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Abstract—This paper considers the design and decoding of
polar codes for general classical-quantum (CQ) channels. It fo-
cuses on decoding via belief-propagation with quantum messages
(BPQM) and, in particular, the idea of paired-measurement
BPQM (PM-BPQM) decoding. Since the PM-BPQM decoder
admits a classical density evolution (DE) analysis, one can use
DE to design a polar code for any CQ channel and then
efficiently compute the trade-off between code rate and error
probability. We have also implemented and tested a classical
simulation of our PM-BPQM decoder for polar codes. While the
decoder can be implemented efficiently on a quantum computer,
simulating the decoder on a classical computer actually has
exponential complexity. Thus, simulation results for the decoder
are somewhat limited and are included primarily to validate our
theoretical results.

I. INTRODUCTION

The study of channel coding for CQ channels dates back

to Holevo, Schumacher, and Westmoreland [1] and [2]. For a

comprehensive introduction, see [3], [4]. This paper provides a

detailed description of how to efficiently design (on a classical

computer) and decode (on a quantum computer) polar codes

for classical-quantum (CQ) channels. Practical applications

motivating coding for CQ channels can be found in [5]–[7].

Polar codes for CQ channels were first introduced in

2012 [8]. A variety of follow-up papers were able to extend

and improve these results [5], [9]–[11]. Although these papers

describe a design and decoding process for polar codes on CQ

channels in theory, efficient algorithms (e.g., polynomial time

in the block length) are not described for either of these tasks.

In 2017, Renes describes a belief-propagation with quantum

messages (BPQM) algorithm that provides an optimal decod-

ing method for binary linear codes with tree factor graphs

on the pure-state channel (PSC) [12]. That work notes that

BPQM could allow efficient decoding of polar codes on the

PSC. BPQM is further explored in [13] and extended to be

more efficient by Renes and Piveteau in [14]. Recently, an

extension of BPQM for general CQ channels was introduced

and called paired-measurement BPQM (PM-BPQM) [15]. This

algorithm can be applied to any symmetric binary-input CQ

channel and is equipped with a classical DE analysis of its

decoding performance. In [15], this DE analysis is used to

compute noise thresholds for PM-BPQM decoding of low-

density parity-check (LDPC) codes [16] on CQ channels.

This research was supported in part by the National Science Foundation
(NSF) under Grants 1908730, 2106213, and 2212437. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the NSF.

In this paper, we use DE to design polar codes for PM-

BPQM decoding and determine their achievable rates. We

also report results for the classical simulation of our PM-

BPQM decoder for polar codes. Although this decoder can

be implemented efficiently on a quantum computer, directly

simulating the decoder on a classical computer has exponential

complexity in the block length. Thus, our simulation results are

limited to very short block lengths and are included mainly to

validate our DE results. Additional information can be found

in an extended version of this paper [17].

II. BACKGROUND

A. Preliminaries

We define the set of natural numbers by N = {1, 2, . . .}
and use the shorthand [m] := {1, . . . ,m} for m ∈ N. Let Hn

denote the n-dimensional Hilbert space C
n. A quantum pure

state is a unit length vector |ψ⟩ ∈ Hn. For quantum systems

A1, A2 . . . , An, we denote the joint quantum state of n qubits,

|ψ⟩A1A2...An
where we follow the convention that the 1st qubit

is associated with the system A1, the 2nd qubit with A2 and

so on. When |ψ⟩A1A2...An
is not entangled, we can use the

Kronecker product to write the joint state as

|ψ⟩A1A2...An
= |ψ1⟩A1

⊗ . . . |ψn⟩An
.

A random ensemble of m quantum pure states in Hn is de-

noted by Ψ = {pi, |ψi⟩}|mi=1, where pi denotes the probability

of choosing the pure state |ψi⟩. This ensemble can also be rep-

resented by the density matrix ρ =
∑m

i=1 pi |ψi⟩⟨ψi| ∈ C
n×n.

All such density matrices are positive semidefinite with unit

trace and we use D(Hn) to denote this subset. The unitary

evolution of a quantum state |ψ⟩ ∈ Hn is described by the

mapping |ψ⟩ 7→ U |ψ⟩, where U ∈ C
n×n is a unitary. For the

pure state ensemble Ψ, this evolution results in the modified

ensemble Ψ′ = {pi, U |ψi⟩}|mi=1 whose density matrix is

ρ′ =
m
∑

i=1

piU |ψi⟩⟨ψi|U† = UρU†,

where U † is the Hermitian transpose of U . We denote the

Pauli matrices by

σx :=

[

0 1
1 0

]

, σy :=

[

0 −i
i 0

]

, σz :=

[

1 0
0 −1

]

.

