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Abstract

Cities need climate information to develop resilient infrastructure and for adaptation decisions. The information
desired is at the order of magnitudes finer scales relative to what is typically available from climate analysis and future
projections. Urban downscaling refers to developing such climate information at the city (order of 1 — 10 km) and
neighborhood (order of 0.1 - 1 km) resolutions from coarser climate products. Developing these higher resolution
(finer grid spacing) data needed for assessments typically covering multiyear climatology of past data and future pro-
jections is complex and computationally expensive for traditional physics-based dynamical models. In this study, we
develop and adopt a novel approach for urban downscaling by generating a general-purpose operator using deep
learning. This ‘DownScaleBench’tool can aid the process of downscaling to any location. The DownScaleBench has
been generalized for both in situ (ground- based) and satellite or reanalysis gridded data. The algorithm employs an
iterative super-resolution convolutional neural network (Iterative SRCNN) over the city. We apply this for the develop-
ment of a high-resolution gridded precipitation product (300 m) from a relatively coarse (10 km) satellite-based prod-
uct (JAXA GsMAP). The high-resolution gridded precipitation datasets is compared against insitu observations for past
heavy rain events over Austin, Texas, and shows marked improvement relative to the coarser datasets relative to cubic
interpolation as a baseline. The creation of this Downscaling Bench has implications for generating high-resolution
gridded urban meteorological datasets and aiding the planning process for climate-ready cities.
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1 Introduction

High-resolution datasets at the neighborhood or sub-km
spatial scales are desired for understanding urban cli-
mate and developing climate service applications. Spa-
tial resolution indicates how detailed and representative
a map or image is. Coarse spatial resolution in an urban
context would be data or map with a limited level of
detail (typically of the orders of 10s km); the high-reso-
lution data variables have elements typically needed for
neighborhood scale analysis. In the context of city plan-
ning, high-resolution data can be helpful for mean cli-
mate attributes, as it can help city planners make more
informed decisions about adaptation strategies (Bixler
et al., 2022). For example, climate data with a high level
of detail can help city staff identify areas that are most
likely to flood or have exceptional heat. It can also help
neighborhoods develop strategies that can help them
make more equitable choices about future climate pat-
terns. High-resolution data, in general, can be more use-
ful in urban decision-making, analysis for energy use and
a host of essential activities than coarse spatial resolution.
Note that for most climatological, long-term analyses,
airport observations are taken as indicative of the city.
Additionally, reanalysis products are 30-100 km and suit-
able for capturing large-scale dynamics but not for local
scale decision-making or important assessments (Tewari
et al, 2023). Additionally, studies such as Berne et al.
(2004); Ward et al. (2018) discuss the relative importance
of spatial and temporal scales for urban hydroclimatol-
ogy. The high-resolution datasets at the street scale of
less than 500 m are desired important for community
education, insurance claims, urban ecology and air pollu-
tion health studies.

Downscaling is necessary because global climate
models, which are used to simulate and predict future
climate, have a low spatial resolution. Different down-
scaling approaches are used in urban studies (Smid &
Costa, 2018). Downscaling approaches are postprocess-
ing techniques that can be categorized under two over-
arching themes statistical and dynamical approaches.
Dynamical downscaling uses high-resolution regional
climate or numerical weather prediction models to simu-
late the weather over a smaller domain at a fine spacing/
scale. This approach can provide local dynamical feed-
backs about local-scale climate conditions. However,
dynamical downscaling is computationally intensive and

(See figure on next page.)
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requires a high level of expertise to set up and run the
models with appropriate domain size and boundary con-
ditions. Statistical downscaling is often therefore used
to improve spatial resolution when a reference baseline
dataset is available. This method can be good at capturing
the local climate conditions important for city planning.
Still, it depends on the availability of high-quality histori-
cal climate data and may not be able to accurately capture
the effects of climate change. An example of a statistical
technique would be developing a relationship using a
large-scale climate product and then assuming that rela-
tion holds at a local scale and generating high-resolution
fields.

