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Abstract:

Hydrogen sulfide is a toxic gas that disrupts numerous biological processes, including
energy production in the mitochondria, yet fish in the Poecilia mexicana species
complex have independently evolved sulfide tolerance several times. Despite clear
evidence for convergence at the phenotypic level in these fishes, it is unclear if the
repeated evolution of hydrogen sulfide tolerance is the result of similar genomic
changes. To address this gap, we used a targeted capture approach to sequence genes
associated with sulfide processes and toxicity from five sulfidic and five nonsulfidic
populations in the species complex. By comparing sequence variation in candidate
genes to a reference set, we identified similar population structure and differentiation,
suggesting that patterns of variation in most genes associated with sulfide processes
and toxicity are due to demographic history and not selection. But the presence of tree
discordance for a subset of genes suggests that several loci are evolving divergently
between ecotypes. We identified two differentiation outlier genes that are associated
with sulfide detoxification in the mitochondria that have signatures of selection in all five
sulfidic populations. Further investigation into these regions identified long, shared
haplotypes among sulfidic populations. Together, these results reveal that selection on
standing genetic variation in putatively adaptive genes may be driving phenotypic

convergence in this species complex.

Keywords: 4-6 words
Adaptation | Convergent evolution | Hydrogen sulfide | Poeciliidae | Population

genomics
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Introduction

Convergent evolution, the independent evolution of similar traits in multiple lineages
(Losos, 2011), can occur at various levels of biological organization, from phenotype to
nucleotide position. However, convergence at one level does not necessitate
convergence in the underlying mechanism (Rosenblum et al., 2014). In some cases,
convergent phenotypes are largely driven by the same amino acid change (e.g.
echolocation Liu et al., 2010; Rossiter et al., 2011), but in others, there is little
convergence at the amino acid or gene level (e.g. hemoglobin Natarajan et al., 2016).
Moreover, the degree to which convergent phenotypes are the result of selection on
standing variation or on de novo mutation remains unclear. In some cases, the source
of adaptive variation is largely de novo mutation (e.g. pigmentation in deer mice, Linnen
et al., 2009) but in others, the majority source is standing variation (Alves et al., 2019;
Haenel et al., 2019; Jones et al., 2012; Lai et al., 2019; N. M. Reid et al., 2016).
Determining how often convergent phenotypes are driven by similar genomic changes
will provide a better understanding of the repeatability of evolution (Gould, 1990;
Rosenblum et al., 2014) and the relative contributions of selection on standing variation
and de novo mutation in adaptation.

Extreme environments provide valuable systems to explore how selection may
drive convergence across multiple biological levels. The strong selective regimes found
in extreme environments often promote the evolution of convergent phenotypes (Tobler
et al., 2015; Xu et al., 2020). These systems are particularly valuable when there are
naturally replicated environments that have been independently colonized by multiple

populations, allowing the investigation of how selection has independently shaped
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variation in the genome (Tobler et al., 2018). Freshwater springs in the Rio Grijalva
basin in Southern Mexico are an example of such a system. Springs in this area contain
naturally occurring hydrogen sulfide (H2S) at concentrations orders of magnitude higher
than those considered lethal for most animals (Tobler et al., 2016, 2018). Despite the
highly toxic conditions, sulfide springs in four river drainages have been independently
colonized by fish populations from the Poecilia mexicana species complex, including
Poecilia mexicana mexicana, Poecilia thermalis, and Poecilia sulphuraria (Palacios et
al., 2013; Tobler et al., 2018). Additionally, closely related populations inhabit
nonsulfidic streams within the same drainages (Fig. 1), providing a unique comparative
framework to explore evolutionary processes that potentially give rise to convergent
adaptations (Tobler et al., 2018). The sulfide spring populations from the Puyacatengo
and Tacotalpa drainages show evidence for recent divergence between ecotypes,
estimated at ~10,000 years ago in Tacotalpa and ~300 years ago in Puyacatengo
(Brown et al., 2018). In contrast, sulfide spring populations in the Pichucalco and
Ixtapangajoya drainages are hypothesized to have diverged earlier, with estimates from
the Pichucalco drainage suggesting a timing of divergence of ~19,000 years ago
(Greenway et al., 2021). Sulfide spring populations are locally adapted and exhibit
convergent phenotypes related to morphology (Greenway et al., 2019; Riesch et al.,
2016; Tobler & Hastings, 2011), life history traits (Riesch et al., 2014; Riesch, et al.,
2010) and physiology (Greenway et al., 2020; Pfenninger et al., 2014, Plath et al., 2013;
Tobler et al., 2011, 2016). These naturally replicated systems, therefore, provide a
unique opportunity to explore the genomic basis of convergent adaptive phenotypes,

