

Understanding the drivers of intraspecific demographic variation: needs and opportunities

Samantha J. Worthy¹ and Jennifer R. Gremer^{1,2}

¹Department of Evolution and Ecology, University of California, Davis, CA, USA

²Center for Population Biology, University of California, Davis, CA, USA

5

6 Key Words: demographic rates, environmental contexts, functional traits, interactive effects,
7 intraspecific variation

8 Background:

9 Plant ecologists have long sought to quantify the drivers of variation in growth, survival,
10 and reproductive output (Harper and White 1974). Global studies have had some success in
11 explaining variation in these demographic metrics among species by including functional traits in
12 analyses (Adler et al. 2014). Shifting focus from among to within species studies of intraspecific
13 demographic variation and functional traits is needed, since climate change impacts on
14 demography may vary among populations of the same species. Some fields of study already
15 focus on intraspecific, population-level variation, such as population biology, invasion ecology,
16 and restoration and conservation biology. Typically, though, studies focus on single species,
17 limiting application of findings to other species or higher scales (i.e., community-level). In
18 contrast, other fields of study include many species and make inferences at larger spatial and
19 biological scales but ignore population-level variation that can lead to contrasting responses to
20 climate among populations of species in a community. By combining perspectives and methods
21 across fields, we can fully leverage the promise of traits to transcend species or system-specific
22 patterns to better understand the drivers of demographic variation, quantify the individual and

23 collective importance of demographic rates to fitness, and predict complex ecological patterns
24 from individual to landscape scales.

25

26 **Current State of Thought:**

27 High levels of trait variation within and among populations may contribute to variation in
28 demographic rates, including growth, survival, and reproduction, driven by interactions between
29 individuals' traits and the environment (Figure 1). However, species-level trait values are often
30 applied to all individuals, regardless of their population or its abiotic and biotic environments,
31 thus ignoring the range of trait variation within and among populations (Figure 1A). Beyond
32 traits, Buckley and Puy (2022) note that ecologists often use data and models from a few
33 populations to explain dynamics in other populations or for entire species. These methods are
34 used despite research showing correlation among traits, demography, and the environment
35 (Oldfather and Ackerly 2019). This is particularly an issue for wide-ranging species and those
36 that span extensive environmental gradients.

37 Indeed, there have been several calls for population-level focus and sampling of
38 intraspecific traits and demographic variation with recent studies tackling these challenges.
39 Oldfather and Ackerly (2019) demonstrated population-level variation in multiple demographic
40 rates across microclimatic gradients, finding that demographic rates were influenced by
41 interactions between individual size and microclimate, and size-demographic rate relationships
42 varied in direction and magnitude across a microclimatic gradient (Figure 1B). Further
43 application of this research across macro-environmental gradients is needed to better understand
44 population dynamics and range dynamics now and in future climates. Beyond empirical work,
45 reviews have highlighted the importance of population-level variation when linking functional

46 traits to demographic rates (Laughlin et al. 2020; Buckley and Puy 2021). Laughlin et al. (2020)
47 suggest estimating population fitness (λ), in place of individual fitness, and determining the
48 effects of interactions between functional traits and the environment on population fitness with
49 explicit inclusion of trade-offs among demographic rates. Lasky et al. (2020) highlight the
50 complexity involved in understanding current and predicting future regional-scale population
51 dynamics. They provide a novel framework that incorporates genetic and phenotypic variation,
52 abiotic and biotic factors, and demographic components. Together, this recent work builds on
53 previous work to reinforce the context-dependency of demographic relationships within and
54 among populations, but also provides frameworks for incorporating this complexity into
55 predicting emergent patterns in ecology.