Recently more sophisticated statistical approaches
are available: for example, change detection method
(Hu et al., 2019), Support Vector Machine-Probabilistic
Global Search (Njoku et al.,, 2002), and artificial intelli-
gence (AI). These statistical approaches have gained pop-
ularity in recent years due to their ability to upscale and
downscale meteorological parameters (e.g., K-Means,
Neural network) and due to the relatively quick execu-
tion and computational needs compared to the dynami-
cal downscaling methodology. One such statistical
techniques involves the convolutional neural networks
(CNNs), which is a deep learning framework that con-
sist of a series of convolutional layers that: (i) slide along
inputs (as multidimensional arrays), (ii) assign learnable
weights, and biases to each neuron, and (iii) generates
the featured output map (Ghosh, 2010; Aloysius & Gee-
tha, 2017). Given CNN:ss ability to learn the patterns from
gridded datasets, they have been used in several downs-
caling approaches (e.g., Gu et al. (2015); Xu et al. (2020)).

1.1 Study objective

The motivation for this work stems from discussions with
researchers and city staff working on climate projects in
Austin, Texas. Several city-based operations need high-
resolution climate information. Currently, the city of
Austin is developing a climate projection that can be used
for different sustainability operations. For this purpose,
the available data is typically from reanalysis or satellite
gridded fields and needs to be downscaled. The loca-
tion of Austin is shown in Fig. 1. As the capital of Texas,
United States and the largest city of Travis County in
terms of area and population. Since 2010, it has been one
of the fastest-growing major American cities. Austin’s

Fig. 1 Location of Austin, Texas in the USA. Urban downscaling is performed over a 3 ° X 3 © box (29-32N,96-99W) centered over Austin. The 3

° X3 ? box is shown as land-use land-cover map over Austin from the MCD12Q1.061 MODIS Land Cover Type Yearly Global 500m using Annual
International Geosphere-Biosphere Programme (IGBP) classification. The numbers correspond to the following classes: 1 - Evergreen Needleleaf
Forests, 2 - Evergreen Broadleaf Forests, 3 - Deciduous Needleleaf Forests, 4 - Deciduous Broadleaf Forests, 5 - Mixed Forests, 6 - Closed Shrublands,
7 - Open Shrublands, 8 - Woody Savannas, 9 - Savannas, 10 - Grasslands, 11 - Permanent Wetlands, 12 - Croplands, 13 - Urban and Built-up Lands, 14
- Cropland/Natural Vegetation Mosaics, 15 - Permanent Snow and Ice, 16 - Barren, 17 - Water Bodies
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population was estimated at 961,855 in the most recent
census in 2020.

Development of the urban precipitation high-resolu-
tion data/ climatology is important for a variety of plan-
ning as well as water resources and disaster response
activities. In addition, such information is essential for
developing infrastructure as part of the smart city frame-
work (Anthopoulos, 2017). Cities seek to develop climate
resiliency and sustainability strategies for which urban
scale (i.e., spatial scale order of 1km grid spacing) and cli-
matic datasets are needed (Gonzélez et al., 2021). There
are popular climate data available from international and
coordinated assessments that have resulted in the Rea-
nalysis and climate model outputs (e.g., IPCC/CMIP6
(Meehl et al., 2000), or ERA5 (Hersbach et al., 2020));
however, their grid spacing is relatively coarse (order of
10s to 100s of km grid) (Hersbach et al., 2020). Projecting
the future state of the atmosphere has been made pos-
sible using numerical models (Yang et al., 2016). Despite
significant improvements to the numerical models in the
last decade, the limitation in the computational power
and numerical stability (, 2009) mean the global climate
model and reanalysis outputs are generated at coarse spa-
tial resolution. While adequate for modeling mesoscale
processes and weather forecasting (Sha et al., 2020), this
resolution, as discussed, is not optimal for capturing spa-
tial variability of environmental and climate variables in a
heterogeneous environment and complex terrains (Schu-
macher & Rasmussen, 2020). As a result, cities such as
Austin, are generally represented by a single or similar
small number of grids from the climate reanalysis fields.
The climatology that emerges from such large-scale fields
is of limited use for city-scale operations requiring infor-
mation at a much higher spatio-temporal resolution. City
departments need such information to understand local
vulnerabilities, assess infrastructure planning needs, and
develop resiliency plans considering equity and adaptive
options available. Additional examples of high-resolution
analysis include working with problems such as water
and food security, dealing with infectious disease and
heat, air quality long-term exposure assessments, and
developing energy and other demand studies.

