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Abstract— We describe in detail the interplay between binary
symplectic geometry and notions from quantum computation,
with the ultimate goal of constructing highly structured code-
books. The Binary Chirps (BCs) are Complex Grassmannian
Lines in N = 2™ dimensions used in deterministic compressed
sensing and random/unsourced multiple access in wireless net-
works. Their entries are fourth roots of unity and can be
described in terms of second order Reed-Muller codes. The
Binary Subspace Chirps (BSSCs) are a unique collection of
BCs of ranks ranging from » = 0 to » = m, embedded
in N dimensions according to an on-off pattern determined
by a rank r binary subspace. This yields a codebook that is
asymptotically 2.38 times larger than the codebook of BCs,
has the same minimum chordal distance as the codebook of
BCs, and the alphabet is minimally extended from {41, ¢} to
{#£1, +4, 0}. Equivalently, we show that BSSCs are stabilizer
states, and we characterize them as columns of a well-controlled
collection of Clifford matrices. By construction, the BSSCs inherit
all the properties of BCs, which in turn makes them good
candidates for a variety of applications. For applications in
wireless communication, we use the rich algebraic structure of
BSSCs to construct a low complexity decoding algorithm that is
reliable against Gaussian noise. In simulations, BSSCs exhibit an
error probability comparable or slightly lower than BCs, both
for single-user and multi-user transmissions.

Index Terms— Massive random access, Grassmannian codes,
Clifford matrices, stabilizer states, symplectic geometry.

I. INTRODUCTION

ODEBOOKS of complex projective (Grassmannian)
C lines, or tight frames, have found application in multiple
problems of interest for communications and information
processing, such as code division multiple access sequence
design [2], precoding for multi-antenna transmissions [3] and
network coding [4]. Contemporary interest in such codes
arise, e.g., from deterministic compressed sensing [5]-[9],
virtual full-duplex communication [10], mmWave communi-
cation [11], and random access [12].
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One of the challenges/promises of 5G wireless com-
munication is to enable massive machine-type communica-
tions (mMTC) in the Internet of Things (IoT), in which a
massive number of low-cost devices sporadically and ran-
domly access the network [13]. In this scenario, users are
assigned a unique signature sequence which they transmit
whenever active [14]. A complementary use-case is unsourced
multiple access, where a large number of messages is trans-
mitted infrequently. Polyanskiy [13] proposed a framework in
which communication occurs in blocks of N channel uses,
and the task of a receiver is to identify correctly L active
users (messages) out of 25, with one regime of interest being
N = 30,000,L = 250, and B = 100. Ever since its
introduction, there have been several follow-up works [12],
[15]-[18], extensions to a massive MIMO scenario [19] where
the base station has a very large number of antennas, and a
discussion on the fundamental limits on what is possible [20].

Given the massive number of users/messages to-be-
supported, the design criteria are fundamentally different from
classical multiple-access channel, and solutions have to be
sought for from novel directions. For instance, interference is
unavoidable due to the high number of users. Moreover, due
to the randomness in channel access, the level of interference
varies from instance to instance. As the transmissions are of
initial access type, phase coherence or instantaneous power
control cannot be assumed. Thus, the challenge becomes to
design highly structured codebooks of large cardinality, subject
to invariance with respect to absolute phase and amplitude,
along with a reliable and low-complexity multi-user decoding
algorithm.

Codebooks of Binary Chirps (BCs) [6], [21] provide such
highly structured Grassmannian line codebook in N = 2™
dimensions with additional desirable properties. All entries
come from a small alphabet, being a fourth root of unity,
and can be described in terms of second order Reed-Muller
(RM) codes. RM codes have the fascinating property that
a Walsh-Hadamard measurement cuts the solution space
in half. This yields a single-user decoding complexity of
O(Nlog® N), coming from the Walsh-Hadamard transform
and number of required measurements. Additionally, the num-
ber of codewords is reasonably large, growing as om(m+3)/2 —
\/NHIOg2 N, while the minimum chordal distance is 1/\/5

In this paper, we expand the BC codebook to the codebook
of Binary Subspace Chirps (BSSCs) in N = 2™ dimensions
by collectively considering all BCs in S = 2" dimensions for
r = 0,...,m. That is, given a BC in S = 2" dimensions,
we embed it in N = 2" dimensions via a unique on-off pattern
determined by a rank r binary subspace. Thus, a BSSC is
characterized by a sparsity r, a BC part parametrized by a
binary symmetric matrix S,. € Sym(r;2) and a binary vector
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Fig. 1. Interplay of binary world and complex world. The interplay detailed
in this paper, which is then used in the low-complexity decoding algorithm
of BSSCs, is depicted in green.

b € F7’, and a unique on-off pattern parametrized by a rank r
binary subspace H € G(m,r;2). Thus, an active device with
a rank 7 signature will transmit o/v/27, o € {#1,+i} during
time slots determined by the rank r subspace I, and it will be
silent otherwise. This resembles the model of [10], in which
active devices can also be used (to listen) as receivers during
the off-slots. The codebook of BSSCs inherits all the desirable
properties of BCs, and in addition, it has asymptotically about
2.384 more codewords.

Given the structure of BSSCs, a unified rank, on-off pattern,
and BCs part (in this order) estimation technique is needed.
In [22], a reliable on-off pattern detection was proposed,
which made use of a Weyl-type transform [23] on m qubit
diagonal Pauli matrices. The algorithm can be described with
the common language of symplectic geometry and quantum
computation. We show that BSSCs are common eigenvectors
of maximal sets of commuting Pauli matrices, commonly
referred in literature as stabilizer groups. In this way BSSCs
constitute nothing else but a parametrization of stabilizer
states. While there are other known parametrizations, e.g. [24],
the parametrization of this paper is derived in such a way that
it can be leveraged to a low-complexity decoding algorithm.
The key insight will be to decode a BSSC by estimating
the corresponding unique maximal stabilizer that stabilizes it.
In particular, we show that each BSSC is a column of a unique
Clifford matrix (99), which itself is the common eigenspace
of a unique stabilizer group (110); see also Theorem 3. The
interplay between the binary world and the complex world is
depicted in Figure 1.

Making use of these structural results, the on-off pattern
detection of [22] can be generalized to recover the BC part
of the BSSC, this time by using the Weyl-type transform on
the off-diagonal part of the corresponding stabilizer group.
This yields a single-user BSSC reconstruction as described
in Algorithm 2. In [1], we added Orthogonal Matching
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Pursuit (OMP) to obtain a multi-user BSSCs reconstruction
(see Algorithm 3) with reliable performance when there is
a small number of active users. As the number of active
users increases, so does the interference, which has a quite
destructive effect on the on-off pattern. However, state-of-
the-art solutions for BCs [9], [18], [25] such as slotting and
patching, can be used to reduce the interference. Preliminary
simulations show that BSSCs exhibit a lower error probability
than BCs. This is because BSSCs have fewer closest neighbors
on average than BCs. In addition, BSSCs are uniformly
distributed over the sphere, which makes them optimal when
dealing with Gaussian noise.

Throughout, the decoding complexity is kept at bay by
exploiting the underlying symplectic geometry. The sparsity,
the BC part, and the on-off pattern of a BSSC can be described
in terms of the Bruhat decomposition (31) of a symplectic
matrix. Indeed, the unique Clifford matrix (99) of which
a BSSC is a column, is parametrized by a coset represen-
tative (33) as described in Lemma 1. In turn, such coset
representative determines a unique stabilizer group (110).
We use this interplay to reconstruct a BSSC by reconstructing
the stabilizer group that stabilizes the given BSSC. This alone
reduces the complexity from O(N?) to O(N log, N).

The paper is organized as follows. In Section II we
formulate the problem and motivate the solution approach.
In Section III we review the basics of binary symplectic
geometry and quantum computation. In order to obtain a
unique parametrization of BSSCs, we use Schubert cells
and the Bruhat decomposition of the symplectic group.
In Section III-D we lift the Bruhat decomposition of the
symplectic group to obtain a decomposition of the Clifford
group. Additionally, we parametrize those Clifford matrices
whose columns are BSSCs. In Section IV we give the formal
definition of BSSCs, along with their algebraic and geometric
properties. In Sections V and VI we present reliable low com-
plexity decoding algorithms, and discuss simulation results.
We end the paper with some conclusions and directions future
research.

A. Main Contributions

We have extended the codebook of binary chirps to the
codebook of binary subspace chirps which is asymptotically
2.38 times bigger and has the same minimum chordal distance
as stated in Theorem 1. In Corollary 1 we show that binary
subspace chirps are precisely the collection of stabilizers
states, which in turn immediately makes them a non-Abelian
group code with a faithful representation in N dimensions.
Of prime interest is the corresponding unique maximal stabi-
lizer as described in Theorem 3. We use the underlying group
structure to generalize the algorithm of [6] to a BSSC setting
without significantly increasing the complexity. We argue that
binary subspace chirps constitute good candidates in a variety
of IoT applications such as random access, unsourced access,
and neighbor discovery.

B. Conventions

All vectors, binary or complex, will be columns. Fo denotes
the binary field, GL(m; 2) denotes the group of binary m X m
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Fig. 2. Massive random access.

invertible matrices, and Sym(m;2) denotes the group of
binary m x m symmetric matrices. We will denote matrices
(resp., vectors) with upper case (resp., lower case) bold letters.
AT will denote the transpose and A~ T will denote the inverse
transposed. cs (A) and rs (A) will denote the column space
and the row space of A respectively. Since all our vectors are
columns, we will typically deal with column spaces, except
when we work with notions from quantum computation,
where row spaces are customary. I,, will denote the m x m
matrix (complex or binary). G(m, r;2) = GL(m;2)/GL(r; 2)
denotes the binary Grassmannian, that is, the set of all
r-dimensional subspaces of F3'. U(N) denotes the set of
unitary N X N complex matrices and 1 will denote the
conjugate transpose of a matrix.

II. PROBLEM FORMULATION AND SOLUTION APPROACH

A. System Model

We consider a dense network of M single antenna low-cost
sensors/users spread out in a cell covered by a base station.
Each sensor becomes active randomly and sporadically, during
which it transmits its signature, or an information carrying
message, to the base station in blocks of N channel uses.
We assume that the users are synchronized to the base station,
and that the channels are frequency flat. The overall number
of users is massive; M > N. Whenever active, user v will
transmit its signature s,, € C"V. During a given communication
event, a random selection of L users is simultaneously active,
with signatures or messages indexed by ug, £ =1,..., L. The
base station then receives

L
s = Zcesw +n, ¢, eC,neCV,
=1

ey

where ¢, denotes the complex channel coefficient between
user uy and the base station, n is Additive White Gaussian
Noise (AWGN) and each user obeys the power constraint
[sw|| = 1. Two related problems can be formulated as follows.

