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Abstract 

Cities need climate information to develop resilient infrastructure and for adaptation decisions. The information 
desired is at the order of magnitudes finer scales relative to what is typically available from climate analysis and future 
projections. Urban downscaling refers to developing such climate information at the city (order of 1 – 10 km) and 
neighborhood (order of 0.1 – 1 km) resolutions from coarser climate products. Developing these higher resolution 
(finer grid spacing) data needed for assessments typically covering multiyear climatology of past data and future pro‑
jections is complex and computationally expensive for traditional physics-based dynamical models. In this study, we 
develop and adopt a novel approach for urban downscaling by generating a general-purpose operator using deep 
learning. This ‘DownScaleBench’ tool can aid the process of downscaling to any location. The DownScaleBench has 
been generalized for both in situ (ground- based) and satellite or reanalysis gridded data. The algorithm employs an 
iterative super-resolution convolutional neural network (Iterative SRCNN) over the city. We apply this for the develop‑
ment of a high-resolution gridded precipitation product (300 m) from a relatively coarse (10 km) satellite-based prod‑
uct (JAXA GsMAP). The high-resolution gridded precipitation datasets is compared against insitu observations for past 
heavy rain events over Austin, Texas, and shows marked improvement relative to the coarser datasets relative to cubic 
interpolation as a baseline. The creation of this Downscaling Bench has implications for generating high-resolution 
gridded urban meteorological datasets and aiding the planning process for climate-ready cities.
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1  Introduction
High-resolution datasets at the neighborhood or sub-km 
spatial scales are desired for understanding urban cli-
mate and developing climate service applications. Spa-
tial resolution indicates how detailed and representative 
a map or image is. Coarse spatial resolution in an urban 
context would be data or map with a limited level of 
detail (typically of the orders of 10s km); the high-reso-
lution data variables have elements typically needed for 
neighborhood scale analysis. In the context of city plan-
ning, high-resolution data can be helpful for mean cli-
mate attributes, as it can help city planners make more 
informed decisions about adaptation strategies (Bixler 
et al., 2022). For example, climate data with a high level 
of detail can help city staff identify areas that are most 
likely to flood or have exceptional heat. It can also help 
neighborhoods develop strategies that can help them 
make more equitable choices about future climate pat-
terns. High-resolution data, in general, can be more use-
ful in urban decision-making, analysis for energy use and 
a host of essential activities than coarse spatial resolution. 
Note that for most climatological, long-term analyses, 
airport observations are taken as indicative of the city. 
Additionally, reanalysis products are 30-100 km and suit-
able for capturing large-scale dynamics but not for local 
scale decision-making or important assessments (Tewari 
et  al., 2023). Additionally, studies such as Berne et  al. 
(2004); Ward et al. (2018) discuss the relative importance 
of spatial and temporal scales for urban hydroclimatol-
ogy. The high-resolution datasets at the street scale of 
less than 500 m are desired important for community 
education, insurance claims, urban ecology and air pollu-
tion health studies.

Downscaling is necessary because global climate 
models, which are used to simulate and predict future 
climate, have a low spatial resolution. Different down-
scaling approaches are used in urban studies (Smid & 
Costa, 2018). Downscaling approaches are postprocess-
ing techniques that can be categorized under two over-
arching themes statistical and dynamical approaches. 
Dynamical downscaling uses high-resolution regional 
climate or numerical weather prediction models to simu-
late the weather over a smaller domain at a fine spacing/
scale. This approach can provide local dynamical feed-
backs about local-scale climate conditions. However, 
dynamical downscaling is computationally intensive and 

requires a high level of expertise to set up and run the 
models with appropriate domain size and boundary con-
ditions. Statistical downscaling is often therefore used 
to improve spatial resolution when a reference baseline 
dataset is available. This method can be good at capturing 
the local climate conditions important for city planning. 
Still, it depends on the availability of high-quality histori-
cal climate data and may not be able to accurately capture 
the effects of climate change. An example of a statistical 
technique would be developing a relationship using a 
large-scale climate product and then assuming that rela-
tion holds at a local scale and generating high-resolution 
fields.