Definition 1: A binary symmetric CQ (BSCQ) channel

is defined by the mapping W : {0, 1} → D(Hn) from

the binary classical input z ∈ {0, 1} to the density matrix
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W (z) ∈ D(Hn) of the quantum output and a unitary U
satisfying U2 = I. The unitary defines the symmetry constraint

via W (1) = UW (0)U†.

Lemma 2 ([18, Appendix A]): Any BSCQ channel that

outputs a qubit is unitarily equivalent to the qubit channel

W : {0, 1} → D(H2) satisfying W (z) = σz
xρ(δ, γ)σ

z
x with

ρ(δ, γ) :=

[

δ γ∗

γ 1− δ

]

for some δ ∈ [0, 1] and γ ∈ C satisfying |γ|2 ≤ δ(1− δ).
This representation enables one to characterize any qubit

BSCQ channel using only two parameters δ and γ.

Definition 3: An m-outcome projective measurement of a

quantum system in Hn is defined by a set of m orthogonal

projection matrices Πj ∈ C
n×n satisfying ΠiΠj = δi,jΠi and

∑

j Πj = In, where In is the n×n identity matrix. We denote

such a measurement by Π̂ = {Πj}|mj=1.

Applying the measurement Π̂ to the quantum state ρ results

in a random outcome J and the probability of the event J = j
is given by Tr(Πjρ). The post-measurement state, conditioned

on the event J = j, is given by ΠjρΠj/Tr(Πjρ).
Consider a hypothesis test to distinguish between m pos-

sible quantum states defined by Φ = {pj , ρj}|mj=1, where the

jth hypothesis has prior probability pj and density matrix ρj .

For a projective measurement Π̂, where Πj is associated with

hypothesis ρj , the probability of choosing correctly is

P (Φ, Π̂) =

m
∑

j=1

pjTr(Πjρj).

Definition 4: The Helstrom measurement is the minimum-

error measurement to distinguish between two density matrices

ρ0, ρ1 ∈ D(Hn) when ρ0 has prior probability p. This

measurement maximizes the success probability of the test by

forming projection operators onto the positive and negative

eigenspaces of M = pρ0 − (1− p)ρ1. Formally, it is defined

by Π̂H = {Π+, In −Π+}, where

Π+ =
∑

|v⟩∈V+

|v⟩⟨v|

where, V+ = {|v⟩ ∈ Hn | ⟨v|v⟩ = 1, ∃λ ≥ 0,M |v⟩ = λ |v⟩}.
Lemma 5 ([15, Lemma 6]): Consider a a BSCQ channel W :

{0, 1} → D(H2n) with equiprobable outputs where W (z) =
UzρUz . Then, the Helstrom measurement Π̂H is defined by

Π̂H =







n−1
∑

j=0

|vj⟩⟨vj | ,
n−1
∑

j=0

U |vj⟩⟨vj |U







,

where {|vj⟩}n−1
j=0 is the set of eigenvectors for W (0)−W (1)

with non-negative eigenvalues.

Remark 6: For a qubit BSCQ with parameters (δ, γ), the

error rate of the Helstrom measurement is δ.

B. Paired-Measurement BPQM

Paired-measurement BPQM (PM-BPQM) was introduced

in [15] as a generalization of BPQM [12].

Lemma 7 ([15, Lemma 6]): Consider the Helstrom measure-

ment to distinguish between W (0) and W (1) for the BSCQ

channel W : {0, 1} → D(Hn). One can achieve the same

error rate by first implementing

Π̂′ =
{

|vj⟩⟨vj |+ U |vj⟩⟨vj |U
}n−1

j=0

and then, if the first outcome is j, implementing

Π̂(j) =
{

|vj⟩⟨vj | , U |vj⟩⟨vj |U
}

.

Lemma 8 ([15, Lemma 7]): Consider a BSCQ channel W :
{0, 1} → D(Hn) with W (0) = ρ and equiprobable inputs.

