Comparison of heat vulnerablity index (HVI) calculated using vehicle traverse 2-meter air temperature (top row) and ECOSTRESS land 
surface temperature (bottom row) as heat hazards. 
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4.5. SUEWS simulations 

The SUEWS domain was set up at three locations, as marked in Fig. 1a, with a 1-h time step for the entire year 2020. As noted in 
study by Best and Grimmond (2013), soil moisture initialization affects temperature outcomes. Thus, we ran the model for the first 8 
months of the year 2020 as a spin-up phase. Our goal in using the SUEWS was to disentangle the separate impacts of HI and SoVI on 
H3I. For this, first we simulated T2M and relative humidity at Austin Camp Mabry weather station neighborhood for validation of the 
SUEWS model. T2M simulation results showed good overall agreement when compared with measurements (Fig. S3 in supplementary 
material). The Google Earth imagery of the modeled neighborhoods is presented in Fig. 10, along with the SUEWS-simulated hourly 
averaged surface energy balance components in the inertial sublayer for July 1 to August 31, 2020 (dry period) and heat index for a hot 
day, August 12, 2020. The modeled anthropogenic heat flux was highest in downtown, attributed to its higher population density and 
traffic. Note that we used the same cut-off values of temperatures for heating and cooling to calculate anthropogenic heat in SUEWS as 
in, Tang et al. (2021). This introduces some uncertainty, but the impact is expected to be small.The modeled latent heat flux was small 
due to a significant dry surface conditions. There was intermittent precipitation during the afternoons in Austin, leading to the mean 
diurnal profile of latent heat flux skewed towards the evening period. Note that the sensible heat flux is always positive in downtown. 
This can be attributed to the presence of mechanically driven turbulence and large storage and anthropogenic heat fluxes during the 
night. The heat index was greater than the National Weather Service-designated ’dangerous’ heat limit line for approximately 5–6 h in 
the three modeled neighborhoods. 

The values for H, SoVI, and H3I for the three areas are shown in Table 1. Due to possible model and/or boundary forcing un
certainties, simulated T2M results did not capture the nocturnal UHI effect in the downtown area when compared with lower built-up 
types with more vegetation fraction (as shown in Fig. 7). Our focus here, however, is to demonstrate how H3I accounts for the duration 
and severity of heat-vulnerable periods. In this scenario, a comparison of H values across different areas reveals that downtown is 
subject to the least amount of heat. When the heat vulnerability of these three areas is compared using the H3I, we find that Rundberg 
area is the most at heat risk. By examining T2M and SoVI individually, we find that SoVI has a large influence on H3I. For instance, a 
neighborhood with high hazard and low SoVI may not be categorized as vulnerable, while a neighborhood with moderate heat hazard 
and high SoVI may be classified as highly vulnerable. Another limitation of using the local-scale H3I calculated using heat index is that 
it does not resolve heat vulnerability within the neighborhood, which is sometimes needed for planning intervention strategies. 

Fig. 10. Surface energy balance (SEB) at Rundberg (λv=0.2, λb=0.23, λpa = 0.51), downtown (λv=0.08, λb=0.4, λpa = 0.44) and west Austin 
(λv=0.58, λb=0.17, λpa = 0.2) in 400-meter vicinity. λpa is the paved fraction. Modeled heat index (HI) and NWS ‘dangerous heat’ limit is 
also shown. 
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5. H3I for human heat health assessment and planning of heat mitigation strategies 

The H3I calculated using heat index (as a heat hazard) provides a means of quantifying and comparing absolute heat vulnerability 
across different neighborhoods. However, it is not directly applicable for planning heat mitigation strategies because it does not 
provide insights into locating interventions (e.g., trees or bus shelters) for heat mitigation or for assessing to what extent the mitigation 
strategy has been successful in reducing heat stress. Such data can be obtained by street-scale modeling, and is discussed ahead. We 
suggest utilizing universal thermal climate index (UTCI) to evaluate heat hazard when developing heat mitigation strategies. UTCI is a 
function of mean radiant temperature (TMRT), T2M, wind speed, and humidity. Street vegetation and buildings are strongly linked to 
TMRT and UTCI due to the shading effect. 

For street scale analysis, we employed SOLWEIG to model TMRT and UTCI at two neighborhoods with different SoVI for a clear-sky 
summer day (August 12, 2020). The building raster was simplified to level of detail-1 for modeling simplicity and wind speed was 
taken as 2 m/s while temperature and relative humidity was taken from the meteorological forcing data. Fig. 11 displays a Google 
Earth image and modeled TMRT at three different times of day to emphasize the importance of incorporating 3-D urban data in street- 
level heat hazard modeling. 

