

1 **Title:** Selection on standing genetic variation mediates convergent evolution in
2 extremophile fish.

3 **Short running title: (45 characters)** Genomic convergence in sulfidic fishes

4

5 **Authors:** Kara Ryan¹ (kara.ryan@wsu.edu), Ryan Greenway^{2,4} (ryan.greenway@uni-konstanz.de), Jake Landers¹ (jake.landers@wsu.edu), Lenin Arias-Rodriguez³ (leninariasrodriguez@hotmail.com), Michael Tobler⁴ (tobler@ksu.edu), Joanna L. Kelley^{1,5} (jokelley@ucsc.edu)

9

10 ¹ School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman,
11 WA 99164, USA

12 ² Zoology and Evolutionary Biology, Department of Biology, University of Konstanz,
13 Universitätsstraße 10, 78464 Konstanz, Germany

14 ³ División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de
15 Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México

16 ⁴ Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506,
17 USA

18 ⁵ Department of Ecology and Evolutionary Biology, University of California Santa Cruz,
19 130 McAllister Way, Santa Cruz, CA 95060, USA

20

21

22

23

24 **Abstract:**

25 Hydrogen sulfide is a toxic gas that disrupts numerous biological processes, including
26 energy production in the mitochondria, yet fish in the *Poecilia mexicana* species
27 complex have independently evolved sulfide tolerance several times. Despite clear
28 evidence for convergence at the phenotypic level in these fishes, it is unclear if the
29 repeated evolution of hydrogen sulfide tolerance is the result of similar genomic
30 changes. To address this gap, we used a targeted capture approach to sequence genes
31 associated with sulfide processes and toxicity from five sulfidic and five nonsulfidic
32 populations in the species complex. By comparing sequence variation in candidate
33 genes to a reference set, we identified similar population structure and differentiation,
34 suggesting that patterns of variation in most genes associated with sulfide processes
35 and toxicity are due to demographic history and not selection. But the presence of tree
36 discordance for a subset of genes suggests that several loci are evolving divergently
37 between ecotypes. We identified two differentiation outlier genes that are associated
38 with sulfide detoxification in the mitochondria that have signatures of selection in all five
39 sulfidic populations. Further investigation into these regions identified long, shared
40 haplotypes among sulfidic populations. Together, these results reveal that selection on
41 standing genetic variation in putatively adaptive genes may be driving phenotypic
42 convergence in this species complex.

43

44 **Keywords: 4-6 words**

45 **Adaptation | Convergent evolution | Hydrogen sulfide | Poeciliidae | Population
46 genomics**

47 **Introduction**

48 Convergent evolution, the independent evolution of similar traits in multiple lineages
49 (Losos, 2011), can occur at various levels of biological organization, from phenotype to
50 nucleotide position. However, convergence at one level does not necessitate
51 convergence in the underlying mechanism (Rosenblum et al., 2014). In some cases,
52 convergent phenotypes are largely driven by the same amino acid change (e.g.
53 echolocation Liu et al., 2010; Rossiter et al., 2011), but in others, there is little
54 convergence at the amino acid or gene level (e.g. hemoglobin Natarajan et al., 2016).
55 Moreover, the degree to which convergent phenotypes are the result of selection on
56 standing variation or on *de novo* mutation remains unclear. In some cases, the source
57 of adaptive variation is largely *de novo* mutation (e.g. pigmentation in deer mice, Linnen
58 et al., 2009) but in others, the majority source is standing variation (Alves et al., 2019;
59 Haenel et al., 2019; Jones et al., 2012; Lai et al., 2019; N. M. Reid et al., 2016).
60 Determining how often convergent phenotypes are driven by similar genomic changes
61 will provide a better understanding of the repeatability of evolution (Gould, 1990;
62 Rosenblum et al., 2014) and the relative contributions of selection on standing variation
63 and *de novo* mutation in adaptation.

64 Extreme environments provide valuable systems to explore how selection may
65 drive convergence across multiple biological levels. The strong selective regimes found
66 in extreme environments often promote the evolution of convergent phenotypes (Tobler
67 et al., 2015; Xu et al., 2020). These systems are particularly valuable when there are
68 naturally replicated environments that have been independently colonized by multiple
69 populations, allowing the investigation of how selection has independently shaped

70 variation in the genome (Tobler et al., 2018). Freshwater springs in the Río Grijalva
71 basin in Southern Mexico are an example of such a system. Springs in this area contain
72 naturally occurring hydrogen sulfide (H_2S) at concentrations orders of magnitude higher
73 than those considered lethal for most animals (Tobler et al., 2016, 2018). Despite the
74 highly toxic conditions, sulfide springs in four river drainages have been independently
75 colonized by fish populations from the *Poecilia mexicana* species complex, including
76 *Poecilia mexicana mexicana*, *Poecilia thermalis*, and *Poecilia sulphuraria* (Palacios et
77 al., 2013; Tobler et al., 2018). Additionally, closely related populations inhabit
78 nonsulfidic streams within the same drainages (Fig. 1), providing a unique comparative
79 framework to explore evolutionary processes that potentially give rise to convergent
80 adaptations (Tobler et al., 2018). The sulfide spring populations from the Puyacatengo
81 and Tacotalpa drainages show evidence for recent divergence between ecotypes,
82 estimated at ~10,000 years ago in Tacotalpa and ~300 years ago in Puyacatengo
83 (Brown et al., 2018). In contrast, sulfide spring populations in the Pichucalco and
84 Ixtapangajoya drainages are hypothesized to have diverged earlier, with estimates from
85 the Pichucalco drainage suggesting a timing of divergence of ~19,000 years ago
86 (Greenway et al., 2021). Sulfide spring populations are locally adapted and exhibit
87 convergent phenotypes related to morphology (Greenway et al., 2019; Riesch et al.,
88 2016; Tobler & Hastings, 2011), life history traits (Riesch et al., 2014; Riesch, et al.,
89 2010) and physiology (Greenway et al., 2020; Pfenninger et al., 2014; Plath et al., 2013;
90 Tobler et al., 2011, 2016). These naturally replicated systems, therefore, provide a
91 unique opportunity to explore the genomic basis of convergent adaptive phenotypes,
92 from nucleotide position to pathway.

93 The main mechanism of toxicity imposed by H₂S involves the inhibition of aerobic
94 respiration. In the mitochondria, H₂S binds to Complex IV (cytochrome c oxidase, COX),
95 inhibiting oxidative phosphorylation (OxPhos) and halting aerobic energy production
96 even at micromolar concentrations (Cooper & Brown, 2008; Hill et al., 1984). In addition
97 to disrupting energy production, elevated H₂S concentrations can produce harmful
98 effects by modulating ion channels (García-Bereguiaín et al., 2008), modifying oxygen
99 transport proteins (Pietri et al., 2011), interacting with transcription factors (Budde &
100 Roth, 2010) and signaling molecules (Calvert et al., 2009), and disrupting
101 posttranslational modification of proteins (Mustafa et al., 2009). Despite the presence of
102 a highly conserved detoxification pathway across eukaryotes, the sulfide:quinone
103 oxidoreductase (SQR) pathway in the mitochondria (Hildebrandt & Grieshaber, 2008;
104 Libiad et al., 2014), environmental exposure to H₂S is still potentially lethal for most
105 animals (Lagoutte et al., 2010). Although the biochemical action of H₂S is well
106 understood, the ways in which these proteins may be modified for adaptation to H₂S-
107 rich environments are largely unknown. At a molecular level, the strong selective
108 pressure imposed by constant exposure to H₂S is predicted to drive adaptive
109 modification of genes associated with OxPhos and H₂S detoxification. These genes are
110 prime targets for natural selection due to their importance in cell survival, susceptibility
111 to H₂S, and their highly conserved nature across taxa, which provides an opportunity to
112 test for convergence at a molecular level. However, because of the genomic complexity
113 and redundancy of these processes—more than 200 genes are associated with H₂S
114 tolerance, H₂S detoxification, or OxPhos—it is unclear to what extent the convergent
115 evolution of sulfide tolerance is a result of convergence at the genomic level.

116 There is evidence for genomic convergence at the gene and nucleotide levels in
117 subsets of populations of *P. mexicana*, that seems to arise from a combination of
118 selection on standing variation and *de novo* mutation. For example, genes associated
119 with the sulfide:quinone oxidoreductase pathway in the mitochondria, including
120 *sulfide:quinone oxidoreductase (sqor)* and *persulfide dioxygenase (ethe1)* show
121 evidence for selection on standing variation (Brown et al., 2018; Greenway et al., 2020;
122 Pfenninger et al., 2015; Tobler et al., 2018). Additionally, these sulfur detoxification
123 genes are differentially expressed between ecotypes (Brown et al., 2018; Kelley et al.,
124 2016; Passow, et al., 2017; Tobler et al., 2014). Evidence for shared adaptive changes
125 in subunits of OxPhos have been identified (Brown et al., 2018; Greenway et al., 2020;
126 Kelley et al., 2016; Pfenninger et al., 2014), including evidence for selection acting on
127 *de novo* mutations in mitochondrially encoded subunits of OxPhos complexes
128 (Greenway et al., 2020; Pfenninger et al., 2014).

