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Abstract— We describe in detail the interplay between binary
symplectic geometry and notions from quantum computation,
with the ultimate goal of constructing highly structured code-
books. The Binary Chirps (BCs) are Complex Grassmannian
Lines in N = 2

m dimensions used in deterministic compressed
sensing and random/unsourced multiple access in wireless net-
works. Their entries are fourth roots of unity and can be
described in terms of second order Reed-Muller codes. The
Binary Subspace Chirps (BSSCs) are a unique collection of
BCs of ranks ranging from r = 0 to r = m, embedded
in N dimensions according to an on-off pattern determined
by a rank r binary subspace. This yields a codebook that is
asymptotically 2.38 times larger than the codebook of BCs,
has the same minimum chordal distance as the codebook of
BCs, and the alphabet is minimally extended from {±1, ±i} to
{±1, ±i, 0}. Equivalently, we show that BSSCs are stabilizer
states, and we characterize them as columns of a well-controlled
collection of Clifford matrices. By construction, the BSSCs inherit
all the properties of BCs, which in turn makes them good
candidates for a variety of applications. For applications in
wireless communication, we use the rich algebraic structure of
BSSCs to construct a low complexity decoding algorithm that is
reliable against Gaussian noise. In simulations, BSSCs exhibit an
error probability comparable or slightly lower than BCs, both
for single-user and multi-user transmissions.

Index Terms— Massive random access, Grassmannian codes,
Clifford matrices, stabilizer states, symplectic geometry.

I. INTRODUCTION

CODEBOOKS of complex projective (Grassmannian)

lines, or tight frames, have found application in multiple

problems of interest for communications and information

processing, such as code division multiple access sequence

design [2], precoding for multi-antenna transmissions [3] and

network coding [4]. Contemporary interest in such codes

arise, e.g., from deterministic compressed sensing [5]–[9],

virtual full-duplex communication [10], mmWave communi-

cation [11], and random access [12].
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One of the challenges/promises of 5G wireless com-

munication is to enable massive machine-type communica-

tions (mMTC) in the Internet of Things (IoT), in which a

massive number of low-cost devices sporadically and ran-

domly access the network [13]. In this scenario, users are

assigned a unique signature sequence which they transmit

whenever active [14]. A complementary use-case is unsourced

multiple access, where a large number of messages is trans-

mitted infrequently. Polyanskiy [13] proposed a framework in

which communication occurs in blocks of N channel uses,

and the task of a receiver is to identify correctly L active

users (messages) out of 2B, with one regime of interest being

N = 30, 000, L = 250, and B = 100. Ever since its

introduction, there have been several follow-up works [12],

[15]–[18], extensions to a massive MIMO scenario [19] where

the base station has a very large number of antennas, and a

discussion on the fundamental limits on what is possible [20].

Given the massive number of users/messages to-be-

supported, the design criteria are fundamentally different from

classical multiple-access channel, and solutions have to be

sought for from novel directions. For instance, interference is

unavoidable due to the high number of users. Moreover, due

to the randomness in channel access, the level of interference

varies from instance to instance. As the transmissions are of

initial access type, phase coherence or instantaneous power

control cannot be assumed. Thus, the challenge becomes to

design highly structured codebooks of large cardinality, subject

to invariance with respect to absolute phase and amplitude,

along with a reliable and low-complexity multi-user decoding

algorithm.

Codebooks of Binary Chirps (BCs) [6], [21] provide such

highly structured Grassmannian line codebook in N = 2m

dimensions with additional desirable properties. All entries

come from a small alphabet, being a fourth root of unity,

and can be described in terms of second order Reed-Muller

(RM) codes. RM codes have the fascinating property that

a Walsh-Hadamard measurement cuts the solution space

in half. This yields a single-user decoding complexity of

O(N log2 N), coming from the Walsh-Hadamard transform

and number of required measurements. Additionally, the num-

ber of codewords is reasonably large, growing as 2m(m+3)/2 =√
N

3+log
2

N
, while the minimum chordal distance is 1/

√
2.

In this paper, we expand the BC codebook to the codebook

of Binary Subspace Chirps (BSSCs) in N = 2m dimensions

by collectively considering all BCs in S = 2r dimensions for

r = 0, . . . , m. That is, given a BC in S = 2r dimensions,

we embed it in N = 2m dimensions via a unique on-off pattern

determined by a rank r binary subspace. Thus, a BSSC is

characterized by a sparsity r, a BC part parametrized by a

binary symmetric matrix Sr ∈ Sym(r; 2) and a binary vector
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Fig. 1. Interplay of binary world and complex world. The interplay detailed
in this paper, which is then used in the low-complexity decoding algorithm
of BSSCs, is depicted in green.

b ∈ Fm
2 , and a unique on-off pattern parametrized by a rank r

binary subspace H ∈ G(m, r; 2). Thus, an active device with

a rank r signature will transmit α/
√

2r, α ∈ {±1,±i} during

time slots determined by the rank r subspace H , and it will be

silent otherwise. This resembles the model of [10], in which

active devices can also be used (to listen) as receivers during

the off-slots. The codebook of BSSCs inherits all the desirable

properties of BCs, and in addition, it has asymptotically about

2.384 more codewords.

Given the structure of BSSCs, a unified rank, on-off pattern,

and BCs part (in this order) estimation technique is needed.

In [22], a reliable on-off pattern detection was proposed,

which made use of a Weyl-type transform [23] on m qubit

diagonal Pauli matrices. The algorithm can be described with

the common language of symplectic geometry and quantum

computation. We show that BSSCs are common eigenvectors

of maximal sets of commuting Pauli matrices, commonly

referred in literature as stabilizer groups. In this way BSSCs

constitute nothing else but a parametrization of stabilizer

states. While there are other known parametrizations, e.g. [24],

the parametrization of this paper is derived in such a way that

it can be leveraged to a low-complexity decoding algorithm.

The key insight will be to decode a BSSC by estimating

the corresponding unique maximal stabilizer that stabilizes it.

In particular, we show that each BSSC is a column of a unique

Clifford matrix (99), which itself is the common eigenspace

of a unique stabilizer group (110); see also Theorem 3. The

interplay between the binary world and the complex world is

depicted in Figure 1.

Making use of these structural results, the on-off pattern

detection of [22] can be generalized to recover the BC part

of the BSSC, this time by using the Weyl-type transform on

the off-diagonal part of the corresponding stabilizer group.

This yields a single-user BSSC reconstruction as described

in Algorithm 2. In [1], we added Orthogonal Matching

Pursuit (OMP) to obtain a multi-user BSSCs reconstruction

(see Algorithm 3) with reliable performance when there is

a small number of active users. As the number of active

users increases, so does the interference, which has a quite

destructive effect on the on-off pattern. However, state-of-

the-art solutions for BCs [9], [18], [25] such as slotting and

patching, can be used to reduce the interference. Preliminary

simulations show that BSSCs exhibit a lower error probability

than BCs. This is because BSSCs have fewer closest neighbors

on average than BCs. In addition, BSSCs are uniformly

distributed over the sphere, which makes them optimal when

dealing with Gaussian noise.

Throughout, the decoding complexity is kept at bay by

exploiting the underlying symplectic geometry. The sparsity,

the BC part, and the on-off pattern of a BSSC can be described

in terms of the Bruhat decomposition (31) of a symplectic

matrix. Indeed, the unique Clifford matrix (99) of which

a BSSC is a column, is parametrized by a coset represen-

tative (33) as described in Lemma 1. In turn, such coset

representative determines a unique stabilizer group (110).

We use this interplay to reconstruct a BSSC by reconstructing

the stabilizer group that stabilizes the given BSSC. This alone

reduces the complexity from O(N2) to O(N log2 N).
The paper is organized as follows. In Section II we

formulate the problem and motivate the solution approach.

In Section III we review the basics of binary symplectic

geometry and quantum computation. In order to obtain a

unique parametrization of BSSCs, we use Schubert cells

and the Bruhat decomposition of the symplectic group.

In Section III-D we lift the Bruhat decomposition of the

symplectic group to obtain a decomposition of the Clifford

group. Additionally, we parametrize those Clifford matrices

whose columns are BSSCs. In Section IV we give the formal

definition of BSSCs, along with their algebraic and geometric

properties. In Sections V and VI we present reliable low com-

plexity decoding algorithms, and discuss simulation results.

We end the paper with some conclusions and directions future

research.

A. Main Contributions

We have extended the codebook of binary chirps to the

codebook of binary subspace chirps which is asymptotically

2.38 times bigger and has the same minimum chordal distance

as stated in Theorem 1. In Corollary 1 we show that binary

subspace chirps are precisely the collection of stabilizers

states, which in turn immediately makes them a non-Abelian

group code with a faithful representation in N dimensions.

Of prime interest is the corresponding unique maximal stabi-

lizer as described in Theorem 3. We use the underlying group

structure to generalize the algorithm of [6] to a BSSC setting

without significantly increasing the complexity. We argue that

binary subspace chirps constitute good candidates in a variety

of IoT applications such as random access, unsourced access,

and neighbor discovery.

B. Conventions

All vectors, binary or complex, will be columns. F2 denotes

the binary field, GL(m; 2) denotes the group of binary m×m
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Fig. 2. Massive random access.

invertible matrices, and Sym(m; 2) denotes the group of

binary m × m symmetric matrices. We will denote matrices

(resp., vectors) with upper case (resp., lower case) bold letters.

AT will denote the transpose and A−T will denote the inverse

transposed. cs (A) and rs (A) will denote the column space

and the row space of A respectively. Since all our vectors are

columns, we will typically deal with column spaces, except

when we work with notions from quantum computation,

where row spaces are customary. Im will denote the m × m
matrix (complex or binary). G(m, r; 2) ∼= GL(m; 2)/GL(r; 2)
denotes the binary Grassmannian, that is, the set of all

r-dimensional subspaces of Fm
2 . U(N) denotes the set of

unitary N × N complex matrices and † will denote the

conjugate transpose of a matrix.

II. PROBLEM FORMULATION AND SOLUTION APPROACH

A. System Model

We consider a dense network of M single antenna low-cost

sensors/users spread out in a cell covered by a base station.

Each sensor becomes active randomly and sporadically, during

which it transmits its signature, or an information carrying

message, to the base station in blocks of N channel uses.

We assume that the users are synchronized to the base station,

and that the channels are frequency flat. The overall number

of users is massive; M � N . Whenever active, user u will

transmit its signature su ∈ CN . During a given communication

event, a random selection of L users is simultaneously active,

with signatures or messages indexed by u`, ` = 1, . . . , L. The

base station then receives

s =

�
LX

`=1

c`su`

�
+ n, c` ∈ C,n ∈ CN , (1)

where c` denotes the complex channel coefficient between

user u` and the base station, n is Additive White Gaussian

Noise (AWGN) and each user obeys the power constraint

ksuk = 1. Two related problems can be formulated as follows.

Problem 1: Determine the set of active users/their messages

{u1, . . . , uL} given s.