56

57 **Looking Forward:**

58 Integrating these perspectives and approaches is critical in the face of anthropogenic
59 change, but does increase the complexity of experiments, observations, and data analyses needed
60 to do so. It will also require incorporation of biotic and abiotic conditions (Swenson et al. 2020;
61 Lasky et al. 2020). For example, Yang et al. (2020) showed that models of individual tree growth
62 rate including climate data, biotic neighborhood, and multiple trait variables outperformed those
63 lacking these contexts. They also showed that individual-level trait measurements explained
64 more variation than species-level measurements assigned to all individuals of a species. Beyond
65 the inclusion of environmental contexts, we need to recognize that different demographic metrics
66 may respond in different ways across the same environmental gradient and vary in their
67 influence on population growth rates (Figure 1C). For example, DeMarche et al. (2018) showed
68 that temperature can have opposing effects on different demographic rates where mean

69 individual growth rates increased, but survival rates decreased, with increasing temperature in an
70 alpine plant species, contributing to its ability to persist across a broad climatic range through
71 demographic compensation (i.e., opposing demographic rate trends across populations (Villellas
72 et al. 2015). Further, both life-history plasticity and local adaptation shaped range-wide
73 responses to climate suggesting population specific responses to climate change, which has
74 implications for distribution across the landscape.

75 Better integration of feedbacks between ecology and evolution will also lend insight into
76 how traits, environment, and demography interact to drive population dynamics. We can think of
77 traits as reflecting past contexts with implications for future responses. For instance, intraspecific
78 trait variation can reflect historical patterns of selection across a species range, including local
79 adaptation to spatial and temporal environmental variation, which provides insight into trait
80 variation and its influence on past and future performance (Oldfather et al. 2021). Further, trait
81 values may not be static. As an example, Nguyen et al. (2016) demonstrated that two invasive
82 species responded to selection on traits characteristic of drought escape following a reduced
83 precipitation experiment simulating future climate change. Studies like these will improve
84 understanding of how changes in climate may alter selection patterns and shift species' ranges.
85 Here, we can incorporate perspectives from additional fields, since restoration and invasion
86 ecology have a history of investigating how traits vary among populations and bridging research
87 with practice (Funk 2021).

88 The largest factor limiting progress in explaining intraspecific variation in demographic
89 metrics is missing data at the population level. Ideally, we would measure multiple demographic
90 rates, traits, local biotic factors, along with local and regional abiotic factors across multiple
91 populations across the species' range. While access to environmental variables has increased

92 through climate databases, availability of biotic contexts, demographic data, and population
93 specific trait measurements are less common. Fortunately, for trait data, biodiversity databases
94 may already have many of the resources needed to overcome these challenges. TRY (Kattage et
95 al. 2011) and Global Inventory of Floras and Traits (GIFT; Weigelt et al. 2020) are two plant
96 trait databases that include geographic information on where traits were measured. The structure
97 of many trait databases reflects the history of the field (community ecology) and type of analyses
98 (global) they were established to benefit and are thus often at coarse scales that are inadequate
99 for the integration we propose. Fortunately, a simple way to increase the value of the data would
100 be adding information on the biological scale and locality of measurements to databases. The
101 newly released AusTraits database is making raw, individual-level measurements a priority,
102 while also having explicit labels for when measurements are from an individual, species-means
103 within one site, or species-means across sites (Falster et al. 2021).

104 Demographic data are not only less available than trait data, but also slower to become
105 available due to the difficult nature of its collection. COMPADRE (Salguero-Gómez et al. 2015)
106 and PADRINO (Levin et al. 2022) databases, however, are lowering barriers to population-level
107 demographic data. Compagnoni et al. (2021) used population models from these databases to
108 show that precipitation has a stronger effect than temperature on population growth rates and that
109 species with shorter generation times respond more strongly to climate. However, these
110 databases currently include mainly species from cold, dry areas that are represented by few
111 populations and do not span the climate and geographic ranges of the species. Beyond
112 demographic data, modeling approaches that capitalize on more readily available abundance
113 data, such as that found in LOTVS (Sperandii et al. 2022), may facilitate analyses of trait-
114 demographic relationships across species ranges (Laughlin et al. 2020). Chalmandrier et al.

115 (2021) calibrated trait-demographic relationships using abundance data to address patterns of
116 plant community structure across a temperature gradient. These works showcase how updated
117 methodology and context inclusion can allow for improved understanding at larger biological
118 and spatial scales.

