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Abstract

Unitary k-designs are probabilistic ensembles of unitary matrices whose first k statistical

moments match that of the full unitary group endowed with the Haar measure. In prior work,

we showed that the automorphism group of classical Z4-linear Kerdock codes maps to a

unitary 2-design, which established a new classical-quantum connection via graph states. In

this paper, we construct a Markov process that mixes this Kerdock 2-design with symplectic

transvections, and show that this process produces an ǫ-approximate unitary 3-design. We

construct a graph whose vertices are Pauli matrices, and two vertices are connected by directed

edges if and only if they commute. A unitary ensemble that is transitive on vertices, edges,

and non-edges of this Pauli graph is an exact 3-design, and the stationary distribution of our

process possesses this property. With respect to the symmetries of Kerdock codes, the Pauli

graph has two types of edges; the Kerdock 2-design mixes edges of the same type, and the

transvections mix the types. More precisely, on m qubits, the process samples O(log(N 5/ǫ))

random transvections, where N = 2m , followed by a random Kerdock 2-design element

and a random Pauli matrix. Hence, the simplicity of the protocol might make it attractive

for several applications. From a hardware perspective, 2-qubit transvections exactly map to

the Mølmer–Sørensen gates that form the native 2-qubit operations for trapped-ion quantum

computers. Thus, it might be possible to extend our work to construct an approximate 3-design

that only involves such 2-qubit transvections.
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1 Introduction

Unitary k-designs are finite collections of m-qubit unitary matrices endowed with a proba-

bility distribution, and they satisfy a certain statistical criterion. Set N := 2m . Then, the first

k statistical moments of this finite ensemble match that of the unique rotationally-invariant

Haar measure η(·) on the group UN of all N × N unitary operators ρ, i.e.,

∑

i

αi U
⊗k
i ρ(U

†
i )⊗k =

∫

UN

dη(U )U⊗kρ(U †)⊗k (1)

for ensemble E = {αi , Ui }n
i=1 where the unitary matrix Ui is selected with probability αi .

Unitary designs serve several purposes in quantum information science such as quantum

data hiding [8], decoupling in quantum information theory [13,20,25,28], and channel fidelity

estimation [7].

Randomized benchmarking is a protocol commonly used to estimate the quality of state

preparation, measurement and operations (gates) in a quantum computer [9,18]. The actual

errors in the system could be gate- and time-dependent, so estimating the error environment

completely is challenging. Therefore, the procedure attempts to estimate the average gate

fidelity that characterizes the error environment. The protocol works by first preparing a

fixed initial state |ψ〉. Then, for a fixed sequence length s, one generates Ks sequences of

(s + 1) operations each, where the first s operations are chosen randomly from a unitary

2-design and the last operation is defined to be the inverse of the composition of the first

s operations. Hence, ideally, the final state should be identical to the initial state. For each

sequence, one measures the average survival probability of the state, i.e., Tr[ΠψS(|ψ〉 〈ψ |)],
where Πψ is the POVM element to detect |ψ〉 and S(·) is the effective channel induced by

the aforementioned sequence of (noisy) operations. If the POVM is realized ideally, then

Πψ = |ψ〉 〈ψ |. Then, one averages the results over the Ks sequences to compute the average

sequence fidelity. This procedure is repeated for each s and the results are fit to a fidelity

decay function.

This scheme amounts to “twirling” the underlying noise channel using a unitary 2-design

in order to arrive at the depolarizing channel with the same fidelity as the original channel

[9,18]. Then, the fidelity is estimated on this single-parameter depolarizing channel in order

to establish the quality of the computing environment. Small, practically feasible unitary

2-designs make it possible to efficiently characterize the reliability of a quantum computing

environment, thereby enabling the development of quantum computers.

In prior work, we showed that the unitary 2-design constructed by Cleve et al. [6] coincided

with the symmetry group of the Z4-linear Kerdock code [4]. The Kerdock codewords appear

as graph states, providing a new connection between classical and quantum information the-

ory. Our 2-design is a subgroup of the Clifford group, and the corresponding group of binary

symplectic matrices, Pm , is isomorphic to the projective special linear group PSL(2, 2m).

It is well-known that the Clifford group is an exact unitary 3-design, meaning no proper

subgroup of the Clifford group gives a 3-design [29]. In this paper, we combine our (Kerdock)

2-design with symplectic transvections [14,24,26] to construct a Markov process that results
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Approximate unitary 3-designs from transvection Markov chains 2183

in an approximate unitary 3-design. Hence, our work demonstrates how one can “smoothly”

turn the Kerdock 2-design into a 3-design.