Problem 2: Design a codebook C = {s1, . . . , sM} ⊂ CN

that reliably solves Problem 1 with low complexity.

In simulations we assume to know the number L of active

users at any given time, and the error probability of single

user transmission is estimated as

pu = 1 − number of users decoded correctly

total number of active users
. (2)

The performance of a codebook C = {si}M
i=1 ⊂ CN is

governed by the worst-case coherence µ(C) = maxi6=j |s†isj |,
or equivalently by the minimum chordal distance δc(C) =p

1 − µ2(C). Thus, we are seeking for a very large number

of unit vectors in CN that are sufficiently separated. As the

users are not phase coherent, codewords are not separated by

phase, and thus we are interested in equivalence classes of

unit vectors, up to U(1) rotations, i.e. complex projective lines

in CPN−1, or equivalently, Grassmannian lines in GC(N, 1).
Given the very large number of total users M that we would

want to support, the codebook C of signatures must be highly

structured, so that low-complexity decoding algorithms are

feasible. One such codebook, shown to be successful in theory

and practice, is the codebook of Binary Chirps (BCs) [6], [21],

defined as follows. Fix a natural number m and put N = 2m.

For a binary vector b ∈ Fm
2 and binary symmetric matrix

S ∈ Sym(m; 2) define

C(m) = {wb,S}b,S , wb,S(a) =
1√
N

ia
TSa+2bTa mod 4.

(3)

A time-slot n ∈ {1, . . . , N} is indexed as a binary vector

a(n) ∈ Fm
2 of length m. Thus, during time-slot n, an active

user will transmit the corresponding symbol wb,S(a(n)) of its

signature wb,S. To simplify the notation, we will drop the

superscript. The number of signatures/codewords is

|C(m)| = 2m · 2m(m+1)/2 =
√

N
3+log

2
N

, (4)

while the minimum chordal distance is 1/
√

2; see (9). In [6],

the authors leverage the structure of BCs to construct a

low-complexity decoding algorithm. They use the so-called

shift and multiply technique in conjunction with the Walsh-

Hadamard transform.

B. Generalizing BCs to BSSCs

We aim to further leverage the structure of BCs, by extend-

ing them to a larger codebook, while preserving the main

algebraic and geometric features so that a low-complexity

algorithm for the extended codebook remains feasible. For this,

we use the guiding principles of [10], in which an active user

transmits only on K ≤ N time-slots. This creates an on-off

pattern of time-slots. We assume that the on-pattern forms a

binary subspace of Fm
2 of dimension/rank 0 ≤ r ≤ m, that is,

an active user transmits only during time-slots indexed by a

binary subspace. Given the power constrain of each user, the

dimension of the on-pattern, can also be used to prioritize users

based on their distance from the base station. Now, given an

on-pattern, characterized by a binary subspace H ∈ G(m, r; 2)
of dimension r, an active user will transmit a 2r-dimensional
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binary chirp characterized by eb ∈ Fr
2,
eS ∈ Sym(r; 2). This

strategy creates a codebook C(r) = {w
�b,�S} of 2r-dimensional

binary chirps to be distributed to users that, when active,

transmit on time-slots indexed by H . As we will see, however,

transmitting on a coset of H is just as good as transmitting on

H itself. Since there are 2m−r different cosets of H , we can

keep track of every single option with a vector bb ∈ Fm−r
2 . This

suggest to think of a vector b ∈ Fm
2 as b =

�
eb
bb

	
∈ Fr

2×Fm−r
2 ,

the first r bits of which are used to define a 2r-dimensional

binary chirp and the last m− r bits of which are used to keep

track of the coset of H . The concise method for keeping track

of cosets will use Schubert Cells as described in Section III-A,

and will be detailed in Section IV. Note that, since cosets are

disjoint, so are the 2m−r on-patterns determined by H .1 Thus,

combining all together, we obtain a codebook C(r)
H = {w

b,�S},

for which |C(r)
H | = 2m · 2r(r+1)/2. The codebook of Binary

Subspace Chirps (BSSCs) is defined as

VBSSC =
m[

r=0

[

H∈G(m,r;2)

C(r)
H . (5)

We will have a running example that illustrates all the struc-

tural the details. But first, to compute the size of the extended

codebook, we recall that the size of the binary Grassmannian

is given by the 2-binomial coefficient, that is

|G(m, r; 2)| =

�
m

r

�

2

=

r−1Y

i=0

1 − 2m−i

1 − 2i+1
, (6)

and hence, the cardinality of our extended codebook is

|VBSSC| = 2m ·
mX

r=0

2r(r+1)/2 ·
�

r−1Y

i=0

1 − 2m−i

1 − 2i+1

�
(7)

= 2m ·
mY

r=1

(2r + 1), (8)

where the last equality is simply the 2-binomial theorem [26].

Recall Slepian’s definition of group codes [27]; a group code

is a code generated as the orbit of a generating vector v under

the action of a finite group G; C = {w = Gv | G ∈ G}. Group

codes are efficient for constructing tight frames/Grassmannian

line codebooks [28].

The main coding-related characteristics of the extended

codebook VBSSC are the following.

Theorem 1: We have δc(VBSSC) = δc(C(m)) = 1/
√

2 and

|VBSSC|/|C(m)| ≈ 2.384. Additionally, VBSSC is a group code

of the Clifford group.

Proof: Fix a binary chirp w1 ∈ VBC parametrized by

S1 ∈ Sym(m; 2), and let w2 range among 2m binary chirps

parametrized by S2 ∈ Sym(m; 2). Then [6], [29], [30]

|w†
1w2|2 =

(
1/2r, 2r times,

0, 2m − 2r times,
(9)

1This important feature can be further leveraged by the network. Namely,
a user can receive/listen during the off-pattern, and if neighboring users
are assigned to have disjoint on-patterns, this can be used for neighbour
discovery [9].

where r = rank (S1 − S2). It follows immediately that

|w†
1w2| ≤ 1/

√
2, and thus δc(C(m)) = 1/

√
2. Next, let

w1,w2 ∈ VBSSC. By Theorem 4 we have two cases: either (1)

the on-patterns don’t overlap in which case we have |w†
1w2| =

0 and δc(w1,w2) = 1, or (2) the on-patterns overlap in

which case the overlap is again a binary chirp of some lower

rank. In the latter case (9) still applies and δc(VBSSC) =
1/

√
2 follows. The statement relating the cardinalities is a

combination of (4) and (8). Finally, by Corollary 1, VBSSC is

the collection of all stabilizer states, which in turn is the orbit

of e0 under the action of the Clifford group.

BSSCs thus provide an appealing example of a non-Abelian

group code with a faithful representation in N dimensions.

As we shall see, the group structure enables low-complexity

decoding.

1) Decoding BSSCs: While Theorem 1 points out a clear

coding gain, as mentioned, for our specific use-case, a low

complexity decoding algorithm is of prime interest. The

extension of BCs to BSSCs is done in such a way that

we can still leverage the decoding algorithm of [6]. Within

this extended codebook, a decoding algorithm should be

able to identify/reconstruct bu ∈ Fm
2 ,Su ∈ Sym(r, 2), and

Hu ∈ G(m, r; 2) for each active user u. The heavy task

of the decoding algorithm is to identify the on-off pattern

characterized by Hu, which we then tune-in with the BC

decoding algorithm of [6] to identify bu and Su. The case

when there is a single active user at any given time was

considered in [22].

As it turns out, even though our construction is purely

motivated by a communication scenario, it leads to well-known

notions in quantum computing. The first tell is that BCs are

exactly the so-called graph states. The second tell is (8), which

hints strong connections with stabilizer states, and in fact,

as we will see, BSSCs are precisely stabilizer states. Our

strategy is to decode a BSSC by identifying the maximal

stabilizer group that stabilizes it. For this, one will need a

well-behaved one-to-one correspondence2 between stabilizer

states and maximal stabilizers that clearly separates the “chirp

part” and the “on-off pattern part”. To establish this one-to-

one correspondence we use Schubert cells and cosets of the

binary symplectic group Sp(m; 2). We leverage this connec-

tion, and its underlying binary structure, to decode a BSSC by

identifying the stabilizer group that stabilizes it.

III. PRELIMINARIES

In this section we will introduce all preliminary notions

needed for navigating the connection between the 2m dimen-

sional binary world and the 2m dimensional complex world,

as depicted in Figure 1. The primary bridge used here is the

well-known homomorphism (71) between the Clifford and

symplectic binary groups, and the Bruhat decomposition of

the symplectic group. We focus on cosets of the symplectic

group modulo the semidirect product GL(m; 2)oSym(m; 2).
In the complex world, this semidirect product corresponds to

2A stabilizer state is stabilized by several maximal stabilizer groups, but
because we are interested in decoding (complexity), a well-behaved canonical
form is a must. See also the discussion proceeding Theorem 3.
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column permutations and column rotations. We are interested

in codebooks of Grassmannian lines, and we shall construct

them from columns of Clifford group elements. Column

permutations and rotations thus do not change the codebook,

the cosets are sufficient for constructing all unique codewords.

The cosets are characterized by a rank r = 0, . . . , m and

a binary subspace H ∈ G(m, r; 2), which we will think of

as the column space of an m × r binary matrix in column

reduced echelon form. We will use Schubert cells as a formal

and systematic approach. This also provides a framework for

describing well-known facts from binary symplectic geometry

(e.g., Remark 4). Finally, Subsection III-C discusses common

notions from quantum computation.

A. Schubert Cells

Here we discuss the Schubert decomposition of the Grass-

mannian G(m, r; 2) with the respect to the standard flag

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vm, (10)

where Vi = span{e1, . . . , ei} and {e1, . . . , em} is the standard

basis of Fm
2 . Fix a set of r indices I = {i1, . . . , ir} ⊂

{1, . . . , m}, which, without loss of generality, we assume to be

in increasing order. The Schubert cell CI is the set of all m×r
matrices that have 1 in leading positions (ij , j), 0 on the left,

right, and above each leading position, and every other entry

is free. This is simply the set of all binary matrices in column

reduced echelon form with leading positions I. By counting

the number of free entries in each column one concludes that

dim CI =

rX

j=1

(m − ij) − (r − j). (11)

Fix H ∈ G(m, r; 2), and think of it as the column space of

a m× r matrix H. After column operations, it will belong to

some cell CI . To emphasize this fact, we will denote it as HI .

Schubert cells have a well-known duality theory which we

outline next. Let gHI be such that (HI)TgHI = 0. Of course

cs (gHI) ∈ G(m, m − r; 2). Let eI := {1, . . . , m} \ I and

put fCI := {gHI | HI ∈ CI}. There is a bijection between

{fCI}|I|=r and {C
�J }|J |=r, realized by reverting the rows and

columns of gHI and by identifying the set eJ = {i1, . . . , im−r}
with its image under the mapping A → bA = {m+1−a | a ∈
A}. With this identification, we will denote H

�I the unique

element of cell C
�I that is equivalent with gHI , obtained by

reverting the rows and columns of gHI :

H
�I = Pad,m

gHIPad,m−r, (12)

where Pad is the antidiagonal matrix in respective dimensions.