Recently more sophisticated statistical approaches 
are available: for example, change detection method 
(Hu et  al., 2019), Support Vector Machine-Probabilistic 
Global Search (Njoku et  al., 2002), and artificial intelli-
gence (AI). These statistical approaches have gained pop-
ularity in recent years due to their ability to upscale and 
downscale meteorological parameters (e.g., K-Means, 
Neural network) and due to the relatively quick execu-
tion and computational needs compared to the dynami-
cal downscaling methodology. One such statistical 
techniques involves the convolutional neural networks 
(CNNs), which is a deep learning framework that con-
sist of a series of convolutional layers that: (i) slide along 
inputs (as multidimensional arrays), (ii) assign learnable 
weights, and biases to each neuron, and (iii) generates 
the featured output map (Ghosh, 2010; Aloysius & Gee-
tha, 2017). Given CNNs ability to learn the patterns from 
gridded datasets, they have been used in several downs-
caling approaches (e.g., Gu et al. (2015); Xu et al. (2020)).

1.1 � Study objective
The motivation for this work stems from discussions with 
researchers and city staff working on climate projects in 
Austin, Texas. Several city-based operations need high-
resolution climate information. Currently, the city of 
Austin is developing a climate projection that can be used 
for different sustainability operations. For this purpose, 
the available data is typically from reanalysis or satellite 
gridded fields and needs to be downscaled. The loca-
tion of Austin is shown in Fig. 1. As the capital of Texas, 
United States and the largest city of Travis County in 
terms of area and population. Since 2010, it has been one 
of the fastest-growing major American cities. Austin’s 

Fig. 1  Location of Austin, Texas in the USA. Urban downscaling is performed over a 3 ◦ X 3 ◦ box (29-32N,96-99W) centered over Austin. The 3 
◦ X 3 ◦ box is shown as land-use land-cover map over Austin from the MCD12Q1.061 MODIS Land Cover Type Yearly Global 500m using Annual 
International Geosphere-Biosphere Programme (IGBP) classification. The numbers correspond to the following classes: 1 - Evergreen Needleleaf 
Forests, 2 - Evergreen Broadleaf Forests, 3 - Deciduous Needleleaf Forests, 4 - Deciduous Broadleaf Forests, 5 - Mixed Forests, 6 - Closed Shrublands, 
7 - Open Shrublands, 8 - Woody Savannas, 9 - Savannas, 10 - Grasslands, 11 - Permanent Wetlands, 12 - Croplands, 13 - Urban and Built-up Lands, 14 
- Cropland/Natural Vegetation Mosaics, 15 - Permanent Snow and Ice, 16 - Barren, 17 - Water Bodies

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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population was estimated at 961,855 in the most recent 
census in 2020.

Development of the urban precipitation high-resolu-
tion data/ climatology is important for a variety of plan-
ning as well as water resources and disaster response 
activities. In addition, such information is essential for 
developing infrastructure as part of the smart city frame-
work (Anthopoulos, 2017). Cities seek to develop climate 
resiliency and sustainability strategies for which urban 
scale (i.e., spatial scale order of 1km grid spacing) and cli-
matic datasets are needed (González et al., 2021). There 
are popular climate data available from international and 
coordinated assessments that have resulted in the Rea-
nalysis and climate model outputs (e.g., IPCC/CMIP6 
(Meehl et  al., 2000), or ERA5 (Hersbach et  al., 2020)); 
however, their grid spacing is relatively coarse (order of 
10s to 100s of km grid) (Hersbach et al., 2020). Projecting 
the future state of the atmosphere has been made pos-
sible using numerical models (Yang et al., 2016). Despite 
significant improvements to the numerical models in the 
last decade, the limitation in the computational power 
and numerical stability (, 2009) mean the global climate 
model and reanalysis outputs are generated at coarse spa-
tial resolution. While adequate for modeling mesoscale 
processes and weather forecasting (Sha et al., 2020), this 
resolution, as discussed, is not optimal for capturing spa-
tial variability of environmental and climate variables in a 
heterogeneous environment and complex terrains (Schu-
macher & Rasmussen, 2020). As a result, cities such as 
Austin, are generally represented by a single or similar 
small number of grids from the climate reanalysis fields. 
The climatology that emerges from such large-scale fields 
is of limited use for city-scale operations requiring infor-
mation at a much higher spatio-temporal resolution. City 
departments need such information to understand local 
vulnerabilities, assess infrastructure planning needs, and 
develop resiliency plans considering equity and adaptive 
options available. Additional examples of high-resolution 
analysis include working with problems such as water 
and food security, dealing with infectious disease and 
heat, air quality long-term exposure assessments, and 
developing energy and other demand studies.