Problem 1: Determine the set of active users/their messages
{u1,...,ur} given s.
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Problem 2: Design a codebook C = {sy,...,sy} C CV
that reliably solves Problem 1 with low complexity.
In simulations we assume to know the number L of active
users at any given time, and the error probability of single
user transmission is estimated as

number of users decoded correctly

b total number of active users )
The performance of a codebook C = {s;}, c C¥ is

governed by the worst-case coherence (1(C) = max;+; |s;rsj ,
or equivalently by the minimum chordal distance 6.(C) =
/1 — p?(C). Thus, we are seeking for a very large number
of unit vectors in CV that are sufficiently separated. As the
users are not phase coherent, codewords are not separated by
phase, and thus we are interested in equivalence classes of
unit vectors, up to U(1) rotations, i.e. complex projective lines
in CPY ™!, or equivalently, Grassmannian lines in Ge(N, 1).
Given the very large number of total users M that we would
want to support, the codebook C of signatures must be highly
structured, so that low-complexity decoding algorithms are
feasible. One such codebook, shown to be successful in theory
and practice, is the codebook of Binary Chirps (BCs) [6], [21],
defined as follows. Fix a natural number m and put N = 2™.
For a binary vector b € F3' and binary symmetric matrix
S € Sym(m;2) define

iaTSa+2bTa mod 4

3

C(m’) = {vas}b,S’ Wb,S(a) =
3)

A time-slot n € {1,..., N} is indexed as a binary vector
a® e F5* of length m. Thus, during time-slot n, an active
user will transmit the corresponding symbol wb7s(a(")) of its
signature wy, s. To simplify the notation, we will drop the
superscript. The number of signatures/codewords is

|C(m)| — gm  gm(m+1)/2 _ \/N?)JrlogQ N’ @

while the minimum chordal distance is 1/ V2; see (9). In [6],
the authors leverage the structure of BCs to construct a
low-complexity decoding algorithm. They use the so-called
shift and multiply technique in conjunction with the Walsh-
Hadamard transform.

B. Generalizing BCs to BSSCs

We aim to further leverage the structure of BCs, by extend-
ing them to a larger codebook, while preserving the main
algebraic and geometric features so that a low-complexity
algorithm for the extended codebook remains feasible. For this,
we use the guiding principles of [10], in which an active user
transmits only on K < N time-slots. This creates an on-off
pattern of time-slots. We assume that the on-pattern forms a
binary subspace of [F5* of dimension/rank 0 < r < m, that is,
an active user transmits only during time-slots indexed by a
binary subspace. Given the power constrain of each user, the
dimension of the on-pattern, can also be used to prioritize users
based on their distance from the base station. Now, given an
on-pattern, characterized by a binary subspace H € G(m,r;2)
of dimension 7, an active user will transmit a 2"-dimensional
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binary chirp characterized by b e F5, S € Sym(r;2). This
strategy creates a codebook C(") = {wg g} of 2"-dimensional
binary chirps to be distributed to users that, when active,
transmit on time-slots indexed by H. As we will see, however,
transmitting on a coset of H is just as good as transmitting on
H itself. Since there are 27" different cosets of H, we can
keep track of every single option with a vector b € F5'~". This

suggest to think of a vector b € F* as b = [%} e FoxFy ",

the first r bits of which are used to define a 2"-dimensional
binary chirp and the last m — r bits of which are used to keep
track of the coset of H. The concise method for keeping track
of cosets will use Schubert Cells as described in Section III-A,
and will be detailed in Section IV. Note that, since cosets are
disjoint, so are the 2™~ " on-patterns determined by H.! Thus,
combining all together, we obtain a codebook C (r) _ {Wbyg},

for which |Cg)| = 2m . 27("+1)/2 The codebook of Binary
Subspace Chirps (BSSCs) is defined as

VBssc = U U Cg)- (5

r=0 HeG(m,r;2)

We will have a running example that illustrates all the struc-
tural the details. But first, to compute the size of the extended
codebook, we recall that the size of the binary Grassmannian
is given by the 2-binomial coefficient, that is

m Tl gm—i
g2l = (7) ~Ml 1 ©

i=0
and hence, the cardinality of our extended codebook is

m r—1 i

Vassc| =27 2002 (T30 ) @

BSSC| — 1 — 9itt
r=0 =0

=27 [[e@ +, ®)
r=1
where the last equality is simply the 2-binomial theorem [26].

Recall Slepian’s definition of group codes [27]; a group code
is a code generated as the orbit of a generating vector v under
the action of a finite group G; C = {w = Gv | G € G}. Group
codes are efficient for constructing tight frames/Grassmannian
line codebooks [28].

The main coding-related characteristics of the extended
codebook Vpggc are the following.

Theorem 1: We have 6.(Vpssc) = 0.(C"™) = 1/4/2 and
[Vessc|/|C™| ~ 2.384. Additionally, Vssc is a group code
of the Clifford group.

Proof: Fix a binary chirp w; € Vpc parametrized by
S; € Sym(m;2), and let wo range among 2™ binary chirps
parametrized by So € Sym(m;2). Then [6], [29], [30]

1/2", 2" times
i 2 __ ) ;
W Wa|® = 9
[wiws| {0, 2™ — 27 times, ©)

!"This important feature can be further leveraged by the network. Namely,
a user can receive/listen during the off-pattern, and if neighboring users
are assigned to have disjoint on-patterns, this can be used for neighbour
discovery [9].
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where r = rank(S; — S3). It follows immediately that
|WJ{WQ| < 1/v/2, and thus §.(C"™)) = 1//2. Next, let
w1, Wo € Vpgsc. By Theorem 4 we have two cases: either (1)
the on-patterns don’t overlap in which case we have |w|wa| =
0 and d.(wi,ws) = 1, or (2) the on-patterns overlap in
which case the overlap is again a binary chirp of some lower
rank. In the latter case (9) still applies and J.(Vessc) =
1/ /2 follows. The statement relating the cardinalities is a
combination of (4) and (8). Finally, by Corollary 1, Vpggc is
the collection of all stabilizer states, which in turn is the orbit
of eg under the action of the Clifford group. [ ]
BSSCs thus provide an appealing example of a non-Abelian
group code with a faithful representation in /N dimensions.
As we shall see, the group structure enables low-complexity
decoding.

1) Decoding BSSCs: While Theorem 1 points out a clear
coding gain, as mentioned, for our specific use-case, a low
complexity decoding algorithm is of prime interest. The
extension of BCs to BSSCs is done in such a way that
we can still leverage the decoding algorithm of [6]. Within
this extended codebook, a decoding algorithm should be
able to identify/reconstruct b,, € F5", S, € Sym(r,2), and
H, € G(m,r;2) for each active user u. The heavy task
of the decoding algorithm is to identify the on-off pattern
characterized by H,, which we then tune-in with the BC
decoding algorithm of [6] to identify b, and S,. The case
when there is a single active user at any given time was
considered in [22].

As it turns out, even though our construction is purely
motivated by a communication scenario, it leads to well-known
notions in quantum computing. The first tell is that BCs are
exactly the so-called graph states. The second tell is (8), which
hints strong connections with stabilizer states, and in fact,
as we will see, BSSCs are precisely stabilizer states. Our
strategy is to decode a BSSC by identifying the maximal
stabilizer group that stabilizes it. For this, one will need a
well-behaved one-to-one correspondence’ between stabilizer
states and maximal stabilizers that clearly separates the “chirp
part” and the “on-off pattern part”. To establish this one-to-
one correspondence we use Schubert cells and cosets of the
binary symplectic group Sp(m;2). We leverage this connec-
tion, and its underlying binary structure, to decode a BSSC by
identifying the stabilizer group that stabilizes it.

III. PRELIMINARIES

In this section we will introduce all preliminary notions
needed for navigating the connection between the 2m dimen-
sional binary world and the 2™ dimensional complex world,
as depicted in Figure 1. The primary bridge used here is the
well-known homomorphism (71) between the Clifford and
symplectic binary groups, and the Bruhat decomposition of
the symplectic group. We focus on cosets of the symplectic
group modulo the semidirect product GL(m; 2) x Sym(m;2).
In the complex world, this semidirect product corresponds to

2A stabilizer state is stabilized by several maximal stabilizer groups, but
because we are interested in decoding (complexity), a well-behaved canonical
form is a must. See also the discussion proceeding Theorem 3.
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column permutations and column rotations. We are interested
in codebooks of Grassmannian lines, and we shall construct
them from columns of Clifford group elements. Column
permutations and rotations thus do not change the codebook,
the cosets are sufficient for constructing all unique codewords.

The cosets are characterized by a rank » = 0,...,m and
a binary subspace H € G(m,r;2), which we will think of
as the column space of an m X r binary matrix in column
reduced echelon form. We will use Schubert cells as a formal
and systematic approach. This also provides a framework for
describing well-known facts from binary symplectic geometry
(e.g., Remark 4). Finally, Subsection III-C discusses common
notions from quantum computation.

A. Schubert Cells

Here we discuss the Schubert decomposition of the Grass-
mannian G(m, r; 2) with the respect to the standard flag

{o}=vocvic---CVpu, (10)

where V; = span{ey,...,e;} and {eq, ..., e, } is the standard
basis of F5". Fix a set of r indices Z = {iy,...,i,} C
{1,...,m}, which, without loss of generality, we assume to be
in increasing order. The Schubert cell Cz is the set of all m xr
matrices that have 1 in leading positions (i;,7), 0 on the left,
right, and above each leading position, and every other entry
is free. This is simply the set of all binary matrices in column
reduced echelon form with leading positions Z. By counting
the number of free entries in each column one concludes that
T
dimCr = Z(m —ij) —

j=1

(r—3)- (11)

Fix H € G(m,r;2), and think of it as the column space of
a m x r matrix H. After column operations, it will belong to
some cell Cz. To emphasize this fact, we will denote it as H7.