Each cell has a distinguished element: II ∈ CI will denote

the identity matrix Im restricted to I, that is, the unique

element in CI that has all the free entries 0. Note that II has

as jth column the ij th column of Im, and thus its non-zero

rows form Ir. In particular if |I| = m then II = Im. We also

have I
�I ∈ C

�I . With this notation one easily verifies that

(II)THI = Ir, (II)TI
�I = 0, (gHI)T I

�I = Im−r. (13)

In addition, HI can be completed to an invertible matrix

PI :=
�
HI I

�I
�
∈ GL(m; 2). (14)

Note that when II is completed to an invertible matrix it gives

rise to a permutation matrix. Next, (13) along with the default

equality (HI)TgHI = 0 implies that

P−T

I =
h
II gHI

i
. (15)

Let us describe this framework with an example.

Example 1: Let m = 3 and r = 2. Then

C{1,2} =




1 0
0 1
u v


, Ĉ{1,2} =




u
v
1


, C

�{3}
∼= C{1} =




1
v
u


,

C{1,3} =




1 0
u 0
0 1


, Ĉ{1,3} =




u
1
0


, C

�{2}
∼= C{2} =




0
1
u


,

C{2,3} =




0 0
1 0
0 1


, Ĉ{2,3} =




1
0
0


, C

�{1}
∼= C{3} =




0
0
1


.

Let us spell out I = {1, 3} in detail. The set CI is constructed

directly by definition, that is, in column reduced echelon form

with leading positions 1 and 3, while fCI is constructed so that

(HI)TgHI = 0. Then we revert the rows and columns (only

rows in this case) to obtain the last object where we identify3

{2} = {̂1, 3} with d{2} ≡ {2}.

In this case, as we see from above, there is only one

free bit. This yields two subspaces/matrices HI , which when

completed to an invertible matrix as in (14) yield

Pu=0 =




1 0 0
0 0 1
0 1 0


 , Pu=1 =




1 0 0
1 0 1
0 1 0


 . (16)

Then one directly computes

P−T

u=0 =




1 0 0
0 0 1
0 1 0


 , P−T

u=1 =




1 0 1
0 0 1
0 1 0


 . (17)

Compare (17) with (15); the first two columns are obviously

II , whereas the last column is precisely C
�{2} ≡ C{2} with

rows reverted. Note here that when all the free bits are zero

then the resulting P is simply a permutation matrix, and in

this case P−T = P.

B. Bruhat Decomposition of the Symplectic Group

We first briefly describe the symplectic structure of F2m
2 via

the symplectic bilinear form

ha,b | c,d is := bTc + aTd. (18)

One is naturally interested in automorphisms that preserve

such symplectic structure. It follows directly by the definition

that a 2m × 2m matrix F preserves h • | • is iff FΩFT = Ω

where

Ω =

�
0m Im

Im 0m

�
. (19)

3In this specific case there is no need for identification, but this is only a
coincidence. For different choices of I one needs a true identification.
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We will denote the group of all such symplectic matrices F

with Sp(2m; 2). Equivalently,

F =

�
A B

C D

�
∈ Sp(2m; 2) (20)

iff ABT,CDT ∈ Sym(m; 2) and ADT + BCT = Im. It is

well-known that

|Sp(2m; 2)| = 2m2

mY

i=1

(4i − 1). (21)

Consider the row space H := rs [A B] of the m × 2m
upper half of a symplectic matrix F ∈ Sp(2m; 2). Because

ABT is symmetric one has [A B]Ω[A B]T = 0 and thus

hx |y is = 0 for all x,y ∈ H . We will denote ( • )⊥s the dual

with respect to the symplectic inner product (18). It follows

that H ⊆ H⊥, that is, H is self-orthogonal or totally isotropic.

Moreover, H is maximal totally isotropic because dimH = m
and thus H = H⊥. The set of all self-dual/maximal totally

isotropic subspaces is commonly referred as the Lagrangian

Grassmannian L(2m, m; 2) ⊂ G(2m, m; 2). It is well-known

that

|L(2m, m)| =

mY

i=1

(2i + 1). (22)

For reasons that will become clear latter on we are interested

in decomposing symplectic matrices into more elementary

symplectic matrices, and we will do this via the Bruhat

decomposition of Sp(2m; 2). While the decomposition holds

in a general group-theoretic setting [31], here we give a rather

elementary approach; see also [32]. We start the decomposition

by writing

Sp(2m; 2) =

m[

r=0

Cr, (23)

where

Cr =

�
F =

�
A B

C D

�
∈ Sp(2m; 2)

���� rankC = r

�
. (24)

In Sp(2m; 2) there are two distinguished subgroups:

SD :=

�
FD(P) =

�
P 0

0 P−T

� ���� P ∈ GL(m; 2)

�
, (25)

SU :=

�
FU (S) =

�
I S

0 I

� ���� S ∈ Sym(m; 2)

�
. (26)

Let P be the semidirect product of SD and SU , that is,

P = {FD(P)FU (S) | P ∈ GL(m; 2),S ∈ Sym(m; 2)}.
(27)

Note that the order of the multiplication doesn’t matter since

the semidirect product satisfies

FD(P)FU (S) = FU (PSPT)FD(P), (28)

and PSPT is again symmetric. It is straightforward to verify

that P = C0, and that in general

Cr = {F1FΩ(r)F2 | F1,F2 ∈ P}, (29)

where

FΩ(r) =

�
Im|−r Im|r
Im|r Im|−r

�
, (30)

with Im|r being the block matrix with Ir in upper left corner

and 0 else and Im|−r = Im−Im|r. Note here that Ω = FΩ(m)
and ΩFΩ(r)Ω = FΩ(m − r). Then it follows by (29) (and

by (28)) that every F ∈ Sp(2m; 2) can be written as

F = FD(P1)FU (S1)FΩ(r)FU (S2)FD(P2). (31)

The above constitutes the Bruhat decomposition of a symplec-

tic matrix; see also [1], [33].

Remark 1: It was shown in [34] that a symplectic matrix

F can be decomposed as

F = FD(P1)F
T

U (S1)ΩFΩ(r)FU (S2)FD(P2). (32)

If we, instead, decompose ΩF as in (32) and insert Ω2 = I2m

between FD(P1) and FT

U (S1), we see that (32) is reduced

to (31). This reduction from a seven-component decomposition

to a five-component decomposition is beneficial in quantum

circuits design [33], [35].

In what follows we will focus on the right action of P on

Sp(2m; 2), that is, the right cosets in the quotient group

Sp(2m; 2)/P . It is an immediate consequence of (31) and (28)

that a coset representative will look like

FD(P)FU (S)FΩ(r), (33)

for some rank r, invertible P, and symmetric S. However, two

different invertibles P may yield representatives of the same

coset. We make this precise below.

Lemma 1: A right coset in Sp(2m; 2)/P is uniquely char-

acterized by a rank r, an r×r symmetric matrix Sr ∈ Sym(r),
and a r-dimensional subspace H in Fm

2 .

Proof: Write a coset representative F as in (33). This

immediately determines r. Next, write S in a block form

S =

�
Sr X

XT Sm−r

�
, (34)

where Sr,Sm−r are symmetric. Denote fSr, bSm−r ∈
Sym(m; 2) the matrices that have Sr and Sm−r in upper left

and lower right corner respectively and 0 otherwise. Put also

eX =

�
Ir 0

XT Im−r

�
. (35)

With this notation we have

FU (S)FΩ(r) = FU (fSr)FΩ(r)FU (bSm−r)FD(eX). (36)

In other words FU (S)FΩ(r) and FU (fSr)FΩ(r) belong to the

same coset. Now consider an invertible

eP =

�
Pr 0

0 Pm−r

�
. (37)

It is also straightforward to verify that

FU (fSr)FΩ(r)FD(eP) = FU (fSr)FD(bP)FΩ(r)

= FD(bP)FU (bP−1fSr
bP−T)FΩ(r),

where

bP =

�
P−T

r 0

0 Pm−r

�
, (38)
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and the second equality follows by (28). Thus

FD(P1)FU (S1)FΩ(r), where

P1 := PbP, S1 := bP−1fSr
bP−T (39)

represents the same coset. Note that the transformation (39)

doesn’t change the column space C (that is, the lower left

corner of F), which is an r-dimensional subspace in Fm
2 .

Next, using Schubert we cells will choose a canonical coset

representative. We will use the same notation as in the above

lemma. Let r and fSr be as above. To choose P, think of the

r-dimensional subspace H from the above lemma as the

column space of a matrix H, which belongs to some Schubert

cell CI . We will use the coset representative

FO(PI ,Sr) := FD(PI)FU (fSr)FΩ(r), (40)

where PI is as in (14).

Let F ∈ Sp(2m; 2) be in block from as in (20), and assume

it is written as

F = FD(P−T)FU (fSr)FΩ(r)FD(M)FU (S). (41)

Multiplying both sides of (41) on the left with FD(PT) and on

the right with FU (S), and then comparing respective blocks

we obtain

PTA = (fSr + Im|−r)M, (42)

PTAS = PTB + Im|rM
−T, (43)

P−1C = Im|rM, (44)

P−1CS = P−1D + Im|−rM
−T, (45)

which we can solve for M,fSr and S, while assuming that we

know F (and implicitly P which can be determined by the

column space of the lower-left block of F). First we find M.

For this, recall that fSr has nonzero entries only on the upper

left r×r block. Thus, it follows by (42) that the last m−r rows

of M coincide with the last m − r rows of PTA. Similarly,

it follows from (44) that the first r rows of M coincide with

the first r rows of P−1C. With M in hand we have

fSr = PTAM−1 + Im|−r. (46)

By using (44) in (45) we see that the first r rows of MS

coincide with first r rows of P−1CS. Similarly, by using (42)

in (43), we see that the last m − r rows of MS coincide

with the last m− r rows of PTAS. Multiplication with M−1

yields S. We collect everything in Algorithm 1, which gives

not only the Bruhat decomposition but also a canonical coset

representative.

We end this section with a few remarks.

Remark 2: One can follow an analogous path by consider-

ing left action of P on Sp(2m; 2). This follows most directly

by the observation that if F = FD(P)FU (S)FΩ(r) is a right

coset representative then F−1 = FΩ(r)FU (S)FD(P−1) is a

left coset representative.

Remark 3: Note that for the extremal case r = m, a coset

representative as in (40) is completely determined by a sym-

metric matrix S ∈ Sym(m; 2), since in this case, as one would

recall, PI = II = Im.

Algorithm 1 Bruhat Decomposition of Symplectic Matrix

Input: A symplectic matrix F.

1. Block decompose F to A,B,C,D as in (20).

2. r = rank (C).
3. Find P as in (14) from cs (C).
4. Mup is the first r rows of P−1C.