A data-driven decision narrative is often needed for 
cities to develop smart solutions as part of their oper-
ational efficiency, improved livability and short- and 
long-term resiliency outlooks. There is an increasing 
demand for high spatiotemporal resolution data over 
the urban regions for smart growth planning, emer-
gency response, and management in response to the 
current changing climate (see Holden et  al. (2011); 
Liu et  al. (2020)). The rainfall and clouds over urban 
areas vary due to anthropogenic activities and changes 
in land use/land cover characteristics. In the study 

by Freitag et  al. (2018), urban imprints were found in 
the precipitation and cloud processes in addition to 
changes caused to the upstream flow of water. Extreme 
rainfall over urban areas and particularly over urban-
rural boundaries has shown increasing trends, and the 
signature can be found across the world (Freitag et al., 
2018; Niyogi et al., 2017; Kishtawal et al., 2010). A resil-
ient and sustainable response to the current and future 
climate scenarios relies on an accurate understanding 
of how climatic characteristics are modified by differ-
ent sub-sections of a city. Accordingly, researchers have 
generated surface flux data at the sub-city scale resolu-
tions (primarily for surface temperature and air quality) 
using different downscaling approaches (e.g., Agath-
angelidis and Cartalis (2019); Hofierka et al. (2020)).

1.2 � Urban precipitation downscaling
A downscaled urban precipitation product at high spa-
tiotemporal scales is necessary to capture the differ-
ent active processes. To circumvent the coarse-scale 
issue for impact and assessment studies, downscaling 
approaches have been employed (Abdollahipour et  al., 
2022). Downscaling operator improves the resolution 
of the coarse grid and sampling frequency datasets to 
higher resolution outputs. The operators used for such 
a transformation range from computationally expensive 
dynamical downscaling models (e.g., Leung and Qian 
(2005)) to the simpler two-dimensional linear interpo-
lation (Shepard, 1968). Several statistical techniques 
have been applied in the literature related to cubic 
interpolation, kriging methods, random forests, sup-
port vector machines, artificial neural networks, and 
deep learning-based approaches (Sun & Tang, 2020; 
Sekulić et  al., 2021; Sha et  al., 2020; Sachindra et  al., 
2018; Wang et  al., 2021). In the past, several studies 
have attempted urban precipitation downscaling. Sørup 
et  al. (2016) downscale the regional climate model 
outputs using a statistical technique to a 2 km spatial 
resolution. Their goal is aimed towards urban hydrol-
ogy and they use a dense network of station dataset 
over a limited region for the same. Ward et  al. (2018) 
use a high-temporal resolution precipitation dataset to 
show that the difference in temporal resolution leads to 
improved modeled energy fluxes. Licznar et  al. (2011) 
develop temporally high resolution data, Berne et  al. 
(2004) show that high temporal resolution is required 
for high spatial resolutions for the urban hydrology 
applications. A study (Lu & Qin, 2014) downscaled the 
future climate projections on the stations over Singa-
pore urban area by disaggregating and downscaling. 
Similar attempts have been made over Stockholm (Ols-
son et al., 2012) and Auckland (Akhter et al., 2019).
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1.3 � Deep learning for urban precipitation downscaling
With the surge in recent deep learning/ machine learn-
ing interest, there is growing evidence that deep learning-
based techniques can enhance the traditional statistical 
methods used to increase spatial resolution or downscal-
ing of climate products (Tyagi et al. 2022). A number of 
studies, following the work by Dong et al. (2015), showed 
that a simple, lightweight image-to-image deep convolu-
tional neural networks (SRCNN) can substantially out-
perform a widely used technique for spatial downscaling 
using two-dimensional cubic interpolation. Of interest 
also is that the simple deep learning-based solution is 
comparable to the sparse coding technique. Of particular 
interest to this study, is the issue of developing high reso-
lution climate information over cities. Table 1 lists exam-
ple of studies that have employed CNN-based algorithms 
(i.e., random forest, remote sensing indices, deep learn-
ing, support vector machine; artificial neural networks) 
to generate higher spatial resolution data over urban 
regions. Various studies (Xu et  al., 2020; Choe & Yom, 
2020; Xu et al., 2021; Hutengs & Vohland, 2016; Weng & 
Fu, 2014; Li et al., 2019; Yu & Liu, 2021; Liu et al., 2018; 
Sha et  al., 2020) have explored downscaling variables 
important for urban areas. Examples include downscal-
ing land surface temperature, air temperature, and air 
pollutants such as fine particulate matter (PM2.5), and 
nitrogen dioxide (NO2). The past studies (Table 1) have 
focused on machine learning methods such as random 
forests, kriging, support vector machines, and artificial 
neural networks. However, the application of deep learn-
ing is a recent approach.