Schubert cells have a well-known duality theory which we
outline next. Let H7 be such that (HI)THI = 0. Of course
cs(I{NI)EQ(ﬂzm—TZ) Let Z := {1,...,m} \ Z and
put Cz = {Hz | Hz € Cz}. There is a bl]eCtIOIl between
{CI}\I\ » and {CJ}UI r» realized by reverting the rows and

columns of HI and by identifying the set j = i1,y lm—r}
with its image under the mapping A — A = {m-+ 1 —alac
A}. With this identification, we will denote Hf the unique
element of cell Cf that is equivalent with fIvI, obtained by
reverting the rows and columns of ﬁ;:

H; = Pog,nHzPoi v, (12)

where P ,q is the antidiagonal matrix in respective dimensions.
Each cell has a distinguished element: Iz € Cz will denote
the identity matrix I, restricted to Z, that is, the unique
element in C7 that has all the free entries 0. Note that Iz has
as jth column the 7;th column of I,,, and thus its non-zero
rows form I,.. In particular if |Z| = m then Iz = I,,,. We also
have Iz € Cz. With this notation one easily verifies that
(13)

(II)THI = IT7 (II)TIf =0, (E)T If =1,
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In addition, H7 can be completed to an invertible matrix

Pr:=[Hz I;] € GL(m;2). (14)

Note that when Iz is completed to an invertible matrix it gives
rise to a permutation matrix. Next, (13) along with the default
equality (Hz)"Hz = 0 implies that

P;T = [1; Hy|. (15)
Let us describe this framework with an example.
Example 1: Let m = 3 and r = 2. Then
1 0] __ [u] [1]
C{LQ} =1{0 1], C{LQ} = (v, CE’\} = C{l} = v,
lu | 1] L u |
1 0] __ [u] [07]
C{1’3} =|u 0], C{1’3} = |11, C@ = C{Q} =111,
10 1] 1 0] | u |
o o] [1] [0
C{2,3} =|1 0f, C{2’3} =101, Cm = C{3} =10
10 1] 10 ] |1

Let us spell out Z = {1, 3} in detail. The set Cz is constructed
directly by definition, that is, in column reduced echelon form
with leading positions 1 and 3, while Cr is constructed so that
(Hz)"Hz = 0. Then we revert the rows and columns (only
rows in this case) to obtain the last object where we identify?
{2} = {1, 3} with {2} = {2}.

In this case, as we see from above, there is only one
free bit. This yields two subspaces/matrices Hz, which when
completed to an invertible matrix as in (14) yield

[1 0 0] 100
Py—o=1]0 0 1 ’ P,—1=|1 01 (16)
[0 1 0] 01 0]
Then one directly computes
[1 0 0] (1 0 1]
P l,=10 0 1|, P2, =|0 01 (17)
[0 1 0] 01 0]

Compare (17) with (15); the first two columns are obviously
Iz, whereas the last column is precisely C/Q\} = Cyoy with
rows reverted. Note here that when all the free bits are zero
then the resulting P is simply a permutation matrix, and in
this case P~ = P.

B. Bruhat Decomposition of the Symplectic Group

We first briefly describe the symplectic structure of F2™ via
the symplectic bilinear form

(a,b|c,d)s :=bTc+a'd. (18)

One is naturally interested in automorphisms that preserve
such symplectic structure. It follows directly by the definition
that a 2m x 2m matrix F preserves ( o | « ) iff FQFT = Q

where
Q — |:0ﬂ’1, Iﬂ’l, } .

I, 0, (19)

31n this specific case there is no need for identification, but this is only a
coincidence. For different choices of Z one needs a true identification.
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We will denote the group of all such symplectic matrices F
with Sp(2m; 2). Equivalently,

A B
F = {C D} € Sp(2m; 2)

iff ABT,CD' € Sym(m;2) and ADT + BCT = I,,,. It is
well-known that

(20)

m

Sp(2m; 2)] =2 [ (4" - 1.

i=1

21

Consider the row space H := rs[A B] of the m x 2m
upper half of a symplectic matrix F € Sp(2m;2). Because
ABT is symmetric one has [A B|Q[A B|" = 0 and thus
(x|y)s =0 forall x,y € H. We will denote («)** the dual
with respect to the symplectic inner product (18). It follows
that H C H™, that is, H is self-orthogonal or totally isotropic.
Moreover, H is maximal totally isotropic because dim H = m
and thus H = H-*. The set of all self-dual/maximal totally
isotropic subspaces is commonly referred as the Lagrangian
Grassmannian L£(2m,m;2) C G(2m,m;2). It is well-known
that

m

|[£(2m, m)| = H(T +1).

i=1

(22)

For reasons that will become clear latter on we are interested
in decomposing symplectic matrices into more elementary
symplectic matrices, and we will do this via the Bruhat
decomposition of Sp(2m;2). While the decomposition holds
in a general group-theoretic setting [31], here we give a rather
elementary approach; see also [32]. We start the decomposition
by writing

Sp(2m;2) = | J ¢, (23)
r=0
where
A B
Cr = {F = [C D] € Sp(2m;2) | rank C = r} .24
In Sp(2m;2) there are two distinguished subgroups:
P 0
Sp = FD(P) = 0 p-T Pec GL(m, 2) s (25)

Sy = {FU(S) _ LI) ﬂ ‘ Se Sym(m;2)}.

Let P be the semidirect product of Sp and Sy, that is,

P ={Fp(P)Fuy(S)| P € GL(m;2),S € Sym(m;2)}.
(27)
Note that the order of the multiplication doesn’t matter since
the semidirect product satisfies

Fp(P)Fy(S) = Fy (PSPT)F,(P),

(26)

(28)

and PSPT is again symmetric. It is straightforward to verify
that P = Cy, and that in general

Cr ={F1Fa(r)F2 | F1,F3 € P}, (29)
where . ;
FQ(T) _ [ m|—r m|r :|, (30)
Im\r Im|7r
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with L, being the block matrix with I, in upper left corner
and O else and I,,,|_,. = I,,, —I,,,},.. Note here that @ = Fq(m)
and QFq(r)Q = Fq(m — r). Then it follows by (29) (and
by (28)) that every F € Sp(2m;2) can be written as

F = FD(Pl)FU(Sl)FQ(T)FU(SQ)FD(Pg). (31)

The above constitutes the Bruhat decomposition of a symplec-
tic matrix; see also [1], [33].

Remark 1: It was shown in [34] that a symplectic matrix
F can be decomposed as

F = Fp(P1)F(S1)QFq(r)Fy (S2)Fp(Py). (32)

If we, instead, decompose QF as in (32) and insert Q2 = Iy,
between Fp(P;) and FE(Sl), we see that (32) is reduced
to (31). This reduction from a seven-component decomposition
to a five-component decomposition is beneficial in quantum
circuits design [33], [35].

In what follows we will focus on the right action of P on
Sp(2m;2), that is, the right cosets in the quotient group
Sp(2m;2)/P. It is an immediate consequence of (31) and (28)
that a coset representative will look like

FD(P)FU(S)FQ(T), (33)

for some rank 7, invertible P, and symmetric S. However, two
different invertibles P may yield representatives of the same
coset. We make this precise below.

Lemma 1: A right coset in Sp(2m;2)/P is uniquely char-
acterized by a rank r, an r X r symmetric matrix S, € Sym(r),
and a r-dimensional subspace H in 5.

Proof: Write a coset representative F as in (33). This
immediately determines r. Next, write S in a block form
S {Sr X ]7

XT S (34)

where S,.,S,,_, are symmetric. Denote S,,S,,_, €
Sym(m;2) the matrices that have S, and S,,,_,. in upper left
and lower right corner respectively and O otherwise. Put also

< [, o
X = {XT IM_J' (35)
With this notation we have
Fu(S)Fq(r) = Fu(S,)Fa(r)Fu(Sm_)Fp(X). (36)

In other words Fy;(S)Fq(r) and FU(,S\;)FQ(T) belong to the
same coset. Now consider an invertible

is—{Pr 0 ]

0 PTI’L—T‘ (37)

It is also straightforward to verify that

— ~ — ~

Fu(S;)Fa(r)Fp(P) =Fy(S,)Fp(P)Fa(r)
= Fp(P)Fy(P~'S,P~")Fq(r),

where

(38)

5 [P7T 0
P N |: 0 PT)’I,—T‘:|’
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and the second equality follows by (28). Thus
FD(Pl)FU(Sl)FQ(T), where
P, =PP, S, =P !S,P T (39)

represents the same coset. Note that the transformation (39)
doesn’t change the column space C (that is, the lower left
corner of F), which is an r-dimensional subspace in F5'. H

Next, using Schubert we cells will choose a canonical coset
representative. We will use the same notation as in the above
lemma. Let r» and S, be as above. To choose P, think of the
r-dimensional subspace H from the above lemma as the
column space of a matrix H, which belongs to some Schubert
cell Cz. We will use the coset representative

Fo(Pz,S,) := Fp(P7)Fu(S,)Fa(r), (40)

where P7 is as in (14).
Let F € Sp(2m;2) be in block from as in (20), and assume
it is written as

T)Fu(S,)Fa(r)Fp(M)Fy(S).

Multiplying both sides of (41) on the left with Fp(PT) and on
the right with F(S), and then comparing respective blocks
we obtain

F=FpP~ 41)

PTA = (S, + L, )M, (42)
PTAS=P'B+1,,M ", (43)
P 'C=1,,M, (44)

P'CS=P 'D+1,_ M, (45)

which we can solve for M, évr and S, while assuming that we
know F (and implicitly P which can be determined by the
column space of the lower-left block of F). First we find M.
For this, recall that S, has nonzero entries only on the upper
left r x r block. Thus, it follows by (42) that the last m—r rows
of M coincide with the last m — r rows of PTA. Similarly,
it follows from (44) that the first » rows of M coincide with
the first » rows of P~'C. With M in hand we have

S, =PTAM ' +1,_,. (46)

By using (44) in (45) we see that the first » rows of MS
coincide with first 7 rows of P~'CS. Similarly, by using (42)
in (43), we see that the last m — r rows of MS coincide
with the last m — r rows of PT AS. Multiplication with M~!
yields S. We collect everything in Algorithm 1, which gives
not only the Bruhat decomposition but also a canonical coset
representative.

We end this section with a few remarks.

Remark 2: One can follow an analogous path by consider-
ing left action of P on Sp(2m;2). This follows most directly
by the observation that if F = F p(P)Fy (S)Fq(r) is a right
coset representative then F~! = Fq(r)Fy (S)Fp(P~!) is a
left coset representative.