from nucleotide position to pathway.
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The main mechanism of toxicity imposed by H.S involves the inhibition of aerobic
respiration. In the mitochondria, H2S binds to Complex IV (cytochrome ¢ oxidase, COX),
inhibiting oxidative phosphorylation (OxPhos) and halting aerobic energy production
even at micromolar concentrations (Cooper & Brown, 2008; Hill et al., 1984). In addition
to disrupting energy production, elevated H2>S concentrations can produce harmful
effects by modulating ion channels (Garcia-Bereguiain et al., 2008), modifying oxygen
transport proteins (Pietri et al., 2011), interacting with transcription factors (Budde &
Roth, 2010) and signaling molecules (Calvert et al., 2009), and disrupting
posttranslational modification of proteins (Mustafa et al., 2009). Despite the presence of
a highly conserved detoxification pathway across eukaryotes, the sulfide:quinone
oxidoreductase (SQR) pathway in the mitochondria (Hildebrandt & Grieshaber, 2008;
Libiad et al., 2014), environmental exposure to H.S is still potentially lethal for most
animals (Lagoutte et al., 2010). Although the biochemical action of H2S is well
understood, the ways in which these proteins may be modified for adaptation to H>S-
rich environments are largely unknown. At a molecular level, the strong selective
pressure imposed by constant exposure to HzS is predicted to drive adaptive
modification of genes associated with OxPhos and H.S detoxification. These genes are
prime targets for natural selection due to their importance in cell survival, susceptibility
to H2S, and their highly conserved nature across taxa, which provides an opportunity to
test for convergence at a molecular level. However, because of the genomic complexity
and redundancy of these processes—more than 200 genes are associated with H2>S
tolerance, H2S detoxification, or OxPhos—it is unclear to what extent the convergent

evolution of sulfide tolerance is a result of convergence at the genomic level.
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There is evidence for genomic convergence at the gene and nucleotide levels in
subsets of populations of P. mexicana, that seems to arise from a combination of
selection on standing variation and de novo mutation. For example, genes associated
with the sulfide:quinone oxidoreductase pathway in the mitochondria, including
sulfide:quinone oxidoreductase (sqor) and persulfide dioxygenase (ethe1) show
evidence for selection on standing variation (Brown et al., 2018; Greenway et al., 2020;
Pfenninger et al., 2015; Tobler et al., 2018). Additionally, these sulfur detoxification
genes are differentially expressed between ecotypes (Brown et al., 2018; Kelley et al.,
2016; Passow, et al., 2017; Tobler et al., 2014). Evidence for shared adaptive changes
in subunits of OxPhos have been identified (Brown et al., 2018; Greenway et al., 2020;
Kelley et al., 2016; Pfenninger et al., 2014), including evidence for selection acting on
de novo mutations in mitochondrially encoded subunits of OxPhos complexes
(Greenway et al., 2020; Pfenninger et al., 2014).

While previous studies support the importance of regions associated with H2S
detoxification and OxPhos, it remains untested whether selection has acted on shared
regions of the genome across all sulfidic populations of this species complex.
Furthermore, it is unclear if convergence is the result of selection on standing variation
or de novo mutation. To address these questions, we used a targeted exon capture
approach to sequence candidate genes associated with H>S toxicity and detoxification
from five sulfidic and five nonsulfidic populations of P. mexicana. Using these data, we
tested 1) whether the relationship among populations at H>S candidate genes differs
from the relationship at background genes, and 2) whether a subset of genes

associated with H2S detoxification has been targeted by selection in all drainages. This
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study highlights the importance of selection on standing genetic variation in the

repeated evolution of complex traits in extreme environments.