Symplectic transvections play the same role in the symplectic group as the reflections play

in the orthogonal group. More formally, the symplectic transvection τh corresponding to the

row vector h ∈ F
2m
2 is the map τh : F

2m
2 → F

2m
2 defined by

τh(x) := x + 〈x, h〉sh, (2)

where 〈·, ·〉s denotes the symplectic inner product. More details can be found in Sect. 2.4.

Main result (Theorem 5) Random sampling of O(log(N 5/ǫ)) transvections, followed

by a random element from Pm
∼= PSL(2, 2m) and a random Pauli matrix, produces an

ǫ-approximate unitary 3-design.

An exact unitary 3-design must be transitive on all Paulis, on ordered pairs of commuting

Paulis, and on ordered pairs of anti-commuting Paulis. The Kerdock 2-design acts transitively

on Pauli elements, but partitions the Pauli pairs into multiple orbits. Using a finite field

representation of Paulis, and the fact that transvections generate the symplectic group, we

characterize the orbits of Pauli pairs and analyze how each transvection acts on the orbits.

Finally, we analyze the convergence rate to an ǫ-approximate 3-design using the second

largest eigenvalues of the transition matrices of the “edge”- and “orbit”-Markov chains.

While only few applications exist currently for unitary 3-designs [1,15,16], we think that

the simplicity of our protocol makes it an attractive candidate for any such application. Our

Markov process samples Clifford transformations uniformly from cosets of the Kerdock 2-

design that are determined by products of transvections. Since transvections form a conjugacy

class inside the Clifford group (see (21)), the intermediate Cliffords in the Markov process

(from Pm
∼= PSL(2, 2m)) can be combined into one final Clifford (from Pm

∼= PSL(2, 2m))

as stated in the result above. We emphasize here that, while the full Clifford group forms

a 3-design [29], transvections form a specific subset whose structure could be exploited for

practical implementations. In particular, 2-qubit transvections exactly correspond to Mølmer–

Sørensen gates that form the native 2-qubit operations in a trapped-ion quantum computer

[17,22]. Therefore, it might be possible to suitably modify our approach in this paper to

construct an approximate 3-design with only 2-qubit transvections. This way, the design

could be tailor-made for trapped-ion systems.

The rest of the paper is organized as follows. In Sect. 2, we introduce our finite field

representation of the Pauli group elements, show how it expresses commutativity, and discuss

other preliminaries including the Clifford group and symplectic transvections. In Sect. 3, we

define a graph on Pauli matrices, where Clifford elements act as graph automorphisms, and

explain how the Pauli graph works with the ideas of Pauli mixing and Pauli 2-mixing. In

Sect. 4, we introduce the Kerdock unitary 2-design which is a symplectic subgroup isomorphic

to the projective special linear group PSL(2, 2m). Then, using our finite field representation,

we define orbit invariants based on how PSL(2, 2m) partitions the directed edges of the Pauli

graph. In Sect. 5, we introduce the transvection Markov chains whose stationary distribution

gives an exact unitary 3-design. In Sect. 6, we analyze the convergence rate of the transvection

Markov process and prove that it produces an ǫ-approximate unitary 3-design. In Sect. 7, we

conclude the paper.
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2 The Pauli and Clifford groups

In this section, we describe commutativity in the Pauli group by rewriting the standard

symplectic inner product as a trace inner product over a finite field. This translation simplifies

the description of the Clifford symmetries that generate the Kerdock unitary 2-design.

2.1 The finite field F2m

The field representation is fundamental to our description of commutativity in the Pauli group.

We obtain the finite field F2m from the binary field F2 by adjoining a root α of a primitive irre-

ducible polynomial p(x) of degree m [19]. Each element of F2m corresponds to a polynomial

in α of degree at most m − 1 with coefficients in F2. The field elements 1, α, α2, . . . , αm−1

form a basis for F2m over F2 which we call the primal basis. The corresponding dual basis

β0, β1, . . . , βm−1 is defined by

Tr(αiβ j ) :=

{

1 if i = j,

0 if i �= j,
(3)

where the trace Tr : F2m → F2 is the F2 linear map

Tr(x) := x + x2 + . . . + x2m−1

. (4)

Given a field element a ∈ F2m , we will write

a =
m−1
∑

i=0

⌈a⌉iα
i =

m−1
∑

i=0

⌊a⌋iβi . (5)

The binary row vector ⌈a⌉ ∈ {0, 1}m represents the coefficients of a in the primal basis, and

the binary row vector ⌊a⌋ ∈ {0, 1}m represents the coefficients of a in the dual basis.