A data-driven decision narrative is often needed for
cities to develop smart solutions as part of their oper-
ational efficiency, improved livability and short- and
long-term resiliency outlooks. There is an increasing
demand for high spatiotemporal resolution data over
the urban regions for smart growth planning, emer-
gency response, and management in response to the
current changing climate (see Holden et al. (2011);
Liu et al. (2020)). The rainfall and clouds over urban
areas vary due to anthropogenic activities and changes
in land use/land cover characteristics. In the study
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by Freitag et al. (2018), urban imprints were found in
the precipitation and cloud processes in addition to
changes caused to the upstream flow of water. Extreme
rainfall over urban areas and particularly over urban-
rural boundaries has shown increasing trends, and the
signature can be found across the world (Freitag et al.,
2018; Niyogi et al., 2017; Kishtawal et al., 2010). A resil-
ient and sustainable response to the current and future
climate scenarios relies on an accurate understanding
of how climatic characteristics are modified by differ-
ent sub-sections of a city. Accordingly, researchers have
generated surface flux data at the sub-city scale resolu-
tions (primarily for surface temperature and air quality)
using different downscaling approaches (e.g., Agath-
angelidis and Cartalis (2019); Hofierka et al. (2020)).

1.2 Urban precipitation downscaling

A downscaled urban precipitation product at high spa-
tiotemporal scales is necessary to capture the differ-
ent active processes. To circumvent the coarse-scale
issue for impact and assessment studies, downscaling
approaches have been employed (Abdollahipour et al.,
2022). Downscaling operator improves the resolution
of the coarse grid and sampling frequency datasets to
higher resolution outputs. The operators used for such
a transformation range from computationally expensive
dynamical downscaling models (e.g., Leung and Qian
(2005)) to the simpler two-dimensional linear interpo-
lation (Shepard, 1968). Several statistical techniques
have been applied in the literature related to cubic
interpolation, kriging methods, random forests, sup-
port vector machines, artificial neural networks, and
deep learning-based approaches (Sun & Tang, 2020;
Sekuli¢ et al., 2021; Sha et al., 2020; Sachindra et al.,
2018; Wang et al,, 2021). In the past, several studies
have attempted urban precipitation downscaling. Serup
et al. (2016) downscale the regional climate model
outputs using a statistical technique to a 2 km spatial
resolution. Their goal is aimed towards urban hydrol-
ogy and they use a dense network of station dataset
over a limited region for the same. Ward et al. (2018)
use a high-temporal resolution precipitation dataset to
show that the difference in temporal resolution leads to
improved modeled energy fluxes. Licznar et al. (2011)
develop temporally high resolution data, Berne et al.
(2004) show that high temporal resolution is required
for high spatial resolutions for the urban hydrology
applications. A study (Lu & Qin, 2014) downscaled the
future climate projections on the stations over Singa-
pore urban area by disaggregating and downscaling.
Similar attempts have been made over Stockholm (Ols-
son et al., 2012) and Auckland (Akhter et al., 2019).
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1.3 Deep learning for urban precipitation downscaling
With the surge in recent deep learning/ machine learn-
ing interest, there is growing evidence that deep learning-
based techniques can enhance the traditional statistical
methods used to increase spatial resolution or downscal-
ing of climate products (Tyagi et al. 2022). A number of
studies, following the work by Dong et al. (2015), showed
that a simple, lightweight image-to-image deep convolu-
tional neural networks (SRCNN) can substantially out-
perform a widely used technique for spatial downscaling
using two-dimensional cubic interpolation. Of interest
also is that the simple deep learning-based solution is
comparable to the sparse coding technique. Of particular
interest to this study, is the issue of developing high reso-
lution climate information over cities. Table 1 lists exam-
ple of studies that have employed CNN-based algorithms
(i.e., random forest, remote sensing indices, deep learn-
ing, support vector machine; artificial neural networks)
to generate higher spatial resolution data over urban
regions. Various studies (Xu et al., 2020; Choe & Yom,
2020; Xu et al., 2021; Hutengs & Vohland, 2016; Weng &
Fu, 2014; Li et al.,, 2019; Yu & Liu, 2021; Liu et al., 2018;
Sha et al., 2020) have explored downscaling variables
important for urban areas. Examples include downscal-
ing land surface temperature, air temperature, and air
pollutants such as fine particulate matter (PM2.5), and
nitrogen dioxide (NO2). The past studies (Table 1) have
focused on machine learning methods such as random
forests, kriging, support vector machines, and artificial
neural networks. However, the application of deep learn-
ing is a recent approach.