Then, the channel followed by the paired measurement Π̂W

gives a distinguishable mixture of symmetric qubit channels

defined by

z 7→
m−1
∑

j=0

pj

(

σz
xρσ

z
x ⊗ |j⟩⟨j|

)

,

where the jth paired outcome has probability pj =
Tr
[(

|vj⟩⟨vj |+U |vj⟩⟨vj |U
)

ρ
]

and post-measurement density

matrix

ρj =
1

pj

(

⟨vj | ρ |vj⟩ ⟨vj |Uρ |vj⟩
⟨vj | ρU |vj⟩ ⟨vj |UρU |vj⟩

)

.

From Lemma 2, we can identify the parameters of ρj via

δj =
1

pj
⟨vj | ρ |vj⟩ , γj =

1

pj
⟨vj |Uρ |vj⟩ .

Now, we will describe the channel combining operations

that are used to define the PM-BPQM updates [12], [15].

For binary CQ channels W,W ′, the check-node and bit-node

channel combining operations are defined by

[W �W ′](z) :=
1

2

∑

z′∈{0,1}
W (z ⊕ z′)⊗W ′(z′) (1)

[W �W ′](z) :=W (z)⊗W ′(z). (2)

Lemma 9: For qubit BSCQ channels W and W ′, using the

paired measurement to distinguish between [W �W ′](0) and

[W �W ′](1) is equivalent to the unitary operation

C =
1√
2









1 0 0 1
−1 0 0 1
0 1 1 0
0 1 −1 0









to get τ := C[W � W ′](z)C† followed by measurement of

the second qubit. This results in the state

Π0τΠ0 +Π1τΠ1 =
∑

j∈{0,1}
p�

j

(

σz
xρ(δ

�

j , γ
�

j )σz
x ⊗ |j⟩⟨j|

)

,

where Π0 = I2⊗|0⟩⟨0| and Π1 = I4−Π0. If W and W ′ have

the channel parameters (δ, γ) and (δ′, γ′), then we can define

|v0⟩ = 1√
2
(1, 0, 0, 1) and |v1⟩ = 1√

2
(−1, 0, 0, 1) to compute

p�

j (δ, γ, δ
′, γ′)

:= Tr
(

(|vj⟩⟨vj |+ σx ⊗ I2 |vj⟩⟨vj |σx ⊗ I2)(W �W ′)[0]
)

,

2023 IEEE International Symposium on Information Theory (ISIT)

614



δ�

j (δ, γ, δ′, γ′) :=
1

p�

j

⟨vj | (W �W ′)[0] |vj⟩ ,

γ�

j (δ, γ, δ′, γ′) :=
1

p�

j

⟨vj | (σx ⊗ I2)(W �W ′)[0] |vj⟩ .

Remark 10: We call unitary C the check-node unitary be-

cause it compresses the decision information from the check-

node combining operation into the first qubit while keeping the

reliability information in the second qubit. It is worth noting

that the check-node unitary does not depend on the parameters

of W and W ′.
Lemma 11: For qubit BSCQ channels W and W ′ with pa-

rameters (δ, γ) and (δ′, γ′) respectively, implementing paired

measurement to distinguish between [W �W ′](0) and [W �

W ′](1) is equivalent to implementing the unitary V =
V (δ, γ, δ′, γ′) to get τ ′ := V [W ⊗ W ′](z)V † followed

by measurement of the second qubit. Here, the rows of

V (δ, γ, δ′, γ′) are defined, from top to bottom, by |v′0⟩, |v′1⟩,
(σx ⊗ σx) |v′0⟩ and (σx ⊗ σx) |v′1⟩ in terms of the paired-

measurement eigenvectors |v′0⟩ and |v′1⟩ that span the positive

eigenspace of (W � W ′)[0] − (W � W ′)[1]. This results in

the state

Π0τ
′Π0 +Π1τ

′Π1 =
∑

j∈{0,1}
p�

j

(

σz
xρ(δ

�

j , γ
�

j )σz
x ⊗ |j⟩⟨j|

)

,

where Π0 = I2 ⊗ |0⟩⟨0|, Π1 = I4 −Π0, and we have

p�

j (δ, γ, δ
′, γ′)

:= Tr
(

(
∣

∣v′j
〉〈

v′j
∣

∣+ σx ⊗ σx
∣

∣v′j
〉〈

v′j
∣

∣σx ⊗ σx)(W �W ′)[0]
)

δ�

j (δ, γ, δ′, γ′) :=
1

p�

j

〈

v′j
∣

∣ (W �W ′)[0]
∣

∣v′j
〉

,

γ�

j (δ, γ, δ′, γ′) :=
1

p�

j

〈

v′j
∣

∣ (σx ⊗ σx)(W �W ′)[0]
∣

∣v′j
〉

.