Materials and Methods
Samples and sequencing
A total of 200 individuals were sampled from five sulfidic and five nonsulfidic populations
(20 individuals per population) from the Pichucalco (Pich 1 and Pich 2), Ixtapangajoya
(Ixta), Puyacatengo (Puya), and Tacotalpa (Taco) drainages in the Rio Grijalva basin,
Mexico (Fig. 1, Table S1). Sampling included populations of P. sulphuraria (Pich
sulfidic), P. thermalis (Ixta sulfidic), and P. mexicana mexicana (all other populations).
Probes were designed for capture sequencing by Rapid Genomics to target a
total of 415 nuclear-encoded genes, comprised of 250 candidate genes and 165
background genes (Table S2). The 166 candidate genes associated with sulfide
detoxification and sulfur processing were identified using Gene Ontology (GO) terms
(Table S3). The candidate set also included 84 nuclear-encoded OxPhos genes,
identified using a BLASTn search of the P. mexicana reference genome for genes
encoding subunits of OxPhos from Zhang & Broughton (2013). The background set
contained 73 housekeeping genes from Zhang & Broughton (2013) that are highly
expressed in all cell types and involved in critical functions, providing an appropriate
comparator to OxPhos genes (Amsterdam et al., 2004; Warrington et al., 2000), and 92
additional nuclear-encoded genes involved in mitochondrial functions (excluding
OxPhos and sulfide-related genes identified above) selected from the MitoCarta2.0

database (Calvo et al., 2016; Pagliarini et al., 2008) at random.
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DNA was extracted from muscle tissue preserved in RNAlater (Ambion, Inc.)
using the Gentra Puregene Tissue Kit following the manufacturer’s protocol for purifying
DNA from 5—-10 mg of tissue with the following modifications: (i) tissues were
homogenized using a micro pestle, (ii) centrifugation was carried out for 3.5 mins
following the addition of protein precipitations solution, and (iii) centrifugation was
performed for 2 mins following the addition of isopropanol. DNA was quantified using a
Qubit fluorometer and was visualized on a 1% agarose gel.

Library preparation was performed by Rapid Genomics utilizing the lllumina high-
throughput workflow and proprietary chemistry. Briefly, DNA was sheared to a mean
fragment length of 400 base pairs (bp). The resulting fragments were end-repaired,
followed by the incorporation of lllumina unique dual-indexed adapters and PCR
enrichment. Probes from Rapid Genomics set RG_3101 were hybridized to the libraries
and enriched for the targets of interest. Sequencing was performed on an Illumina
HiSeq system with paired-end 150 bp reads. The resulting raw data were demultiplexed

using lllumina’s BCLtoFastq.

Quality control, variant calling, and filtering

Reads were quality checked using FastQC v0.11.9 (Andrews, 2010), and outputs were
summarized using MultiQC v1.11 (Ewels et al., 2016). Reads were trimmed using the
Cutadapt (M. Martin, 2011) wrapper TrimGalore v0.6.6

(https://github.com/FelixKrueger/TrimGalore) with parameters --stringency 5, --length

40, and default parameters trimming adaptors and reads with a quality score less than

20. Trimmed reads were aligned to the P. mexicana genome (NCBI accession:
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GCA_001443325.1; (Warren et al., 2018) using BWA-MEM v0.7.17 (Li, 2013). The
resulting SAM files were converted to BAM files using Samtools v1.8 (Li et al., 2009).
The BAM files were then sorted and duplicates were marked using Picard Tools v2.21.4
(Broadinstitute/Picard, 2014/2022) SortSam and MarkDuplicates. Variants were called
according to the Genome Analysis Tool Kit (GATK) v4.2.5.0 (Van der Auwera &
O’Connor, 2020) best practices for data pre-processing for variant discovery and
germline short variant discovery (single nucleotide polymorphisms (SNPs) and
insertions/deletions (Indels). GATK’s HaplotypeCaller was used in gvcf mode to
generate intermediate per-sample Genomic Variant Call Format (GVCF) files, which
were then consolidated using GenomicsDBImport. Samples were then joint genotyped
using GATK GenotypeGVCFs, retaining invariant sites using the -allSites parameter
and combined using CombineVariants.

The resulting VCF files were filtered for sequencing depth and missingness (--
minDP 20, -- max_missing 0.9) using VCFtools v0.1.16 (Danecek et al., 2011).
Additionally, VCFtools was used to remove a nonsulfidic individual from the Pichucalco
drainage that was identified as a first-generation hybrid. To generate an all-sites VCF
with proper variant filtering, we separated the files into variant (--mac 1) and invariant (--
maf 0) sites using VCFtools. We filtered the variant file for quality and minor allele
frequency (--minQ 30 --maf 0.01) using VCFtools. Additionally, we removed loci that
were significantly out of Hardy Weinberg Equilibrium within each population (P < 0.001)
using dDocent Perl script filter_hwe_by pop.pl (Puritz, et al., 2014; Puritz, Matz, et al.,
2014). The resulting filtered variant sites VCF were then concatenated to the invariant

sites using BCFtools v1.10.2 concat (Danecek et al., 2021) and intersected with the
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original bed file containing the targeted regions for probe design to remove off-target
variants and split the data to target and background using BEDTools v2.27.1 (Quinlan &
Hall, 2010). The resulting filtered all-sites VCF file was converted to phylip format for
phylogenetic analysis using python script vcf2phylip.py