Remark 3: Note that for the extremal case » = m, a coset
representative as in (40) is completely determined by a sym-
metric matrix S € Sym(m; 2), since in this case, as one would
recall, Py =17 =1,,.
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Algorithm 1 Bruhat Decomposition of Symplectic Matrix

Input: A symplectic matrix F.
1. Block decompose F to A, B, C,D as in (20).

S, =PTAM ' +1,_,.
S, is the upper left r x r block of S,.
Nyp is the first 7 rows of P™'D + L, _, M.
10. Ny, is the last m — r rows of PTB — I, M~ T
1| Ny
s [Ne].
Output: »,P.S,,, M, S

2. r =rank(C).

3. Find P as in (14) from cs (C).

4. M,, is the first r rows of P~1C.

5. My, is {\I}Ie last m — r rows of PTA.
_ | Mup

6. M= My, |°

7.

8.

9.

Remark 4: Directly from the definition we have

m

P| = |GL(m;2)| - [Sym(m; 2)| = 2 [(@" — 1), @)
=1
which combined with (21) yields
Sp(2m;2)/P| = [[(2 +1) = |£(2m,m)|.  48)
=1

The above is of course not a coincidence. Indeed, Sp(2m; 2)
acts transitively from the right on £(2m,m). Next, consider
1s [0 Ln | € £(2m, m). If a symplectic matrix F as in (20)
fixes this space, then C = 0 and A is invertible. Additionally,
because F is symplectic to start with, we obtain D = A~T
and ABT =: S is symmetric. Thus B = SAT, and F € P.
That is, P is the stabilizer (in a group action terminology) of
1s [0, Ly | € £(2m,m). The mapping Sp(2m;2)/P —
L(2m,m), given by

FO(Pl—asT) 18 |:Im\rPIT (Im\rfs\;_‘_IWL\*T)PEl
(49)
is well-defined. This follows by the fact that the upper half of
a symplectic matrix is maximal isotropic. It is also injective,

and thus bijective due to cardinality reasons. Of course one can
have many bijections but we choose this one due to Theorem 3.

C. The Heisenberg-Weyl Group

Fix N = 2™, and let {eq, e} be the standard basis of C2,
which is commonly referred as the computational basis. For
v = (v1,...,0) € FJ" set ey := €,, ® --- @ e, . Then
{ey | v € F1'} is the standard basis of CV = (C?)®™, The
Pauli matrices are

0 1 1 0 .
I, o, = L 0}, o, = [0 _J, oy =i0,0..  (50)
For a,b € [F}" put

D(a,b) := ngagl Q- ® Ugmag’”. (51)
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Directly by definition we have
D(a,0)ey = ey1a and D(0,b)e, = (—1)bT"ev, (52)

and thus, the former is a permutation matrix whereas the latter
is a diagonal matrix. Then

D(a,b)D(c,d) = (—1)* °D(a+c,b+d). (53)
Thanks to (53) we have
D(a,b)D(c,d) = (—1)P'<t2'dD(c,d)D(a,b).  (54)
In turn, D(a, b) and D(c,d) commute iff
(a,blc,d)s:=b'c+a'd =0, (55)

that is, iff (a,b) and (c,d) are orthogonal with respect to the
symplectic inner product (18). Also thanks to (53), the set

HWy = {i*D(a,b) |a,b € Fy", k = 0,1,2,3}  (56)

is a subgroup of U(N) and is called the Heisenberg-Weyl
group. We will also call its elements Pauli matrices as well.
Directly from the definition, we have a surjective homomor-
phism of groups

Uy : KWy — F2™, i*D(a,b) — (a,b). (57)

Its kernel is ker Uy = {£Iy,+ily} = Z4. We will denote
HW3 = HWn/ker Uy the projective Heisenberg-Weyl
group, and the induced isomorphism W7,.

Note that ( « | « )5 defines a nondegenerate bilinear form in
[F2™ that translates commutativity in 74}V to orthogonality in
F2™. A commutative subgroup S C HWy is called a stabilizer
group if —Iy ¢ S. Thus, for a stabilizer S, thanks to (55)
we have U (S) C U (S)*s [36], [37]. In addition, because
Wy restricted to a stabilizer is an isomorphism, we have that
|S| = 2" iff dim ¥ (S) = r. We will think of ¥ (S) as the
row space of a full rank matrix [A B] where both A and B
are r X m binary matrices. We will write

E(A, B) = {E(x'A, x'B) | x € F}}, (58)

where E(a, b) := z'aTbD(a, b). Combining this with (52)
and (53) we obtain

E(a,b) =" Y (~1)*Ve, qel.
veFry

Next, if rs[A B] is self-orthogonal in F2™ then E(A, B)
is a stabilizer. Moreover, Uy (E(A, B)) = rs[A B|, which
yields a one-to-one correspondence between stabilizers in
HWy and self-orthogonal subspaces in F2™. It also follows
that a maximal stabilizer must have 2™ elements. Thus there is
a one-to-one correspondence between maximal stabilizers and
Lagrangian Grassmannians £(2m,m) C G(2m,m). Of par-
ticular interest are maximal stabilizers

(59)

Xy :=E(,,,0,,) ={E(a,0) | a € F3'}, (60)
Zy :=E(0,,,L,) = {E(0,b) | be F}'}, (61)
which we naturally identify with Xy = Upy(Xy) =

rs[I, 0] and Zy := Un(ZN) =15[0,, L)
What follows holds in general for any stabilizer, but for
our purposes, we need only focus on the maximal ones. Let
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S = E(A,B) C HWy be a maximal stabilizer and let
{E1,...,E;,} be an independent generating set of S (that
is, span{Un(E1),..., UYn(Ey)} = ¥n(S)). Consider the
complex vector space [38]

V(S)={veCN |Ev=v,i=1,...,m}. (62)

It is well-known (see, e.g., [39]) that dimV(S) =
2m/|S| = 1. A unit norm vector that generates it is called
stabilizer state, and with a slight abuse of notation is also
denoted by V(S). Because we are disregarding scalars, it is

beneficial to think of a stabilizer state as Grassmannian line,
that is, V(S) € G(C, 1). Next,

m

Iy + E; 1
IIg := - = — E
=117 N2 (63)
i=1 EcS
is a projection onto V(S).
Given a stabilizer as above, for any d € FJ,

{(-1)%E4,...,(~1)E,,} also describes a stabilizer Sq.
Similarly to (63) put
Iy (—1)HE;
R
1
=~ S (-)T*ETA, x"B). (64)
xEF7

It is readily verified that {IIs, | d € F3'} are pair-wise
orthogonal, and a stabilizer group determines a resolution of

the identity
Iy = Z Ils,.
deFp

(65)

Thus every such projection determines a one-dimensional
subspace which with another abuse of notation (see also
Remark 5 below) we call a stabilizer state.

Remark 5: A stabilizer state as in (62) is the unit norm
vector that is fixed by the stabilizer. Now for every
E € S = E(A, B) there exists a unique x € FJ* such
that E = E(x"A, x"B). For d € FJ', consider the map
Ya : E(xTA, x"B) — (—1)4"*. Then IIs, projects onto

V(Sq) :={v €CY | Ev = xq(E)v for all E € S4}, (66)

that is, the state that under the action of E is scaled by xq4(E).
Then of course V(Sg) = V(S) where 0 € F3*. In addition, the
map X4 is a linear character of S, which has led to non-binary
quantum stabilizer codes [40].

Remark 6: Let {E4,...,E,,} be an independent generat-
ing set of a maximal stabilizer S and consider Sq. By [39,
Prop. 10.4] it follows that for each ¢ = 1,...,m, there exists
G; € HWy such that G/E;G; = —E; and G/E;G; = E;
for i # j. Now put Gq := G(lil -+ G%m_ Then

m

GlllsGq = Is,. (67)

It follows that {V(Sq) | d € FJ'} is an orthonormal basis
of CN. In [41] the authors used a similar insight to construct
maximal sets of mutually unbiased bases.
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D. Clifford Group

The Clifford group in N dimensions [42] is defined to be
the normalizer of HWy in U(XN) modulo U(1):

Cliffy = {G € U(N) | GHW~G' = HWxn}/U(1). (68)

The reason one quotients out U(1) = {aly | |o| = 1}, is to
obtain a finite group. In this case H)Vy is a normal subgroup
of CllffN

Let {eq,...,e2,} be the standard basis of F3™, and con-
sider G € Cliffy. Let ¢; € F3™ be such that

GE(e;))G' = +E(c;). (69)

Then the matrix F g whose ith row is ¢; is a symplectic matrix
such that

GE(c)G' = +E(c"Fg) (70)

for all ¢ € F2™. Based on (70) we obtain a group homomor-
phism
® : Cliffy — Sp(2m;2),

G+— Fg, (71)

with kernel ker ® = HWy [35]. This map is also surjec-

tive; see Section III-D.1 where specific preimages are given.

From (21) and (57) (JHW;5| = 22™) follows that
|Cliffy| = 2" +2m [T (4° - 1).

i=1

(72)

Remark 7: Since ® is a homomorphism we have that
®(G') = Fg' and as a consequence G'E(c)G =
+E(c"Fg'). We will make use of this simple observation
later on to determine when a column of G is an eigen-
vector of E(c). This interplay with symplectic geometry
provides an exponential complexity reduction in various appli-
cations. Here, we will focus on efficiently computing common
eigenspaces of maximal stabilizers.

The phase and Hadamard matrices

Gp = [(1) ﬂ and H, = %[1 _11}
are easily seen to be in the Clifford group Cliff,. Some authors
also include (G pHy)? = exp(mi/4)I3 [37], which in our case
would disappear as a scalar quotient. Thus (72) differs by a
factor of 1/8 of what is commonly considered as the cardinality
of the Clifford group; see https://oeis.org/A003956. For our
purposes the phases are irrelevant.