While most of these studies attempt to improve the
spatial resolutions of the urban datasets, they do not
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employ CNN for high-resolution (<500 m) urban pre-
cipitation downscaling, which has shown superior per-
formance on image-based tasks. Moreover, past studies
have primarily focused on temperature and air pollution-
related variables. High-resolution precipitation maps
over urban regions, which are for non-continuous peri-
ods and with dynamic spatial heterogeneity have not
been assessed by any study. Moreover, such high resolu-
tion precipitation data are important for are important
for urban hydrology applications. Also, most studies, as
shown in Table 1, have attempted at the downscaling fac-
tors of up to 10x, except for the work done by Xu et al.
(2020), who attempt to downscale up to 30x of the low-
resolution inputs.

1.4 Study contributions

We focus on the problem of precipitation downscal-
ing over urban areas using the deep learning/SRCNN
approach using Austin, Texas, USA, as the urban
domain. High-resolution sub-500 m datasets of pre-
cipitation required by the City of Austin are not yet
available by any available product. While applications
of CNN-based methods have resulted in satisfac-
tory outcomes, the networks of these algorithms are
rather complex. Super-Resolution Convolutional Neu-
ral Network (SRCNN) (Dong et al., 2015) is a simple,
lightweight network structure with a high restoration
quality. Given the potential of the SRCNN method,
we postulate that high-quality rainfall data with fine
spatial resolution could be generated using iterative
SRCNN over the urban region with higher accuracy
and speed than standard CNN methods. We test this
approach because downscaling rainfall data over the

Table 1 Comparison of machine learning / deep learning studies focused on urban downscaling

A B C D E Scale-up Study

LST Guangzhou RF 90 mto10m Gu et al. (2015)

LST Seoul DL 1000 mto 30 m Xu et al. (2020)

Tb Guangzhou RF 30mto10m Choe and Yom (2020)
LST Zhangye RS 270mto90m Xu etal. (2021)

LST Jordan river valley RF 1000m to 250 m Pan etal. (2018)

LST Los Angeles SVM 5km to Tkm Hutengs and Vohland (2016)
LST Beijing SVM,RFANN 990m to 90m Weng and Fu (2014)
NO2 Los Angeles DL 0.125° to 5km Lietal. (2019)

PM2.5 USA RF+KR 0.1°t0 0.01° Yu and Liu (2021)
Tmax/Tmin USA RF 0.25°to 4 km Liu et al. (2018)

T2m Tokyo DL v 10mto 5m Sha et al. (2020)

Pr Austin, Texas, USA DL v N 10kmto 300 m SRCNN (This study)

A variable (LST land surface temperature, Tb brightness temperature, PM2.5 particulate matter smaller than 2.5 micron; Pr precipitation, NO2 nitrogen, Tmax/
Tmin maximum/minimum 2-m temperature, T2m two meter air temperature), B city/location (GZ Guangzhou, ZH Zhangye, SL Seoul, JRV Jordan river valley, LA Los
Angeles, BJ Beijing), C (RF random forests, RS remote sensing indices, DL deep learning, SVM support vector machine, ANN artificial neural networks, KR kriging), D

convolutional neural networks, E iterative downscaling
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urban areas is particularly challenging as the rainfall
characteristics are modified by the city’s microclimate
(Freitag et al., 2018). The heterogeneous environment
of urban regions with varying physical and thermody-
namic properties and anthropogenic activities alters
the surface flux and impacts the atmospheric boundary
layer, which ultimately translates into a shift in rainfall
regime over the urban landscape (Onishi et al., 2019).
We postulate that urban precipitation can be down-
scaled to very-high resolution over Austin, Texas by
ingesting data from the Japan Aerospace Exploration
Agency (JAXA) satellite product as a precursor to the
deep learning model. Our method is expected to cre-
ate an ability for generating fast, high spatiotempo-
ral meteorological datasets with super-resolution that
have significant implications for the current and future
development plans of urban climate services and smart
cities.

In this study, we employ a deep CNN-based model -
SRCNN to iteratively downscale the precipitation data
over Austin, Texas from JAXA global product available
at 0.1 ° hourly spatiotemporal resolutions from 2000 to
2020. We take the reference of a general purpose statisti-
cal downscaling operator such as cubic or linear interpo-
lation, which can theoretically increase the resolution to
generate finer-scale datasets. The task performed by the
traditional statistical operators is to rearrange the low-
resolution information into a dense matrix. We attempt a
similar transformation and develop the iterative SRCNN
to perform 2x downscaling at any scale, i.e., from 10km
to 5km, from 5km to 2.5 km and so on.