129 While previous studies support the importance of regions associated with H₂S
130 detoxification and OxPhos, it remains untested whether selection has acted on shared
131 regions of the genome across all sulfidic populations of this species complex.
132 Furthermore, it is unclear if convergence is the result of selection on standing variation
133 or *de novo* mutation. To address these questions, we used a targeted exon capture
134 approach to sequence candidate genes associated with H₂S toxicity and detoxification
135 from five sulfidic and five nonsulfidic populations of *P. mexicana*. Using these data, we
136 tested 1) whether the relationship among populations at H₂S candidate genes differs
137 from the relationship at background genes, and 2) whether a subset of genes
138 associated with H₂S detoxification has been targeted by selection in all drainages. This

139 study highlights the importance of selection on standing genetic variation in the
140 repeated evolution of complex traits in extreme environments.

141

142 **Materials and Methods**

143 *Samples and sequencing*

144 A total of 200 individuals were sampled from five sulfidic and five nonsulfidic populations
145 (20 individuals per population) from the Pichucalco (Pich 1 and Pich 2), Ixtapangajoya
146 (Ixta), Puyacatengo (Puya), and Tacotalpa (Taco) drainages in the Río Grijalva basin,
147 Mexico (Fig. 1, Table S1). Sampling included populations of *P. sulphuraria* (Pich
148 sulfidic), *P. thermalis* (Ixta sulfidic), and *P. mexicana mexicana* (all other populations).

149 Probes were designed for capture sequencing by Rapid Genomics to target a
150 total of 415 nuclear-encoded genes, comprised of 250 candidate genes and 165
151 background genes (Table S2). The 166 candidate genes associated with sulfide
152 detoxification and sulfur processing were identified using Gene Ontology (GO) terms
153 (Table S3). The candidate set also included 84 nuclear-encoded OxPhos genes,
154 identified using a BLASTn search of the *P. mexicana* reference genome for genes
155 encoding subunits of OxPhos from Zhang & Broughton (2013). The background set
156 contained 73 housekeeping genes from Zhang & Broughton (2013) that are highly
157 expressed in all cell types and involved in critical functions, providing an appropriate
158 comparator to OxPhos genes (Amsterdam et al., 2004; Warrington et al., 2000), and 92
159 additional nuclear-encoded genes involved in mitochondrial functions (excluding
160 OxPhos and sulfide-related genes identified above) selected from the MitoCarta2.0
161 database (Calvo et al., 2016; Pagliarini et al., 2008) at random.

162 DNA was extracted from muscle tissue preserved in RNAlater (Ambion, Inc.)
163 using the Gentra Puregene Tissue Kit following the manufacturer's protocol for purifying
164 DNA from 5–10 mg of tissue with the following modifications: (i) tissues were
165 homogenized using a micro pestle, (ii) centrifugation was carried out for 3.5 mins
166 following the addition of protein precipitations solution, and (iii) centrifugation was
167 performed for 2 mins following the addition of isopropanol. DNA was quantified using a
168 Qubit fluorometer and was visualized on a 1% agarose gel.

169 Library preparation was performed by Rapid Genomics utilizing the Illumina high-
170 throughput workflow and proprietary chemistry. Briefly, DNA was sheared to a mean
171 fragment length of 400 base pairs (bp). The resulting fragments were end-repaired,
172 followed by the incorporation of Illumina unique dual-indexed adapters and PCR
173 enrichment. Probes from Rapid Genomics set RG_3101 were hybridized to the libraries
174 and enriched for the targets of interest. Sequencing was performed on an Illumina
175 HiSeq system with paired-end 150 bp reads. The resulting raw data were demultiplexed
176 using Illumina's BCLtoFastq.

177

178 *Quality control, variant calling, and filtering*

179 Reads were quality checked using FastQC v0.11.9 (Andrews, 2010), and outputs were
180 summarized using MultiQC v1.11 (Ewels et al., 2016). Reads were trimmed using the
181 Cutadapt (M. Martin, 2011) wrapper TrimGalore v0.6.6
182 (<https://github.com/FelixKrueger/TrimGalore>) with parameters --stringency 5, --length
183 40, and default parameters trimming adaptors and reads with a quality score less than
184 20. Trimmed reads were aligned to the *P. mexicana* genome (NCBI accession:

185 GCA_001443325.1; (Warren et al., 2018) using BWA-MEM v0.7.17 (Li, 2013). The
186 resulting SAM files were converted to BAM files using Samtools v1.8 (Li et al., 2009).
187 The BAM files were then sorted and duplicates were marked using Picard Tools v2.21.4
188 (*Broadinstitute/Picard*, 2014/2022) *SortSam* and *MarkDuplicates*. Variants were called
189 according to the Genome Analysis Tool Kit (GATK) v4.2.5.0 (Van der Auwera &
190 O'Connor, 2020) best practices for data pre-processing for variant discovery and
191 germline short variant discovery (single nucleotide polymorphisms (SNPs) and
192 insertions/deletions (Indels). GATK's *HaplotypeCaller* was used in gvcf mode to
193 generate intermediate per-sample Genomic Variant Call Format (GVCF) files, which
194 were then consolidated using *GenomicsDBImport*. Samples were then joint genotyped
195 using GATK *GenotypeGVCFs*, retaining invariant sites using the -allSites parameter
196 and combined using *CombineVariants*.

197 The resulting VCF files were filtered for sequencing depth and missingness (--
198 minDP 20, -- max_missing 0.9) using VCFtools v0.1.16 (Danecek et al., 2011).
199 Additionally, VCFtools was used to remove a nonsulfidic individual from the Pichucalco
200 drainage that was identified as a first-generation hybrid. To generate an all-sites VCF
201 with proper variant filtering, we separated the files into variant (--mac 1) and invariant (--
202 maf 0) sites using VCFtools. We filtered the variant file for quality and minor allele
203 frequency (--minQ 30 --maf 0.01) using VCFtools. Additionally, we removed loci that
204 were significantly out of Hardy Weinberg Equilibrium within each population ($P < 0.001$)
205 using dDocent Perl script *filter_hwe_by_pop.pl* (Puritz, et al., 2014; Puritz, Matz, et al.,
206 2014). The resulting filtered variant sites VCF were then concatenated to the invariant
207 sites using BCFtools v1.10.2 *concat* (Danecek et al., 2021) and intersected with the

208 original bed file containing the targeted regions for probe design to remove off-target
209 variants and split the data to target and background using BEDTools v2.27.1 (Quinlan &
210 Hall, 2010). The resulting filtered all-sites VCF file was converted to phylip format for
211 phylogenetic analysis using python script vcf2phylip.py
212 (<https://github.com/edgardomortiz/vcf2phylip>). In addition to an all-sites VCF, we filtered
213 the candidate and background VCF files to retain only biallelic SNPs using VCFtools
214 and remove SNPs found in high LD (+prune -l 0.8 -w 1000) using BCFtools. Unless
215 otherwise stated, analyses were performed using the VCF containing biallelic, LD-
216 pruned SNPs.

217

218 *Analysis of evolutionary relationships among populations*

219 To investigate population structure, a principal component analysis (PCA) was
220 performed using Plink2 (Chang et al., 2015). Iqtree2 v2.1.3 (Minh et al., 2020) Ultra-
221 Fast Bootstrap (Minh et al., 2013) (-B 1000 -bnni) approach was used to generate a
222 maximum likelihood tree for the background and candidate gene sets using the
223 unpruned, all-sites phylip file. ADMIXTURE v1.3.0 (Alexander et al., 2009) was used to
224 investigate individual ancestry. Pong v1.5 (Behr et al., 2016) was used to visualize
225 ADMIXTURE clustering.

226

227 *Analysis of population genetic differentiation*

228 Estimates of F_{ST} , heterozygosity, and nucleotide diversity (π) for each gene set were
229 calculated using Stacks v2.59 populations (Catchen et al., 2013). Fixed differences
230 between each comparison were identified by first filtering for private alleles and then

231 filtering for a maximum minor allele frequency of 0 using VCFtools. Pixy v1.2.5 (Korunes
232 & Samuk, 2021) was used to summarize nucleotide diversity and estimate genetic
233 differentiation at the gene level between sulfidic and nonsulfidic populations from the
234 same drainage using the all-sites VCF. First, Nei and Li's nucleotide diversity (π) (Nei &
235 Li, 1979) was estimated for all populations, and the difference in nucleotide diversity
236 between pairs ($\Delta\pi_{\text{ecotype}}$) was calculated by subtracting π of sulfidic from nonsulfidic
237 populations ($\pi_{\text{NS}} - \pi_{\text{S}}$), such that loci with decreased nucleotide diversity in sulfidic
238 populations would result in $+\Delta\pi_{\text{ecotype}}$. Next, we estimated relative population
239 differentiation between pairs using Weir and Cockerham's estimate of F_{ST} (Weir &
240 Cockerham, 1984). Because this estimator can result in a negative value for populations
241 that contain more variation within, we replaced all negative F_{ST} values with 0. Estimates
242 of F_{ST} can be influenced by differences in nucleotide diversity within populations
243 (Cruickshank & Hahn, 2014), therefore we also calculated d_{xy} (Nei & Li, 1979) as an
244 absolute measure of population differentiation.