1) Decomposition of the Clifford Group: In this section
we will make use of the Bruhat decomposition of Sp(2m;2)
to obtain a decomposition of Cliffy. To do so we will use
the surjectivity of ® from (71) and determine preimages of
coset representatives from (40). The preimages of symplectic
matrices Fp(P),Fy(S), and Fo(r) under @ are the unitary
permutation matrix, a diagonal matrix, and a partial Hadamard
matrix,

(73)

GD(P) =€y — ePTv, (74)
O vTSv mod 4

Gy (S) := diag (z )VEF? , (75)

Ga(r) == (H2)®" @ Iym-r, (76)

respectively. We refer the reader to [35], [43] for details.
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Remark 8: Note that directly by the definition of the
Hadamard matrix we have

1 VTW
Hy = Gq(m) = W[(—l) lv,werz- 7
Whereas, for any » = 1,...,m, one straightforwardly com-
putes
.
Ga(r)-Z(m,r) =[(-1)V" - f(v,w,7)]vwerp, (78)

where Z(m,r) := Ior @ c2™ " is the diagonal Pauli that acts
as o, on the last m — r qubits, and
m
fv,w,r) = H (1 + v +w;).

i=r+1

(79)

Note that the value of f will be 1 precisely when v and w
coincide in their last m — r coordinates and 0 otherwise.
It follows that f is identically 1 when » = m and f is
the Kronecker function 6y w when r = 0. We will use f
to determine the sparsity of a Clifford matrix/stabilizer state.
Of course » = m corresponds to fully occupied objects with
only nonzero entries; see also Remarks 11 and 12 for the
extreme cases of r =0, 1.

Example 2 (Example 1 continued): Let us reconsider the
invertible matrices from (16). Recall that there we had m =
3,7 = 2. Here we will construct the Cliffords corresponding
to the canonical coset representative (49), with S, = 02x5.
For the case u = 0 one computes* Gp(P]_,) as in (74), and
multiplies it (from the right) by Gq(2) as in (76) (we will
omit 1/v/22) and then by Z(3,2) to obtain

+ 0 + 0 + 0 + O

+ 0 — 0 + 0 — O

o - 0 — 0 — 0 —
Go=|Y g Y g 2 g 2ol @

+ 0 — 0 — 0 + O

o — 0 — 0 + 0 +

0 — 0 + 0 + 0 —]

As mentioned, (74) by definition yields a permutation matrix.
Thus G,—¢ is nothing else but G (2) = Hy ® Hy ® I, with
its rows permuted accordingly, and a possible sign introduced
to its columns by the diagonal matrix Z(3,2) = Iy ® o,.
Similarly, for the case u = 1, one obtains

+ 0 4+ 0 + 0 + 0
+ 0 — 0 + 0 — 0
0 0O — 0 — 0 —

0 — 0 4+ 0 — 0 +
Gu=1=10g _ 0 - 0 + 0 + @1
0 — 0 + 0 + 0 —

+ 0 + 0 — 0 — 0
+ 0 -0 — 0 + 0]

We will discuss how the {+, —, 0} patterns are correlated later
on.

Let us now return to the Clifford group. The Bruhat decom-
position (31) of Sp(2m;2) already gives a decomposition of
Cliffy. However, in order to have a concise approach one has
to be a bit careful. In this section we will write G = ®~1(F),

4See Section IV-A for why we consider the transpose instead of P itself.
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where the equality is taken modulo the center HWy X Zsg.
In other words, we will disregard the central part of ®~!(F)
and consider only the Clifford part. The cyclic group Zg of
order 8 comes into play to accommodate 8th roots of unity
coming out of products Gy (S)Ggq(r). This setup, yet again,
confirms the importance of

Cliffy := {exp(ink/4)G | k € Zs, G € Cliffy }.  (82)

Let G = {Gp(P)Gy(S) | P € GL(m;2),S € Sym(m;2)}
be the preimage of P from (27). For obvious reasons, it is
referred as the Hadamard-free group; see also [44]. As for the
case of the symplectic group, this group acts from the right
on matrices of the form

Gp(P1)Gy(S1)Ga(r)Gu(S2)Gp(P2) (83)
and thus, a coset representative would look like
Gr = Gp(P1)Gpy(S1)Ga(r). (84)

For Grassmannian line codebooks, one is interested on coset
representatives, the right action of Gy(S1)Ga(r) has been
divided out, i.e., column rotations and permutations.

The coset representatives can be understood in terms of
the preimage of generators of GL(m;2) and Sym(m;2). Let
us start with the former, which can be generated by two
elements [45]. Namely, it can be generated P := I, + Ej»
where E1, is the elementary (binary) matrix with 1 in position
(1,2) and O elsewhere, together with the cyclic permutation
matrix Ileyc acting as the permutation (12---m). A larger set
of generators is also of interest. Let II; ; be a transposition
matrix. Then of course P along with all the II; ; generate
GL(m;2). While II; ; swaps dimensions ¢ and j in F3", it is
easily seen that ®~!(Fp(Il; ;)) swaps the tensor dimensions
i and j in (C?)®™, Moreover

1000

_ 0100

Y (Fp(P)) = 00 o0 1|®Iv-a (85)
0010

The above 4 x 4 matrix is known in quantum computation
as the controlled-NOT (CNOT) quantum gate. In itself, the
CNOT gate is of form Gp(P) where

P—p— |l ]

01 (86)

For Sym(m;2) we consider matrices S, := v'v where
v € F5" is a vector with at most two non-zero entries. Then
1

V2
Note that when v has exactly one non-zero entry in posi-
tion j, the jth tensor dimension will contain the phase matrix
Gp = exp(—in/4)(Is + io,) form (73). On the other hand,
when v has exactly two non-zero entries (87) gives rise
to Gez(Gp ® Gp) in tensor dimensions ¢ and j, where
Gcyz = diag(1,1,1,—1). The latter is known in quantum

computation as the controlled-Z (CZ) quantum gate, and it
is of form Gy (Iz).

o~ (Fy(Sy)) (Iy +iE(0, v)). (87)
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In conclusion, the Bruhat decomposition of Sp(2m;2)
directly yields some fundamental quantum gates as described
above. Similar ideas were used in [33] where the depth
of stabilizer circuits was considered. Classically, there exist
several decompositions of the symplectic group, which in
principle would yield a decomposition of the Clifford group.

IV. BINARY SUBSPACE CHIRPS

Let us recall the definition of Binary Subspace Chirps
from (5). A BSSC w is a unit complex vector in N = 2™
dimensions characterized by a rank 0 < r < m, a “binary
chirp part”, and an “on-off pattern part”. Namely, given a
binary subspace H € G(m,r;2) of rank 0 < r < m, we have
w(a) = 0 for a ¢ H, whereas the collection of dimensions
indexed by H, {w(a) | a € H}, will form a binary chirp
in 2" dimensions. As in Section III-A, we will think of the
subspace H as the column space of a full-rank m X r matrix
Hz, for which a € H iff a = Hzx for some unique x € 5.
Additionally, the “BC part”, in turn, is characterized by
S, € Sym(r;2) and b, € F5. As mentioned in Section II-B,
working with a coset of H is just as good, and since there
2m~" different cosets, we can keep track of them with a
vector b,,_, € F3'"". Namely, for b,,_, € FJ'"", the
BC part, will be located in dimensions indexed by the coset
{a=1I5b,,_, + Hzx | x € F5}, with Iz as in Section III-A.
With this notation, we recover the subspace H for b,,_,, = 0.
Thus, for a general vector bT = [b] bl _ ] € FJ* we have

m—r
T T .
H — #Zx S7,x+2brx, ifa=Hzx+ Ifbm—ra
Wh,s, () = :
0, otherwise.
(88)

Before procceding with further understanding (88), we point
out that BCs are indeed a special case of BSSC. Indeed, for
r =m we have H = FJ" and S,—,, € Sym(m,2) and (88)
has only non-zero entries and exactly matches (3). The next
step, is to better understand (88) by further leveraging Schubert
Cells. Note first that

a=Hzx+1:b,, , = [Hr I;] {bx ] —-P [bx ] :
m—r m—r
(89)

where P is the unique invertible matrix (14) associated to the
subspace H. Making use of (15), we obtain

5] -pa- [g{j |

which, in particular, tells us that the coset {Izb,, , + Hzx |
x € F5} is precisely the solution set of the equation

(90)

Hy; a=b,,_,. 1)

Next, recall the function f(v,w,r) from (79). Recall also
that, by the very definition, its value is 1 precisely when v, w
coincide in their last m — r coordinates. We thus conclude that

1, ifa=Hzx+ Iflﬁ)m_,«7

. 92)
0, otherwise,

fb, P tar) = {

Authorized licensed use limited to: Duke University. Downloaded on February 02,2024 at 23:57:47 UTC from IEEE Xplore. Restrictions apply.



PLLAHA et al.: BINARY SUBSPACE CHIRPS

for any a,b € [F5'. We will use this to keep track of the
on-off pattern of the corresponding BSSC. We point out
here that Remark 8 already hints a close relationship with
the partial Hadamard matrix Go(r) = (H2)®" @ Iym-r.
Next, as already hinted in the proof of Lemma 1, it is
beneficial to embed S, € Sym(r;2) as the upper-left block
of S € Sym(m;2), and set the rest of S to zero. Then, for
a € [ satisfying (91) (that is, nonzero locations of the
BSSC), (90) implies a'P~TSP~!a = x'S,x. Combining
everything together, (88) reads as

(—1)wt(Pm—r)

H,S, T5-T —1 To—1 _
W (a): \/2_T 2 P~ SP "a+{2b P af(b,P 1a7 ’I”).

93)

Above, the function wt( «) is just the Hamming weight which
counts the number of non-zero entries in a binary vector. The
overall sign (—1)"*(Pm-+) is insignificant for our purposes
since we are dealing with Grassmannian/projective codebooks.
Thus, in what follows, we will use (93) as the definition of
BSSCs.

A. Algebraic Structure of BSSCs

In what follows we fix a rank r, invertible P, symmetric
S, and b € F3'. As usual, P is uniquely associated with
H € G(m,r;2), S contains an r X r symmetric in its upper
left corner and 0 otherwise, and b' = [b] b} ] Next,
let F := Fqo(r)Fy(S)Fp(PT) € Sp(m;2) and let Gp =
Gp(PT)Gy(S)Ga(r) € Cliffy, so that #(Gg) = F. Recall
also that {e, | a € FJ'} is the standard basis of C. With a
substitution u := P~'a in (93) we have

wp = »  wp(a)ea (94)
acry

- % ;3 TSU(— )P (b, u, rep, (95)

= Gp(PT)-Gu(S)- % S DR (b, u e
ucky

(96)

= Gp(PN)Gy(S) (-1 =) Ga (1) Z(m, r)ey 97)

=Gp(PT)Gu(S)Ga(r)e, (98)

= Grep, 99)

where (96) follows by (74) and (75), (97) follows
by (78), and (98) follows by the fact that Z(m,r)ep, =
(—1)Wt(Pm-r)ey,. We have proved the following.

Theorem 2: With the same notation as above, the BSSC wy,
is the bth column of the Clifford matrix Gg.