Remark 12: The unitary V (δ, γ, δ′, γ′) is called the bit-

node unitary. Similar to the check-node unitary, it compresses

the decision information from the bit-node channel combining

into the first qubit while keeping the reliability information

in the second qubit. Unlike the check-node unitary C, the

eigenvectors |v′0⟩ and |v′1⟩ depend on the channel parameters

and thus V (δ, γ, δ′, γ′) does as well [15].

C. Density Evolution for Paired-Measurement BPQM

Density evolution (DE) is a tool widely used by coding

theorists to analyze the asymptotic performance of BP de-

coding for long codes chosen from certain families [19]. For

BSCQ channels, the paired measurement [18] compresses the

decision information from check-node and bit-node combining

into the first qubit while keeping reliability information in

the second qubit. By tracking how the message reliability

evolves through this process, one can use DE to analyze

the performance of PM-BPQM decoding for a code whose

factor graph is a tree. Applying DE to a long code, whose

factor graph is a tree with sufficiently large depth, results in

a threshold phenomenon that allows one to estimate the noise

threshold (i.e., the maximum noise level where DE predicts

successful decoding) for families of codes. In [18], this was

applied to regular LDPC codes on CQ channels with PM-

BPQM decoding.

D. Polar Codes

Polar codes were introduced by Arıkan in 2009 as the

first deterministic construction of capacity-achieving codes for

binary memoryless symmetric (BMS) channels [20]. The polar

transform of length N = 2n is denoted by GN ≜ BNG
⊗n
2

where BN is N ×N bit reversal matrix [20, Sec. VII.B] and

G⊗n
2 is n-fold tensor product of 2× 2 binary matrix

G2 ≜

[

1 0
1 1

]

.

Polar codes work by using the polar transform GN to encode a

vector u ∈ {0, 1}N whose values are free on a subset A ⊆ [N ]
of information positions but restricted to have fixed values on

the complementary set Ac = [N ] \ A of frozen positions.

For the frozen positions, the fixed values are shared with the

receiver in advance to aid the decoding process.

Polar codes can achieve capacity on BMS channels under

low-complexity successive-cancellation (SC) decoding, where

one decodes the bits u1, u2, . . . in order assuming all past de-

coding decisions are correct but that no information is known

about future u values. The performance of this approach is

analyzed by recursively defining the effective channels seen

by the SC decoder assuming all past decisions are correct.

Polar codes were extended to CQ channels by Wilde and

Guha [8]. Similar to the classical case, one can recursively

define effective channels that characterize the performance of

successive cancellation (SC) decoding. When decoding the ith

bit of a length-N polar code, the designed effective channel [8,

p. 1178] for a CQ channel W is defined by

W
(i)
N (ui) :=

1

2N−1

∑

u∼i∈{0,1}N−1

∣

∣ui−1
1

〉〈

ui−1
1

∣

∣⊗
(

N
⊗

i=1

W ([uGN ]i)

)

.

The SC decoder implements the implied sequence of Helstrom

measurements indexed by the information bits in A. One

difference from the classical case is that the effective channels

encountered during decoding may differ from the designed ef-

fective channels even when all past decisions are correct. This

is because the sequential measurement process can disturb the

codeword state even when the decision is correct. In particular,

the channel seen by the decoder equals the designed effective

channel if all earlier bits are frozen (i.e., [i− 1] ⊆ Ac). When

the set A of information channels is selected to achieve a

sufficiently low error rate, the non-commutative union bound

(e.g., see [21]–[23]) shows that this disturbance is negligible.

III. PM-BPQM AND POLAR CODES

A. PM-BPQM DE for Polar Code Design

To design a polar code for a CQ channel assuming SC

decoding based on PM-BPQM, we implement PM-BPQM DE

for the BSCQ channel via Monte Carlo simulation.
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Let W
(i)
N refer to the effective channel experienced by the ith

information bit of a length-N polar code assuming all previous

bits are frozen. The input-output law for this channel can be

computed recursively using

W
(2i−1)
N =W

(i)
N/2 �W

(i)
N/2

W
(2i)
N =W

(i)
N/2 �W

(i)
N/2,

where the check-node and bit-node update rules are defined

by Eq. (1) and Eq. (2). For a code of length N = 2n, this

requires n levels of recursion starting from W =W
(1)
1 .