Thus, our contributions include the development of
a general-purpose algorithm based on a single image
super-resolution in computer vision by using sub-images
to perform iterative downscaling for high-resolution
urban-scale datasets. Our approach can be used to itera-
tively generate downscaled products, theoretically up to
any spatial resolution for which images are available. As
stated, we focus on achieving spatial resolutions of ~ 300
meters. This spatial resolution can be used for targeted
applications to communities planning climate resiliency
and adaptation strategies for urban neighborhoods. Gen-
erating ~ 300-meter precipitation maps from measure-
ments is challenging as it would require the deployment
of measurement sensors in large quantities. The initial
setup of such sensors and their regular maintenance also
would be quite expensive and even more challenging for
maintaining and operating. The iterative method pro-
vides a workaround for traditional techniques by gener-
ating high-resolution urban precipitation datasets. We
target a scaling factor of around 30x from input low-reso-
lution satellite product at 0.1 degrees or 10km to a target
high-resolution output of ~ 300 meters.
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2 Data and methodology

This section discusses the data and methodology used in
this study. The schematic of the data and methodology, in
addition to the applications of high-resolution urban cli-
mate datasets is shown in Fig. 2.

2.1 Dataset

The Japan Aerospace Exploration Agency (JAXA) Global
Rainfall Watch (GsMAP), which is a part of the Global
Precipitation Measurement (GPM) is used in this study.
The state-of-the-art Ku/Ka Doppler dual-frequency pre-
cipitation radar (DPR) and microwave imager are aboard
GPM'’s primary satellite. Because of the improvements
made by its load over TRMM in identifying tropical pre-
cipitation (0-1 mm per day) (Draper et al., 2015), GPM
provides high quality global satellite precipitation meas-
urements. The setup also includes dual-polarized doppler
radar based output which can give very high-resolution
precipitation data. GPM consists of two algorithms for
satellite-based precipitation. One of them is the IMERG
(Hou et al., 2014) from NASA, and the other is GsSMAP
(Kubota et al., 2007) from JAXA. JAXA GsMAP has vari-
ous products in its catalog: near real-time, moving vec-
tor with Kalman filter, and the gauge-calibrated standard
product.

In this study, we use the JAXA GsMap gauge-calibrated
precipitation product. The dataset provides global cover-
age and is available from 2000 to the present at a spatial
resolution of 0.1° and a temporal resolution of one hour.
A subdomain of JAXA data encompassing Austin, Texas
and covering 29 - 32N, 96 - 99W was selected. Although a
large-scale dataset over the Earth needs to consider sphe-
ricity, our dataset is over a small region relative to the
global dataset from which it is acquired. Because of the
smaller domain size, it is considered a two-dimensional
image. The algorithms applicable to two-dimensional
images in computer vision are therefore considered suit-
able for this data. The data is first split into training and
testing data, with the training data corresponding to 2001
to 2009 and test data as 2010 to 2018. The domain over
Austin is selected as a 3 ° x 3° box, and the spatial resolu-
tion of JAXA GsMAP data is 0.1 ° x 0.1 °. Thus, the origi-
nal data is a matrix of size 30 x 30.

2.2 Methodology

The training data is normalized using min-max scaling
and then transformed to sub-images of size 20 x 20. The
test dataset is scaled using the normalization weights
from the training data. The sub-images are then fed into
the SRCNN algorithm. The deep convolutional neural
network employs the following equations:

F1(Y) = max(0, W1 Y + B1) (1)
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Step 6 show the process used to develop high-resolution output

F2(Y) = max(0, W2 %« F1(Y) + B2) (2)

F3(Y) = max(0, W3 % F2(Y) + B3) (3)