While most of these studies attempt to improve the 
spatial resolutions of the urban datasets, they do not 

employ CNN for high-resolution (<500 m) urban pre-
cipitation downscaling, which has shown superior per-
formance on image-based tasks. Moreover, past studies 
have primarily focused on temperature and air pollution-
related variables. High-resolution precipitation maps 
over urban regions, which are for non-continuous peri-
ods and with dynamic spatial heterogeneity have not 
been assessed by any study. Moreover, such high resolu-
tion precipitation data are important for are important 
for urban hydrology applications. Also, most studies, as 
shown in Table 1, have attempted at the downscaling fac-
tors of up to 10x, except for the work done by Xu et al. 
(2020), who attempt to downscale up to 30x of the low-
resolution inputs.

1.4 � Study contributions
We focus on the problem of precipitation downscal-
ing over urban areas using the deep learning/SRCNN 
approach using Austin, Texas, USA, as the urban 
domain. High-resolution sub-500 m datasets of pre-
cipitation required by the City of Austin are not yet 
available by any available product. While applications 
of CNN-based methods have resulted in satisfac-
tory outcomes, the networks of these algorithms are 
rather complex. Super-Resolution Convolutional Neu-
ral Network (SRCNN) (Dong et  al., 2015) is a simple, 
lightweight network structure with a high restoration 
quality. Given the potential of the SRCNN method, 
we postulate that high-quality rainfall data with fine 
spatial resolution could be generated using iterative 
SRCNN over the urban region with higher accuracy 
and speed than standard CNN methods. We test this 
approach because downscaling rainfall data over the 

Table 1  Comparison of machine learning / deep learning studies focused on urban downscaling

A variable (LST land surface temperature, Tb brightness temperature, PM2.5 particulate matter smaller than 2.5 micron; Pr precipitation, NO2 nitrogen, Tmax/
Tmin maximum/minimum 2-m temperature, T2m two meter air temperature), B city/location (GZ Guangzhou, ZH Zhangye, SL Seoul, JRV Jordan river valley, LA Los 
Angeles, BJ Beijing), C (RF random forests, RS remote sensing indices, DL deep learning, SVM support vector machine, ANN artificial neural networks, KR kriging), D 
convolutional neural networks, E iterative downscaling

A B C D E Scale-up Study

LST Guangzhou RF 90 m to 10 m Gu et al. (2015)

LST Seoul DL 1000 m to 30 m Xu et al. (2020)

Tb Guangzhou RF 30 m to 10 m Choe and Yom (2020)

LST Zhangye RS 270 m to 90 m Xu et al. (2021)

LST Jordan river valley RF 1000m to 250 m Pan et al. (2018)

LST Los Angeles SVM 5km to 1km Hutengs and Vohland (2016)

LST Beijing SVM,RF,ANN 990m to 90m Weng and Fu (2014)

NO2 Los Angeles DL 0.125◦ to 5km Li et al. (2019)

PM2.5 USA RF+KR 0.1◦ to 0.01◦ Yu and Liu (2021)

Tmax/Tmin USA RF 0.25◦ to 4 km Liu et al. (2018)

T2m Tokyo DL � 10m to 5m Sha et al. (2020)

Pr Austin, Texas, USA DL � � 10 km to 300 m SRCNN (This study)
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urban areas is particularly challenging as the rainfall 
characteristics are modified by the city’s microclimate 
(Freitag et  al., 2018). The heterogeneous environment 
of urban regions with varying physical and thermody-
namic properties and anthropogenic activities alters 
the surface flux and impacts the atmospheric boundary 
layer, which ultimately translates into a shift in rainfall 
regime over the urban landscape (Onishi et  al., 2019). 
We postulate that urban precipitation can be down-
scaled to very-high resolution over Austin, Texas by 
ingesting data from the Japan Aerospace Exploration 
Agency (JAXA) satellite product as a precursor to the 
deep learning model. Our method is expected to cre-
ate an ability for generating fast, high spatiotempo-
ral meteorological datasets with super-resolution that 
have significant implications for the current and future 
development plans of urban climate services and smart 
cities.