(https://github.com/edgardomortiz/vcf2phylip). In addition to an all-sites VCF, we filtered

the candidate and background VCF files to retain only biallelic SNPs using VCFtools
and remove SNPs found in high LD (+prune -l 0.8 -w 1000) using BCFtools. Unless
otherwise stated, analyses were performed using the VCF containing biallelic, LD-

pruned SNPs.

Analysis of evolutionary relationships among populations

To investigate population structure, a principal component analysis (PCA) was
performed using Plink2 (Chang et al., 2015). Igtree2 v2.1.3 (Minh et al., 2020) Ultra-
Fast Bootstrap (Minh et al., 2013) (-B 1000 -bnni) approach was used to generate a
maximum likelihood tree for the background and candidate gene sets using the
unpruned, all-sites phylip file. ADMIXTURE v1.3.0 (Alexander et al., 2009) was used to
investigate individual ancestry. Pong v1.5 (Behr et al., 2016) was used to visualize

ADMIXTURE clustering.

Analysis of population genetic differentiation
Estimates of Fst, heterozygosity, and nucleotide diversity (1) for each gene set were
calculated using Stacks v2.59 populations (Catchen et al., 2013). Fixed differences

between each comparison were identified by first filtering for private alleles and then
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filtering for a maximum minor allele frequency of 0 using VCFtools. Pixy v1.2.5 (Korunes
& Samuk, 2021) was used to summarize nucleotide diversity and estimate genetic
differentiation at the gene level between sulfidic and nonsulfidic populations from the
same drainage using the all-sites VCF. First, Nei and Li’s nucleotide diversity (11) (Nei &
Li, 1979) was estimated for all populations, and the difference in nucleotide diversity
between pairs (ATTecotype) Was calculated by subtracting 1 of sulfidic from nonsulfidic
populations (1Tns-TTs), such that loci with decreased nucleotide diversity in sulfidic
populations would result in +ATtTecotype. Next, we estimated relative population
differentiation between pairs using Weir and Cockerham’s estimate of Fst (Weir &
Cockerham, 1984). Because this estimator can result in a negative value for populations
that contain more variation within, we replaced all negative Fstvalues with 0. Estimates
of Fstcan be influenced by differences in nucleotide diversity within populations
(Cruickshank & Hahn, 2014), therefore we also calculated dx, (Nei & Li, 1979) as an
absolute measure of population differentiation.

We first identified outlier loci putatively under selection using a multivariate
approach in Minotaur v0.0.1 (Verity et al., 2017). We used the distributions of Fst, dxy,
and ATTecotype Per gene to calculate the Mahalanobis distance (Mahalanobis, 1936), and
loci with greater-than-expected differentiation based on a 95 % confidence intervals
were considered putatively under selection. We then compared these drainage-specific
gene lists to identify shared outlier genes. In addition to the per-gene approach, we
identified outlier SNPs. We used VCFtools to calculate Weir and Cockerham’s Fst
between all sulfidic and nonsulfidic populations on a per-site basis using a VCF

containing biallelic SNPs that were not LD pruned. Outlier SNPs were identified using a
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99.5% cutoff. SNPs were annotated using SNPeff v5.0e (Cingolani et al., 2012), and the
potential effects of high Fst nonsynonymous mutations were assessed using PolyPhen2

(Adzhubei et al., 2013).

Haplotype Network

To generate haplotype networks, we split the non-LD pruned VCF containing biallelic
SNPs by population using VCFtools and phased the sites using the Popgen Pipeline
Platform script vcf_phase.py using the Beagle v5.1 algorithm (Browning et al., 2018;
Browning & Browning, 2007). The resulting VCFs were split into individual VCFs using
BCFtools query and view. For each individual, a fasta file containing each haplotype
was generated using BCFtools consensus (using the -H 1 and -H 2 parameter for
haplotype 1 and haplotype 2, respectively). The header of the resulting fasta files was
fixed to match the appropriate sample and haplotype before concatenating. Each gene-
specific fasta file was then aligned using mafft v7.429 (Katoh & Standley, 2013) using
default parameters. Haplotype networks were then generated for each gene using R
v4.1.2 packages pegas v1.1 (Paradis, 2010) and ape v5.6.2 (Paradis & Schliep, 2019)
using a statistical parsimony network (TCS) approach (Clement et al., 2000; Templeton
et al., 1992) with singleton haplotypes filtered prior to network generation. The resulting

network was visualized using Cytoscape (Shannon et al., 2003) v3.9.1.