Here, Y is the input coarse-resolution dataset and F3(Y)
is the output high-resolution output. W1, W2, W3 and
B1, B2, B3 correspond to the weights and biases learned
during training. The non-linear function used is a rec-
tified linear unit which is max(0,x). The architectural
details of the model can be seen in detail from Dong et al.
(2015). First, the 20 x 20 sub-images are convoluted by
64 filters, each with a size 9 x 9, and then the rectified
linear unit (RELU) activation function is operated upon
the convolutions. This operation involves the convolu-
tion and non-linear activation functions described by
Eq. 1. The output of Eq. 1 again goes through the trans-
formation involving convolution and activation; however,
32 filters of size 1 x 1 complete the operations of Eq. 2.
The output of Eq. 2 is then operated by one 5 x 5 filter
to perform a linear combination operation which is the
output of Eq. 3. We use the padding option ‘same’ so
that the operations are padded and the input and output
size remains identical. The applied optimizer is adaptive

moment estimation (ADAM) with a learning rate of
0.001. The model is trained from 2001 to 2008, with the
year 2009 corresponding to the validation period during
training. The best model is saved every 100 iterations if
the validation loss falls below the previous best model.
Once the training is completed, the test data is first nor-
malized and broken down into sub-images to be fed as
input to the trained model. The test predictions are then
reconstructed from the sub-images and inverse normal-
ized to compare with the ground truth in the test dataset.
The model is a general purpose operator that is capable
of performing twofold super-resolution from any low-
resolution information to a higher resolution matrix.

In a nutshell, the output from SRCNN at 10 km spa-
tial resolution is used as an input to the trained model
to generate an output at 5 km in an iterative manner.
Iterative training is possible as we train the model using
sub-images which is the core of our algorithm. Hence
the model is agnostic to the size of the input dataset,
and any large image can be broken into sub-images of
size 20 x 20. These sub-images are reconstructed back
after the model predictions. This property of our deep
learning-based solution makes the model comparable to
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a standard interpolation technique such as cubic interpo-
lation. Thus, it is subsequently used in an iterative frame-
work to generate the urban scale (~ 300 m) product from
10 km JAXA GsMAP satellite precipitation product. The
complete training with early stopping took around one
week on an NVIDIA Tesla P100 GPU. The super-resolu-
tion downscaled datasets are generated in an hour from
the trained model for ten years of testing data.

2.3 Need for iterative SRCNN

Iterative SRCNN is used in this urban downscaling, and
is the backbone of this study. In general, the SRCNN is a
general-purpose operator which can perform a 2x down-
scaling from the 10 km resolution GsMAP precipitation
data using single-image super-resolution. The idea is
similar to the general-purpose operators such as bilinear/
cubic interpolation which can perform interpolation up
or down the scale. However, we choose to perform itera-
tive downscaling transcending one step at a time as in
spatial scales as it preserves the information squeezing
rather than taking the big leap forward.

2.4 Limitations of iterative SRCNN

There are different statistical approaches are avail-
able for such a downscaling framework. Each have their
strengths and limitations (Kotamarthi et al., 2021). The
utility of SRCNN as a data resolution operator is well
established in the vision community (Yamanaka et al.,
2017). In general, SRCNN is a good first choice for this
DownScaleWorkbench, because of its robustness, wide
usage, and computational efficiency. Nonetheless, as with
any technique, there are important limitations that are
highlighted here. The first shortcoming is the emergence
of horizontal and vertical lines, which occur as artifacts
when downscaling is performed beyond a certain spatial
resolution. At what resolution this effect would become
visible can only be determined by experimentation (Song
et al., 2019). Second, the method only considers spa-
tial information, whereas localized heavy extremes have
temporal disaggregation (Scher & Peflenteiner, 2021),
which is not considered in this study. In terms of the
general limitations of this study, which is often the case
with many downscaling exercises, is that lack of reference
high-resolution dataset to validate the generated values.
In an experimental setting, this can be conducted by set-
ting up rain-gauges over a limited area to generate a very
high-resolution gridded product to validate the output of
Iterative SRCNN. Moreover, hyper-local convective rain
events are averaged over the whole grid in the input data,
and this method may not be able to identify and localize
such events. Therefore, such a method likely works best
for larger scale frontal rain events to improve the spatial
information at a local scale.
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3 Development of DownScaleBench

A predetermined sequence of operations is required
to produce the DownScaleBench. This workflow is also
shown in Fig. 3. Initially, we define the area of interest
and then obtain data from a climate dataset such as the
Global Historical Climatology Network (GHCN). From
the GHCN dataset, the ground station data available
within a 3 deg x 3 deg ( 300 km x 300 km) box that
surrounds the area of interest is extracted. This choice
of the 300 km grid box is based on consideration of
data availability, data quantity, and the computational
aspects such as data storage needs. This domain size is
also considered based on the typical size of cities glob-
ally and the rainfall feedback that is expected over a
region that is typically twice the size of the city (Liu &
Niyogi, 2019; Niyogi et al., 2011).