245 We first identified outlier loci putatively under selection using a multivariate
246 approach in Minotaur v0.0.1 (Verity et al., 2017). We used the distributions of F_{ST} , d_{xy} ,
247 and $\Delta\pi_{\text{ecotype}}$ per gene to calculate the Mahalanobis distance (Mahalanobis, 1936), and
248 loci with greater-than-expected differentiation based on a 95 % confidence intervals
249 were considered putatively under selection. We then compared these drainage-specific
250 gene lists to identify shared outlier genes. In addition to the per-gene approach, we
251 identified outlier SNPs. We used VCFtools to calculate Weir and Cockerham's F_{ST}
252 between all sulfidic and nonsulfidic populations on a per-site basis using a VCF
253 containing biallelic SNPs that were not LD pruned. Outlier SNPs were identified using a

254 99.5% cutoff. SNPs were annotated using SNPeff v5.0e (Cingolani et al., 2012), and the
255 potential effects of high F_{ST} nonsynonymous mutations were assessed using PolyPhen2
256 (Adzhubei et al., 2013).

257

258 *Haplotype Network*

259 To generate haplotype networks, we split the non-LD pruned VCF containing biallelic
260 SNPs by population using VCFtools and phased the sites using the Popgen Pipeline
261 Platform script vcf_phase.py using the Beagle v5.1 algorithm (Browning et al., 2018;
262 Browning & Browning, 2007). The resulting VCFs were split into individual VCFs using
263 BCFtools *query* and *view*. For each individual, a fasta file containing each haplotype
264 was generated using BCFtools *consensus* (using the -H 1 and -H 2 parameter for
265 haplotype 1 and haplotype 2, respectively). The header of the resulting fasta files was
266 fixed to match the appropriate sample and haplotype before concatenating. Each gene-
267 specific fasta file was then aligned using mafft v7.429 (Katoh & Standley, 2013) using
268 default parameters. Haplotype networks were then generated for each gene using R
269 v4.1.2 packages pegas v1.1 (Paradis, 2010) and ape v5.6.2 (Paradis & Schliep, 2019)
270 using a statistical parsimony network (TCS) approach (Clement et al., 2000; Templeton
271 et al., 1992) with singleton haplotypes filtered prior to network generation. The resulting
272 network was visualized using Cytoscape (Shannon et al., 2003) v3.9.1.

273

274 **Results**

275 *Targeted capture sequencing*

276 Targeted capture sequencing resulted in 0.2–1.9 million 150-bp paired-end reads per
277 sample, with an average of 0.7 million reads and an average Phred score greater than
278 35. GC content in reads ranged from 43–47%. Of the 839,328 bp targeted, 784,629
279 were retained after filtering, of which 9,446 (1.2%) were single nucleotide
280 polymorphisms (SNPs). LD filtering resulted in a final set of 7,277 SNPs. Genes
281 associated with H₂S had more SNPs in high LD (26.1%) when compared to OxPhos
282 (19.1%) and background (19.2%) genes (Table 1).

283

284 *Similar population structure inferred from background and candidate genes*
285 To investigate the relationship among populations within each gene set, we used
286 admixture to cluster individuals based on ancestry. The background set supported a
287 best *K* of 7, while both the OxPhos and sulfide sets supported a best *K* of 8.
288 Nonetheless, the relationship among populations was similar (Fig. S1, Fig. 2A).
289 Variation in the best *K* was the result of nonsulfidic individuals from Pich clustering as a
290 single population in the background set and as two populations in the OxPhos and
291 sulfide sets (Fig. 2A). Generally, sulfide spring populations were recovered as distinct
292 clusters, but Puya sulfidic and nonsulfidic individuals clustered as a single population in
293 all gene sets (Fig. 2A).

294 PCA of LD-filtered SNPs separated *P. sulphuraria* (*Pich 1 and Pich 2, sulfidic*)
295 and *P. thermalis* (*Ixta, sulfidic*) individuals from *P. mexicana* individuals (all others)
296 along PC axis 1, which explained 30.3–34.9 % of variation depending on the gene set
297 (Fig. 2B). PC axis 2 separated *P. mexicana* individuals by ecotype and explained 11.8–
298 13.2 % of variation. Interestingly, the relationship among individuals from Puya and

299 sulfidic individuals from Taco varied across gene sets (Fig. 2B). For example, Puya
300 individuals clustered as a distinct group from Taco sulfidic individuals in both the
301 background and the sulfide set (Fig. 2B). In contrast, sulfidic individuals from Taco and
302 Puya clustered as a single group in the OxPhos set (Fig. 2B). PC axis 3 and 4 showed
303 similar clustering patterns between the sulfide and OxPhos sets, but interestingly, the
304 background set clustered sulfidic individuals from Taco with nonsulfidic individuals from
305 Pich (Fig. S2).

306 In addition to clustering analyses, we estimated relative differentiation using Weir
307 and Cockerham F_{ST} for each pairwise comparison. In all gene sets, we found the
308 highest F_{ST} between the Taco sulfidic population and the sulfidic populations from Pich
309 and Ixta and the lowest F_{ST} between sulfidic and nonsulfidic populations from Puya (Fig.
310 S3). Additionally, F_{ST} tended to be lower between comparisons of nonsulfidic
311 populations than between sulfidic populations or between populations of differing
312 ecotypes across all gene sets (Fig. S4). Observed and expected heterozygosity (H_O/H_E)
313 was reduced in all sulfidic populations when compared to the adjacent nonsulfidic
314 population, except for Puya, but this pattern was consistent across gene sets (Table
315 S4). Similarly, nucleotide diversity (π) was lower in sulfidic populations compared to
316 nonsulfidic populations (Table S5). We also compared distributions of per gene F_{ST} , d_{xy} ,
317 and $\Delta\pi$ between ecotypes from the same drainage. Within a drainage, the distributions
318 of variation in both sulfur processing and OxPhos genes were similar to the background
319 (Fig. S5). But between drainages, these distributions varied greatly (Fig. S5) Due to the
320 overall similarity with the background, our results suggest that most of the variation in

321 genes associated with OxPhos and sulfide processing is a result of demographic
322 processes and not selection acting on many potentially adaptive loci.

323

324 *Tree discordance between background and potential target genes*
325 Despite limited evidence of selection acting on many loci across our targeted genes,
326 phylogenetic analysis revealed tree discordance between background, sulfide
327 processing, and OxPhos genes. The topology of the highest supported maximum
328 likelihood tree of the background set supported previous studies (Brown et al., 2019;
329 Greenway et al., 2020; Palacios et al., 2013) that suggest three independent
330 colonizations of sulfidic springs—a more ancient colonization by the *P. sulphuraria*
331 clade as well as two more recent colonizations by *P. mexicana* in the Taco and Puya
332 drainages (Fig. 3). In contrast, the sulfide set clustered all populations by ecotype,
333 contradicting the expected population tree (Fig. 3). The OxPhos set was similar to the
334 background set, except that the Taco sulfidic individuals cluster with both Puya
335 populations instead of as sister taxa with the nonsulfidic population from the same
336 drainage (Fig. 3).

337

338 *Evidence for selection in sulfide processing genes*
339 A small subset of loci associated with sulfide processes were outliers and therefore
340 putatively under selection in all sulfidic populations. The distribution of differentiation
341 (F_{ST} and d_{xy}) and $\Delta\pi_{\text{ecotype}}$ were similar among gene sets but varied among drainages,
342 suggesting variation in demographic history (Fig. S5). We identified six Mahalanobis
343 outlier gene regions putatively under selection that were shared among all comparisons

344 (Fig. S6), of which five were associated with sulfide processes (Table S6). These
345 regions included both copies of *ethe1*, galactose-specific lectin nattectin-like,
346 ladderlectin-like, and C-type lectin domain family 10 member A-like. The final outlier
347 locus was a background gene, succinate-CoA ligase ADP-forming subunit beta
348 (*sucla2*). Other notable outlier genes associated with sulfide processes shared among
349 some, but not all comparisons, included solute carrier family 26 member 1 (*slc26a1*) in
350 the Pich 1, Ixta, Puya, and Taco comparisons, mercaptopyruvate sulfurtransferase
351 (*mpst*) in Pich 2, Ixta, Puya and Taco, and *sqor* in the Ixta, Puya and Taco comparisons.
352 Additionally, the OxPhos-associated gene cytochrome c oxidase subunit 8A (*cox8a*)
353 was considered an outlier in the Pich 1, Pich 2, Puya, and Taco comparisons.