Corollary 1: Each binary subspace chirp is a stabilizer
state. The converse is also true. In particular, the BSSC
codebook is a group code of the Clifford group with generating
vector eq.

Proof: Stabilizer states can be defined equivalently as the
orbit of eg under the action of Cliffy; see [46] for instance.
Then the first statement follows by (99). The converse is true

due to cardinalities. [ |
Example 3 (Examples 1 and 2 Continued): Let us con-
sider the case u = 0, and for simplicity, let us set the
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symmetric S to be the zero matrix,” so that G (S) is
the identity matrix. The on-off pattern of the resulting
BSSCs is governed by the » = 2 dimensional subspace
H = {0007,1007,0017,1017} = cs (Hy1,3y). The above
argument tells us that these BSSCs are precisely the
columns of G,—¢ from (80). One verifies this directly
using the definition (93). Moreover, the structure of the
on-off patterns is completely determined by (89). Indeed,
we see in (80) two on-off patterns: one determined by H
(if Izb,,—» € H) and one determined by its coset® (if
I5b,,_, ¢ H). In our specific case, we have 7 = {1, 3}, and
thus Iz =I5y = 010", Thus Izb,,—, € H iff by, = 0 iff
b € {0007,0107,100",110T}, which corresponds to columns
{1,3,5,7}. Additionally, within each of these columns, the
on-off pattern is again governed by H. Indeed, the non-zero
entries in these columns are in positions/rows indexed by H,
that is, {1,2,5,6} — precisely as described by (91). Since
cosets form a partition, it follows immediately that columns
indexed by different cosets are orthogonal. Orthogonality
of columns within each coset is a bit more delicate to see
directly. We will further discuss the general structure of
on-off patterns in Section IV-B.

Equation (49) gives a one-to-one correspondence between
canonical coset representatives and maximal stabilizers. Above
we mentioned that BSSCs are columns of Clifford matrices
parametrized by such coset representatives. The last piece
of the puzzle is found by simultaneously diagonalizing the
commuting matrices of a maximal stabilizer. We make this
precise in the following.

Theorem 3: Let F and Gy be as above. The set {wp |
b € FJ'} consisting of the columns of Gg is the common
eigenspace of the maximal stabilizer E(Im|TPT, (LS +
Im‘_,n)P_l) from (49).

Proof: Consider the matrix G := Gg parametrized by
the symplectic matrix F', and recall that wy, is the bth column
of Gg. It follows from Remark 7 that the columns of G are
the eigenspace of E(x,y) iff

G'E(x,y)G = +E([x,y]"F ) (100)

is diagonal. Recall also that E(x,y) is diagonal iff x = 0,
and observe that Fq(r)™! = Fq(r). Thus, Ga(r) will
be the common eigenspace of the maximal stabilizer S iff
+E([x y]TFQ(r)) is diagonal for all E(x,y) € S. Then it
is easy to see that such maximal stabilizer is E(I,,|,, L, j—r).
Next, if w is an eigenvector of E(c) then

Gw = +GE(c)w = +GE(c)G'Gw = +E(c"®(G))Gw

implies that Gw is an eigenvector of E(cT®(G)). The proof
is concluded by computing [L,,, L, _.JFu(S)Fp(PT). ®

The result above is well-known in the sense that of course
stabilizer states are common eigenvectors of maximal stabi-
lizers. However, the parametrization above has a nice duality
built in (see also (110)) which is to the best of our knowledge
novel. It also serves our main purpose in the sense that
it clearly distinguishes between the “chirp part” and the

3G (8S) does not affect the on-off pattern at all.
SThere are exactly 2 = 23 /22 cosets since H has dimensions 2.
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“on-off pattern part”. Namely, the subspace H governs the
off-diagonal part of the maximal stabilizer and it will be
used to decode the “chirp part”, whereas, its dual governs the
diagonal part of the maximal stabilizer and it completely deter-
mines the “on-off pattern part”. It is precisely this duality that
we leverage for decoding BSSCs. Additionally, (93) provides
a parametrization of stabilizer states. Other parametrizations
are known in literature, e.g. [24, Thms. 5&6], that as well
capture their subspace structure. It is our conviction that the
natural way to capture this structure is via partial Hadamard
matrices and Schubert Cells, as facilitated by (79) and (92).
The canonical form of the invertible matrix P in (14) (which
in the complex domain corresponds to qubit permutations)
explicitly encodes the subspace/coset on which a stabilizer
state is nonzero. Additionally, it can provides a simplified
description of the underlying quadratic form that determines
the nonzero entries. It is also our conviction that, as indicated
by the semiproduct rule (28), this is the natural way to capture
such quadratic form.

Remark 9: Note that for r = m one has E(I,,,,., I,—,) =
E(,., 0,,) and Ggq(r) = Hpy. Thus the above theorem
covers the well-known fact that H 5 is the common eigenspace
of the maximal stabilizer Xy = E(I,,, 0,,). It is also
well-known that the standard basis of CV (that is, Iy) is
the common eigenspace of the maximal stabilizer Zy =
E(0,,,I,,) of diagonal Paulis. This is of course consistent

with the aforesaid fact since [0,, I,,]2 = [I,, 0,] and
Hy :NCIJ_l(Q). In this extremal case we also have P7 =1,
and S, = S € Sym(m;2). So the above theorem also

covers [30, Lem. 11] which (in the language of this paper)
says that the common eigenspace of E(I,,, S) is Gy (S)Hy.
Additionally, because S is symmetric, it can be thought of as
an adjacency matrix of some underlying graph, and therefore
binary chirps are nothing else but graph states. In this way,
the BC to BSSC extension can be realized as the graph states
to the stabilizer states extension.

Remark 10: Theorem 3 is a closed form realization of a
more general fact. Let S be a maximal stabilizer and let
S =rs[A B] C F2™ be its corresponding isotropic subspace.
Consider also the diagonal Paulis Zx and its corresponding
subspace Zy = rs[0,, I,,]. Then, by [35, Alg. 1] there exists
G € Cliffy such that GSG!t = Zu. In other words, Gf
simultaneously diagonalizes S, and moreover, the respective
diagonal is a Pauli. In the symplectic domain, it follows by
[35, Thm. 25] that there are precisely 27("+1)/2 symplectic
solutions to the equation [A BIJF = [0,, I,].

Corollary 2: Let S be a maximal stabilizer. Then the sta-
bilizer state V' (S) is a rank » BSSC iff |[SN Zy| =2T"".

Proof: By Corollary 1 we know that V(S) is a BSSC of
rank 7, which in turn is stabilized by the maximal stabilizer
of Theorem 3. Such stabilizer has precisely 2”~" diagonal
Paulis; see also (110). [ |

We mentioned that the extremal case » = m gives the
codebook Vpc. Before discussing general on-off patterns,
we consider the lower-end extremal cases r = 0, 1.

Remark 11: Let r = 0. In this case we again have P =1,
and S = 0,,. In addition f(v,w,0) = 0y w. Thus, from (93)
we see that wp(a) # 0 iff a = b, in which case we
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T

(a) (b) r=1.

T =U.

(¢) r = 2 (BCs).

Fig. 3. BSSCs in N = 4 dimensions. White = 0, Blue = I, Cyan = —1,
Red = 4, Magenta = —i.

have wp,(a) = (—1)"*(P), This can also be seen from (99).
Indeed, since G (0) = Iy we have G = Iy. Note also
that Z(m,0) = 0, ® --- ® 0, = E(0,1) is the common
eigenspace of the maximal stabilizer E(L,,, I,,), as established
by Theorem 3.

Remark 12: Let r = 1. In this case, either S = 0,, or
S = eje; ", where e; € FZ* is the first standard basis vector.
It follows that, up to a Pauli matrix, Gy (S) is either Iy or
the transvection (I + iZ1)/\/2 where Z; = E(0,e;) has
0. on the first qubit and identity elsewhere; see also (87).
Similarly G (1) = (X1 + Z1)/+/2 is another transvection.
Thus, rank one BSSCs are columns of transvections, permuted
by some Clifford permutation G p (P). See [47], [48] for more
on transvections.

Example 4: Let m = 2. There are 3 = (?) , one dimen-
sional spaces in F5* and there are two 1 x 1 symmetric
matrices. Thus there are 22 - 3 -2 = 24 BSSCs of rank
r=11in N = 2™ = 4 dimensions, as depicted in Figure 3b.
Furthermore, there are eight 2 x 2 symmetric matrices, and
these yield 32 = 22 - 8 BCs, as depicted in Figure 3c. Along
with 4 = 22 BSSCs of rank 0 depicted on Figure 3a, we have
in total 60 = 4+24+4-32 = 4-3-5 BSSCs in N = 4 dimensions,
as given by (8).

B. Structure of On-Off Patterns

As discussed, for S, € Sym(r;2) and H € G(m,r;2) we
obtain a unitary matrix

Uns, (a,b) = [wp(a)],, € UN).

We will omit the subscripts when the context is clear. We know
from (99) that such a matrix is an element of Cliffy. The
subspace H determines the sparsity of U. Indeed, we see
from (88) that the on-off pattern is supported either on
or on a coset of it. Thus, the on-off patterns of different
columns are either equal or disjoint. It also follows that in U
there are 2™~ " different on-off patterns, each of which repeat
2" times.

In [29] it was shown that BCs form a group under
coordinate-wise multiplication. Whereas, we can immediately
see that this is not the case for BSSCs. For instance, if one
considers two BSSCs with disjoint on-off patterns then they
coordinate-wise multiply to 0 € C. When two BSSCs have
the same on-off pattern the coordinate-wise multiplication can
be determined as follows. Let w; and wy be two columns
of U with the same on-off pattern, indexed by b; and
bs respectively. Let 7 = m — r. In such case, (91) implies
b1 7 = ba 7, that is, they are equal in their last 7 coordinates.

(101)
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Recall also that the non-zero coordinates of a BSSC are
determined by (89). We have that

2wy (a)wa(a) = (—1)* SR (102)
where x € [ is such that

Pla=|"|= X]. 103

{bm] {sz (103)

The matrix P above corresponds to H as usual. Next, the
map X — xSx is additive modulo 2, and thus it is of form
x — bix for some bg € F3". It follows that

2"wi (a)wa(a) = (—1)(Ps TP b )T (104)

Then it is easy to see that the right-hand-side of (104) is, up to
a sign, a column of Gp(PT)Gg(r).