Second step of the DownScaleBench is to undertake
quality control on the station data by removing stations
with excessive null values or with large missing data.
This criterion can be user-specified and in our study,
we eliminated stations which had data missing for mul-
tiple years. We identify the stations with the lowest null
values and the longest period of records. These stations
are used for further analyses.

1. Station Data

Source: Input data ( e.g.
reanalysis or Global Historical
Climatology Network (GHCN)

or satellite product)

2. Coarse resolution input
Gridded observations
WRF model simulations
Earth Engine

Quality Control Planetary Computer

Eliminate null values based on
user requirements

DownScale
Bench

3. High Resolution Target 4. Development of

supervised learning
dataset

Single Image Super resolution

SRCNN, SRGAN and other
Generator models Unify coarse resolution, high
resolution and station

datasets in a single netcdf file

Fig. 3 Components of the DownScaleBench framework for
generating supervised learning datasets for urban downscaling.
An integral part of DownScaleBench is the incorporation of station
information in the training process
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Third, we have the option and the ability of extracting
the gridded products currently available corresponding
to the domain and variable of interest using Google Earth
Engine.

Finally, we can extract the ground station data during
the period where both the gridded products and sta-
tion data are available in the database. The data from the
ground stations and the gridded product are brought
together within the DownScaleBench.

Thus, DownScaleBench addresses the issue of stand-
ardizing the validation and access of the high-resolution
climate data over and around the city from ground sta-
tions as well as gridded products and provide an interface
for ingesting these data for the training of the ML algo-
rithms. The Jupyter notebook to run DownScaleBench
is provided with the GitHub repository (https://github.
com/texuslabut/urban_precipitation_downscaling)  for
this study.
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4 Results and discussion

The test predictions generated for 2010 to 2019 are com-
pared with the ground truth data for the same period.
The ground truth data considered is the same as the orig-
inal JAXA GsMAP gridded dataset over Austin at 10 km
spatial resolution. Any hourly data that report ‘no rain-
fall’ in the input is masked from the metrics used to com-
pare the cubic interpolation baseline and SRCNN-based
deep learning model. Two metrics, viz, Peak Signal to
Noise Ratio (PSNR) and Mutual Information, are used to
compare the test predictions relative to the ground truth
(the JAXA GsMAP satellite product). PSNR quantifies
the ratio of a highest potential signal strength to its con-
founding noise power. It is measured by the decibel scale.
PSNR is a typical metric for gauging the quality of an
image. Compression introduces pixel-level errors into the
data and PSNR is considered an approximation of human
perception of reconstruction quality when comparing

Austin, Texas, USA precipitation on 2013-01-04
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30.75°N

30.6°N

30.45°N

Latitude [degrees_north]
Latitude [degrees_north]

30.15°N

97.9°W 97.8°W 97.7°W 97.6°W

Longitude [degrees_east]

Cubic - Ground Truth

30.75°N
30.6°N

>

0.5 (©

ke

S—

30.45°N e

£

L c

0.0 5

]

30.3°N ©

=

2

[v]

--05 @

-

o
30.15°N

30°N

Longitude [degrees_east]

Fig. 4 Difference in precipitation maps as cubic interpolation minus the JAXA GsMAP satellite rainfall, and SRCNN minus the JAXA GsMAP satellite

rainfall


https://github.com/texuslabut/urban_precipitation_downscaling
https://github.com/texuslabut/urban_precipitation_downscaling

Singh et al. Computational Urban Science (2023) 3:22

—— cubic - GT
—— SRCNN - GT

e o 9o
w >

Frequency
©
N

-4 -2 0 2
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Fig. 5 Distributions of cubic minus ground truth (GT) and SRCNN
minus ground truth (GT) show under and overestimation of
precipitation in cubic interpolation baseline

4

compression codecs (Li & Cai, 2007). As a result, PSNR
is a useful metric to compare pixel or grid-level errors in
two images or matrices. Mutual information is the other
metric used. It is an advanced nonlinear index measur-
ing the similarity of distributions (Speed, 2011). The
PSNR increases from 146.96 in the baseline to 149.46 for
SRCNN compared with the original 10 km dataset. To
understand whether the improvement is notable (signifi-
cant) or not, we compare the results against the survey of
different metric presented in Wang et al. (2019). Accord-
ingly, this increase in the PSNR by 2.5 is a strong indi-
cator of the enhancement achieved. The improvement is
also noted in the mutual information results from 0.59
(in the baseline) to 0.62.