354 In addition to identifying shared outlier genes between ecotypes within the same
355 drainage, we identified 45 highly differentiated SNPs between all sulfidic and nonsulfidic
356 individuals based on a 99.5 % empirical cutoff (Fig. 4, Table S7). Of these 45 outlier
357 SNPs, 35 were associated with sulfide processes, seven in OxPhos genes, and three in
358 background genes (Table S7). Notably, the top ten most differentiated SNPs (F_{ST} 0.87–
359 0.95) were located in two sulfide detoxification genes, *sqor* and *ethe1* (Fig. 4A). Four
360 were in the 3' UTR of *ethe1.a*, and two were nonsynonymous mutations in *sqor*. The
361 nonsynonymous mutations identified in *sqor* included a change from alanine to valine
362 and from arginine to lysine, but both amino acid changes had a low predicted impact on
363 the structure and function of the protein according to the Polyphen2 score (0.003–0.036
364 for Ala to Val, 0 for Arg to Lys). Of the remaining top outlier SNPs, three were
365 synonymous mutations in *sqor* and one was a synonymous mutation in *ethe1* (Table
366 S7). In addition to *sqor* and *ethe1*, we found four solute carrier family genes (*slc13a1*,

367 *slc25a35*, *slc26a1*, and *slc26a5*) that contained highly differentiated sites (F_{ST} 0.73-0.77,
368 Table S7). Of the seven outlier SNPs found in OxPhos genes, six were in cytochrome c
369 oxidase assembly homolog COX15. We identified three nonsynonymous positions in
370 *cox15*, including an amino acid change from serine to cysteine that was predicted to be
371 possibly damaging (PolyPhen2 = 0.952, Table S7). We identified three background
372 genes that each contained a single outlier SNP, hypoxia inducible domain family
373 member 1A (*higd1a*), 2-oxoglutarate dehydrogenase (*ogdh*), and ribosomal protein S15
374 (*rps15*) (Table S7).

375 To better understand sequence variation in regions putatively under selection, we
376 generated haplotype networks for outlier genes of interest. Both *ethe1.a* and *sqor*
377 showed a reduced number of sulfidic haplotypes compared to nonsulfidic haplotypes,
378 evidence for a monophyletic origin (Fig. 4b), and the topology of these networks varied
379 greatly from background genes (Fig. S7). There is evidence of haplotype sharing
380 between sulfidic and nonsulfidic individuals from Puya in *sqor* (~15,000bp region) and
381 among Puya sulfidic, Taco sulfidic, and Puya nonsulfidic individuals in *ethe1.a*
382 (~5,000bp region) (Fig. 4b). However, this low level of sharing is not surprising given the
383 results of Admixture, PCA, and tree discordance, which suggest ongoing gene flow
384 among these populations (Fig. 2–3). Similar to *ethe1.a* and *sqor*, we see a partitioning
385 of haplotypes by ecotype in the *cox15* haplotype network and a low level of sharing
386 between ecotypes (Fig. S8).

387

388 **Discussion**

389 Although convergent phenotypic evolution is common, it remains unclear whether
390 convergent phenotypes typically arise through similar genomic changes (Kitano et al.,
391 2022; A. Martin & Orgogozo, 2013). Furthermore, it is unknown how often these similar
392 genomic changes are the result of *de novo* mutation, standing ancestral variation, or
393 introgressed loci (Rosenblum et al., 2014). Convergent adaptive traits that result from
394 selective pressures imposed by extreme environments provide an opportunity to explore
395 how strong selection may shape convergence at various levels of biological
396 organization. In this study, we utilized a naturally replicated extreme environment—
397 sulfide-rich springs that harbor populations of fishes that have independently adapted to
398 highly toxic conditions—to test hypotheses about the role of genomic convergence in
399 the independent evolution of sulfide tolerance. In addition to identifying drainage-
400 specific genes under selection, we identified two candidate genes associated with H₂S
401 detoxification in the mitochondria, *sqor* and *ethe1*, that show evidence for selection on
402 shared variation. This study suggests that the convergent evolution of H₂S tolerance in
403 the *P. mexicana* species complex is the result of both shared and unique genomic
404 changes.

405

406 **Many regions putatively under selection are associated with H₂S detoxification.**

407 H₂S is detoxified in the mitochondria via a series of enzymatic reactions associated with
408 the SQR pathway (Libiad et al., 2014; Olson, 2018). This pathway begins with SQOR
409 binding H₂S followed by a series of reactions involving a group of enzymes, including
410 ETHE1, that oxidizes H₂S to a variety of excretable compounds that allow elimination of
411 oxidized sulfur molecules from the system (Hildebrandt & Grieshaber, 2008; Libiad et

412 al., 2014; Olson, 2018). Our findings highlight the importance of ETHE1 and SQOR in
413 adaptation to H₂S-rich environments. Previous studies have shown that *ethe1* is
414 differentially expressed between ecotypes (Brown et al., 2018; Kelley et al., 2016;
415 Passow, Brown et al., 2017; Passow, et al., 2017). Consistent with this, we found highly
416 differentiated SNPs in the 3' UTR region of *ethe1*, which may play a role underlying
417 these patterns of differential gene regulation and expression (Mayr, 2019). Additionally,
418 previous studies have shown that sulfidic populations have higher SQOR activity and
419 lower endogenous levels of H₂S than nonsulfidic populations at increasing levels of H₂S
420 exposure, suggesting an increased detoxification ability (Greenway et al., 2020). Our
421 analyses identified multiple, highly differentiated positions between all sulfidic and
422 nonsulfidic individuals in coding regions of *sqor*, with two variants leading to differences
423 in the encoded amino acids. Our findings raise the question of whether these amino
424 acid changes are involved in, or potentially directly responsible for, observed increases
425 in SQOR activity in sulfidic populations. Future work to categorize the activity of this
426 enzyme as well as understanding the individual and combinatoric effects of these amino
427 acid changes will be necessary to understand how these changes impact SQOR
428 function and activity.

429 In addition to strong patterns of differentiation in two key detoxification enzymes,
430 we see repeated patterns of increased differentiation in several other candidate genes,
431 including solute carrier genes. Epistasis could be an important driver of these patterns.
432 For example, mutations that increase the capacity to detoxify H₂S may only be
433 beneficial if they occur when the genomic background contains alleles that allow for an
434 increased capacity to remove the byproducts of detoxification out of the cell.

435 Theoretically, there could be an epistatic relationship between *sqor*, *ethe1*, and solute
436 carrier families, such as *slc13* (Bergeron et al., 2013) and *slc26* (Alper & Sharma, 2013)
437 that can remove detoxification byproducts out of the cell, limiting the number of
438 mutational paths as seen in other adaptations (Weinreich et al., 2006).

439 Although we see limited evidence for selection on genes associated with OxPhos
440 compared to H₂S detoxification genes, previous studies that included mitochondrially
441 encoded subunits of OxPhos have identified parallel amino acid changes associated
442 with increased cox resistance (Greenway et al., 2020; Pfenninger et al., 2014). It is
443 likely that both H₂S regulation and resistance are crucial in adapting to this extreme
444 environment, despite our results showing limited evidence for selection in nuclear-
445 encoded OxPhos genes, beyond *cox8a* and *cox15*. This result could be explained by
446 only needing adaptive modifications to the reactive core of COX, which is
447 mitochondrially encoded, to gain H₂S resistance. Future work to determine if
448 mitonuclear coevolution is necessary for H₂S tolerance or if modification of only
449 mitochondrial genes is sufficient.

450

451 **Sources of shared variation among drainages**

452 Adaptive variation underlying convergent phenotypes may arise independently among
453 populations as the result of selection on *de novo* mutations (in the same or different
454 genes), or may be shared via selection on introgressed or ancestral variation (K. Reid et
455 al., 2021; Rosenblum et al., 2014; Stern, 2013). Consistent with previous studies,
456 phylogenetic and admixture analyses provide evidence for the independent evolution of
457 H₂S tolerance among sulfide spring populations (Pfenninger et al., 2014; Tobler et al.,

458 2018). In addition, the sulfidic populations in Puya and Taco are more recently diverged
459 from their nonsulfidic ancestor than those in other drainages (Pfenninger et al., 2014;
460 Tobler et al., 2018). However, our analyses support selection on shared variation
461 among sulfidic populations in a small subset of genes. This result raises questions as to
462 the source of this putatively adaptive variation. Despite geographical barriers between
463 drainages, seasonal flooding could provide a mechanism for the movement of fish
464 between drainages and the potential for the export of adaptive alleles from a source
465 population, known as the transporter hypothesis (Schluter & Conte, 2009). Recent
466 simulation work provided quantitative proof-of-concept for the transporter hypothesis,
467 showing that only a few individuals are needed for the export of adaptive alleles
468 between populations in similar habitats through gene flow with connected populations in
469 other habitat types (Galloway et al., 2020). We identified shared putatively adaptive
470 haplotypes, greater than 15kb in length, that could be indicative of recent introgression.
471 In a recent study, Todesco et al. (2020) identified recently introgressed adaptive
472 haplotype blocks greater than 1Mb in sunflowers. Given our study used exon capture
473 data, which limits our ability to detect long haplotypes, we were unable to determine if
474 the source of adaptive variation was recent introgression or standing ancestral variation.
475 Distinguishing between the two potential sources of shared adaptive variation remains
476 an important unanswered question in this system.