Results

Targeted capture sequencing

12
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Targeted capture sequencing resulted in 0.2—1.9 million 150-bp paired-end reads per
sample, with an average of 0.7 million reads and an average Phred score greater than
35. GC content in reads ranged from 43—47%. Of the 839,328 bp targeted, 784,629
were retained after filtering, of which 9,446 (1.2%) were single nucleotide
polymorphisms (SNPs). LD filtering resulted in a final set of 7,277 SNPs. Genes
associated with H2S had more SNPs in high LD (26.1%) when compared to OxPhos

(19.1%) and background (19.2%) genes (Table 1).

Similar population structure inferred from background and candidate genes

To investigate the relationship among populations within each gene set, we used
admixture to cluster individuals based on ancestry. The background set supported a
best K of 7, while both the OxPhos and sulfide sets supported a best K of 8.
Nonetheless, the relationship among populations was similar (Fig. S1, Fig. 2A).
Variation in the best K was the result of nonsulfidic individuals from Pich clustering as a
single population in the background set and as two populations in the OxPhos and
sulfide sets (Fig. 2A). Generally, sulfide spring populations were recovered as distinct
clusters, but Puya sulfidic and nonsulfidic individuals clustered as a single population in
all gene sets (Fig. 2A).

PCA of LD-filtered SNPs separated P. sulphuraria (Pich 1 and Pich 2, sulfidic)
and P. thermalis (Ixta, sulfidic) individuals from P. mexicana individuals (all others)
along PC axis 1, which explained 30.3—-34.9 % of variation depending on the gene set
(Fig. 2B). PC axis 2 separated P. mexicana individuals by ecotype and explained 11.8—

13.2 % of variation. Interestingly, the relationship among individuals from Puya and
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sulfidic individuals from Taco varied across gene sets (Fig. 2B). For example, Puya
individuals clustered as a distinct group from Taco sulfidic individuals in both the
background and the sulfide set (Fig. 2B). In contrast, sulfidic individuals from Taco and
Puya clustered as a single group in the OxPhos set (Fig. 2B). PC axis 3 and 4 showed
similar clustering patterns between the sulfide and Oxphos sets, but interestingly, the
background set clustered sulfidic individuals from Taco with nonsulfidic individuals from
Pich (Fig. S2).

In addition to clustering analyses, we estimated relative differentiation using Weir
and Cockerham Fst for each pairwise comparison. In all gene sets, we found the
highest Fst between the Taco sulfidic population and the sulfidic populations from Pich
and Ixta and the lowest Fst between sulfidic and nonsulfidic populations from Puya (Fig.
S3). Additionally, Fst tended to be lower between comparisons of nonsulfidic
populations than between sulfidic populations or between populations of differing
ecotypes across all gene sets (Fig. S4). Observed and expected heterozygosity (Ho/He)
was reduced in all sulfidic populations when compared to the adjacent nonsulfidic
population, except for Puya, but this pattern was consistent across gene sets (Table
S4). Similarly, nucleotide diversity (11) was lower in sulfidic populations compared to
nonsulfidic populations (Table S5). We also compared distributions of per gene Fst, dyy,
and At between ecotypes from the same drainage. Within a drainage, the distributions
of variation in both sulfur processing and OxPhos genes were similar to the background
(Fig. S5). But between drainages, these distributions varied greatly (Fig. S5) Due to the

overall similarity with the background, our results suggest that most of the variation in
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genes associated with OxPhos and sulfide processing is a result of demographic

processes and not selection acting on many potentially adaptive loci.

Tree discordance between background and potential target genes

Despite limited evidence of selection acting on many loci across our targeted genes,
phylogenetic analysis revealed tree discordance between background, sulfide
processing, and OxPhos genes. The topology of the highest supported maximum
likelihood tree of the background set supported previous studies (Brown et al., 2019;
Greenway et al., 2020; Palacios et al., 2013) that suggest three independent
colonizations of sulfidic springs—a more ancient colonization by the P. sulphuraria
clade as well as two more recent colonizations by P. mexicana in the Taco and Puya
drainages (Fig. 3). In contrast, the sulfide set clustered all populations by ecotype,
contradicting the expected population tree (Fig. 3). The OxPhos set was similar to the
background set, except that the Taco sulfidic individuals cluster with both Puya
populations instead of as sister taxa with the nonsulfidic population from the same

drainage (Fig. 3).