In this study, we employ a deep CNN-based model - 
SRCNN to iteratively downscale the precipitation data 
over Austin, Texas from JAXA global product available 
at 0.1 ◦ hourly spatiotemporal resolutions from 2000 to 
2020. We take the reference of a general purpose statisti-
cal downscaling operator such as cubic or linear interpo-
lation, which can theoretically increase the resolution to 
generate finer-scale datasets. The task performed by the 
traditional statistical operators is to rearrange the low-
resolution information into a dense matrix. We attempt a 
similar transformation and develop the iterative SRCNN 
to perform 2x downscaling at any scale, i.e., from 10km 
to 5km, from 5km to 2.5 km and so on.

Thus, our contributions include the development of 
a general-purpose algorithm based on a single image 
super-resolution in computer vision by using sub-images 
to perform iterative downscaling for high-resolution 
urban-scale datasets. Our approach can be used to itera-
tively generate downscaled products, theoretically up to 
any spatial resolution for which images are available. As 
stated, we focus on achieving spatial resolutions of ∼ 300 
meters. This spatial resolution can be used for targeted 
applications to communities planning climate resiliency 
and adaptation strategies for urban neighborhoods. Gen-
erating ∼ 300-meter precipitation maps from measure-
ments is challenging as it would require the deployment 
of measurement sensors in large quantities. The initial 
setup of such sensors and their regular maintenance also 
would be quite expensive and even more challenging for 
maintaining and operating. The iterative method pro-
vides a workaround for traditional techniques by gener-
ating high-resolution urban precipitation datasets. We 
target a scaling factor of around 30x from input low-reso-
lution satellite product at 0.1 degrees or 10km to a target 
high-resolution output of ∼ 300 meters.

2 � Data and methodology
This section discusses the data and methodology used in 
this study. The schematic of the data and methodology, in 
addition to the applications of high-resolution urban cli-
mate datasets is shown in Fig. 2.

2.1 � Dataset
The Japan Aerospace Exploration Agency (JAXA) Global 
Rainfall Watch (GsMAP), which is a part of the Global 
Precipitation Measurement (GPM) is used in this study. 
The state-of-the-art Ku/Ka Doppler dual-frequency pre-
cipitation radar (DPR) and microwave imager are aboard 
GPM’s primary satellite. Because of the improvements 
made by its load over TRMM in identifying tropical pre-
cipitation (0-1 mm per day) (Draper et  al., 2015), GPM 
provides high quality global satellite precipitation meas-
urements. The setup also includes dual-polarized doppler 
radar based output which can give very high-resolution 
precipitation data. GPM consists of two algorithms for 
satellite-based precipitation. One of them is the IMERG 
(Hou et al., 2014) from NASA, and the other is GsMAP 
(Kubota et al., 2007) from JAXA. JAXA GsMAP has vari-
ous products in its catalog: near real-time, moving vec-
tor with Kalman filter, and the gauge-calibrated standard 
product.

In this study, we use the JAXA GsMap gauge-calibrated 
precipitation product. The dataset provides global cover-
age and is available from 2000 to the present at a spatial 
resolution of 0.1◦ and a temporal resolution of one hour. 
A subdomain of JAXA data encompassing Austin, Texas 
and covering 29 - 32N, 96 - 99W was selected. Although a 
large-scale dataset over the Earth needs to consider sphe-
ricity, our dataset is over a small region relative to the 
global dataset from which it is acquired. Because of the 
smaller domain size, it is considered a two-dimensional 
image. The algorithms applicable to two-dimensional 
images in computer vision are therefore considered suit-
able for this data. The data is first split into training and 
testing data, with the training data corresponding to 2001 
to 2009 and test data as 2010 to 2018. The domain over 
Austin is selected as a 3 ◦ x 3 ◦ box, and the spatial resolu-
tion of JAXA GsMAP data is 0.1 ◦ x 0.1 ◦ . Thus, the origi-
nal data is a matrix of size 30 x 30.