5. Mlo is the last m − r rows of PTA.

6. M =

�
Mup

Mlo

�
.

7. fSr = PTAM−1 + Im|−r.

8. Sr is the upper left r × r block of fSr.

9. Nup is the first r rows of P−1D + Im|−rM
−T.

10. Nlo is the last m − r rows of PTB− Im|rM
−T.

11. S = M−1

�
Nup

Nlo

�
.

Output: r,P,Sr,M,S

Remark 4: Directly from the definition we have

|P| = |GL(m; 2)| · |Sym(m; 2)| = 2m2

mY

i=1

(2i − 1), (47)

which combined with (21) yields

|Sp(2m; 2)/P| =
mY

i=1

(2i + 1) = |L(2m, m)|. (48)

The above is of course not a coincidence. Indeed, Sp(2m; 2)
acts transitively from the right on L(2m, m). Next, consider

rs
�
0m Im

�
∈ L(2m, m). If a symplectic matrix F as in (20)

fixes this space, then C = 0 and A is invertible. Additionally,

because F is symplectic to start with, we obtain D = A−T

and ABT =: S is symmetric. Thus B = SAT, and F ∈ P .

That is, P is the stabilizer (in a group action terminology) of

rs
�
0m Im

�
∈ L(2m, m). The mapping Sp(2m; 2)/P −→

L(2m, m), given by

FO(PI ,Sr) 7−→ rs
h
Im|rPIT (Im|rfSr + Im|−r)P

−1
I

i

(49)

is well-defined. This follows by the fact that the upper half of

a symplectic matrix is maximal isotropic. It is also injective,

and thus bijective due to cardinality reasons. Of course one can

have many bijections but we choose this one due to Theorem 3.

C. The Heisenberg-Weyl Group

Fix N = 2m, and let {e0, e1} be the standard basis of C2,

which is commonly referred as the computational basis. For

v = (v1, . . . , vm) ∈ Fm
2 set ev := ev1

⊗ · · · ⊗ evm
. Then

{ev | v ∈ Fm
2 } is the standard basis of CN ∼= (C2)⊗m. The

Pauli matrices are

I2, σx =

�
0 1
1 0

�
, σz =

�
1 0
0 −1

�
, σy = iσxσz . (50)

For a,b ∈ Fm
2 put

D(a,b) := σa1

x σb1
z ⊗ · · · ⊗ σam

x σbm
z . (51)
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Directly by definition we have

D(a,0)ev = ev+a and D(0,b)ev = (−1)b
Tvev, (52)

and thus, the former is a permutation matrix whereas the latter

is a diagonal matrix. Then

D(a,b)D(c,d) = (−1)b
TcD(a + c,b + d). (53)

Thanks to (53) we have

D(a,b)D(c,d) = (−1)b
Tc+aTdD(c,d)D(a,b). (54)

In turn, D(a,b) and D(c,d) commute iff

ha,b | c,d is := bTc + aTd = 0, (55)

that is, iff (a,b) and (c,d) are orthogonal with respect to the

symplectic inner product (18). Also thanks to (53), the set

HWN := {ikD(a,b) | a,b ∈ Fm
2 , k = 0, 1, 2, 3} (56)

is a subgroup of U(N) and is called the Heisenberg-Weyl

group. We will also call its elements Pauli matrices as well.

Directly from the definition, we have a surjective homomor-

phism of groups

ΨN : HWN −→ F2m
2 , ikD(a,b) 7−→ (a,b). (57)

Its kernel is kerΨN = {±IN ,±iIN} ∼= Z4. We will denote

HW∗
N := HWN/ kerΨN the projective Heisenberg-Weyl

group, and the induced isomorphism Ψ∗
N .

Note that h • | • is defines a nondegenerate bilinear form in

F2m
2 that translates commutativity in HWN to orthogonality in

F2m
2 . A commutative subgroup S ⊂ HWN is called a stabilizer

group if −IN /∈ S. Thus, for a stabilizer S, thanks to (55)

we have ΨN(S) ⊆ ΨN (S)⊥s [36], [37]. In addition, because

ΨN restricted to a stabilizer is an isomorphism, we have that

|S| = 2r iff dim ΨN(S) = r. We will think of ΨN (S) as the

row space of a full rank matrix [A B] where both A and B

are r × m binary matrices. We will write

E(A, B) := {E(xTA, xTB) | x ∈ Fr
2}, (58)

where E(a, b) := ia
TbD(a,b). Combining this with (52)

and (53) we obtain

E(a,b) = ia
Tb

X

v∈Fm
2

(−1)b
Tvev+aev

T. (59)

Next, if rs [A B] is self-orthogonal in F2m
2 then E(A, B)

is a stabilizer. Moreover, ΨN(E(A, B)) = rs [A B], which

yields a one-to-one correspondence between stabilizers in

HWN and self-orthogonal subspaces in F2m
2 . It also follows

that a maximal stabilizer must have 2m elements. Thus there is

a one-to-one correspondence between maximal stabilizers and

Lagrangian Grassmannians L(2m, m) ⊂ G(2m, m). Of par-

ticular interest are maximal stabilizers

XN := E(Im,0m) = {E(a,0) | a ∈ Fm
2 }, (60)

ZN := E(0m, Im) = {E(0,b) | b ∈ Fm
2 }, (61)

which we naturally identify with XN := ΨN (XN ) =
rs [Im 0m] and ZN := ΨN(ZN ) = rs [0m Im].

What follows holds in general for any stabilizer, but for

our purposes, we need only focus on the maximal ones. Let

S = E(A, B) ⊂ HWN be a maximal stabilizer and let

{E1, . . . ,Em} be an independent generating set of S (that

is, span{ΨN(E1), . . . ,ΨN(Em)} = ΨN(S)). Consider the

complex vector space [38]

V (S) := {v ∈ CN | Eiv = v, i = 1, . . . , m}. (62)

It is well-known (see, e.g., [39]) that dimV (S) =
2m/|S| = 1. A unit norm vector that generates it is called

stabilizer state, and with a slight abuse of notation is also

denoted by V (S). Because we are disregarding scalars, it is

beneficial to think of a stabilizer state as Grassmannian line,

that is, V (S) ∈ G(CN , 1). Next,

ΠS :=
mY

i=1

IN + Ei

2
=

1

N

X

E∈S
E (63)

is a projection onto V (S).
Given a stabilizer as above, for any d ∈ Fm

2 ,

{(−1)d1E1, . . . , (−1)dmEm} also describes a stabilizer Sd.

Similarly to (63) put

ΠSd
:=

mY

i=1

IN + (−1)diEi

2

=
1

N

X

x∈Fm
2

(−1)d
TxE(xTA, xTB). (64)

It is readily verified that {ΠSd
| d ∈ Fm

2 } are pair-wise

orthogonal, and a stabilizer group determines a resolution of

the identity

IN =
X

d∈Fm
2

ΠSd
. (65)

Thus every such projection determines a one-dimensional

subspace which with another abuse of notation (see also

Remark 5 below) we call a stabilizer state.

Remark 5: A stabilizer state as in (62) is the unit norm

vector that is fixed by the stabilizer. Now for every

E ∈ S = E(A, B) there exists a unique x ∈ Fm
2 such

that E = E(xTA, xTB). For d ∈ Fm
2 , consider the map

χd : E(xTA, xTB) 7−→ (−1)d
Tx. Then ΠSd

projects onto

V (Sd) := {v ∈ CN | Ev = χd(E)v for all E ∈ Sd}, (66)

that is, the state that under the action of E is scaled by χd(E).
Then of course V (S0) = V (S) where 0 ∈ Fm

2 . In addition, the

map χd is a linear character of S, which has led to non-binary

quantum stabilizer codes [40].

Remark 6: Let {E1, . . . ,Em} be an independent generat-

ing set of a maximal stabilizer S and consider Sd. By [39,

Prop. 10.4] it follows that for each i = 1, . . . , m, there exists

Gi ∈ HWN such that G
†
iEiGi = −Ei and G

†
iEjGi = Ej

for i 6= j. Now put Gd := Gd1

1 · · ·Gdm
m . Then

G
†
dΠSGd = ΠSd

. (67)

It follows that {V (Sd) | d ∈ Fm
2 } is an orthonormal basis

of CN . In [41] the authors used a similar insight to construct

maximal sets of mutually unbiased bases.
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D. Clifford Group

The Clifford group in N dimensions [42] is defined to be

the normalizer of HWN in U(N) modulo U(1):

CliffN = {G ∈ U(N) | GHWNG† = HWN}/U(1). (68)

The reason one quotients out U(1) ∼= {αIN | |α| = 1}, is to

obtain a finite group. In this case HW∗
N is a normal subgroup

of CliffN .

Let {e1, . . . , e2m} be the standard basis of F2m
2 , and con-

sider G ∈ CliffN . Let ci ∈ F2m
2 be such that

GE(ei)G
† = ±E(ci). (69)

Then the matrix FG whose ith row is ci is a symplectic matrix

such that

GE(c)G† = ±E(cTFG) (70)

for all c ∈ F2m
2 . Based on (70) we obtain a group homomor-

phism

Φ : CliffN −→ Sp(2m; 2), G 7−→ FG, (71)

with kernel kerΦ = HW∗
N [35]. This map is also surjec-

tive; see Section III-D.1 where specific preimages are given.

From (21) and (57) (|HW∗
N | = 22m) follows that

|CliffN | = 2m2+2m
mY

i=1

(4i − 1). (72)

Remark 7: Since Φ is a homomorphism we have that

Φ(G†) = F−1
G and as a consequence G†E(c)G =

±E(cTF−1
G ). We will make use of this simple observation

later on to determine when a column of G is an eigen-

vector of E(c). This interplay with symplectic geometry

provides an exponential complexity reduction in various appli-

cations. Here, we will focus on efficiently computing common

eigenspaces of maximal stabilizers.

The phase and Hadamard matrices

GP =

�
1 0
0 i

�
and H2 =

1√
2

�
1 1
1 −1

�
(73)

are easily seen to be in the Clifford group Cliff2. Some authors

also include (GPH2)
3 = exp(πi/4)I2 [37], which in our case

would disappear as a scalar quotient. Thus (72) differs by a

factor of 1/8 of what is commonly considered as the cardinality

of the Clifford group; see https://oeis.org/A003956. For our

purposes the phases are irrelevant.

1) Decomposition of the Clifford Group: In this section

we will make use of the Bruhat decomposition of Sp(2m; 2)
to obtain a decomposition of CliffN . To do so we will use

the surjectivity of Φ from (71) and determine preimages of

coset representatives from (40). The preimages of symplectic

matrices FD(P),FU (S), and FΩ(r) under Φ are the unitary

permutation matrix, a diagonal matrix, and a partial Hadamard

matrix,

GD(P) := ev 7−→ ePTv, (74)

GU (S) := diag
�
iv

TSv mod 4
 
v∈Fm

2

, (75)

GΩ(r) := (H2)
⊗r ⊗ I2m−r , (76)

respectively. We refer the reader to [35], [43] for details.