Evidence for selection in sulfide processing genes

A small subset of loci associated with sulfide processes were outliers and therefore
putatively under selection in all sulfidic populations. The distribution of differentiation
(FsT and dyy) and ATTecotype Were similar among gene sets but varied among drainages,
suggesting variation in demographic history (Fig. S5). We identified six Mahalanobis

outlier gene regions putatively under selection that were shared among all comparisons
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(Fig. S6), of which five were associated with sulfide processes (Table S6). These
regions included both copies of ethe1, galactose-specific lectin nattectin-like,
ladderlectin-like, and C-type lectin domain family 10 member A-like. The final outlier
locus was a background gene, succinate-CoA ligase ADP-forming subunit beta
(sucla2). Other notable outlier genes associated with sulfide processes shared among
some, but not all comparisons, included solute carrier family 26 member 1 (s/lc26a7) in
the Pich 1, Ixta, Puya, and Taco comparisons, mercaptopyruvate sulfurtransferase
(mpst) in Pich 2, Ixta, Puya and Taco, and sqor in the Ixta, Puya and Taco comparisons.
Additionally, the OxPhos-associated gene cytochrome c oxidase subunit 8A (cox8a)
was considered an outlier in the Pich 1, Pich 2, Puya, and Taco comparisons.

In addition to identifying shared outlier genes between ecotypes within the same
drainage, we identified 45 highly differentiated SNPs between all sulfidic and nonsulfidic
individuals based on a 99.5 % empirical cutoff (Fig. 4, Table S7). Of these 45 outlier
SNPs, 35 were associated with sulfide processes, seven in OxPhos genes, and three in
background genes (Table S7). Notably, the top ten most differentiated SNPs (Fst 0.87—
0.95) were located in two sulfide detoxification genes, sqor and ethe1 (Fig. 4A). Four
were in the 3’ UTR of ethe1.a, and two were nonsynonymous mutations in sqor. The
nonsynonymous mutations identified in sqor included a change from alanine to valine
and from arginine to lysine, but both amino acid changes had a low predicted impact on
the structure and function of the protein according to the Polyphen2 score (0.003—-0.036
for Ala to Val, 0 for Arg to Lys). Of the remaining top outlier SNPs, three were
synonymous mutations in sqor and one was a synonymous mutation in ethe? (Table

S7). In addition to sqor and ethe1, we found four solute carrier family genes (slc13a1,
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slc25a35, slc26a1, and slc26a5) that contained highly differentiated sites (Fst0.73-0.77,
Table S7). Of the seven outlier SNPs found in OxPhos genes, six were in cytochrome ¢
oxidase assembly homolog COX15. We identified three nonsynonymous positions in
cox15, including an amino acid change from serine to cysteine that was predicted to be
possibly damaging (PolyPhen2 = 0.952, Table S7). We identified three background
genes that each contained a single outlier SNP, hypoxia inducible domain family
member 1A (higd71a), 2-oxoglutarate dehydrogenase (ogdh), and ribosomal protein S15
(rps15) (Table S7).

To better understand sequence variation in regions putatively under selection, we
generated haplotype networks for outlier genes of interest. Both ethe1.a and sqor
showed a reduced number of sulfidic haplotypes compared to nonsulfidic haplotypes,
evidence for a monophyletic origin (Fig. 4b), and the topology of these networks varied
greatly from background genes (Fig. S7). There is evidence of haplotype sharing
between sulfidic and nonsulfidic individuals from Puya in sqor (~15,000bp region) and
among Puya sulfidic, Taco sulfidic, and Puya nonsulfidic individuals in ethe1.a
(~5,000bp region) (Fig. 4b). However, this low level of sharing is not surprising given the
results of Admixture, PCA, and tree discordance, which suggest ongoing gene flow
among these populations (Fig. 2-3). Similar to ethe1.a and sqor, we see a partitioning
of haplotypes by ecotype in the cox15 haplotype network and a low level of sharing

between ecotypes (Fig. S8).