With a similar argument, when two BSSCs with the same
on-off pattern, but different symmetric matrices S; and So, are
coordinate-wise multiplied, we obtain, up to sign, a column of
Gp(PT)Gy(S1 + S2)Ga(r). In all cases, the “up to sign”
is determined by wt(bz), that is, the Hamming weight of the
last 7 coordinates of the column index.

Also with a similar argument, one determines the conjugate
of BSSCs and the coordinate-wise multiplication of BSSCs
with Hy; € G(m,ry) and Hy € G(m,re). Without diving in
details, in this case the on-off pattern will be determined by
H; N Hy and of course the sparsity will be determined by
r =dim H, N H,.

In particular, we have proved the following.

Theorem 4: The set Vpgge is closed with respect to
coordinate-wise conjugation. The set Vpgsc U{0x} is closed
with respect to coordinate-wise multiplication. The set of all
BSSCs of given sparsity 7 and on-off pattern is isomorphic to
Sym(r;2).

By Theorem 1, the codebooks Vpc and Vpgsc have the
same minimum distance, and the latter is 2.384 bigger. Thus,
from a coding prospective the codebook Vpggc provides a
clear improvement. Additionally, we will see next that Vpgsc
can be decoded with similar complexity as Vpc. For these
reasons, Vpgsc 1S an optimal candidate for extending Vpc
also from a communication prospective. The alphabet of Vpc
is {£1,+i} whereas the alphabet of Vpgsc is {£1,+i} U
{0}, which is a minimal extension from the implementation
complexity prospective.

Corollary 3: Let G; = Gy(S;)Hy € Cliffy for j =
1,2 and S; € Sym(m;2). Then G = GJ{GQ has sparsity r
where r = rank (S; 4+ S2) and its on-off pattern is determined
by H =r1s (Sl + Sg)

Proof: Recall that G constitutes all the BCs parametrized
by S;. Then the statement follows directly by (9). ]

Remark 13: The vector space of symmetric matrices can
be written in terms of a chain of nested subspaces, referred in
literature as Delsarte-Goethals sets,

DG(m,0) ¢ DG(m,1) C --- C DG(m, (m —1)/2) (105)

with the property that every nonzero matrix in DG(m,r) has
rank at least m—2r [49], [50]. For applications in deterministic
compressed sensing, random access, and quantum computation
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see [6], [30], [51]. Since DG(m, r) is a vector space, it comes
with the property that the sum of every two different matrices
also has rank at least m —2r. Thus, for Sq,Ss € DG(m, (m—
r)/2), the construction of Corollary 3 yields a Clifford matrix
of sparsity at least r. This is an alternative way of creating rank
7 BSSCs in terms of BCs. However, this will not yield all the
BSSCs because not every subspace H is the row/column space
of a symmetric matrix S.

V. RECONSTRUCTION ALGORITHMS

In this section we use the rich algebraic structure of
BSSCs to construct a low complexity decoding/reconstruction
algorithm. We will build our way up by starting with the
reconstruction of a single BSSC. In order to gain some
intuition we disregard noise at first. The problem in hand is
to recover H,S,, and b given a binary subspace chirp wy,
as in (93). In this noiseless scenario, the easiest task is the
recovery of the rank 7. Namely, by (91) we have

1/27, 2" times,
wh(a)wp(a) = {O/ 2™~7 times
, .

(106)

To reconstruct H and then eventually S, we generalize the
shift and multiply technique used in [6] for the reconstruction
of binary chirps. Here “shift” means shifting/permuting the
coordinates of wy, according to a —— a + e and “multiply”
means coordinate-wise multiplication of the shifted version
with the original vector. The underlying structure that enables
this generalization is the fact that the on-pattern of BSSC is
a BC of lower rank as discussed in Section IV. The prime
focus will be to upgrade to a technique that also takes care of
identifying the subspace H. Additionally, in our scenario extra
care is required as the shifting can perturb the on-off pattern.
Namely, we must use only shifts a — a+ e that preserve the
on-off pattern. It follows by (91) that we must use only shifts
by e that satisfy (Hz)Te = 0, or equivalently e = Hzx for
x € [F5. In this instance, thanks to (13) we have

P le=P lHyx = {’5] . (107)
If we focus on the nonzero entries of wy, and on shifts (107)
that preserve the on-off pattern of wy, we are left with a rank-
r binary chirp which remains unaffected by the shift. It is
beneficial to take y to be f; - one of the standard basis vectors
of F% and identify x with P~'e. With this preparation we are
able to use the shift and multiply technique, that is, shift the
given BSSC wy, according to the shift x —— x + f; (which
only affects the on-pattern and fixes the off-pattern) and then
multiply by its conjugate:

— 1 g, T TSf
W (X £ )wy (x) = oS ()P (1) SR (108)

Note that above only the last term depends on x. Now if we
multiply (108) with the Hadamard matrix (77) we obtain
£TS £ Te < (v .
Zf7,Srf7, . (_1)brf7, Z (_1) ( -‘:—Srﬂ,)7 (109)
xE]FE

for all x € [ (where we have omitted the scaling factor).
Then (109) is nonzero precisely when v = S,.f; - the ith
column of S,. With S, in hand, one recovers b, simi-
larly by multiplying wp,(x)wo(x) with the Hadamard matrix.
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To recover b,,_,. one simply uses the knowledge of nonzero
coordinates and (89). Next, with b in hand and the knowledge
of the on-off pattern one recovers Hy (and thus H) using (91).
We will refer to the process of finding the column index b as
dechirping.

In the above somewhat ad-hoc method we did not take
advantage of the geometric structure of the subspace chirps
as eigenvectors of given maximal stabilizers or equivalently
as the columns of given Clifford matrices. We do this next by
following the line of [22].

Let w be a subspace chirp as in (93), and recall that,
by Theorem 2, it is the column of G = Gp =
Gp(P")Gy(S)Ga(r) where F := Fq(r)Fy(S)Fp(PT).
Then by construction G and F satisfy GIE(c)G =
+E(c"F~!) for all ¢ € F2™. Recall also from Theorem 3
that G is the common eigenspace of the maximal stabilizer

.
S, 1,

T .
H;

(110)

.
Hr
0

E(Im\rPTv (Im\rs + Im\—r)Pil) = E(

Thus, to reconstruct the unknown subspace chirp w, it is
sufficient to first identify the maximal stabilizer that stabilizes
it, and then identify w as a column of G. The best way to
accomplish the latter task, dechirping that is, is as described
above, and thus we focus only on the former task. A crucial
observation at this stage is the fact that the maximal stabilizer
in (110) has precisely 2" off-diagonal and 2™ ~" diagonal Pauli
matrices; see also Corollary 2.

We now make use of the argument in Theorem 3, that is,
w is an eigenvalue of E(c) iff E(c"F~!) is diagonal. Let
us focus first on identifying the 2”*~" diagonal Pauli matrices

that stabilize w, that is, ¢ = . First we see that

F71 _ |:IIST HI II 0:| . (111)

Hr 0 0 If

Then for such ¢, w is an eigenvector of E(c) iff y T Hz = 0 iff
y = Hzz for some z € F'~". Thus, to identify the diagonal
Pauli matrices that stabilize w, and consequently the subspaces
H7z, Hz, it is sufficient to find 2™ ™" vectors y € F3" such that

0#wE0,y)w = WTE(O,EZ)W (112)

It follows by (59) that the above is equivalent with finding
2™~T yectors y such that

0# Y (-

vE]Fm

PYwEE = Y (-1 T Y w(v) 2,

ve]F;"'
(113)

The above is just a Hadamard transform which can be
efficiently undone.

With a similar argument, w is an eigenvector of a general
Pauli matrix E(x,y) iff

_ny E

VEF””

wiE(x,y)w " Yw(v+x)w(v) # 0.

(114)
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The above is again just a Hadamard transform. In fact,
we see here both the “shift” (by x), the “multiply”, and the
Hadamard transform of the “shift and multiply”. This is the
main insight that transfers the shift and multiply technique
of [6] to computation with Pauli matrices. By definition, the
Pauli matrix E(x,y) has a diagonal part determined by y
and an off-diagonal part determined by x. The off-diagonal
part of a Pauli determines the shift of coordinates whereas the
diagonal part takes care of the rest.

Computing wUw for a generic N x N matrix is expen-
sive, and even more so if the same computation is repeated
N? times. However, when U is a Pauli matrix, which is
a monomial matrix of sparsity 1, the same computation is
much faster. Moreover, as we will see, for a rank » BSSC
we need not compute all the possible N shifts but only r
of them. This is an intuitive observation based on the shape
of the maximal stabilizer (110). Indeed, once the diagonal
Pauli matrices are identified, one can use that information to
search the off-diagonal Pauli matrices only for x € cs (Hz),
which reduces the search from 2™ to 2. In fact, as we will
see, instead of 2" shifts we will need only use the r shifts
determined by columns of Hz.

Let us now explicitly make use of (114) to reconstruct the
symmetric matrix S,, while assuming that we have already
reconstructed Hz, Hz. In this case, as we see from (111), the
only missing piece of the puzzle is the upper-left block of F~1.

We proceed as follows. For ¢ = , we have wiE(x, y)w #

0 iff E(c"F~1) is diagonal, iff

x"[IS, Hz] =y '[H; 0]. (115)

As before, we are interested in y € Fy' that satisfy (115).
First note that solutions to (115) exist only if x' Hz = 0, that
is only if x = Hzz, z € F5. For such x, making use of (13),
we conclude that (115) holds iff

z'S, =y'Hz. (116)
Solutions of (116) are given by
y=H7v+1;8,2z veFy " (117)

If we take z = f; - the ith standard basis vector of 5, - we
have that z'S,. is the ith row/column of S, while x = Hzz
is the ith column of H7.

We collect all these observations in Algorithm 2.

A. Reconstruction of Single BSSC in the Presence of Noise

In order to move towards a multi-user random access
scenario, one needs a reliable reconstruction algorithm of noisy
BSSCs. For this we consider a signal model

(118)

where n is Additive White Gaussian Noise (AWGN). In such
instance, the subspace reconstruction, that is, step (2) of
Algorithm 2 is a delicate procedure. However, one can proceed
as follows. For each y € F%* we compute s'E(0, y)s and use
it as an estimate of wiE(0,y)w. We sort these scattered real
values in decreasing order and make rank hypothesis, that is,

S =W+ n,
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Algorithm 2 Reconstruction of Single Noiseless BSSC

Algorithm 3 Reconstruction of Noiseless Multi-BSSCs

Input: Unknown BSSC w
1. Compute w'E(0,y)w for y € FJ*.
2. Find Hz using

wiE(0,y)w # 0 iff yTHz = 0 iff y € cs (Hz).