At each level of the recursion, one computes a representa-

tion of the new channels via check-node and bit-node updates

from representations of the channels at the previous level.

This approach has two key issues. First, the channels involved

may not have simple representations. While any classical BMS

channel can be represented as a mixture of binary symmetric

channels (i.e., a distribution over [0, 12 ]) [19], the set of BSCQ

channels does have such a simple description. Second, the

set of possible channel parameters grows very rapidly and is

expensive to track.

In this work, the first issue is resolved by using the subopti-

mal PM-BPQM decoder because its intermediate channels are

all qubit BSCQ channels that are parameterized by two real

numbers (δ, γ). The second issue can also occur with classical

channels and is typically resolved by using Monte Carlo DE

(known as population dynamics in statistical physics [24]) to

approximate the answer efficiently [25]. The idea of Monte

Carlo DE is to approximate distributions over channel param-

eters by bags of M samples (i.e., a uniform distribution over

a length-M list of channel parameters).

Consider a bag B = {(δj , γj)}Mj=1 containing M pairs of

real numbers corresponding to the parameters of different qubit

BSCQ channels. Then, we define the check-node and bit-node

updates of B as follows.

Definition 13: The check-node update B� = {(δ′j , γ′j)}Mj=1

of B be constructed as follows. For each element (δj , γj) ∈
B, we choose another random element (δπ(j), γπ(j)), where

π : [M ] → [M ] is a uniform random permutation. Then, we

apply the check-node channel combining operation on the two

implied qubit BSCQs. The parameters of the resulting qubit

BSCQ are given (for a ∈ {0, 1}) by
(

δ�

a (δj , γj , δπ(i), γπ(j)), γ
�

a (δj , γj , δπ(j), γπ(j))
)

,

with probability p�
a (δ, γ, δ

′, γ′). The j-th value (δ′j , γ
′
j) of B�

is set by choosing one of the two according to p�
a .

Definition 14: The bit-node update B� = {(δ′j , γ′j)}Mj=1 of

B is constructed analogously to the check-node update. In

particular, the steps are identical but all expressions use the �

superscript rather than the � superscript.

Now, we consider the design of an (N,K) polar code for

a qubit BSCQ with parameters (δ, γ). We implement the DE

design of the code using the following steps.

1) B0,1 ← {(δj , γj)}Mj=1 with (δj , γj) = (δ, γ) for j ∈ [M ]
2) For k in {1, . . . , log2N}:

a) For i in {1, . . . , 2k−1}:

i) Compute check-node update: Bk,2i−1 ← B�

k−1,i

ii) Compute bit-node update: Bk,2i ← B�

k−1,i

3) For i in {1, . . . , N}:
a) Using Bn,i → {(δj , γj)}Mj=1

b) Compute: εi ← 1
M

∑M
j=1 δj

4) For a length-N polar code with K information bits, let

A = {i ∈ [N ] | εi ≤ α} and choose α so |A| = K.

We note that the DE for PM-BPQM decoding of the

effective channel W
(i)
N assumes that we make hard decisions

about the channel reliability at each stage of decoding (e.g., it

measures the second qubit after applying the C or V unitary

at each stage). Under this assumption, Bn,i approximates the

distribution of the channel parameters seen when decoding Ui

given the observation from W
(i)
N . Since the Helstrom error rate

for a qubit BSCQ with parameters (δ, γ) is δ, the expected

Helstrom error rate for W
(i)
N under PM-BPQM decoding is

approximated by εi. Thus, the design method approximates

the expected error rate of each effective channel and then

chooses the K information bits whose effective channels have

the smallest error rates.

IV. NUMERICAL RESULTS FOR POLAR CODE DESIGN

In Fig. 1 and Fig. 2, we plot the code rate achievable

by the PM-BPQM decoder for length-1024 polar codes. Our

results consider channels with δ ∈ {0.07, 0.09} and a range

of γ. We also compare the results with a measure first (MF)

strategy that uses a classical polar code designed for the binary

symmetric channel. Its curve is labeled MF:UB because it

uses the classical union bound. All codes are designed under

a union-bound constraint on the block-error probability of 0.1.

Since the union bound for classical and quantum events

differs roughly by a factor of 4 [21]–[23], a fair comparison

is challenging and we make two different unfair comparisons.