For the analysis of TMRT and UTCI, we selected six points (P1-P6) at location-1 and four points (P1-P4) at location-2, as indicated in 
Fig. 11. These points were chosen based on the different sky view factors. Fig. 12 shows the diurnal patterns of TMRT and UTCI at these 
points. Depending on the points’ relative location to the tree canopy or buildings, shading occurs at different times of the day. For 
example, point P5 at location-1 experiences lower TMRT before the sub-solar point due to the shading provided by the nearby tree 
compared to point P3, where SVF = ~1. 

We calculated the hazard using UTCI at all points in both locations. A value of UTCI ≥32 ◦C was chosen as a cut-off for heat hazard 
calculation in eq. 2 as it indicates strong heat stress (Bröde et al., 2012). The results of our calculations for heat hazard and H3I are 
presented in Table 2. The table shows that the surrounding infrastructure can reduce heat hazard by approximately 27% for point P4 at 
location 1 and 25% for point P3 at location 2 compared to the points with open-sky. The corresponding reductions in H3I were 26.3% 
and 25.1%, respectively. In the present case, the values of heat hazard and H3I reduction are mostly similar as the comparison is for the 
neighborhoods with same SoVI. However, when comparing neighborhoods with different SoVI, this difference can be large. Such 

Table 1 
Calculated heat hazard (H) and human heat health index (H3I) along with social vulnerability index for the 
three simulated neighborhoods.   

H SoVI H3I 

Rundberg 30.3 0.61 18.5 
Downtown 14.25 0.29 4.1 
West Austin 31.3 0.44 13.8  

Fig. 11. Modeled mean radiant temperature (TMRT) at two neighborhoods in Austin. Different points (P1-P6 at location 1 and P1-P4 at location 2) 
were chosen for analysis based on the sky view factors and are also shown. 
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information is expected help the planning of heat mitigation strategies. Additionally, H3I allows us to perform if-then analyses to 
evaluate the efficacy of implemented intervention strategies. In other words, planners can use H3I to evaluate how effective different 
strategies can be in reducing heat stress for specific locations. 

5.1. Alternate definitions of H3I 

Another measure of human thermal comfort that considers 3-D urban geometry is the physiological equivalent temperature (PET) 
(Höppe, 1999). PET takes into account factors such as T2M, relative humidity, wind speed, as well as human characteristics including 
height, weight, gender, clothing, and energy expenditure during activity. H3I can also be defined based on PET for assessing thermal 
comfort and planning heat mitigation strategies. This can be achieved by modifying the hazard calculation using a PET cutoff of 35 ◦C, 
which indicates strong heat stress. Alternatively, the hazard can be determined based on the fraction of the day when UTCI or PET 
exceeds 32 ◦C or 35 ◦C, respectively. To illustrate the hazard defined using the time fraction, spatial maps of UTCI and PET were 

Fig. 12. TMRT and universal thermal climate index (UTCI) at the selected points at the two locations. Strong heat stress limit (UTCI≥32 ◦C) is also 
shown. The points P1-P6 at location 1 and points P1-P4 at location 2 are shown in Fig. 11. 

Table 2 
Calculated heat hazard (H) and human heat health index (H3I) for different sky view factors at location 1 (points P1-P6) and location 2 (points P1-P4) 
as shown in Fig. 11. Social vulnerability index (SoVI) for the two locations is also shown. Heat hazard reduction was calculated using P3 at location 1 
and P2 at location 2 as reference. These points represent a sky view factors of ~1.  

Location 1 Location 2 

Point H SoVI Hazard reduced H3I H3I reduced Point H SoVI Hazard reduced H3I H3I reduced 

P1 79 0.53 1.3% 41.9 0.5% P1 80.2 0.32 0.2% 28.1 0.2% 
P2 69 13.8% 36.6 13.1% P2 80.4 – 28.1 – 
P3 80 – 42.4 −0.8% P3 60.2 25.0% 21.1 25.1% 
P4 58.5 26.9% 31.0 26.3% P4 63.2 21.3% 22.1 21.4% 
P5 75.6 5.5% 40.1 4.7%       
P6 79.37 0.8% 42.1 –        
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calculated for August 12, 2020, at location 2 shown in Fig. 11. These maps are shown in Fig. 13. It is important to account for wind 
speed when calculating UTCI and PET spatially, as buildings and trees can act as obstacles and change wind speeds in their vicinity. In 
this study, the urban wind field processor (Bernard et al., 2023) in UMEP was utilized to calculate the wind field, assuming unob
structed winds at a height of 10 m flowing at 2 m/s from the northeast direction. PET was computed for a 35-year-old male weighing 
75 kg, engaged in an activity spending 80 W. 