2.2 � Methodology
The training data is normalized using min-max scaling 
and then transformed to sub-images of size 20 × 20. The 
test dataset is scaled using the normalization weights 
from the training data. The sub-images are then fed into 
the SRCNN algorithm. The deep convolutional neural 
network employs the following equations:

(1)F1(Y ) = max(0,W1 ∗ Y + B1)
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Here, Y is the input coarse-resolution dataset and F3(Y) 
is the output high-resolution output. W1, W2, W3 and 
B1, B2, B3 correspond to the weights and biases learned 
during training. The non-linear function used is a rec-
tified linear unit which is max(0,x). The architectural 
details of the model can be seen in detail from Dong et al. 
(2015). First, the 20 × 20 sub-images are convoluted by 
64 filters, each with a size 9 × 9, and then the rectified 
linear unit (RELU) activation function is operated upon 
the convolutions. This operation involves the convolu-
tion and non-linear activation functions described by 
Eq. 1. The output of Eq. 1 again goes through the trans-
formation involving convolution and activation; however, 
32 filters of size 1 × 1 complete the operations of Eq. 2. 
The output of Eq. 2 is then operated by one 5 × 5 filter 
to perform a linear combination operation which is the 
output of Eq.  3. We use the padding option ‘same’ so 
that the operations are padded and the input and output 
size remains identical. The applied optimizer is adaptive 

(2)F2(Y ) = max(0,W2 ∗ F1(Y )+ B2)

(3)F3(Y ) = max(0,W3 ∗ F2(Y )+ B3)

moment estimation (ADAM) with a learning rate of 
0.001. The model is trained from 2001 to 2008, with the 
year 2009 corresponding to the validation period during 
training. The best model is saved every 100 iterations if 
the validation loss falls below the previous best model. 
Once the training is completed, the test data is first nor-
malized and broken down into sub-images to be fed as 
input to the trained model. The test predictions are then 
reconstructed from the sub-images and inverse normal-
ized to compare with the ground truth in the test dataset. 
The model is a general purpose operator that is capable 
of performing twofold super-resolution from any low-
resolution information to a higher resolution matrix.

In a nutshell, the output from SRCNN at 10 km spa-
tial resolution is used as an input to the trained model 
to generate an output at 5 km in an iterative manner. 
Iterative training is possible as we train the model using 
sub-images which is the core of our algorithm. Hence 
the model is agnostic to the size of the input dataset, 
and any large image can be broken into sub-images of 
size 20 x 20. These sub-images are reconstructed back 
after the model predictions. This property of our deep 
learning-based solution makes the model comparable to 

Fig. 2  Schematic showing the process used to downscale the rainfall dataset over Austin, Texas, USA using Iterative SRCNN in this study. Step 1 to 
Step 6 show the process used to develop high-resolution output
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a standard interpolation technique such as cubic interpo-
lation. Thus, it is subsequently used in an iterative frame-
work to generate the urban scale ( ∼ 300 m) product from 
10 km JAXA GsMAP satellite precipitation product. The 
complete training with early stopping took around one 
week on an NVIDIA Tesla P100 GPU. The super-resolu-
tion downscaled datasets are generated in an hour from 
the trained model for ten years of testing data.

2.3 � Need for iterative SRCNN
Iterative SRCNN is used in this urban downscaling, and 
is the backbone of this study. In general, the SRCNN is a 
general-purpose operator which can perform a 2x down-
scaling from the 10 km resolution GsMAP precipitation 
data using single-image super-resolution. The idea is 
similar to the general-purpose operators such as bilinear/
cubic interpolation which can perform interpolation up 
or down the scale. However, we choose to perform itera-
tive downscaling transcending one step at a time as in 
spatial scales as it preserves the information squeezing 
rather than taking the big leap forward.

2.4 � Limitations of iterative SRCNN
There are different statistical approaches are avail-
able for such a downscaling framework. Each have their 
strengths and limitations (Kotamarthi et  al., 2021). The 
utility of SRCNN as a data resolution operator is well 
established in the vision community (Yamanaka et  al., 
2017). In general, SRCNN is a good first choice for this 
DownScaleWorkbench, because of its robustness, wide 
usage, and computational efficiency. Nonetheless, as with 
any technique, there are important limitations that are 
highlighted here. The first shortcoming is the emergence 
of horizontal and vertical lines, which occur as artifacts 
when downscaling is performed beyond a certain spatial 
resolution. At what resolution this effect would become 
visible can only be determined by experimentation (Song 
et  al., 2019). Second, the method only considers spa-
tial information, whereas localized heavy extremes have 
temporal disaggregation (Scher & Peßenteiner, 2021), 
which is not considered in this study. In terms of the 
general limitations of this study, which is often the case 
with many downscaling exercises, is that lack of reference 
high-resolution dataset to validate the generated values. 
In an experimental setting, this can be conducted by set-
ting up rain-gauges over a limited area to generate a very 
high-resolution gridded product to validate the output of 
Iterative SRCNN. Moreover, hyper-local convective rain 
events are averaged over the whole grid in the input data, 
and this method may not be able to identify and localize 
such events. Therefore, such a method likely works best 
for larger scale frontal rain events to improve the spatial 
information at a local scale.