119

120 **Conclusion:**

121 Species distributions and community composition are intricately tied to variation in
122 population dynamics across space and time, which are directly related to the successes and
123 failures of individual plants. This has led to calls for studies to investigate intraspecific
124 demographic variation and integrate intraspecific trait variation and environmental contexts
125 (Laughlin et al. 2020; Swenson et al. 2020). While these studies remain rare, recent work shows
126 progress in pushing our understanding of the drivers of intraspecific demographic variation
127 forward. Research that investigates axes of co-variation among traits, demography, and the
128 environment within and among populations will allow a better understanding of how dynamic
129 functional responses to environmental variation drive population dynamics and species
130 persistence. Knowledge gained from this research will also allow improved parameterization of
131 models to predict future community dynamics and species ranges along with broad applications
132 to management, restoration, and conservation practices all while advancing basic science of
133 societal importance (Funk 2021).

134

135 **Acknowledgements**

136 The authors wish to thank Drs. Jennifer Funk, Julin Maloof, and Sharon Strauss for comments on
137 previous drafts. The authors also thank Dr. Pamela Diggle and an anonymous reviewer for

138 constructive feedback on an earlier version of this manuscript. This research was supported by
139 NSF Dimensions of Biodiversity grant to JRG (DEB-1831913).

140

141 Author Contributions

142 S.J.W. led conceptual development and drafted the manuscript with input and assistance from
143 J.R.G. Both authors contributed equally to manuscript edits and revisions.

144

145 **Literature Cited**

146 Adler, P. B., R. Salguero-Gómez, A. Compagnoni, J. S. Hsu, J. Ray-Mukherjee, C. Mbeau-Ache,
147 and M. Franco. 2014. Functional traits explain variation in plant life history strategies.

148 *Proceedings of the National Academy of Sciences USA* 111: 740-745.

149 Buckley, Y. M., and J. Puy. 2022. The macroecology of plant populations from local to global
150 scales. *New Phytologist* 233: 1038-1050.

151 Chalmandrier, L., F. Hartig, D. C. Laughlin, H. Lischke, M. Pichler, D. B. Stouffer, and L.
152 Pellissier. 2021. Linking functional traits and demography to model species-rich communities.
153 *Nature Communications* 12:2724.

154 Compagnoni, A., S. Levin, D. Z. Childs, S. Harpole, M. Paniq, G. Römer, J. H. Burns, J. Che-
155 Castaldo, N. Rüger, G. Kunstler, J. M. Bennett, C. R. Archer, O. R. Jones, R. Salguero-Gómez,
156 and T. M. Knight. 2021. Herbaceous perennial plants with short germination time have stronger
157 responses to climate anomalies than those with longer generation time. *Nature Communications*
158 12: 1824.

159 DeMarche, M. L., D. F. Doak, and W. F. Morris. 2018. Both life-history plasticity and local
160 adaptation will shape range-wide responses to climate warming in the tundra plant *Silene*
161 *acaulis*. *Global Change Biology* 24: 1614-1625.

162 Falster, D., R. Gallagher, E. H. Wenk, I. J. Wright, D. Indiarto, S. C. Andrew, C. Baxter, J.
163 Lawson, et al., 2021. AusTraits, a curated plant trait database for the Australian flora. *Scientific*
164 *Data* 8: 254.

165 Funk, J. L. 2021. Revising the trait-based filtering framework to include interacting filters:
166 Lessons from grassland restoration. *Journal of Ecology* 109: 3466-3472.

167 Harper, J. L., and J. White. 1974. The demography of plants. *Annual Review of Ecology and*
168 *Systematics* 5: 419-463.

169 Kattage, J., S. Díaz, S. Lavorel, I. C. Prentice, P. Leadley, G. Bönisch, E. Garnier, M. Westoby,
170 et al. 2011. TRY - a global database of plant traits. *Global Change Biology* 17: 2905-2935.

171 Lasky, J. R., M. V. Hooten, and P. B. Adler. 2020. What processes must we understand to
172 forecast regional-scale population dynamics? *Proceedings of the Royal Society B* 287: 20202219.

173 Laughlin, D. C., J. R. Gremer, P. B. Adler, R. M. Mitchell, and M. M. Moore. 2020. The net
174 effect of functional traits on fitness. *Trends in Ecology & Evolution* 35: 1037-1047.