Discussion
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Although convergent phenotypic evolution is common, it remains unclear whether
convergent phenotypes typically arise through similar genomic changes (Kitano et al.,
2022; A. Martin & Orgogozo, 2013). Furthermore, it is unknown how often these similar
genomic changes are the result of de novo mutation, standing ancestral variation, or
introgressed loci (Rosenblum et al., 2014). Convergent adaptive traits that result from
selective pressures imposed by extreme environments provide an opportunity to explore
how strong selection may shape convergence at various levels of biological
organization. In this study, we utilized a naturally replicated extreme environment—
sulfide-rich springs that harbor populations of fishes that have independently adapted to
highly toxic conditions—to test hypotheses about the role of genomic convergence in
the independent evolution of sulfide tolerance. In addition to identifying drainage-
specific genes under selection, we identified two candidate genes associated with H>S
detoxification in the mitochondria, sqor and ethe1, that show evidence for selection on
shared variation. This study suggests that the convergent evolution of H2S tolerance in
the P. mexicana species complex is the result of both shared and unique genomic

changes.

Many regions putatively under selection are associated with H2S detoxification.
H>S is detoxified in the mitochondria via a series of enzymatic reactions associated with
the SQR pathway (Libiad et al., 2014; Olson, 2018). This pathway begins with SQOR
binding H>S followed by a series of reactions involving a group of enzymes, including
ETHE1, that oxidizes H2S to a variety of excretable compounds that allow elimination of

oxidized sulfur molecules from the system (Hildebrandt & Grieshaber, 2008; Libiad et
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al., 2014; Olson, 2018). Our findings highlight the importance of ETHE1 and SQOR in
adaptation to H>S-rich environments. Previous studies have shown that ethe? is
differentially expressed between ecotypes (Brown et al., 2018; Kelley et al., 2016;
Passow, Brown et al., 2017; Passow, et al., 2017). Consistent with this, we found highly
differentiated SNPs in the 3’ UTR region of ethe1, which may play a role underlying
these patterns of differential gene regulation and expression (Mayr, 2019). Additionally,
previous studies have shown that sulfidic populations have higher SQOR activity and
lower endogenous levels of H2S than nonsulfidic populations at increasing levels of HoS
exposure, suggesting an increased detoxification ability (Greenway et al., 2020). Our
analyses identified multiple, highly differentiated positions between all sulfidic and
nonsulfidic individuals in coding regions of sqor, with two variants leading to differences
in the encoded amino acids. Our findings raise the question of whether these amino
acid changes are involved in, or potentially directly responsible for, observed increases
in SQOR activity in sulfidic populations. Future work to categorize the activity of this
enzyme as well as understanding the individual and combinatoric effects of these amino
acid changes will be necessary to understand how these changes impact SQOR
function and activity.

In addition to strong patterns of differentiation in two key detoxification enzymes,
we see repeated patterns of increased differentiation in several other candidate genes,
including solute carrier genes. Epistasis could be an important driver of these patterns.
For example, mutations that increase the capacity to detoxify H>S may only be
beneficial if they occur when the genomic background contains alleles that allow for an

increased capacity to remove the byproducts of detoxification out of the cell.
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Theoretically, there could be an epistatic relationship between sqor, ethe1, and solute
carrier families, such as slc13 (Bergeron et al., 2013) and slc26 (Alper & Sharma, 2013)
that can remove detoxification byproducts out of the cell, limiting the number of
mutational paths as seen in other adaptations (Weinreich et al., 2006).

Although we see limited evidence for selection on genes associated with OxPhos
compared to H>S detoxification genes, previous studies that included mitochondrially
encoded subunits of OxPhos have identified parallel amino acid changes associated
with increased cox resistance (Greenway et al., 2020; Pfenninger et al., 2014). It is
likely that both H2S regulation and resistance are crucial in adapting to this extreme
environment, despite our results showing limited evidence for selection in nuclear-
encoded OxPhos genes, beyond cox8a and cox15. This result could be explained by
only needing adaptive modifications to the reactive core of COX, which is
mitochondrially encoded, to gain H2S resistance. Future work to determine if
mitonuclear coevolution is necessary for H>S tolerance or if modification of only

mitochondrial genes is sufficient.