477 Evolutionary biologists have long been fascinated by examples of repetitive
478 evolutionary trajectories. But even with the expansion of low-cost sequencing, it remains
479 unclear how often convergent phenotypes are driven by similar genomic changes. Our
480 study adds to the growing body of literature that suggests selection on shared variation

481 may be an important driver of phenotypic convergence within closely related
482 populations and species (Brown et al., 2019; Waters & McCulloch, 2021). Future work
483 using whole genome data in this species complex is necessary to elucidate the relative
484 role of selection on introgressed and standing variants. Furthermore, understanding the
485 source of adaptive alleles across the family Poeciliidae, which have independently
486 evolved sulfide tolerance almost 20 times (Tobler et al., 2018), will provide important
487 insight into fundamental questions of the predictability and repeatability of evolution.

488

489 **Acknowledgments**

490 Funding was provided by National Science Foundation under Grant No IOS-1931657
491 and the Army Research Office (W911NF-15-1-0175, W911NF-16-1-0225). This work
492 used computational and storage servers associated with the Kamiak computing cluster
493 at Washington State University. Thanks to Blair Perry and the Kelley lab members for
494 manuscript feedback.

495

496 **Data Accessibility**

497 Data deposition: All scripts and vcf files associated with analyses are available on
498 GitHub (https://github.com/kara-ry/H2S_Capture_Pmex). All sequence data are
499 available at National Center for Biotechnology Information (NCBI) BioProject
500 PRJNA647126.

501

502 **Benefit-Sharing**

503 This research is the result of a long-term, international collaboration. The contributions
504 of all individuals to the research are included as co-authors or described in the
505 acknowledgments. All genetic data have been shared with the broader public via
506 appropriate biological databases. Our group places great importance on engaging in
507 international scientific collaborations and contributing to institutional capacity building
508 efforts.

509

510 **Author contributions**

511 JLK, MT, and RG conceived the study. KR and JL performed the analyses. KR wrote
512 the manuscript. JLK, MT and RG contributed to the revisions. All author approved the
513 final version.

514

515 **References**

- 516 Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting functional effect of human
517 missense mutations using PolyPhen-2. *Current Protocols in Human Genetics, Chapter 7,*
518 Unit7.20. <https://doi.org/10.1002/0471142905.hg0720s76>
- 519 Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in
520 unrelated individuals. *Genome Research, 19*(9), 1655–1664.
521 <https://doi.org/10.1101/gr.094052.109>
- 522 Alper, S. L., & Sharma, A. K. (2013). The SLC26 gene family of anion transporters and channels.
523 *Molecular Aspects of Medicine, 34*(2), 494–515.
524 <https://doi.org/10.1016/j.mam.2012.07.009>
- 525 Alves, J. M., Carneiro, M., Cheng, J. Y., Lemos de Matos, A., Rahman, M. M., Loog, L., Campos, P.
526 F., Wales, N., Eriksson, A., Manica, A., Strive, T., Graham, S. C., Afonso, S., Bell, D. J.,
527 Belmont, L., Day, J. P., Fuller, S. J., Marchandea, S., Palmer, W. J., ... Jiggins, F. M.

528 (2019). Parallel adaptation of rabbit populations to myxoma virus. *Science (New York,*
529 *N.Y.), 363(6433), 1319–1326. <https://doi.org/10.1126/science.aau7285>*

530 Amsterdam, A., Nissen, R. M., Sun, Z., Swindell, E. C., Farrington, S., & Hopkins, N. (2004).
531 Identification of 315 genes essential for early zebrafish development. *Proceedings of the*
532 *National Academy of Sciences of the United States of America, 101(35), 12792–12797.*
533 <https://doi.org/10.1073/pnas.0403929101>

534 Andrews, S. (2010). *FastQC A Quality Control tool for High Throughput Sequence Data.*
535 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

536 Behr, A. A., Liu, K. Z., Liu-Fang, G., Nakka, P., & Ramachandran, S. (2016). pong: Fast analysis
537 and visualization of latent clusters in population genetic data. *Bioinformatics, 32(18),*
538 2817–2823. <https://doi.org/10.1093/bioinformatics/btw327>

539 Bergeron, M. J., Cléménçon, B., Hediger, M. A., & Markovich, D. (2013). SLC13 family of Na+-
540 coupled di- and tri-carboxylate/sulfate transporters. *The ABCs of Membrane*
541 *Transporters in Health and Disease (SLC Series), 34(2), 299–312.*
542 <https://doi.org/10.1016/j.mam.2012.12.001>

543 Broadinstitute/picard. (2022). [Java]. Broad Institute. <https://github.com/broadinstitute/picard>
544 (Original work published 2014)

545 Brown, A. P., Arias-Rodriguez, L., Yee, M.-C., Tobler, M., & Kelley, J. L. (2018). Concordant
546 Changes in Gene Expression and Nucleotides Underlie Independent Adaptation to
547 Hydrogen-Sulfide-Rich Environments. *Genome Biology and Evolution, 10(11), 2867–*
548 2881. <https://doi.org/10.1093/gbe/evy198>

- 549 Brown, A. P., McGowan, K. L., Schwarzkopf, E. J., Greenway, R., Rodriguez, L. A., Tobler, M., &
550 Kelley, J. L. (2019). Local ancestry analysis reveals genomic convergence in extremophile
551 fishes. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 374(1777),
552 20180240. <https://doi.org/10.1098/rstb.2018.0240>
- 553 Browning, B. L., Zhou, Y., & Browning, S. R. (2018). A One-Penny Imputed Genome from Next-
554 Generation Reference Panels. *The American Journal of Human Genetics*, 103(3), 338–
555 348. <https://doi.org/10.1016/j.ajhg.2018.07.015>
- 556 Browning, S. R., & Browning, B. L. (2007). Rapid and Accurate Haplotype Phasing and Missing-
557 Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype
558 Clustering. *The American Journal of Human Genetics*, 81(5), 1084–1097.
559 <https://doi.org/10.1086/521987>
- 560 Budde, M. W., & Roth, M. B. (2010). Hydrogen sulfide increases hypoxia-inducible factor-1
561 activity independently of von Hippel-Lindau tumor suppressor-1 in *C. elegans*. *Molecular
562 Biology of the Cell*, 21(1), 212–217. <https://doi.org/10.1091/mbc.e09-03-0199>
- 563 Calvert, J. W., Jha, S., Gundewar, S., Elrod, J. W., Ramachandran, A., Pattillo, C. B., Kevil, C. G., &
564 Lefer, D. J. (2009). Hydrogen sulfide mediates cardioprotection through Nrf2 signaling.
565 *Circulation Research*, 105(4), 365–374.
566 <https://doi.org/10.1161/CIRCRESAHA.109.199919>
- 567 Calvo, S. E., Clauser, K. R., & Mootha, V. K. (2016). MitoCarta2.0: An updated inventory of
568 mammalian mitochondrial proteins. *Nucleic Acids Research*, 44(D1), D1251–D1257.
569 <https://doi.org/10.1093/nar/gkv1003>

- 570 Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An
571 analysis tool set for population genomics. *Molecular Ecology*, 22(11), 3124–3140.
572 <https://doi.org/10.1111/mec.12354>
- 573 Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-
574 generation PLINK: Rising to the challenge of larger and richer datasets. *GigaScience*,
575 4(1), s13742-015-0047-0048. <https://doi.org/10.1186/s13742-015-0047-8>
- 576 Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden,
577 D. M. (2012). A program for annotating and predicting the effects of single nucleotide
578 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w¹¹¹⁸ ;
579 iso-2; iso-3. *Fly*, 6(2), 80–92. <https://doi.org/10.4161/fly.19695>
- 580 Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene
581 genealogies. *Molecular Ecology*, 9(10), 1657–1659. [https://doi.org/10.1046/j.1365-294x.2000.01020.x](https://doi.org/10.1046/j.1365-
582 294x.2000.01020.x)
- 583 Cooper, C. E., & Brown, G. C. (2008). The inhibition of mitochondrial cytochrome oxidase by the
584 gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: Chemical
585 mechanism and physiological significance. *Journal of Bioenergetics and Biomembranes*,
586 40(5), 533–539. <https://doi.org/10.1007/s10863-008-9166-6>
- 587 Cruickshank, T. E., & Hahn, M. W. (2014). Reanalysis suggests that genomic islands of speciation
588 are due to reduced diversity, not reduced gene flow. *Molecular Ecology*, 23(13), 3133–
589 3157. <https://doi.org/10.1111/mec.12796>
- 590 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E.,
591 Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project