. Construct Pz as in (14).

. r =rank (Hz).

.fori=1,...,r do:

Compute wiE(Hzf;,y)w for y € FJ.
Determine the ith row of S, using (117).
. end for

9. Dechirp w to find b.

Output: r,S,., Pz, b.

I onoff pattern of noisy BSSC
I or-off pattern of BSSC

Fig. 4.
BSSC.

On-off pattern of noisy BSSC versus on-off pattern of noiseless

for each 0 < r < m we select 2™~ " largest values that form
a subspace of rank r, and then proceed with Algorithm 2 to
obtain w,. We then select the best rank using the Euclidean
norm:

w = argmin ||s — w,||2. (119)

In Figure 4 we see an instance of a rank r = 2 BSSC
on-off pattern in N = 28 dimensions, with and without noise.
In this case wE(0, y)w is non-zero 2™~ " = 64 times. In this
instance, only 94% of the 64 highest sTE(0,y)s values of
the noisy version match the on-off pattern of w. However,
this can be overcame in recusntruction by using the fact that
the on-off pattern is determined by a subspace. Thus one can
build up H7 in a greedy manner by starting with the highest
values and then including linear combinations. This strategy
was tested in [22] with Monte-Carlo simulations yielding
low error rates even for low Signal-to-Noise Ratio (SNR);
see [22, Fig. 1]. There it was observed that, rather remarkably,
BSSCs outperform BCs despite having the same minimum
distance.

VI. MULTI-BSSC RECONSTRUCTION

The strategy of noisy single BSSC reconstruction can be
used as a guideline to generalize Algorithm 2 to decode

Input: Signal s as in (120).
l.for /{=1:L do
2. forr=0:mdo
3. Greedily construct the m — r dimensional subspace
H7 using the highest values of [sTE(0,y)s|.
Estimate w,. as in Alg. 2.

end for

Select the best estimate wy.

Determine hq, ..., hy that minimize

¢
S—E hywill .
Jj=1

2

N s

L

’ T o~
8. Reducestos' =s—3 . hw;.

9. end for

Output: wy,...,wy.

multiple simultaneous transmissions in a block fading multi-

user scenario
L

s = Z hywy + n.
/=1

(120)

Here the channel coefficients h, are CA/(0,1), with neither
phase nor amplitude known, and w, are BSSCs. Noise n may
be added, depending on the scenario. This model represents,
e.g., a random access scenario, where L randomly chosen
active users transmit a signature sequence, and the receiver
should identify the active users. In such application, the
channel gain is not known at the receiver, and thus one cannot
use the amplitude to transmit information. For this reason, the
amplitude/norm is assumed, without loss of generality, to be
one. Additionally, the channel phase is also not known at the
receiver and should not carry any information. Thus without
loss of generality, the codewords can be assumed to come from
a Grassmannian codebook, such as Vgc or Vgssc.

We generalize the single-user algorithm to a multi-user algo-
rithm, where the coefficients h, are estimated to identify the
most probable transmitted signals. For this, we use Orthogonal
Matching Pursuit (OMP), which is analogous with the strategy
of [6]. We assume that we know L.

The estimated error probability of single user transmission
for L = 2,3 is given in Figure 5. For the simulation, the rank
r is selected in a weighted manner, according to the relative
size of rank r BSSCs (recall that there are 2™ - ("), Qr(r+1)/2
rank r BSSCs). Whereas, within a given rank, BSSCs are
chosen uniformly. We compare the results with BC codebooks
and random codebooks with the same cardinality. For random
codebooks, steps (2)-(5) of Algorithm 3 are substituted with
exhaustive search (which is infeasible is beyond m = 6).

The erroneous reconstructions of Algorithm 3 come in part
from steps (3)-(4). Specifically, from the cross-terms of

L
sts = [helPwell* + > hihewlw,.  (121)
(=1

i£l
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Fig. 5. Error probability of Algorithm 3 on absence of noise. Random
codebook included for comparison.

L - noisy multi-transmission

- multi transmission

Fig. 6. On-off pattern of a noiseless vs. noisy linear combination of BSSCs.

For BCs, these cross-terms are the well-behaved sec-
ond order Reed-Muller functions. The BSSCs, unlike the
BCs [29], do not form a group under point-wise multipli-
cation (Theorem 4), and thus the products w;rwe are more
complicated. Indeed, when two BSSCs of different ranks
and/or different on-off patterns are multiplied coordinate-
wise (which we do during the “shift and multiply”) the
resulting BSSCs could be potentially very different (if not
zero) as described in Theorem 4. In addition, linear combi-
nations of BSSCs (120) may perturb the on-off patterns of
the constituents, and depending on the nature of the channel
coefficients hy, the algorithm may detect a higher rank BSSC
in s. If the channel coefficients of two BSSCs happen to
have similar amplitudes, the algorithm may detect a lower
rank BSSC that corresponds to the overlap of the on-off
patterns of the BSSCs. These phenomena are depicted in
Figure 6 (in blue) in which the on-off pattern of a linear
combination of a rank two, a rank three, and a rank six BSSCs
in N = 2% dimensions is displayed. There, we see multiple
levels (in blue) of s'E(0, y)s, only some of which correspond
to actual on-off patterns w}E(O,y)w@ of the given BSSCs,
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Fig. 7. Error probability of Algorithm 3 for noisy multi-user transmission

in N = 256 dimensions and SNR = 30 dB.

and the rest corresponds to different combinations of overlaps.
The problem for multi-BSSC reconstruction caused by these
phenomena is alleviated by the fact that most BSSC codewrods
have high rank. E.g., as m grows, it follows by Theorem 1
that about 42% of BSSCs are BCs. Low rank BSSCs are very
unlikely in (120).

Despite these phenomena affecting BSSC on-off patterns
in multi-BSSC scenarios, a decoding algorithm like the one
discussed is able to distinguish different levels and provide
reliable performance. It is worth mentioning that by comparing
Figure 5 with [22, Fig. 1] we see that the interference of
BSSCs is much more benign than general AWGN, which in
turn explains the reliable reconstruction of noiseless multi-user
transmission.

Interestingly, even in this multi-user scenario, we see that
BSSCs outperform BCs. With increasing m, the performance
benefit of the algebraically defined codebook over random
codebooks diminishes. However, the decoding complexity
remains manageable for the algebraic codebooks.

In [22] it was demonstrated that reconstruction of a single
noisy BSSC was possible even for low SNR. We have per-
formed preliminary simulations and have tested Algorithm 3
on a noisy multi-user transmission. Unlike the single BSSC
scenario, the multi BSSCs scenario requires a higher SNR
regime for reliable performance. In Figure 6 we have shown
(in red) |sTE(0,y)s| for a noisy version of the same linear
combination as before (displayed in blue). In this instance we
have fixed SNR = 8 dB. A close look shows that this scenario
is different from the single user scenario displayed in Figure 4.
In this instance, even an exhaustive search over ranks r as
in Algorithm 3 produces an on-off pattern that matches at
most 61% any actual on-off pattern, and thus the subspace
reconstruction inevitably fails. On the other hand, if the on-off
pattern is reconstructed correctly, then the corresponding 7-
dimensional BC can be reconstructed reliably. When noise
is on manageable level, reliable reconstruction of multi-user
BSSCs is possible with Algorithm 3. In Figure 7, we depict
the performance of N = 256 BSSC and BCs in a scenario
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with SNR 30 dB, for a varying number of simultaneously
transmitting users. Again, we see that BSSCs provide slightly
better error performance than BCs, despite the codebook being
larger.

VII. CONCLUSION AND FUTURE RESEARCH

Algebraic and geometric properties of BSSCs are described
in details. BSSCs are characterized as common eigenspaces
of maximal sets of commuting Pauli matrices, or equivalently,
as columns of Clifford matrices. This enables us to fully
exploit connections between symplectic geometry and quan-
tum computation, which in turn yield considerable complexity
reductions. Further, we have developed a low complexity
decoding algorithm for multi BSSCs transmission with low
error probability.

By construction, BSSCs inherit all the desirable proper-
ties of BCs, while having a higher cardinality. In wireless
communication scenarios BSSCs exhibit slightly lower error
probability than BCs. For these reasons we think that BSSCs
constitute good candidates for a variety of applications.

Algorithm 3 is a generalization of the BC decoding algo-
rithm of [6] to BSSCs. As pointed out in [12], the decoding
algorithm of [6] does not scale well in a multi-user scenario,
in terms of the number of users supported as a function of
codeword length. In [12], [25] slotting arrangements were
added on top of BC codes to increase the length, and the
number of supported users. Part of the information in a
transmission is embedded in the choice of a BC, part in
the choice of active slots. In [12], interference cancellation
across slots is applied, and the discussed scheme can be
considered a combination of physical layer (PHY) BC coding,
and a Medium Access Control (MAC) Layer code of the
type discussed in [52]. The works of [12], [25] show that
following such principles, practically implementable massive
random access schemes, operating in the regime of interest
of [13], can be designed. If the small-m BC-transmissions in
the slots would be replaced with BSSC transmissions with the
same m, the results of this paper indicate that performance
per slot would be the same, if not slightly better than in
[12], [25]. This indicates that combined MAC/PHY codes,
where BSSC would be the PHY component instead of BC as
used in [12], [25], are likely to provide slightly higher rates
with otherwise similar performance as [12], [25]. In future
work, we plan to investigate such codes.

As mentioned, we have seen in all our simulations that
BSSCs outperform BCs. Although our algorithms do not find
the closest codeword, this may be due to a fact that BSSCs
have fewer closest neighbors on average than BCs. We will
investigate this in future work with a statistical analysis of
Algorithm 3 along the lines of [29].

Binary chirps have been generalized in various works to
prime dimensions, and recently to non-prime dimensions [53].
In future work we will consider analogues generalizations of
BSSCs, by adding a sparsity component to generalized BCs
and/or by lifting BSSCs modulo 2t.

As a byproduct, we have obtained a Bruhat decomposition
of the symplectic group that involves five elementary symplec-
tic matrices (compared to the seven layers of [34], c.f., (32)).
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We think that this has implications in quantum computation.
In future research we will explore whether Algorithm 1 can
be leveraged to improve upon [33], [54].
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