The curve labeled PM-BPQM:UB ignores the factor of 4 and

uses the classical union bound to enforce the block error

constraint. Comparing it with the MF:UB curve is somewhat

unfair to MF strategy. The curve labeled PMBPQM:NCUB

uses Gao’s bound [21]. Comparing it with the MF:UB curve

gives MF strategy an unfair advantage. In both cases, the PM-

BPQM decoder achieves a higher rate than the hard-decision

decoder for large values of γ but the transition point increases

for the non-commutative union bound.

In [17], one can find additional information such as the

channel error rates as a function of block length in order

to visualize polarization. The capacity of the qubit BSCQ is

compared with the hard-decision capacity in [17].

V. SIMULATION OF THE PM-BPQM POLAR DECODER

The PM-BPQM decoding process is assumed to measure

the reliability information of intermediate channels during

decoding [15]. While these measurements do not affect the

performance of the targeted information bit (e.g., the first

non-frozen bit or the root node of an LDPC code tree),

they do disturb the quantum state and hurt the performance
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Fig. 1. Comparison of PM-BPQM and MF polar decoder for N = 1024

on qubit BSCQ channels with δ = 0.07 and variable γ under a union-bound
block-error constraint of 0.1.

of later bits (e.g., the second non-frozen bit). It is well-

known that this degradation can be avoided by delaying the

intermediate measurements using the quantum principle of

deferred measurement [12], [13].

The cost of deferring measurements is that all unitary opera-

tions done after a deferred measurement must be implemented

as conditional unitary operations that depend on the system

that was not measured. This results in conditional unitary op-

erations that depend on many qubits. While such operations are

difficult to realize on physical quantum computers, they can

be implemented with relatively low complexity in a classical

simulation of a quantum computer. This is the approach we

use in our simulation code. For a physical quantum computer,

Renes and Piveteau recently described another approach that

achieves quadratic complexity by using reliability registers in

the decoder to reduce the burden of conditioning [14].

In [17], we describe in detail the decoding process with

deferred measurements for a length-4 polar code. We provide

descriptions both for BPQM on the pure-state channel and for

PM-BPQM on a qubit BSCQ channel. We compare the perfor-

mance of this decoder (by simulating the full quantum system)

with the DE calculation (which only uses the expressions in

Lemmas 9 and 11. The results can be found in Fig. 3 where

we plot the Helstrom error rate corresponding to each channel

between DE output and the PM-BPQM based polar decoder.

VI. CONCLUSION

In this paper, we consider the design and decoding of

polar codes on general CQ channels. Our approach is based

on analyzing and implementing the suboptimal PM-BPQM

decoder. On the analysis side, we use DE to design polar codes

for general CQ channels under PM-BPQM decoding. This

process can be easily implemented on a classical computer

and allows one to explore the achievable trade-off between

rate and block-error probability.

We have also implemented the PM-BPQM polar decoder

for arbitrary N in Python. It consists of a classical recursive

algorithm that controls a quantum simulator (or quantum
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Fig. 2. Comparison of PM-BPQM and MF polar decoder with N = 1024

on qubit BSCQ channels with δ = 0.09 and variable γ under a union-bound
block-error constraint of 0.1.
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Fig. 3. Comparison of bit-error rate between DE analysis (solid lines) and
simulated decoder (circles) for the effective channels of bits u1, . . . , u8 of a
length-8 polar code over qubit BSCQ channels with δ = 0.1 and variable γ.

computer) to implement the PM-BPQM decoding process. The

code can be found on GitHub in the repository:

https://github.com/Aviemathelec1995/CQ-Polar-BPQM.

This decoder was used to perform some experiments. In

Fig. 3, we compare the simulated decoding performance with

the DE prediction for a length-8 polar code and observe a good

agreement. The decoder also allows us to analyze the block

error rate without resorting to union bounds. For the length-8

code, we use the 4th, 6th, 7th and 8th input bits as information

bits. We estimate the block error rate using 1000 blocks over

the BSCQ channel with (δ, γ) = (0.05, 0.15). Its value is

roughly 0.07 when we use the frozen set (u1, u2, u3, u5) =
(1, 1, 1, 1) and random information symbols. For comparison,

the error rates of the individual channels (u4, u6, u7, u8) are

computed using DE and they are 0.0178, 0.0146, 0.0123, and

0.0003, respectively. The classical union bound on block error

rate equals the sum of the individual channel error rates (i.e.,

roughly 0.045). Thus, the observed block error rate is roughly

twice the classical union bound and less than the factor of 4
worst-case increase allowed by Gao’s bound [21].
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