Sources of shared variation among drainages

Adaptive variation underlying convergent phenotypes may arise independently among
populations as the result of selection on de novo mutations (in the same or different
genes), or may be shared via selection on introgressed or ancestral variation (K. Reid et
al., 2021; Rosenblum et al., 2014; Stern, 2013). Consistent with previous studies,
phylogenetic and admixture analyses provide evidence for the independent evolution of

H>S tolerance among sulfide spring populations (Pfenninger et al., 2014; Tobler et al.,
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2018). In addition, the sulfidic populations in Puya and Taco are more recently diverged
from their nonsulfidic ancestor than those in other drainages (Pfenninger et al., 2014;
Tobler et al., 2018). However, our analyses support selection on shared variation
among sulfidic populations in a small subset of genes. This result raises questions as to
the source of this putatively adaptive variation. Despite geographical barriers between
drainages, seasonal flooding could provide a mechanism for the movement of fish
between drainages and the potential for the export of adaptive alleles from a source
population, known as the transporter hypothesis (Schluter & Conte, 2009). Recent
simulation work provided quantitative proof-of-concept for the transporter hypothesis,
showing that only a few individuals are needed for the export of adaptive alleles
between populations in similar habitats through gene flow with connected populations in
other habitat types (Galloway et al., 2020). We identified shared putatively adaptive
haplotypes, greater than 15kb in length, that could be indicative of recent introgression.
haplotype blocks greater than 1Mb in sunflowers. Given our study used exon capture
data, which limits our ability to detect long haplotypes, we were unable to determine if
the source of adaptive variation was recent introgression or standing ancestral variation.
Distinguishing between the two potential sources of shared adaptive variation remains
an important unanswered question in this system.

Evolutionary biologists have long been fascinated by examples of repetitive
evolutionary trajectories. But even with the expansion of low-cost sequencing, it remains
unclear how often convergent phenotypes are driven by similar genomic changes. Our

study adds to the growing body of literature that suggests selection on shared variation
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may be an important driver of phenotypic convergence within closely related
populations and species (Brown et al., 2019; Waters & McCulloch, 2021). Future work
using whole genome data in this species complex is necessary to elucidate the relative
role of selection on introgressed and standing variants. Furthermore, understanding the
source of adaptive alleles across the family Poeciliidae, which have independently
evolved sulfide tolerance almost 20 times (Tobler et al., 2018), will provide important

insight into fundamental questions of the predictability and repeatability of evolution.
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Tables and Figures

Table 1: The number of genes, exons, and sites captured by targeted sequencing and

number of filtered sites, single nucleotide polymorphisms (SNPs), and linkage-

disequilibrium pruned SNPs used in this analysis.

Genes Exons | Targeted | Filtered SNPs Pruned
Sites Sites SNPs

Target
Sulfide 166 1330 | 421,765 | 398,664 5,153 3,808
OxPhos 84 432 96,472 88,421 973 787
Background 165 1,341 | 321,091 | 297,544 3,320 2,682
Total 415 3,103 | 839,328 | 784,629 9,446 7,277
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Figure 1: Map of study region and sites. Samples were collected from 10 sites in the Rio
Grijalva basin. The study site location is indicated by a yellow star in the insert map of
Mexico. Shape represents drainage and color represents ecotype. This figure was

adapted from Hotaling et al., 2019.

Figure 2: Analysis of population structure in background, sulfide processing, and
OxPhos genes. A) Best K from admixture analyses of each gene set ordered by
drainage, from west to east. B) PCA of unlinked SNPs for each gene set. Color

represents ecotype (sulfidic in yellow, nonsulfidic in blue) and shape represents

drainage of origin.

Figure 3: Tree discordance between maximum likelihood tree of background, sulfide
processing, and OxPhos genes. Color represents ecotype (sulfidic in yellow, nonsulfidic

in blue). Bootstrap support for populations splits shown as a percent of 1000 bootstraps.

Figure 4: Evidence for a monophyletic origin of regions putatively under selection in
sulfidic populations. A) Per base pair Fst between all sulfidic and all nonsulfidic
individuals colored by gene set: H2S detoxification (gold), OxPhos (red) and background
(grey). Outlier cutoffs are indicated by horizontal lines (solid line 99.5%, dashed line
99.9%). B) Haplotype network for outlier genes putatively under selection ethe1.a (left)
and sqor (right). Yellow shades represent sulfidic individuals’ haplotype and blues
represents nonsulfidic individuals’ haplotype. Shade represents population, with the

lightest shade representing western populations and darker shades represents eastern
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populations (see Figure 1). Node size represents number of haplotypes found in the
dataset. Number of mutations between haplotypes is labeled on the branch as tick

marks. Note: singletons have been removed.
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