175 Levin, S. C., S. Evers, T. Potter, M. P. Guerrero, D. Z. Childs, A. Compagnoni, T. M. Knight,
176 and R. Salguero-Gómez. 2022. Rpadrino: An R package to access and use PADRINO, an open
177 access database of integral projection models. *Methods in Ecology and Evolution* 13: 1923-1929.

178 Nguyen, M. A., A. E. Ortega, K. Q. Nguyen, S. Kimball, M. L. Goulden, and J. L. Funk. 2016.
179 Evolutionary responses of invasive grass species to variation in precipitation and soil nitrogen.
180 *Journal of Ecology* 104: 979-986.

181 Oldfather, M. F., and D. D. Ackerly. 2019. Microclimate and demography interact to shape
182 stable population dynamics across the range of an alpine plant.

183 Oldfather, M. F., C. L. Van Den Elzen, P. M. Heffernan, and N. C. Emery. 2021. Dispersal
184 evolution in temporally variable environments: implications for plant range dynamics. *American
185 Journal of Botany* 108: 1584-1594.

186 Salguero-Gómez, R., O. R. Jones, C. R. Archer, Y. M. Buckley, J. Che-Castaldo, H. Caswell, D.
187 Hodgson, A. Scheuerlein, et al. 2015. The COMPARDE plant matrix database: an open online
188 repository for plant demography. *Journal of Ecology* 103: 202-218.

189 Sperandii, M. G., F. de Bello, E. Valencia, L. Götzenberger, M. Bazzichetto, T. Galland, A. E-
190 Vojtkó, L. Conti, et al. 2022. LOTVS: a global collection of permanent vegetation plots. *Journal
191 of Vegetation Science* 33: e13115.

192 Swenson, N. G., S. J. Worthy, D. Eubanks, Y. Iida, L. Monks, K. Petprakob, V. E. Rubio, K.
193 Staiger, and J. Zambrano. 2020. A reframing of trait-demographic rate analyses for ecology and
194 evolutionary biology. *International Journal of Plant Sciences* 181: 33-43.

195 Villegas, J., D. F. Doak, M. B. García, and W. F. Morris. 2015. Demographic compensation
196 among populations: what is it, how does it arise and what are its implications? *Ecology Letters*
197 18: 1139-1152.

198 Weigelt, P., C. König, and H. Kreft. 2020. GIFT - A global inventory of floras and traits for
199 macroecology and biogeography. *Journal of Biogeography* 47: 16-43.

200 Yang, J., X. Song, J. Zambrano, Y. Chen, M. Cao, X. Deng, W. Zhang, X. Yang, G. Zhang, Y.
201 Tang, and N. G. Swenson. 2020. Intraspecific variation in tree growth responses to
202 neighbourhood composition and seasonal drought in a tropical forest. *Journal of Ecology* 109:
203 26-37.

204 **Figure 1.** Conceptual figure showing how intraspecific trait variation contributes to complex
205 relationships between traits and the environment, leading to variation in demographic rates. We
206 expect these relationships will be trait and/or environmentally dependent with the expectation
207 that different demographic metrics may be driven by different variables. **(A)** Sampling a
208 functional trait from one or a few populations (red and blue curve) may not capture the full range
209 (bold curve) of intraspecific trait variation of a species. This trait variation may be driven by
210 differences in genetic variation among populations, which is known to interact with the
211 environment to influence trait expression. **(B)** Trait-demographic rate relationships are sensitive
212 to micro- and macro-environmental gradients (trait x environment interactions) such as across
213 elevation as highlighted here where there is a negative relationship between the trait and a
214 demographic rate within a high elevation population (red line), but a positive relationship within
215 a low elevation population (blue line). Different demographic rates may respond in different
216 ways across the same environmental gradient leading to compensatory relationships. **(C)** These
217 relationships may be evident by differences in relationships among demographic rates across an
218 environmental gradient. As an example, fecundity is higher at lower elevations and decreases as
219 elevation increases (solid line), whereas survival rate shows the opposite pattern, higher at higher
220 elevations and decreasing as elevation decreases (dashed line). Compensation between fecundity
221 and survival along this elevation gradient may contribute to population stability.