Remark 8: Note that directly by the definition of the

Hadamard matrix we have

HN := GΩ(m) =
1√
2m

[(−1)v
Tw]v,w∈Fm

2
. (77)

Whereas, for any r = 1, . . . , m, one straightforwardly com-

putes

GΩ(r)·Z(m, r) = [(−1)v
Tw · f(v,w, r)]v,w∈Fm

2
, (78)

where Z(m, r) := I2r ⊗σ⊗m−r
z is the diagonal Pauli that acts

as σz on the last m − r qubits, and

f(v,w, r) =

mY

i=r+1

(1 + vi + wi). (79)

Note that the value of f will be 1 precisely when v and w

coincide in their last m − r coordinates and 0 otherwise.

It follows that f is identically 1 when r = m and f is

the Kronecker function δv,w when r = 0. We will use f
to determine the sparsity of a Clifford matrix/stabilizer state.

Of course r = m corresponds to fully occupied objects with

only nonzero entries; see also Remarks 11 and 12 for the

extreme cases of r = 0, 1.

Example 2 (Example 1 continued): Let us reconsider the

invertible matrices from (16). Recall that there we had m =
3, r = 2. Here we will construct the Cliffords corresponding

to the canonical coset representative (49), with Sr = 02×2.

For the case u = 0 one computes4 GD(PT

u=0) as in (74), and

multiplies it (from the right) by GΩ(2) as in (76) (we will

omit 1/
√

22) and then by Z(3, 2) to obtain

Gu=0 =




+ 0 + 0 + 0 + 0
+ 0 − 0 + 0 − 0
0 − 0 − 0 − 0 −
0 − 0 + 0 − 0 +
+ 0 + 0 − 0 − 0
+ 0 − 0 − 0 + 0
0 − 0 − 0 + 0 +
0 − 0 + 0 + 0 −




. (80)

As mentioned, (74) by definition yields a permutation matrix.

Thus Gu=0 is nothing else but GΩ(2) = H2 ⊗H2 ⊗ I2, with

its rows permuted accordingly, and a possible sign introduced

to its columns by the diagonal matrix Z(3, 2) = I4 ⊗ σz .

Similarly, for the case u = 1, one obtains

Gu=1 =




+ 0 + 0 + 0 + 0
+ 0 − 0 + 0 − 0
0 − 0 − 0 − 0 −
0 − 0 + 0 − 0 +
0 − 0 − 0 + 0 +
0 − 0 + 0 + 0 −
+ 0 + 0 − 0 − 0
+ 0 − 0 − 0 + 0




. (81)

We will discuss how the {+,−, 0} patterns are correlated later

on.

Let us now return to the Clifford group. The Bruhat decom-

position (31) of Sp(2m; 2) already gives a decomposition of

CliffN . However, in order to have a concise approach one has

to be a bit careful. In this section we will write G = Φ−1(F),

4See Section IV-A for why we consider the transpose instead of P itself.
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where the equality is taken modulo the center HW∗
N n Z8.

In other words, we will disregard the central part of Φ−1(F)
and consider only the Clifford part. The cyclic group Z8 of

order 8 comes into play to accommodate 8th roots of unity

coming out of products GU (S)GΩ(r). This setup, yet again,

confirms the importance of

Cliff∗N := {exp(iπk/4)G | k ∈ Z8,G ∈ CliffN}. (82)

Let G = {GD(P)GU (S) | P ∈ GL(m; 2),S ∈ Sym(m; 2)}
be the preimage of P from (27). For obvious reasons, it is

referred as the Hadamard-free group; see also [44]. As for the

case of the symplectic group, this group acts from the right

on matrices of the form

GD(P1)GU (S1)GΩ(r)GU (S2)GD(P2) (83)

and thus, a coset representative would look like

GF := GD(P1)GU (S1)GΩ(r) . (84)

For Grassmannian line codebooks, one is interested on coset

representatives, the right action of GU (S1)GΩ(r) has been

divided out, i.e., column rotations and permutations.

The coset representatives can be understood in terms of

the preimage of generators of GL(m; 2) and Sym(m; 2). Let

us start with the former, which can be generated by two

elements [45]. Namely, it can be generated P := Im + E12

where E12 is the elementary (binary) matrix with 1 in position

(1, 2) and 0 elsewhere, together with the cyclic permutation

matrix Πcycl acting as the permutation (12 · · ·m). A larger set

of generators is also of interest. Let Πi,j be a transposition

matrix. Then of course P along with all the Πi,j generate

GL(m; 2). While Πi,j swaps dimensions i and j in Fm
2 , it is

easily seen that Φ−1(FD(Πi,j)) swaps the tensor dimensions

i and j in (C2)⊗m. Moreover

Φ−1(FD(P)) =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


⊗ IN−4. (85)

The above 4 × 4 matrix is known in quantum computation

as the controlled-NOT (CNOT) quantum gate. In itself, the

CNOT gate is of form GD(P) where

P = P−1 =

�
1 1
0 1

�
. (86)

For Sym(m; 2) we consider matrices Sv := vTv where

v ∈ Fm
2 is a vector with at most two non-zero entries. Then

Φ−1(FU (Sv)) =
1√
2
(IN + iE(0,v)). (87)

Note that when v has exactly one non-zero entry in posi-

tion j, the jth tensor dimension will contain the phase matrix

GP = exp(−iπ/4)(I2 + iσz) form (73). On the other hand,

when v has exactly two non-zero entries (87) gives rise

to GCZ(GP ⊗ GP ) in tensor dimensions i and j, where

GCZ = diag(1, 1, 1,−1). The latter is known in quantum

computation as the controlled-Z (CZ) quantum gate, and it

is of form GU (I2).

In conclusion, the Bruhat decomposition of Sp(2m; 2)
directly yields some fundamental quantum gates as described

above. Similar ideas were used in [33] where the depth

of stabilizer circuits was considered. Classically, there exist

several decompositions of the symplectic group, which in

principle would yield a decomposition of the Clifford group.

IV. BINARY SUBSPACE CHIRPS

Let us recall the definition of Binary Subspace Chirps

from (5). A BSSC w is a unit complex vector in N = 2m

dimensions characterized by a rank 0 ≤ r ≤ m, a “binary

chirp part”, and an “on-off pattern part”. Namely, given a

binary subspace H ∈ G(m, r; 2) of rank 0 ≤ r ≤ m, we have

w(a) = 0 for a /∈ H , whereas the collection of dimensions

indexed by H , {w(a) | a ∈ H}, will form a binary chirp

in 2r dimensions. As in Section III-A, we will think of the

subspace H as the column space of a full-rank m× r matrix

HI , for which a ∈ H iff a = HIx for some unique x ∈ Fr
2.

Additionally, the “BC part”, in turn, is characterized by

Sr ∈ Sym(r; 2) and br ∈ Fr
2. As mentioned in Section II-B,

working with a coset of H is just as good, and since there

2m−r different cosets, we can keep track of them with a

vector bm−r ∈ Fm−r
2 . Namely, for bm−r ∈ Fm−r

2 , the

BC part, will be located in dimensions indexed by the coset

{a = I
�Ibm−r + HIx | x ∈ Fr

2}, with I
�I as in Section III-A.

With this notation, we recover the subspace H for bm−r = 0.

Thus, for a general vector bT = [bT

r bT

m−r] ∈ Fm
2 we have

wH
b,Sr

(a) =

(
1√
2r

ix
TSrx+2bT

rx, if a = HIx + I
�Ibm−r,

0, otherwise.

(88)

Before procceding with further understanding (88), we point

out that BCs are indeed a special case of BSSC. Indeed, for

r = m we have H = Fm
2 and Sr=m ∈ Sym(m, 2) and (88)

has only non-zero entries and exactly matches (3). The next

step, is to better understand (88) by further leveraging Schubert

Cells. Note first that

a = HIx + I
�Ibm−r =

�
HI I

�I
� �

x

bm−r

�
= P

�
x

bm−r

�
,

(89)

where P is the unique invertible matrix (14) associated to the

subspace H . Making use of (15), we obtain

�
x

bm−r

�
= P−1a =

�
(II)T a

gHI
T

a

	
, (90)

which, in particular, tells us that the coset {I
�Ibm−r + HIx |

x ∈ Fr
2} is precisely the solution set of the equation

gHI
T

a = bm−r. (91)

Next, recall the function f(v,w, r) from (79). Recall also

that, by the very definition, its value is 1 precisely when v,w
coincide in their last m−r coordinates. We thus conclude that

f(b,P−1a, r) =

(
1, if a = HIx + I

�Ibm−r,

0, otherwise,
(92)
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for any a, b ∈ Fm
2 . We will use this to keep track of the

on-off pattern of the corresponding BSSC. We point out

here that Remark 8 already hints a close relationship with

the partial Hadamard matrix GΩ(r) = (H2)
⊗r ⊗ I2m−r .

Next, as already hinted in the proof of Lemma 1, it is

beneficial to embed Sr ∈ Sym(r; 2) as the upper-left block

of S ∈ Sym(m; 2), and set the rest of S to zero. Then, for

a ∈ Fm
2 satisfying (91) (that is, nonzero locations of the

BSSC), (90) implies aTP−TSP−1a = xTSrx. Combining

everything together, (88) reads as

w
H,Sr

b
(a)=

(−1)wt(bm−r)

√
2r

ia
T
P

−T
SP

−1
a+2b

T
P

−1
af(b, P−1

a, r).

(93)

Above, the function wt( • ) is just the Hamming weight which

counts the number of non-zero entries in a binary vector. The

overall sign (−1)wt(bm−r) is insignificant for our purposes

since we are dealing with Grassmannian/projective codebooks.

Thus, in what follows, we will use (93) as the definition of

BSSCs.

A. Algebraic Structure of BSSCs

In what follows we fix a rank r, invertible P, symmetric

S, and b ∈ Fm
2 . As usual, P is uniquely associated with

H ∈ G(m, r; 2), S contains an r × r symmetric in its upper

left corner and 0 otherwise, and bT = [bT

r bT

m−r]. Next,

let F := FΩ(r)FU (S)FD(PT) ∈ Sp(m; 2) and let GF =
GD(PT)GU (S)GΩ(r) ∈ CliffN , so that Φ(GF) = F. Recall

also that {ea | a ∈ Fm
2 } is the standard basis of CN . With a

substitution u := P−1a in (93) we have

wb =
�

a∈Fm
2

wb(a)ea (94)

=
(−1)wt(bm−r)

√
2r

�
u∈Fm

2

iu
T
Su(−1)b

T
uf(b, u, r)ePu (95)

= GD(PT) · GU (S) ·
(−1)wt(bm−r)

√
2r

�
u∈Fm

2

(−1)b
T
uf(b, u, r)eu

(96)

= GD(PT)GU (S)
�
(−1)wt(bm−r)

�
GΩ(r)Z(m, r)eb (97)

= GD(PT)GU (S)GΩ(r)eb (98)

= GFeb, (99)

where (96) follows by (74) and (75), (97) follows

by (78), and (98) follows by the fact that Z(m, r)eb =
(−1)wt(bm−r)eb. We have proved the following.