Fig. 13 additionally presents the average daytime UTCI and PET. As the simulated wind flow is considered to be from the northeast, 
the wind speed in the southwest region of the building (highlighted as a black box in Fig. 13) is nearly zero. This low wind speed has a 
greater impact on PET compared to UTCI, showing higher sensitivity. Observing the results, it is evident that the daily mean PET 
reaches its peak in areas with open sky and negligible wind speed, whereas UTCI closely aligns with the shading effect due to buildings 
and trees. 

5.2. The community factor in H3I 

The urban heat mitigation process is an iterative approach that requires validation and correction of modeled vulnerable areas 
based on community feedback (Bixler et al., 2022). To gather this feedback, residents of the Rundberg neighborhood (as shown in 
Figure 8) were asked about their heat experiences in the surrounding area. The interpolated vehicle traversed T2M for the afternoon 
period (3–4 PM) was used to investigate the spatial correlation between air temperature and community perception of heat. While 
individuals may have different tolerance levels for heat, the objective was to identify any heat hotspots based on community expe
riences. The residents were also asked about their preferred heat mitigation strategies and where they would like to see them 
implemented. Fig. 14 shows the results for both community perception of heat and potential locations for heat mitigation strategy 
implementation. 

The findings in Fig. 14 demonstrate that higher T2M does not necessarily indicate higher heat hazard according to community 
perception. Rather, hazard and heat mitigation strategies appear to be focused on areas that people visit frequently. This underscores 
the significance of community engagement in heat mitigation planning (Lanza et al., 2023). To accommodate resident mobility, it may 
be necessary to adjust the definition of H3I. 

H3I = SoVI ×
∑

i
{max(UTCIi − 32) , 0} × Ei (4) 

This modified definition of H3I accounts for resident mobility and enables the prioritization of heat mitigation strategies based on 
the probability of resident visits to a neighborhood at a given time (Ei). Ei can therefore be considered as exposure. 

5.3. Final remarks on H3I 

It is important to consider community input and the suitability of the chosen heat mitigation strategy for the neighborhood. For 
example, implementing green infrastructure in water-stressed areas may not be feasible, and alternative strategies such as bus shelters 
or cool pavements and roofs may be necessary. In brief, to effectively address daytime urban heat vulnerability, it is important to 
account for the urban 3-D features, social vulnerability, and community feedback in a comprehensive modeling framework. This 
approach will allow for the identification and implementation of appropriate heat mitigation strategies that are tailored to the specific 
needs and characteristics of the community. 

6. Conclusions 

Recent space-borne sensors, such as ECOSTRESS, allow for high spatio-temporal analysis of LST. They are useful for conducting a 
preliminary assessment of heat vulnerability as they provide large geographical coverage. Calculation of UHI intensity using LST is 
generally errorneous and misleading (Mills et al., 2022) and estimation of UHI from T2M is necessarily dependent on rural charac
teristics. Therefore, using UHI intensity to plan heat mitigation strategies at times can be misleading as it only highlights whether the 
urban surface is relatively warmer or cooler than the corresponding rural area. In this paper, we highlight that heat hazard must 
consider 3-D urban features, aided by social vulnerability and community feedback, within a modeling framework to co-produce and 
implement appropriate heat mitigation strategies. 

When using remotely sensed LST as a hazard to calculate HVI, caution must be exercised as the satellite sensor does not capture the 
complete urban surface. As a result, when compared to HVI calculated using T2M, the HVI derived from LST can be overestimated 
during mid-day times. Furthermore, spatial maps of HVI provide relative vulnerability information that is valid for that time and for a 
neighborhood relative to others. Therefore, to determine the absolute vulnerability of a neighborhood, we need the diurnal profile of 
heat hazard. Accordingly, we defined a new heat hazard metric that considers the magnitude of heat index and the cumulative hours of 
the day when heat index exceeds a prescribed threshold. Combining this hazard metric with social vulnerability yielded a new index, 
human heat health index (H3I), which was found to be a more robust method for understanding neighborhood-scale absolute 
vulnerability. 

To plan and evaluate the effectiveness of heat mitigation strategies, street-level modeling is effective as it considers the shading 
effect of buildings and trees. Using modeled universal thermal climate index at the street-level as a heat hazard, we calculated H3I at 
different points for varying sky view factors to investigate how built and green infrastructure affect H3I. Our findings indicated that 
locations adjacent to trees have a varying impact on cooling, and a reduction of approximately 25% in heat hazard compared to a 
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location with an open sky. Furthermore, our study emphasized the importance of involving the community in decision-making for heat 
mitigation, as the modeled heat hazard may not always align with the public perception of heat. We introduced a time-varying 
exposure, Ei, in heat mitigation studies using a simple community heat hazard dataset that was obtained from a survey. However, 
currently we do not have estimates of Ei for different cities, and will be a subject of future research. One possible approach we are 
exploring to generate a temporally varying Ei is by generating a synthetic population data (Macal et al., 2018). 
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