The trace is linear over F2 and the binary symmetric matrix W given by

Wi j := Tr
(

αiα j
)

, i, j = 0, 1, . . . , m − 1 (6)

satisfies

⌊a⌋ = ⌈a⌉W , (7)

thereby translating primal coordinates to dual coordinates.

The trace inner product Tr(ab) = 〈a, b〉tr is given by

Tr(ab) = ⌈a⌉W⌈b⌉T = ⌈a⌉ · ⌊b⌋ (mod 2). (8)

The matrix W is non-singular since the trace inner product is non-degenerate (if Tr(xz) = 0

for all z ∈ F2m then x = 0). Observe that W is a Hankel matrix, since if i + j = h + k then

Tr(αiα j ) = Tr(αhαk).

2.2 The Pauli group

The single qubit (Hermitian) Pauli matrices are

I2 :=
[

1 0

0 1

]

, X :=
[

0 1

1 0

]

, Z :=
[

1 0

0 −1

]

, Y := i X Z =
[

0 −i

i 0

]

, (9)
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where i :=
√

−1 and I2 is the 2 × 2 identity matrix [21].

Pauli matrices on m qubits are described by Kronecker products of m single qubit Pauli

matrices. We associate with each pair of finite field elements (a, b) ∈ F2m × F2m the m-fold

Kronecker product

D(a, b) := X ⌈a⌉0 Z ⌊b⌋0 ⊗ · · · ⊗ X ⌈a⌉m−1 Z ⌊b⌋m−1 ∈ UN , (10)

where N := 2m and UN denotes the group of all N × N unitary operators.

The m-qubit Pauli group PN (also called the Heisenberg-Weyl group) consists of all oper-

ators iκ D(a, b). The values iκ , where κ ∈ Z4 := {0, 1, 2, 3}, are called quaternary phases.

The order |PN | = 4N 2 and the center of this group is 〈i IN 〉 := {IN , i IN ,−IN ,−i IN }, where

IN is the N × N identity matrix. Hence, the homomorphism ψ : PN → F
2m
2 defined by

ψ(iκ D(a, b)) := [⌈a⌉, ⌊b⌋] ∀ κ ∈ Z4 (11)

has kernel 〈i IN 〉 and allows us to represent elements of PN (up to multiplication by scalars)

as binary row vectors or pairs of F2m elements.

Multiplication in PN satisfies the identity

D(a, b)D(c, d) = (−1)⌈c⌉·⌊b⌋+⌈a⌉·⌊d⌋ D(c, d)D(a, b). (12)

The standard symplectic inner product in F
2m
2 is defined as

〈[⌈a⌉, ⌊b⌋], [⌈c⌉, ⌊d⌋]〉s := ⌈c⌉ · ⌊b⌋ + ⌈a⌉ · ⌊d⌋

=[⌈a⌉, ⌊b⌋] Ω [⌈c⌉, ⌊d⌋]T, (13)

where the symplectic form Ω :=
[

0 Im

Im 0

]

(see [2,23,24]). It follows from (8) that

〈[⌈a⌉, ⌊b⌋], [⌈c⌉, ⌊d⌋]〉s = Tr(ad + bc). (14)

Therefore, two operators D(a, b) and D(c, d) commute if and only if Tr(ad + bc) = 0.

2.3 The Clifford group

The Clifford group CliffN is the normalizer of PN in the unitary group UN . It consists of all

unitary matrices g ∈ C
N×N for which gD(a, b)g† ∈ PN for all D(a, b) ∈ PN , where g† is

the Hermitian transpose of g [10].

The Clifford group contains PN and has size |CliffN | = 2m2+2m
∏m

j=1(4
j − 1) (ignoring

scalars e2π iθ , θ ∈ R) [2]. Every operator g ∈ CliffN induces an automorphism of PN by

conjugation. Note that the inner automorphisms induced by matrices in PN preserve every

conjugacy class {±D(a, b)} and {±i D(a, b)}, because (12) implies that elements in PN either

commute or anti-commute. Matrices D(a, b) are symmetric or anti-symmetric according as

Tr(ab) = 0 or 1, hence the matrix

E(a, b) := iTr(ab) D(a, b) (15)

is Hermitian. Note that E(a, b)2 = IN .