Theorem 2: With the same notation as above, the BSSC wb

is the bth column of the Clifford matrix GF.

Corollary 1: Each binary subspace chirp is a stabilizer

state. The converse is also true. In particular, the BSSC

codebook is a group code of the Clifford group with generating

vector e0.

Proof: Stabilizer states can be defined equivalently as the

orbit of e0 under the action of CliffN ; see [46] for instance.

Then the first statement follows by (99). The converse is true

due to cardinalities.

Example 3 (Examples 1 and 2 Continued): Let us con-

sider the case u = 0, and for simplicity, let us set the

symmetric S to be the zero matrix,5 so that GU (S) is

the identity matrix. The on-off pattern of the resulting

BSSCs is governed by the r = 2 dimensional subspace

H = {000T, 100T, 001T, 101T} = cs (H{1,3}). The above

argument tells us that these BSSCs are precisely the

columns of Gu=0 from (80). One verifies this directly

using the definition (93). Moreover, the structure of the

on-off patterns is completely determined by (89). Indeed,

we see in (80) two on-off patterns: one determined by H
(if I

�Ibm−r ∈ H) and one determined by its coset6 (if

I
�Ibm−r /∈ H). In our specific case, we have I = {1, 3}, and

thus I
�I = I{2} = 010T. Thus I

�Ibm−r ∈ H iff bm−r = 0 iff

b ∈ {000T, 010T, 100T, 110T}, which corresponds to columns

{1, 3, 5, 7}. Additionally, within each of these columns, the

on-off pattern is again governed by H . Indeed, the non-zero

entries in these columns are in positions/rows indexed by H ,

that is, {1, 2, 5, 6} – precisely as described by (91). Since

cosets form a partition, it follows immediately that columns

indexed by different cosets are orthogonal. Orthogonality

of columns within each coset is a bit more delicate to see

directly. We will further discuss the general structure of

on-off patterns in Section IV-B.

Equation (49) gives a one-to-one correspondence between

canonical coset representatives and maximal stabilizers. Above

we mentioned that BSSCs are columns of Clifford matrices

parametrized by such coset representatives. The last piece

of the puzzle is found by simultaneously diagonalizing the

commuting matrices of a maximal stabilizer. We make this

precise in the following.

Theorem 3: Let F and GF be as above. The set {wb |
b ∈ Fm

2 } consisting of the columns of GF is the common

eigenspace of the maximal stabilizer E(Im|rP
T, (Im|rS +

Im|−r)P
−1) from (49).

Proof: Consider the matrix G := GF parametrized by

the symplectic matrix F, and recall that wb is the bth column

of GF. It follows from Remark 7 that the columns of G are

the eigenspace of E(x,y) iff

G†E(x,y)G = ±E([x,y]TF−1) (100)

is diagonal. Recall also that E(x,y) is diagonal iff x = 0,

and observe that FΩ(r)−1 = FΩ(r). Thus, GΩ(r) will

be the common eigenspace of the maximal stabilizer S iff

±E([x y]
T

FΩ(r)) is diagonal for all E(x,y) ∈ S. Then it

is easy to see that such maximal stabilizer is E(Im|r, Im|−r).
Next, if w is an eigenvector of E(c) then

Gw = ±GE(c)w = ±GE(c)G†Gw = ±E(cTΦ(G))Gw

implies that Gw is an eigenvector of E(cTΦ(G)). The proof

is concluded by computing [Im|r Im|−r]FU (S)FD(PT).
The result above is well-known in the sense that of course

stabilizer states are common eigenvectors of maximal stabi-

lizers. However, the parametrization above has a nice duality

built in (see also (110)) which is to the best of our knowledge

novel. It also serves our main purpose in the sense that

it clearly distinguishes between the “chirp part” and the

5
GU (S) does not affect the on-off pattern at all.

6There are exactly 2 = 23/22 cosets since H has dimensions 2.
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“on-off pattern part”. Namely, the subspace H governs the

off-diagonal part of the maximal stabilizer and it will be

used to decode the “chirp part”, whereas, its dual governs the

diagonal part of the maximal stabilizer and it completely deter-

mines the “on-off pattern part”. It is precisely this duality that

we leverage for decoding BSSCs. Additionally, (93) provides

a parametrization of stabilizer states. Other parametrizations

are known in literature, e.g. [24, Thms. 5&6], that as well

capture their subspace structure. It is our conviction that the

natural way to capture this structure is via partial Hadamard

matrices and Schubert Cells, as facilitated by (79) and (92).

The canonical form of the invertible matrix P in (14) (which

in the complex domain corresponds to qubit permutations)

explicitly encodes the subspace/coset on which a stabilizer

state is nonzero. Additionally, it can provides a simplified

description of the underlying quadratic form that determines

the nonzero entries. It is also our conviction that, as indicated

by the semiproduct rule (28), this is the natural way to capture

such quadratic form.

Remark 9: Note that for r = m one has E(Im|r, Im|−r) =
E(Im, 0m) and GΩ(r) = HN . Thus the above theorem

covers the well-known fact that HN is the common eigenspace

of the maximal stabilizer XN = E(Im, 0m). It is also

well-known that the standard basis of CN (that is, IN ) is

the common eigenspace of the maximal stabilizer ZN =
E(0m, Im) of diagonal Paulis. This is of course consistent

with the aforesaid fact since [0m Im]Ω = [Im 0m] and

HN = Φ−1(Ω). In this extremal case we also have PI = Im

and fSr = S ∈ Sym(m; 2). So the above theorem also

covers [30, Lem. 11] which (in the language of this paper)

says that the common eigenspace of E(Im, S) is GU (S)HN .

Additionally, because S is symmetric, it can be thought of as

an adjacency matrix of some underlying graph, and therefore

binary chirps are nothing else but graph states. In this way,

the BC to BSSC extension can be realized as the graph states

to the stabilizer states extension.

Remark 10: Theorem 3 is a closed form realization of a

more general fact. Let S be a maximal stabilizer and let

S = rs [A B] ⊂ F2m
2 be its corresponding isotropic subspace.

Consider also the diagonal Paulis ZN and its corresponding

subspace ZN = rs [0m Im]. Then, by [35, Alg. 1] there exists

G ∈ CliffN such that GSG† = ZN . In other words, G†

simultaneously diagonalizes S, and moreover, the respective

diagonal is a Pauli. In the symplectic domain, it follows by

[35, Thm. 25] that there are precisely 2m(m+1)/2 symplectic

solutions to the equation [A B]F = [0m Im].
Corollary 2: Let S be a maximal stabilizer. Then the sta-

bilizer state V (S) is a rank r BSSC iff |S ∩ ZN | = 2m−r.

Proof: By Corollary 1 we know that V (S) is a BSSC of

rank r, which in turn is stabilized by the maximal stabilizer

of Theorem 3. Such stabilizer has precisely 2m−r diagonal

Paulis; see also (110).

We mentioned that the extremal case r = m gives the

codebook VBC. Before discussing general on-off patterns,

we consider the lower-end extremal cases r = 0, 1.

Remark 11: Let r = 0. In this case we again have P = Im

and S = 0m. In addition f(v,w, 0) = δv,w. Thus, from (93)

we see that wb(a) 6= 0 iff a = b, in which case we

Fig. 3. BSSCs in N = 4 dimensions. White = 0, Blue = 1, Cyan = −1,
Red = i, Magenta = −i.

have wb(a) = (−1)wt(b). This can also be seen from (99).

Indeed, since GΩ(0) = IN we have GF = IN . Note also

that Z(m, 0) = σz ⊗ · · · ⊗ σz = E(0,1) is the common

eigenspace of the maximal stabilizer E(Im, Im), as established

by Theorem 3.

Remark 12: Let r = 1. In this case, either S = 0m or

S = e1e1
T, where e1 ∈ Fm

2 is the first standard basis vector.

It follows that, up to a Pauli matrix, GU (S) is either IN or

the transvection (IN + iZ1)/
√

2 where Z1 = E(0, e1) has

σz on the first qubit and identity elsewhere; see also (87).

Similarly GΩ(1) = (X1 + Z1)/
√

2 is another transvection.

Thus, rank one BSSCs are columns of transvections, permuted

by some Clifford permutation GD(P). See [47], [48] for more

on transvections.

Example 4: Let m = 2. There are 3 =
(
2
1

)
2

one dimen-

sional spaces in Fm
2 and there are two 1 × 1 symmetric

matrices. Thus there are 22 · 3 · 2 = 24 BSSCs of rank

r = 1 in N = 2m = 4 dimensions, as depicted in Figure 3b.

Furthermore, there are eight 2 × 2 symmetric matrices, and

these yield 32 = 22 · 8 BCs, as depicted in Figure 3c. Along

with 4 = 22 BSSCs of rank 0 depicted on Figure 3a, we have

in total 60 = 4+24+32 = 4·3·5 BSSCs in N = 4 dimensions,

as given by (8).

B. Structure of On-Off Patterns

As discussed, for Sr ∈ Sym(r; 2) and H ∈ G(m, r; 2) we

obtain a unitary matrix

UH,Sr
(a,b) =

�
wb(a)

�
a,b

∈ U(N). (101)

We will omit the subscripts when the context is clear. We know

from (99) that such a matrix is an element of CliffN . The

subspace H determines the sparsity of U. Indeed, we see

from (88) that the on-off pattern is supported either on H
or on a coset of it. Thus, the on-off patterns of different

columns are either equal or disjoint. It also follows that in U

there are 2m−r different on-off patterns, each of which repeat

2r times.

In [29] it was shown that BCs form a group under

coordinate-wise multiplication. Whereas, we can immediately

see that this is not the case for BSSCs. For instance, if one

considers two BSSCs with disjoint on-off patterns then they

coordinate-wise multiply to 0 ∈ CN . When two BSSCs have

the same on-off pattern the coordinate-wise multiplication can

be determined as follows. Let w1 and w2 be two columns

of U with the same on-off pattern, indexed by b1 and

b2 respectively. Let er = m − r. In such case, (91) implies

b1,�r = b2,�r, that is, they are equal in their last er coordinates.

Authorized licensed use limited to: Duke University. Downloaded on February 02,2024 at 23:57:47 UTC from IEEE Xplore.  Restrictions apply. 