- 592 Analysis Group. (2011). The variant call format and VCFtools. *Bioinformatics*, 27(15),
593 2156–2158. <https://doi.org/10.1093/bioinformatics/btr330>
- 594 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A.,
595 Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and
596 BCFtools. *GigaScience*, 10(2), giab008. <https://doi.org/10.1093/gigascience/giab008>
- 597 Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results
598 for multiple tools and samples in a single report. *Bioinformatics*, 32(19), 3047–3048.
599 <https://doi.org/10.1093/bioinformatics/btw354>
- 600 Galloway, J., Cresko, W. A., & Ralph, P. (2020). A Few Stickleback Suffice for the Transport of
601 Alleles to New Lakes. *G3 Genes/Genomes/Genetics*, 10(2), 505–514.
602 <https://doi.org/10.1534/g3.119.400564>
- 603 García-Bereguíaín, M. A., Samhan-Arias, A. K., Martín-Romero, F. J., & Gutiérrez-Merino, C.
604 (2008). Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type
605 Ca²⁺ channels. *Antioxidants & Redox Signaling*, 10(1), 31–42.
606 <https://doi.org/10.1089/ars.2007.1656>
- 607 Gould, S. J. (1990). *Wonderful Life: The Burgess Shale and the Nature of History*. W. W. Norton.
608 <https://books.google.com/books?id=gwlVAgAAQBAJ>
- 609 Greenway, R., Barts, N., Henpita, C., Brown, A. P., Rodriguez, L. A., Peña, C. M. R., Arndt, S., Lau,
610 G. Y., Murphy, M. P., Wu, L., Lin, D., Shaw, J. H., Kelley, J. L., & Tobler, M. (2020).
611 Convergent evolution of conserved mitochondrial pathways underlies repeated
612 adaptation to extreme environments. *Proceedings of the National Academy of Sciences*,
613 117(28), 16424–16430. <https://doi.org/10.1073/pnas.2004223117>

- 614 Greenway, R., Brown, A. P., Camarillo, H., Delich, C., McGowan, K. L., Nelson, J., Arias-
615 Rodriguez, L., Kelley, J. L., & Tobler, M. (2021). *Convergent adaptation and ecological*
616 *speciation result from unique genomic mechanisms in sympatric extremophile fishes* (p.
617 2021.06.28.450104). bioRxiv. <https://doi.org/10.1101/2021.06.28.450104>
- 618 Greenway, R., McNemee, R., Okamoto, A., Plath, M., Arias-Rodriguez, L., & Tobler, M. (2019).
619 Correlated divergence of female and male genitalia in replicated lineages with ongoing
620 ecological speciation. *Evolution*, 73(6), 1200–1212. <https://doi.org/10.1111/evo.13742>
- 621 Haenel, Q., Roesti, M., Moser, D., MacColl, A. D. C., & Berner, D. (2019). Predictable genome-
622 wide sorting of standing genetic variation during parallel adaptation to basic versus
623 acidic environments in stickleback fish. *Evolution Letters*, 3(1), 28–42.
624 <https://doi.org/10.1002/evl3.99>
- 625 Hildebrandt, T. M., & Grieshaber, M. K. (2008). Three enzymatic activities catalyze the oxidation
626 of sulfide to thiosulfate in mammalian and invertebrate mitochondria. *The FEBS Journal*,
627 275(13), 3352–3361. <https://doi.org/10.1111/j.1742-4658.2008.06482.x>
- 628 Hill, B. C., Woon, T. C., Nicholls, P., Peterson, J., Greenwood, C., & Thomson, A. J. (1984).
629 Interactions of sulphide and other ligands with cytochrome c oxidase. An electron-
630 paramagnetic-resonance study. *Biochemical Journal*, 224(2), 591–600.
631 <https://doi.org/10.1042/bj2240591>
- 632 Jones, F. C., Grabherr, M. G., Chan, Y. F., Russell, P., Mauceli, E., Johnson, J., Swofford, R., Pirun,
633 M., Zody, M. C., White, S., Birney, E., Searle, S., Schmutz, J., Grimwood, J., Dickson, M.
634 C., Myers, R. M., Miller, C. T., Summers, B. R., Knecht, A. K., ... Kingsley, D. M. (2012). The

- 635 genomic basis of adaptive evolution in threespine sticklebacks. *Nature*, 484(7392), 55–
636 61. <https://doi.org/10.1038/nature10944>
- 637 Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7:
638 Improvements in Performance and Usability. *Molecular Biology and Evolution*, 30(4),
639 772–780. <https://doi.org/10.1093/molbev/mst010>
- 640 Kelley, J. L., Arias-Rodriguez, L., Patacsil Martin, D., Yee, M.-C., Bustamante, C. D., & Tobler, M.
641 (2016). Mechanisms Underlying Adaptation to Life in Hydrogen Sulfide–Rich
642 Environments. *Molecular Biology and Evolution*, 33(6), 1419–1434.
643 <https://doi.org/10.1093/molbev/msw020>
- 644 Kitano, J., Ishikawa, A., Ravinet, M., & Courtier-Orgogozo, V. (2022). Genetic basis of speciation
645 and adaptation: From loci to causative mutations. *Philosophical Transactions of the
646 Royal Society B: Biological Sciences*, 377(1855), 20200503.
647 <https://doi.org/10.1098/rstb.2020.0503>
- 648 Korunes, K. L., & Samuk, K. (2021). pixy: Unbiased estimation of nucleotide diversity and
649 divergence in the presence of missing data. *Molecular Ecology Resources*, 21(4), 1359–
650 1368. <https://doi.org/10.1111/1755-0998.13326>
- 651 Lagoutte, E., Mimoun, S., Andriamihaja, M., Chaumontet, C., Blachier, F., & Bouillaud, F. (2010).
652 Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse
653 electron transfer in colonocytes. *Biochimica Et Biophysica Acta*, 1797(8), 1500–1511.
654 <https://doi.org/10.1016/j.bbabi.2010.04.004>
- 655 Lai, Y.-T., Yeung, C. K. L., Omland, K. E., Pang, E.-L., Hao, Y., Liao, B.-Y., Cao, H.-F., Zhang, B.-W.,
656 Yeh, C.-F., Hung, C.-M., Hung, H.-Y., Yang, M.-Y., Liang, W., Hsu, Y.-C., Yao, C.-T., Dong, L.,

- 657 Lin, K., & Li, S.-H. (2019). Standing genetic variation as the predominant source for
658 adaptation of a songbird. *Proceedings of the National Academy of Sciences*, 116(6),
659 2152–2157. <https://doi.org/10.1073/pnas.1813597116>
- 660 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
661 *ArXiv:1303.3997 [q-Bio]*. <http://arxiv.org/abs/1303.3997>
- 662 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
663 Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The Sequence
664 Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079.
- 665 Libiad, M., Yadav, P. K., Vitvitsky, V., Martinov, M., & Banerjee, R. (2014). Organization of the
666 Human Mitochondrial Hydrogen Sulfide Oxidation Pathway *♦. *Journal of Biological
667 Chemistry*, 289(45), 30901–30910. <https://doi.org/10.1074/jbc.M114.602664>
- 668 Linnen, C. R., Kingsley, E. P., Jensen, J. D., & Hoekstra, H. E. (2009). On the Origin and Spread of
669 an Adaptive Allele in Deer Mice. *Science*, 325(5944), 1095–1098.
670 <https://doi.org/10.1126/science.1175826>
- 671 Liu, Y., Cotton, J. A., Shen, B., Han, X., Rossiter, S. J., & Zhang, S. (2010). Convergent sequence
672 evolution between echolocating bats and dolphins. *Current Biology*, 20(2), R53–R54.
673 <https://doi.org/10.1016/j.cub.2009.11.058>
- 674 Losos, J. B. (2011). Convergence, Adaptation, and Constraint. *Evolution*, 65(7), 1827–1840.
675 <https://doi.org/10.1111/j.1558-5646.2011.01289.x>
- 676 Mahalanobis, P. C. (1936). On the Generalized Distance in Statistics. *Journal of Genetics. Journal
677 of Genetics*, 41, 159–193.