A spatial comparison of SRCNN prediction and the
cubic interpolation baseline with the ground truth is
shown in Fig. 4, for a heavy rainfall case that occurred
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4 January 2013 daily precipitation. These matrices show
improved pixel-level information in SRCNN. Although
our algorithm shows pixel level improvements of up to
2 mm/day at the resolution of the input satellite data,
the high-resolution precipitation product is a matrix of
size 30x higher (finer) resolution relative to the input
satellite data (10 km). Errors typically average out and
reduce for larger grid sizes. That is the error or bias
over the larger 10 km X 10 km grid would exponentially
grow to a large bias in a concentrated gridded prod-
uct of grid size 300 m X 300 m. Iterative forecasts are
generated up to 300 m and beyond 5 km iterative fore-
casts. A more detailed spatial structure is noted in the
downscaled urban rainfall as shown in Fig. 3. Verifying
the higher resolution output is challenging, especially
because of the lack of reference data at comparable
resolution.

Figure 5 reviews the distribution of difference
between JAXA 10km rainfall as the reference and the
difference obtained by cubic and SRCNN downscal-
ing. The plot shows an under and over-representation
of the pixel-level rainfall that can be observed in the
cubic interpolation relative to SRCNN. Cubic interpo-
lation does not transform and only interpolates, while
the SRCNN provides a finer spatial outcome.

Figure 6 shows the resulting final products using
iterative SRCNN for different spatial resolutions. These
maps are restricted to a stable downscaled product at
300 m X 300 m gridded spatial resolution. The stabil-
ity was based on the consideration of the point at which
horizontal and vertical discontinuity lines appeared in
the downscaled output from deep learning. These dis-
continuities are an artifact of SRCNN as discussed in
previous studies (Song et al., 2019). In future studies,

Austin, Texas, USA multi resolution
products for 2013-01-04
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Fig. 6 Multi-resolution maps of the gridded rainfall product over Austin using Iterated SRCNN
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advanced deep learning-based super-resolution meth-
odologies for downscaling can likely help eliminate
these distortions and will be explored. By reviewing
Fig. 6, it can be visually noted that the rainfall fields
become more continuous and smoother as the resolu-
tion increases.

5 Conclusions and future work

This study successfully employs a deep learning-based
convolutional neural network, SRCNN, for urban
downscaling. High-resolution maps of precipitation
at 300 m were generated from the 10 km grid resolu-
tion satellite-based JAXA GsMAP product over Aus-
tin, Texas (29-32N, 96-99W). The deep learning-based
model is trained for 2001 to 2009, while the test predic-
tions are generated for 2010 to 2019. The quantitative
metrics, as well as visual inspection, show substantial
improvements in the pixel-level information from the
iterative SRCNN downscaling relative to the baseline
cubic interpolation. The highest resolution dataset at
300 meters is generated by using iterative prediction.
Efforts to improve the dataset in the future include
training the model using hyperparameter tuning as
a follow-up study. Increasing the number of layers
and using residual or generative networks will also
be explored. A study underway for the soil moisture
dataset with this method includes taking the coarse-
resolution satellite data as an input and developing a
high-resolution output with reduced latency. This study
through the development of DownScaleBench provides
an efficient framework with low computational cost and
higher speed for generating high-resolution data over
urban regions. The workflow outlined in DownScale-
Bench will also help standardize the comparison (veri-
fication) of high-resolution gridded urban datasets,
which was challenging due to the absence of a baseline
and an adopted framework to incorporate the ground
station data.

Such data, it is anticipated, could be used by city
decision-makers for sustainable developments. The
downscaled climate products can be generated within
minutes after training for one image. To the best of
our knowledge, this is the first study to perform urban
downscaling for precipitation datasets. The increas-
ing trend of heavy rainfall and localized floods over
urban areas make this high-resolution spatiotemporal
dataset useful to identify potentially vulnerable areas
and address the infrastructural requirements of those
regions (Bixler et al., 2022). Advanced deep learning
algorithms using attention and generative learning pro-
vide good solutions to improve these high-resolution
products further (Singh et al., 2022).
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