PLLAHA et al.: BINARY SUBSPACE CHIRPS 7747

Recall also that the non-zero coordinates of a BSSC are

determined by (89). We have that

2rw1(a)w2(a) = (−1)x
TSx+(b1,r+b2,r)Tx, (102)

where x ∈ Fr
2 is such that

P−1a =

�
x

b1,�r

�
=

�
x

b2,�r

�
. (103)

The matrix P above corresponds to H as usual. Next, the

map x 7−→ xTSx is additive modulo 2, and thus it is of form

x 7−→ bT

Sx for some bS ∈ Fm
2 . It follows that

2rw1(a)w2(a) = (−1)(bS+b1,r+b2,r)Tx. (104)

Then it is easy to see that the right-hand-side of (104) is, up to

a sign, a column of GD(PT)GΩ(r).
With a similar argument, when two BSSCs with the same

on-off pattern, but different symmetric matrices S1 and S2, are

coordinate-wise multiplied, we obtain, up to sign, a column of

GD(PT)GU (S1 + S2)GΩ(r). In all cases, the “up to sign”

is determined by wt(b
�r), that is, the Hamming weight of the

last er coordinates of the column index.

Also with a similar argument, one determines the conjugate

of BSSCs and the coordinate-wise multiplication of BSSCs

with H1 ∈ G(m, r1) and H2 ∈ G(m, r2). Without diving in

details, in this case the on-off pattern will be determined by

H1 ∩ H2 and of course the sparsity will be determined by

r = dim H1 ∩ H2.

In particular, we have proved the following.

Theorem 4: The set VBSSC is closed with respect to

coordinate-wise conjugation. The set VBSSC ∪{0N} is closed

with respect to coordinate-wise multiplication. The set of all

BSSCs of given sparsity r and on-off pattern is isomorphic to

Sym(r; 2).
By Theorem 1, the codebooks VBC and VBSSC have the

same minimum distance, and the latter is 2.384 bigger. Thus,

from a coding prospective the codebook VBSSC provides a

clear improvement. Additionally, we will see next that VBSSC

can be decoded with similar complexity as VBC. For these

reasons, VBSSC is an optimal candidate for extending VBC

also from a communication prospective. The alphabet of VBC

is {±1,±i} whereas the alphabet of VBSSC is {±1,±i} ∪
{0}, which is a minimal extension from the implementation

complexity prospective.

Corollary 3: Let Gj = GU (Sj)HN ∈ CliffN for j =

1, 2 and Sj ∈ Sym(m; 2). Then G = G
†
1G2 has sparsity r

where r = rank (S1 +S2) and its on-off pattern is determined

by H = rs (S1 + S2).
Proof: Recall that Gj constitutes all the BCs parametrized

by Sj . Then the statement follows directly by (9).

Remark 13: The vector space of symmetric matrices can

be written in terms of a chain of nested subspaces, referred in

literature as Delsarte-Goethals sets,

DG(m, 0) ⊂ DG(m, 1) ⊂ · · · ⊂ DG(m, (m − 1)/2) (105)

with the property that every nonzero matrix in DG(m, r) has

rank at least m−2r [49], [50]. For applications in deterministic

compressed sensing, random access, and quantum computation

see [6], [30], [51]. Since DG(m, r) is a vector space, it comes

with the property that the sum of every two different matrices

also has rank at least m−2r. Thus, for S1,S2 ∈ DG(m, (m−
r)/2), the construction of Corollary 3 yields a Clifford matrix

of sparsity at least r. This is an alternative way of creating rank

r BSSCs in terms of BCs. However, this will not yield all the

BSSCs because not every subspace H is the row/column space

of a symmetric matrix S.

V. RECONSTRUCTION ALGORITHMS

In this section we use the rich algebraic structure of

BSSCs to construct a low complexity decoding/reconstruction

algorithm. We will build our way up by starting with the

reconstruction of a single BSSC. In order to gain some

intuition we disregard noise at first. The problem in hand is

to recover H,Sr, and b given a binary subspace chirp wb

as in (93). In this noiseless scenario, the easiest task is the

recovery of the rank r. Namely, by (91) we have

wb(a)wb(a) =

�
1/2r, 2r times,

0, 2m−r times.
(106)

To reconstruct H and then eventually Sr we generalize the

shift and multiply technique used in [6] for the reconstruction

of binary chirps. Here “shift” means shifting/permuting the

coordinates of wb according to a 7−→ a + e and “multiply”

means coordinate-wise multiplication of the shifted version

with the original vector. The underlying structure that enables

this generalization is the fact that the on-pattern of BSSC is

a BC of lower rank as discussed in Section IV. The prime

focus will be to upgrade to a technique that also takes care of

identifying the subspace H . Additionally, in our scenario extra

care is required as the shifting can perturb the on-off pattern.

Namely, we must use only shifts a 7−→ a+e that preserve the

on-off pattern. It follows by (91) that we must use only shifts

by e that satisfy (gHI)Te = 0, or equivalently e = HIx for

x ∈ Fr
2. In this instance, thanks to (13) we have

P−1e = P−1HIx =

�
x

0

�
. (107)

If we focus on the nonzero entries of wb and on shifts (107)

that preserve the on-off pattern of wb we are left with a rank-

r binary chirp which remains unaffected by the shift. It is

beneficial to take y to be fi - one of the standard basis vectors

of Fr
2 and identify x with P−1e. With this preparation we are

able to use the shift and multiply technique, that is, shift the

given BSSC wb according to the shift x 7−→ x + fi (which

only affects the on-pattern and fixes the off-pattern) and then

multiply by its conjugate:

wb(x+fi)wb(x)=
1

2r
·ifT

iSrfi ·(−1)b
T
rfi ·(−1)x

TSrfi . (108)

Note that above only the last term depends on x. Now if we

multiply (108) with the Hadamard matrix (77) we obtain

if
T
iSrfi · (−1)b

T
rfi

X

x∈Fr
2

(−1)x
T(v+Srfi), (109)

for all x ∈ Fr
2 (where we have omitted the scaling factor).

Then (109) is nonzero precisely when v = Srfi - the ith
column of Sr. With Sr in hand, one recovers br simi-

larly by multiplying wb(x)w0(x) with the Hadamard matrix.

Authorized licensed use limited to: Duke University. Downloaded on February 02,2024 at 23:57:47 UTC from IEEE Xplore.  Restrictions apply. 



7748 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 12, DECEMBER 2022

To recover bm−r one simply uses the knowledge of nonzero

coordinates and (89). Next, with b in hand and the knowledge

of the on-off pattern one recovers HI (and thus H) using (91).

We will refer to the process of finding the column index b as

dechirping.

In the above somewhat ad-hoc method we did not take

advantage of the geometric structure of the subspace chirps

as eigenvectors of given maximal stabilizers or equivalently

as the columns of given Clifford matrices. We do this next by

following the line of [22].

Let w be a subspace chirp as in (93), and recall that,

by Theorem 2, it is the column of G := GF =
GD(PT)GU (S)GΩ(r) where F := FΩ(r)FU (S)FD(PT).
Then by construction G and F satisfy G†E(c)G =
±E(cTF−1) for all c ∈ F2m

2 . Recall also from Theorem 3

that G is the common eigenspace of the maximal stabilizer

E(Im|rP
T, (Im|rS + Im|−r)P

−1) = E

��
HI

T

SrI
T

I

0 gHI
T

	�
.

(110)

Thus, to reconstruct the unknown subspace chirp w, it is

sufficient to first identify the maximal stabilizer that stabilizes

it, and then identify w as a column of G. The best way to

accomplish the latter task, dechirping that is, is as described

above, and thus we focus only on the former task. A crucial

observation at this stage is the fact that the maximal stabilizer

in (110) has precisely 2r off-diagonal and 2m−r diagonal Pauli

matrices; see also Corollary 2.

We now make use of the argument in Theorem 3, that is,

w is an eigenvalue of E(c) iff E(cTF−1) is diagonal. Let

us focus first on identifying the 2m−r diagonal Pauli matrices

that stabilize w, that is, c =

�
0

y

�
. First we see that

F−1 =

�
IISr

gHI II 0

HI 0 0 I
�I

�
. (111)

Then for such c, w is an eigenvector of E(c) iff yTHI = 0 iff

y = gHIz for some z ∈ Fm−r
2 . Thus, to identify the diagonal

Pauli matrices that stabilize w, and consequently the subspaces

HI ,gHI , it is sufficient to find 2m−r vectors y ∈ Fm
2 such that

0 6= w†E(0,y)w = w†E(0,gHIz)w. (112)

It follows by (59) that the above is equivalent with finding

2m−r vectors y such that

0 6=
X

v∈Fm
2

(−1)y
Tv|w(v)|2 =

X

v∈Fm
2

(−1)z
T
�HTv|w(v)|2.

(113)

The above is just a Hadamard transform which can be

efficiently undone.

With a similar argument, w is an eigenvector of a general

Pauli matrix E(x,y) iff

w†E(x,y)w = ix
Ty

X

v∈Fm
2

(−1)v
Tyw(v + x)w(v) 6= 0.

(114)

The above is again just a Hadamard transform. In fact,

we see here both the “shift” (by x), the “multiply”, and the

Hadamard transform of the “shift and multiply”. This is the

main insight that transfers the shift and multiply technique

of [6] to computation with Pauli matrices. By definition, the

Pauli matrix E(x,y) has a diagonal part determined by y

and an off-diagonal part determined by x. The off-diagonal

part of a Pauli determines the shift of coordinates whereas the

diagonal part takes care of the rest.

Computing w†Uw for a generic N × N matrix is expen-

sive, and even more so if the same computation is repeated

N2 times. However, when U is a Pauli matrix, which is

a monomial matrix of sparsity 1, the same computation is

much faster. Moreover, as we will see, for a rank r BSSC

we need not compute all the possible N shifts but only r
of them. This is an intuitive observation based on the shape

of the maximal stabilizer (110). Indeed, once the diagonal

Pauli matrices are identified, one can use that information to

search the off-diagonal Pauli matrices only for x ∈ cs (HI),
which reduces the search from 2m to 2r. In fact, as we will

see, instead of 2r shifts we will need only use the r shifts

determined by columns of HI .

Let us now explicitly make use of (114) to reconstruct the

symmetric matrix Sr, while assuming that we have already

reconstructed HI ,gHI . In this case, as we see from (111), the

only missing piece of the puzzle is the upper-left block of F−1.

We proceed as follows. For c =

�
x

y

�
, we have w†E(x,y)w 6=

0 iff E(cTF−1) is diagonal, iff

xT[IISr
gHI ] = yT[HI 0]. (115)

As before, we are interested in y ∈ Fm
2 that satisfy (115).

First note that solutions to (115) exist only if xTgHI = 0, that

is only if x = HIz, z ∈ Fr
2. For such x, making use of (13),

we conclude that (115) holds iff

zTSr = yTHI . (116)

Solutions of (116) are given by

y = gHIv + IISrz, v ∈ Fm−r
2 . (117)

If we take z = fi - the ith standard basis vector of Fr
2 - we

have that zTSr is the ith row/column of Sr while x = HIz
is the ith column of HI .

We collect all these observations in Algorithm 2.