3 � Development of DownScaleBench
A predetermined sequence of operations is required 
to produce the DownScaleBench. This workflow is also 
shown in Fig. 3. Initially, we define the area of interest 
and then obtain data from a climate dataset such as the 
Global Historical Climatology Network (GHCN). From 
the GHCN dataset, the ground station data available 
within a 3 deg x 3 deg (   300 km x 300 km) box that 
surrounds the area of interest is extracted. This choice 
of the 300 km grid box is based on consideration of 
data availability, data quantity, and the computational 
aspects such as data storage needs. This domain size is 
also considered based on the typical size of cities glob-
ally and the rainfall feedback that is expected over a 
region that is typically twice the size of the city (Liu & 
Niyogi, 2019; Niyogi et al., 2011).

Second step of the DownScaleBench is to undertake 
quality control on the station data by removing stations 
with excessive null values or with large missing data. 
This criterion can be user-specified and in our study, 
we eliminated stations which had data missing for mul-
tiple years. We identify the stations with the lowest null 
values and the longest period of records. These stations 
are used for further analyses.

Fig. 3  Components of the DownScaleBench framework for 
generating supervised learning datasets for urban downscaling. 
An integral part of DownScaleBench is the incorporation of station 
information in the training process
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Third, we have the option and the ability of extracting 
the gridded products currently available corresponding 
to the domain and variable of interest using Google Earth 
Engine.

Finally, we can extract the ground station data during 
the period where both the gridded products and sta-
tion data are available in the database. The data from the 
ground stations and the gridded product are brought 
together within the DownScaleBench.

Thus, DownScaleBench addresses the issue of stand-
ardizing the validation and access of the high-resolution 
climate data over and around the city from ground sta-
tions as well as gridded products and provide an interface 
for ingesting these data for the training of the ML algo-
rithms. The Jupyter notebook to run DownScaleBench 
is provided with the GitHub repository (https://​github.​
com/​texus​labut/​urban_​preci​pitat​ion_​downs​caling) for 
this study.

4 � Results and discussion
The test predictions generated for 2010 to 2019 are com-
pared with the ground truth data for the same period. 
The ground truth data considered is the same as the orig-
inal JAXA GsMAP gridded dataset over Austin at 10 km 
spatial resolution. Any hourly data that report ‘no rain-
fall’ in the input is masked from the metrics used to com-
pare the cubic interpolation baseline and SRCNN-based 
deep learning model. Two metrics, viz, Peak Signal to 
Noise Ratio (PSNR) and Mutual Information, are used to 
compare the test predictions relative to the ground truth 
(the JAXA GsMAP satellite product). PSNR quantifies 
the ratio of a highest potential signal strength to its con-
founding noise power. It is measured by the decibel scale. 
PSNR is a typical metric for gauging the quality of an 
image. Compression introduces pixel-level errors into the 
data and PSNR is considered an approximation of human 
perception of reconstruction quality when comparing 

Fig. 4  Difference in precipitation maps as cubic interpolation minus the JAXA GsMAP satellite rainfall, and SRCNN minus the JAXA GsMAP satellite 
rainfall

https://github.com/texuslabut/urban_precipitation_downscaling
https://github.com/texuslabut/urban_precipitation_downscaling
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compression codecs (Li & Cai, 2007). As a result, PSNR 
is a useful metric to compare pixel or grid-level errors in 
two images or matrices. Mutual information is the other 
metric used. It is an advanced nonlinear index measur-
ing the similarity of distributions (Speed, 2011). The 
PSNR increases from 146.96 in the baseline to 149.46 for 
SRCNN compared with the original 10 km dataset. To 
understand whether the improvement is notable (signifi-
cant) or not, we compare the results against the survey of 
different metric presented in Wang et al. (2019). Accord-
ingly, this increase in the PSNR by 2.5 is a strong indi-
cator of the enhancement achieved. The improvement is 
also noted in the mutual information results from 0.59 
(in the baseline) to 0.62.