- 678 Martin, A., & Orgogozo, V. (2013). THE LOCI OF REPEATED EVOLUTION: A CATALOG OF GENETIC
679 HOTSPOTS OF PHENOTYPIC VARIATION. *Evolution*, 67(5), 1235–1250.
- 680 <https://doi.org/10.1111/evo.12081>
- 681 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
682 reads. *EMBnet.Journal*, 17(1), Article 1. <https://doi.org/10.14806/ej.17.1.200>
- 683 Mayr, C. (2019). What Are 3' UTRs Doing? *Cold Spring Harbor Perspectives in Biology*, 11(10),
684 a034728. <https://doi.org/10.1101/cshperspect.a034728>
- 685 Minh, B. Q., Nguyen, M. A. T., & von Haeseler, A. (2013). Ultrafast Approximation for
686 Phylogenetic Bootstrap. *Molecular Biology and Evolution*, 30(5), 1188–1195.
687 <https://doi.org/10.1093/molbev/mst024>
- 688 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., &
689 Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
690 Inference in the Genomic Era. *Molecular Biology and Evolution*, 37(5), 1530–1534.
691 <https://doi.org/10.1093/molbev/msaa015>
- 692 Mustafa, A. K., Gadalla, M. M., Sen, N., Kim, S., Mu, W., Gazi, S. K., Barrow, R. K., Yang, G.,
693 Wang, R., & Snyder, S. H. (2009). H2S signals through protein S-sulphydrylation. *Science
694 Signaling*, 2(96), ra72. <https://doi.org/10.1126/scisignal.2000464>
- 695 Natarajan, C., Hoffmann, F. G., Weber, R. E., Fago, A., Witt, C. C., & Storz, J. F. (2016).
696 Predictable convergence in hemoglobin function has unpredictable molecular
697 underpinnings. *Science*, 354(6310), 336–339. <https://doi.org/10.1126/science.aaf9070>

- 698 Nei M & Li W H. (1979). Mathematical model for studying genetic variation in terms of
699 restriction endonucleases. *Proceedings of the National Academy of Sciences*, 76(10),
700 5269–5273. <https://doi.org/10.1073/pnas.76.10.5269>
- 701 Olson, K. R. (2018). H₂S and polysulfide metabolism: Conventional and unconventional
702 pathways. *Biochemical Pharmacology*, 149, 77–90.
703 <https://doi.org/10.1016/j.bcp.2017.12.010>
- 704 Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong, S.-E., Walford, G. A.,
705 Sugiana, C., Boneh, A., Chen, W. K., Hill, D. E., Vidal, M., Evans, J. G., Thorburn, D. R.,
706 Carr, S. A., & Mootha, V. K. (2008). A mitochondrial protein compendium elucidates
707 complex I disease biology. *Cell*, 134(1), 112–123.
708 <https://doi.org/10.1016/j.cell.2008.06.016>
- 709 Palacios, M., Arias-Rodriguez, L., Plath, M., Eifert, C., Lerp, H., Lamboj, A., Voelker, G., & Tobler,
710 M. (2013). The Rediscovery of a Long Described Species Reveals Additional Complexity
711 in Speciation Patterns of Poeciliid Fishes in Sulfide Springs. *PLOS ONE*, 8(8), e71069.
712 <https://doi.org/10.1371/journal.pone.0071069>
- 713 Paradis, E. (2010). pegas: An R package for population genetics with an integrated–modular
714 approach. *Bioinformatics*, 26(3), 419–420.
715 <https://doi.org/10.1093/bioinformatics/btp696>
- 716 Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and
717 evolutionary analyses in R. *Bioinformatics*, 35(3), 526–528.
718 <https://doi.org/10.1093/bioinformatics/bty633>

- 719 Passow, C. N., Brown, A. P., Arias-Rodriguez, L., Yee, M.-C., Sockell, A., Schartl, M., Warren, W.
720 C., Bustamante, C., Kelley, J. L., & Tobler, M. (2017). Complexities of gene expression
721 patterns in natural populations of an extremophile fish (*Poecilia mexicana*, Poeciliidae).
722 *Molecular Ecology*, 26(16), 4211–4225. <https://doi.org/10.1111/mec.14198>
- 723 Passow, C. N., Henpita, C., Shaw, J. H., Quackenbush, C. R., Warren, W. C., Schartl, M., Arias-
724 Rodriguez, L., Kelley, J. L., & Tobler, M. (2017). The roles of plasticity and evolutionary
725 change in shaping gene expression variation in natural populations of extremophile fish.
726 *Molecular Ecology*, 26(22), 6384–6399. <https://doi.org/10.1111/mec.14360>
- 727 Pfenninger, M., Lerp, H., Tobler, M., Passow, C., Kelley, J. L., Funke, E., Greshake, B., Erkoc, U. K.,
728 Berberich, T., & Plath, M. (2014). Parallel evolution of cox genes in H2S-tolerant fish as
729 key adaptation to a toxic environment. *Nature Communications*, 5(1), 3873.
730 <https://doi.org/10.1038/ncomms4873>
- 731 Pfenninger, M., Patel, S., Arias-Rodriguez, L., Feldmeyer, B., Riesch, R., & Plath, M. (2015).
732 Unique evolutionary trajectories in repeated adaptation to hydrogen sulphide-toxic
733 habitats of a neotropical fish (*Poecilia mexicana*). *Molecular Ecology*, 24(21), 5446–5459.
734 <https://doi.org/10.1111/mec.13397>
- 735 Pietri, R., Román-Morales, E., & López-Garriga, J. (2011). Hydrogen sulfide and hemeproteins:
736 Knowledge and mysteries. *Antioxidants & Redox Signaling*, 15(2), 393–404.
737 <https://doi.org/10.1089/ars.2010.3698>
- 738 Plath, M., Pfenninger, M., Lerp, H., Riesch, R., Eschenbrenner, C., Slattery, P. A., Bierbach, D.,
739 Herrmann, N., Schulte, M., Arias-Rodriguez, L., Rimber Indy, J., Passow, C., & Tobler, M.
740 (2013). Genetic differentiation and selection against migrants in evolutionarily

- 741 replicated extreme environments. *Evolution; International Journal of Organic Evolution*,
742 67(9), 2647–2661. <https://doi.org/10.1111/evo.12133>
- 743 Puritz, J. B., Hollenbeck, C. M., & Gold, J. R. (2014). dDocent: A RADseq, variant-calling pipeline
744 designed for population genomics of non-model organisms. *PeerJ*, 2, e431.
745 <https://doi.org/10.7717/peerj.431>
- 746 Puritz, J. B., Matz, M. V., Toonen, R. J., Weber, J. N., Bolnick, D. I., & Bird, C. E. (2014).
747 Demystifying the RAD fad. *Molecular Ecology*, 23(24), 5937–5942.
748 <https://doi.org/10.1111/mec.12965>
- 749 Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic
750 features. *Bioinformatics*, 26(6), 841–842.
751 <https://doi.org/10.1093/bioinformatics/btq033>
- 752 Reid, K., Bell, M. A., & Veeramah, K. R. (2021). Threespine Stickleback: A Model System For
753 Evolutionary Genomics. *Annual Review of Genomics and Human Genetics*, 22(1), 357–
754 383. <https://doi.org/10.1146/annurev-genom-111720-081402>
- 755 Reid, N. M., Proestou, D. A., Clark, B. W., Warren, W. C., Colbourne, J. K., Shaw, J. R., Karchner,
756 S. I., Hahn, M. E., Nacci, D., Oleksiak, M. F., Crawford, D. L., & Whitehead, A. (2016). The
757 genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild
758 fish. *Science*, 354(6317), 1305–1308. <https://doi.org/10.1126/science.aah4993>
- 759 Riesch, R., Plath, M., García de León, F. J., & Schlupp, I. (2010). Convergent life-history shifts:
760 Toxic environments result in big babies in two clades of poeciliids. *Die
761 Naturwissenschaften*, 97(2), 133–141. <https://doi.org/10.1007/s00114-009-0613-y>

- 762 Riesch, R., Plath, M., Schlupp, I., Tobler, M., & Brian Langerhans, R. (2014). Colonisation of toxic
763 environments drives predictable life-history evolution in livebearing fishes (Poeciliidae).
764 *Ecology Letters*, 17(1), 65–71. <https://doi.org/10.1111/ele.12209>
- 765 Riesch, R., Tobler, M., Lerp, H., Jourdan, J., Doumas, T., Nosil, P., Langerhans, R. B., & Plath, M.
766 (2016). Extremophile Poeciliidae: Multivariate insights into the complexity of speciation
767 along replicated ecological gradients. *BMC Evolutionary Biology*, 16(1), 136.
768 <https://doi.org/10.1186/s12862-016-0705-1>
- 769 Rosenblum, E. B., Parent, Christine E., & Brandt, E. E. (2014). The Molecular Basis of Phenotypic
770 Convergence. *Annu. Rev. Ecol. Evol. Syst.*, 45, 203–226.
- 771 Rossiter, S. J., Zhang, S., & Liu, Y. (2011). Prestin and high frequency hearing in mammals.
772 *Communicative & Integrative Biology*, 4(2), 236–239.
773 <https://doi.org/10.4161/cib.4.2.14647>
- 774 Schluter, D., & Conte, G. L. (2009). Genetics and ecological speciation. *Proceedings of the
775 National Academy of Sciences*, 106(Supplement 1), 9955–9962.
776 <https://doi.org/10.1073/pnas.0901264106>
- 777 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski,
778 B., & Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Models of
779 Biomolecular Interaction Networks. *Genome Research*, 13(11), 2498–2504.
780 <https://doi.org/10.1101/gr.1239303>
- 781 Stern, D. L. (2013). The genetic causes of convergent evolution. *Nature Reviews. Genetics*,
782 14(11), 751–764. <https://doi.org/10.1038/nrg3483>