A. Reconstruction of Single BSSC in the Presence of Noise

In order to move towards a multi-user random access

scenario, one needs a reliable reconstruction algorithm of noisy

BSSCs. For this we consider a signal model

s = w + n, (118)

where n is Additive White Gaussian Noise (AWGN). In such

instance, the subspace reconstruction, that is, step (2) of

Algorithm 2 is a delicate procedure. However, one can proceed

as follows. For each y ∈ Fm
2 we compute s†E(0,y)s and use

it as an estimate of w†E(0,y)w. We sort these scattered real

values in decreasing order and make rank hypothesis, that is,
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Algorithm 2 Reconstruction of Single Noiseless BSSC

Input: Unknown BSSC w

1. Compute w†E(0,y)w for y ∈ Fm
2 .

2. Find HI using

w†E(0,y)w 6= 0 iff yTHI = 0 iff y ∈ cs (gHI).

3. Construct PI as in (14).

4. r = rank (HI).
5. for i = 1, . . . , r do:

6. Compute w†E(HIfi,y)w for y ∈ Fm
2 .

7. Determine the ith row of Sr using (117).

8. end for

9. Dechirp w to find b.

Output: r,Sr,PI ,b.

Fig. 4. On-off pattern of noisy BSSC versus on-off pattern of noiseless
BSSC.

for each 0 ≤ r ≤ m we select 2m−r largest values that form

a subspace of rank r, and then proceed with Algorithm 2 to

obtain wr. We then select the best rank using the Euclidean

norm:
ew = arg min

r
ks− wrk2. (119)

In Figure 4 we see an instance of a rank r = 2 BSSC

on-off pattern in N = 28 dimensions, with and without noise.

In this case w†E(0,y)w is non-zero 2m−r = 64 times. In this

instance, only 94% of the 64 highest s†E(0,y)s values of

the noisy version match the on-off pattern of w. However,

this can be overcame in recusntruction by using the fact that

the on-off pattern is determined by a subspace. Thus one can

build up gHI in a greedy manner by starting with the highest

values and then including linear combinations. This strategy

was tested in [22] with Monte-Carlo simulations yielding

low error rates even for low Signal-to-Noise Ratio (SNR);

see [22, Fig. 1]. There it was observed that, rather remarkably,

BSSCs outperform BCs despite having the same minimum

distance.

VI. MULTI-BSSC RECONSTRUCTION

The strategy of noisy single BSSC reconstruction can be

used as a guideline to generalize Algorithm 2 to decode

Algorithm 3 Reconstruction of Noiseless Multi-BSSCs

Input: Signal s as in (120).

1. for ` = 1 : L do

2. for r = 0 : m do

3. Greedily construct the m − r dimensional subspace
gHI using the highest values of |s†E(0,y)s|.

4. Estimate ewr as in Alg. 2.

5. end for

6. Select the best estimate ew`.

7. Determine eh1, . . . ,eh` that minimize
%%%%%%
s−

X̀

j=1

hj ewj

%%%%%%
2

.

8. Reduce s to s0 = s −P`
j=1

ehj ewj .

9. end for

Output: ew1, . . . , ewL.

multiple simultaneous transmissions in a block fading multi-

user scenario

s =

LX

`=1

h`w` + n. (120)

Here the channel coefficients h` are CN (0, 1), with neither

phase nor amplitude known, and w` are BSSCs. Noise n may

be added, depending on the scenario. This model represents,

e.g., a random access scenario, where L randomly chosen

active users transmit a signature sequence, and the receiver

should identify the active users. In such application, the

channel gain is not known at the receiver, and thus one cannot

use the amplitude to transmit information. For this reason, the

amplitude/norm is assumed, without loss of generality, to be

one. Additionally, the channel phase is also not known at the

receiver and should not carry any information. Thus without

loss of generality, the codewords can be assumed to come from

a Grassmannian codebook, such as VBC or VBSSC.

We generalize the single-user algorithm to a multi-user algo-

rithm, where the coefficients h` are estimated to identify the

most probable transmitted signals. For this, we use Orthogonal

Matching Pursuit (OMP), which is analogous with the strategy

of [6]. We assume that we know L.

The estimated error probability of single user transmission

for L = 2, 3 is given in Figure 5. For the simulation, the rank

r is selected in a weighted manner, according to the relative

size of rank r BSSCs (recall that there are 2m ·
(
m
r

)
2
·2r(r+1)/2

rank r BSSCs). Whereas, within a given rank, BSSCs are

chosen uniformly. We compare the results with BC codebooks

and random codebooks with the same cardinality. For random

codebooks, steps (2)-(5) of Algorithm 3 are substituted with

exhaustive search (which is infeasible is beyond m = 6).

The erroneous reconstructions of Algorithm 3 come in part

from steps (3)-(4). Specifically, from the cross-terms of

s†s =

LX

`=1

|h`|2kw`k2 +
X

i6=`

hih`w
†
iw`. (121)
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Fig. 5. Error probability of Algorithm 3 on absence of noise. Random
codebook included for comparison.

Fig. 6. On-off pattern of a noiseless vs. noisy linear combination of BSSCs.

For BCs, these cross-terms are the well-behaved sec-

ond order Reed-Muller functions. The BSSCs, unlike the

BCs [29], do not form a group under point-wise multipli-

cation (Theorem 4), and thus the products w
†
iw` are more

complicated. Indeed, when two BSSCs of different ranks

and/or different on-off patterns are multiplied coordinate-

wise (which we do during the “shift and multiply”) the

resulting BSSCs could be potentially very different (if not

zero) as described in Theorem 4. In addition, linear combi-

nations of BSSCs (120) may perturb the on-off patterns of

the constituents, and depending on the nature of the channel

coefficients h`, the algorithm may detect a higher rank BSSC

in s. If the channel coefficients of two BSSCs happen to

have similar amplitudes, the algorithm may detect a lower

rank BSSC that corresponds to the overlap of the on-off

patterns of the BSSCs. These phenomena are depicted in

Figure 6 (in blue) in which the on-off pattern of a linear

combination of a rank two, a rank three, and a rank six BSSCs

in N = 28 dimensions is displayed. There, we see multiple

levels (in blue) of s†E(0,y)s, only some of which correspond

to actual on-off patterns w
†
`E(0,y)w` of the given BSSCs,

Fig. 7. Error probability of Algorithm 3 for noisy multi-user transmission
in N = 256 dimensions and SNR = 30 dB.

and the rest corresponds to different combinations of overlaps.

The problem for multi-BSSC reconstruction caused by these

phenomena is alleviated by the fact that most BSSC codewrods

have high rank. E.g., as m grows, it follows by Theorem 1

that about 42% of BSSCs are BCs. Low rank BSSCs are very

unlikely in (120).

Despite these phenomena affecting BSSC on-off patterns

in multi-BSSC scenarios, a decoding algorithm like the one

discussed is able to distinguish different levels and provide

reliable performance. It is worth mentioning that by comparing

Figure 5 with [22, Fig. 1] we see that the interference of

BSSCs is much more benign than general AWGN, which in

turn explains the reliable reconstruction of noiseless multi-user

transmission.

Interestingly, even in this multi-user scenario, we see that

BSSCs outperform BCs. With increasing m, the performance

benefit of the algebraically defined codebook over random

codebooks diminishes. However, the decoding complexity

remains manageable for the algebraic codebooks.

In [22] it was demonstrated that reconstruction of a single

noisy BSSC was possible even for low SNR. We have per-

formed preliminary simulations and have tested Algorithm 3

on a noisy multi-user transmission. Unlike the single BSSC

scenario, the multi BSSCs scenario requires a higher SNR

regime for reliable performance. In Figure 6 we have shown

(in red) |s†E(0,y)s| for a noisy version of the same linear

combination as before (displayed in blue). In this instance we

have fixed SNR = 8 dB. A close look shows that this scenario

is different from the single user scenario displayed in Figure 4.

In this instance, even an exhaustive search over ranks r as

in Algorithm 3 produces an on-off pattern that matches at

most 61% any actual on-off pattern, and thus the subspace

reconstruction inevitably fails. On the other hand, if the on-off

pattern is reconstructed correctly, then the corresponding r-

dimensional BC can be reconstructed reliably. When noise

is on manageable level, reliable reconstruction of multi-user

BSSCs is possible with Algorithm 3. In Figure 7, we depict

the performance of N = 256 BSSC and BCs in a scenario
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with SNR 30 dB, for a varying number of simultaneously

transmitting users. Again, we see that BSSCs provide slightly

better error performance than BCs, despite the codebook being

larger.

VII. CONCLUSION AND FUTURE RESEARCH

Algebraic and geometric properties of BSSCs are described

in details. BSSCs are characterized as common eigenspaces

of maximal sets of commuting Pauli matrices, or equivalently,

as columns of Clifford matrices. This enables us to fully

exploit connections between symplectic geometry and quan-

tum computation, which in turn yield considerable complexity

reductions. Further, we have developed a low complexity

decoding algorithm for multi BSSCs transmission with low

error probability.

By construction, BSSCs inherit all the desirable proper-

ties of BCs, while having a higher cardinality. In wireless

communication scenarios BSSCs exhibit slightly lower error

probability than BCs. For these reasons we think that BSSCs

constitute good candidates for a variety of applications.

Algorithm 3 is a generalization of the BC decoding algo-

rithm of [6] to BSSCs. As pointed out in [12], the decoding

algorithm of [6] does not scale well in a multi-user scenario,

in terms of the number of users supported as a function of

codeword length. In [12], [25] slotting arrangements were

added on top of BC codes to increase the length, and the

number of supported users. Part of the information in a

transmission is embedded in the choice of a BC, part in

the choice of active slots. In [12], interference cancellation

across slots is applied, and the discussed scheme can be

considered a combination of physical layer (PHY) BC coding,

and a Medium Access Control (MAC) Layer code of the

type discussed in [52]. The works of [12], [25] show that

following such principles, practically implementable massive

random access schemes, operating in the regime of interest

of [13], can be designed. If the small-m BC-transmissions in

the slots would be replaced with BSSC transmissions with the

same m, the results of this paper indicate that performance

per slot would be the same, if not slightly better than in

[12], [25]. This indicates that combined MAC/PHY codes,

where BSSC would be the PHY component instead of BC as

used in [12], [25], are likely to provide slightly higher rates

with otherwise similar performance as [12], [25]. In future

work, we plan to investigate such codes.

As mentioned, we have seen in all our simulations that

BSSCs outperform BCs. Although our algorithms do not find

the closest codeword, this may be due to a fact that BSSCs

have fewer closest neighbors on average than BCs. We will

investigate this in future work with a statistical analysis of

Algorithm 3 along the lines of [29].

Binary chirps have been generalized in various works to

prime dimensions, and recently to non-prime dimensions [53].

In future work we will consider analogues generalizations of

BSSCs, by adding a sparsity component to generalized BCs

and/or by lifting BSSCs modulo 2t.
As a byproduct, we have obtained a Bruhat decomposition

of the symplectic group that involves five elementary symplec-

tic matrices (compared to the seven layers of [34], c.f., (32)).

We think that this has implications in quantum computation.

In future research we will explore whether Algorithm 1 can

be leveraged to improve upon [33], [54].
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