A spatial comparison of SRCNN prediction and the 
cubic interpolation baseline with the ground truth is 
shown in Fig. 4, for a heavy rainfall case that occurred 

4 January 2013 daily precipitation. These matrices show 
improved pixel-level information in SRCNN. Although 
our algorithm shows pixel level improvements of up to 
2 mm/day at the resolution of the input satellite data, 
the high-resolution precipitation product is a matrix of 
size 30x higher (finer) resolution relative to the input 
satellite data (10 km). Errors typically average out and 
reduce for larger grid sizes. That is the error or bias 
over the larger 10 km X 10 km grid would exponentially 
grow to a large bias in a concentrated gridded prod-
uct of grid size 300 m X 300 m. Iterative forecasts are 
generated up to 300 m and beyond 5 km iterative fore-
casts. A more detailed spatial structure is noted in the 
downscaled urban rainfall as shown in Fig. 3. Verifying 
the higher resolution output is challenging, especially 
because of the lack of reference data at comparable 
resolution.

Figure  5 reviews the distribution of difference 
between JAXA 10km rainfall as the reference and the 
difference obtained by cubic and SRCNN downscal-
ing. The plot shows an under and over-representation 
of the pixel-level rainfall that can be observed in the 
cubic interpolation relative to SRCNN. Cubic interpo-
lation does not transform and only interpolates, while 
the SRCNN provides a finer spatial outcome.

Figure  6 shows the resulting final products using 
iterative SRCNN for different spatial resolutions. These 
maps are restricted to a stable downscaled product at 
300 m X 300 m gridded spatial resolution. The stabil-
ity was based on the consideration of the point at which 
horizontal and vertical discontinuity lines appeared in 
the downscaled output from deep learning. These dis-
continuities are an artifact of SRCNN as discussed in 
previous studies (Song et  al., 2019). In future studies, 

Fig. 5  Distributions of cubic minus ground truth (GT) and SRCNN 
minus ground truth (GT) show under and overestimation of 
precipitation in cubic interpolation baseline

Fig. 6  Multi-resolution maps of the gridded rainfall product over Austin using Iterated SRCNN
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advanced deep learning-based super-resolution meth-
odologies for downscaling can likely help eliminate 
these distortions and will be explored. By reviewing 
Fig.  6, it can be visually noted that the rainfall fields 
become more continuous and smoother as the resolu-
tion increases.

5 � Conclusions and future work
This study successfully employs a deep learning-based 
convolutional neural network, SRCNN, for urban 
downscaling. High-resolution maps of precipitation 
at 300 m were generated from the 10 km grid resolu-
tion satellite-based JAXA GsMAP product over Aus-
tin, Texas (29-32N, 96-99W). The deep learning-based 
model is trained for 2001 to 2009, while the test predic-
tions are generated for 2010 to 2019. The quantitative 
metrics, as well as visual inspection, show substantial 
improvements in the pixel-level information from the 
iterative SRCNN downscaling relative to the baseline 
cubic interpolation. The highest resolution dataset at 
300 meters is generated by using iterative prediction. 
Efforts to improve the dataset in the future include 
training the model using hyperparameter tuning as 
a follow-up study. Increasing the number of layers 
and using residual or generative networks will also 
be explored. A study underway for the soil moisture 
dataset with this method includes taking the coarse-
resolution satellite data as an input and developing a 
high-resolution output with reduced latency. This study 
through the development of DownScaleBench provides 
an efficient framework with low computational cost and 
higher speed for generating high-resolution data over 
urban regions. The workflow outlined in DownScale-
Bench will also help standardize the comparison (veri-
fication) of high-resolution gridded urban datasets, 
which was challenging due to the absence of a baseline 
and an adopted framework to incorporate the ground 
station data.

Such data, it is anticipated, could be used by city 
decision-makers for sustainable developments. The 
downscaled climate products can be generated within 
minutes after training for one image. To the best of 
our knowledge, this is the first study to perform urban 
downscaling for precipitation datasets. The increas-
ing trend of heavy rainfall and localized floods over 
urban areas make this high-resolution spatiotemporal 
dataset useful to identify potentially vulnerable areas 
and address the infrastructural requirements of those 
regions (Bixler et  al., 2022). Advanced deep learning 
algorithms using attention and generative learning pro-
vide good solutions to improve these high-resolution 
products further (Singh et al., 2022).
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