- 783 Templeton, A. R., Crandall, K. A., & Sing, C. F. (1992). A cladistic analysis of phenotypic
784 associations with haplotypes inferred from restriction endonuclease mapping and DNA
785 sequence data. III. Cladogram estimation. *Genetics*, 132(2), 619–633.
786 <https://doi.org/10.1093/genetics/132.2.619>
- 787 Tobler, M., & Hastings, L. (2011). Convergent Patterns of Body Shape Differentiation in Four
788 Different Clades of Poeciliid Fishes Inhabiting Sulfide Springs. *Evolutionary Biology*,
789 38(4), 412–421. <https://doi.org/10.1007/s11692-011-9129-4>
- 790 Tobler, M., Henpita, C., Bassett, B., Kelley, J. L., & Shaw, J. H. (2014). H2S exposure elicits
791 differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic
792 environments. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative
793 Physiology*, 175, 7–14. <https://doi.org/10.1016/j.cbpa.2014.04.012>
- 794 Tobler, M., Kelley, J. L., Plath, M., & Riesch, R. (2018). Extreme environments and the origins of
795 biodiversity: Adaptation and speciation in sulphide spring fishes. *Molecular Ecology*,
796 27(4), 843–859. <https://doi.org/10.1111/mec.14497>
- 797 Tobler, M., Palacios, M., Chapman, L. J., Mitrofanov, I., Bierbach, D., Plath, M., Arias-Rodriguez,
798 L., García de León, F. J., & Mateos, M. (2011). Evolution in Extreme Environments:
799 Replicated Phenotypic Differentiation in Livebearing Fish Inhabiting Sulfidic Springs.
800 *Evolution*, 65(8), 2213–2228. <https://doi.org/10.1111/j.1558-5646.2011.01298.x>
- 801 Tobler, M., Passow, C. N., Greenway, R., Kelley, J. L., & Shaw, J. H. (2016). The Evolutionary
802 Ecology of Animals Inhabiting Hydrogen Sulfide–Rich Environments. *Annual Review of
803 Ecology, Evolution, and Systematics*, 47(1), 239–262. [https://doi.org/10.1146/annurev- ecolsyst-121415-032418](https://doi.org/10.1146/annurev-
804 ecolsyst-121415-032418)

- 805 Tobler, M., Riesch, R., & Plath, M. (2015). Extremophile Fishes: An Integrative Synthesis. In R.
806 Riesch, M. Tobler, & M. Plath (Eds.), *Extremophile Fishes: Ecology, Evolution, and*
807 *Physiology of Teleosts in Extreme Environments* (pp. 279–296). Springer International
808 Publishing. https://doi.org/10.1007/978-3-319-13362-1_12
- 809 Todesco, M., Owens, G. L., Bercovich, N., Légaré, J.-S., Soudi, S., Burge, D. O., Huang, K., Ostevik,
810 K. L., Drummond, E. B. M., Imerovski, I., Lande, K., Pascual-Robles, M. A., Nanavati, M.,
811 Jahani, M., Cheung, W., Staton, S. E., Muños, S., Nielsen, R., Donovan, L. A., ... Rieseberg,
812 L. H. (2020). Massive haplotypes underlie ecotypic differentiation in sunflowers. *Nature*,
813 584(7822), 602–607. <https://doi.org/10.1038/s41586-020-2467-6>
- 814 Van der Auwera, G. A., & O'Connor, B. D. (2020). *Genomics in the Cloud – Using Docker, GATK,*
815 *and WDL in Terra*. O'Reilly Media, Inc. <https://broadinstitute.github.io/genomics-in-the->
816 [cloud/](#)
- 817 Verity, R., Collins, C., Card, D. C., Schaal, S. M., Wang, L., & Lotterhos, K. E. (2017). minotaur: A
818 platform for the analysis and visualization of multivariate results from genome scans
819 with R Shiny. *Molecular Ecology Resources*, 17(1), 33–43. <https://doi.org/10.1111/1755-0998.12579>
- 820 Warren, W. C., García-Pérez, R., Xu, S., Lampert, K. P., Chalopin, D., Stöck, M., Loewe, L., Lu, Y.,
821 Kuderna, L., Minx, P., Montague, M. J., Tomlinson, C., Hillier, L. W., Murphy, D. N.,
822 Wang, J., Wang, Z., Garcia, C. M., Thomas, G. C. W., Volff, J.-N., ... Schartl, M. (2018).
823 Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon
824 molly. *Nature Ecology & Evolution*, 2(4), 669–679. <https://doi.org/10.1038/s41559-018-0473-y>

- 827 Warrington, J. A., Nair, A., Mahadevappa, M., & Tsyganskaya, M. (2000). Comparison of human
828 adult and fetal expression and identification of 535 housekeeping/maintenance genes.
829 *Physiological Genomics*, 2(3), 143–147.
830 <https://doi.org/10.1152/physiolgenomics.2000.2.3.143>
- 831 Waters, J. M., & McCulloch, G. A. (2021). Reinventing the wheel? Reassessing the roles of gene
832 flow, sorting and convergence in repeated evolution. *Molecular Ecology*, 30(17), 4162–
833 4172. <https://doi.org/10.1111/mec.16018>
- 834 Weinreich, D. M., Delaney, N. F., DePristo, M. A., & Hartl, D. L. (2006). Darwinian Evolution Can
835 Follow Only Very Few Mutational Paths to Fitter Proteins. *Science*, 312(5770), 111–114.
836 <https://doi.org/10.1126/science.1123539>
- 837 Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population
838 Structure. *Evolution*, 38(6), 1358–1370. <https://doi.org/10.2307/2408641>
- 839 Xu, S., Wang, J., Guo, Z., He, Z., & Shi, S. (2020). Genomic Convergence in the Adaptation to
840 Extreme Environments. *Plant Communications*, 1(6), 100117.
841 <https://doi.org/10.1016/j.xplc.2020.100117>
- 842

843 **Tables and Figures**

844 Table 1: The number of genes, exons, and sites captured by targeted sequencing and
845 number of filtered sites, single nucleotide polymorphisms (SNPs), and linkage-
846 disequilibrium pruned SNPs used in this analysis.

	Genes	Exons	Targeted Sites	Filtered Sites	SNPs	Pruned SNPs
Target						
Sulfide	166	1330	421,765	398,664	5,153	3,808
OxPhos	84	432	96,472	88,421	973	787
Background	165	1,341	321,091	297,544	3,320	2,682
Total	415	3,103	839,328	784,629	9,446	7,277

847

848

849 Figure 1: Map of study region and sites. Samples were collected from 10 sites in the Río
850 Grijalva basin. The study site location is indicated by a yellow star in the insert map of
851 Mexico. Shape represents drainage and color represents ecotype. This figure was
852 adapted from Hotaling et al., 2019.

853

854 Figure 2: Analysis of population structure in background, sulfide processing, and
855 OxPhos genes. A) Best K from admixture analyses of each gene set ordered by
856 drainage, from west to east. B) PCA of unlinked SNPs for each gene set. Color
857 represents ecotype (sulfidic in yellow, nonsulfidic in blue) and shape represents
858 drainage of origin.

859

860 Figure 3: Tree discordance between maximum likelihood tree of background, sulfide
861 processing, and OxPhos genes. Color represents ecotype (sulfidic in yellow, nonsulfidic
862 in blue). Bootstrap support for populations splits shown as a percent of 1000 bootstraps.

863

864 Figure 4: Evidence for a monophyletic origin of regions putatively under selection in
865 sulfidic populations. A) Per base pair F_{ST} between all sulfidic and all nonsulfidic
866 individuals colored by gene set: H_2S detoxification (gold), OxPhos (red) and background
867 (grey). Outlier cutoffs are indicated by horizontal lines (solid line 99.5%, dashed line
868 99.9%). B) Haplotype network for outlier genes putatively under selection *ethe1.a* (left)
869 and *sqor* (right). Yellow shades represent sulfidic individuals' haplotype and blues
870 represents nonsulfidic individuals' haplotype. Shade represents population, with the
871 lightest shade representing western populations and darker shades represents eastern

872 populations (see Figure 1). Node size represents number of haplotypes found in the
873 dataset. Number of mutations between haplotypes is labeled on the branch as tick
874 marks. Note: singletons have been removed.

875