The automorphism induced by a Clifford element g satisfies

gE(a, b)g† = ±E
(

[⌈a⌉, ⌊b⌋]Fg

)

, where Fg =
[

Ag Bg

Cg Dg

]

(16)
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Table 1 A generating set of

symplectic matrices and their

corresponding unitary operators

Symplectic matrix Fg Clifford operator g

Ω =
[

0 Im

Im 0

]

HN = H⊗m
2

L Q =
[

Q 0

0 Q−T

]

ℓQ : ev �→ evQ

TP =
[

Im P

0 Im

]

; P = PT tP = diag
(

ivPvT mod 4
)

Gt =
[

Lm−t Ut

Ut Lm−t

]

gt = H2t ⊗ I2m−t

The number of 1s in Q and P directly relates to number of gates

involved in the circuit realizing the respective unitary operators (see

[23,24, Appendix I]). The N coordinates are indexed by binary vectors

v ∈ F
m
2 , and ev denotes the standard basis vector in C

N with an entry 1 in

position v and all other entries 0. Here H2t denotes the Walsh-Hadamard

matrix of size 2t , Ut = diag (It , 0m−t ) and Lm−t = diag (0t , Im−t )

is a 2m × 2m binary matrix that preserves symplectic inner products:

〈[⌈a⌉, ⌊b⌋]Fg, [⌈c⌉, ⌊d⌋]Fg〉s = 〈[⌈a⌉, ⌊b⌋], [⌈c⌉, ⌊d⌋]〉s. (17)

Hence, Fg is called a binary symplectic matrix and the symplectic property reduces to

FgΩ FT
g = Ω , or equivalently

Ag BT

g = Bg AT

g, Cg DT

g = DgCT

g, Ag DT

g + BgCT

g = Im . (18)

The symplectic property encodes the fact that the automorphism induced by g must respect

commutativity in PN . Let Sp(2m, F2) denote the group of symplectic 2m ×2m matrices over

F2. The map φ : CliffN → Sp(2m, F2) defined by

φ(g) := Fg (19)

is a homomorphism with kernel PN , and every Clifford operator projects onto a symplectic

matrix Fg . Thus, PN is a normal subgroup of CliffN and CliffN /PN
∼= Sp(2m, F2). This

implies that |Sp(2m, F2)| = 2m2 ∏m
j=1(4

j − 1) (also see [2]).

Table 1 lists elementary symplectic transformations Fg , that generate the binary symplectic

group Sp(2m, F2), and the corresponding unitary automorphisms g ∈ CliffN , which together

with PN generate CliffN . (See [23, Appendix I] for a discussion on the Clifford gates and

circuits corresponding to these transformations.)

2.4 Symplectic transvections

The symplectic transvection τh corresponding to the row vector h ∈ F
2m
2 is the map

τh : F
2m
2 → F

2m
2 defined by

τh(x) := x + 〈x, h〉sh = x Zh, (20)

where Zh := I2m + ΩhTh is the associated symplectic matrix of τh .

The set of symplectic transvections is a conjugacy class in Sp(2m, F2), since if h =
[h1, h2] with h1, h2 ∈ F

m
2 , then

F−1
g Zh Fg = Z[h1 Ag+h2Cg ,h1 Bg+h2 Dg ] = ZhFg , (21)
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where

Fg =
[

Ag Bg

Cg Dg

]

, and F−1
g =

[

D
⊺

g B
⊺

g

C
⊺

g A
⊺

g

]

.

Hence, the group generated by the symplectic transvections is normal in Sp(2m, F2).

Since Sp(2m, F2) is simple, it is generated by the set of symplectic transvections.

We shall view the row vectors that define a symplectic transvection as elements of the

finite field F2m . Given a, b, h1, h2 ∈ F2m , let h = [⌈h1⌉, ⌊h2⌋], then

Zh([⌈a⌉, ⌊b⌋]) = [⌈a⌉, ⌊b⌋] + (⌈a⌉ · ⌊h2⌋ + ⌈h1⌉ · ⌊b⌋)[⌈h1⌉, ⌊h2⌋]
≡

(

a b
)

+ Tr(ah2 + bh1)
(

h1 h2

)

(22)

We will often write the transvection Zh as Z(h1,h2), where h1, h2 ∈ F2m .

3 The Pauli geometry

In this section, we will define a graph on Pauli matrices, where Clifford elements act as graph

automorphisms. We will build on prior work [29] showing that a set of automorphisms forms

a unitary 2-design if it acts transitively on vertices, or a unitary 3-design if it acts transitively

on vertices, on edges, and on non-edges.

3.1 Themaximal commutative subgroups

To begin with, we shall review some concepts that are closely related to the Pauli group:

stabilizers, maximal commutative subgroups, and stabilizer states.

A stabilizer group is a subgroup S of PN generated by commuting Hermitian matrices

of the form ±E(a, b), with the additional property that if E(a, b) ∈ S then −E(a, b) /∈
S [21, Chapter 10]. The operators IN ±E(a,b)

2
project onto the ±1 eigenspaces of E(a, b),

respectively.

Since all elements of S are unitary, Hermitian and commute with each other, they can be

diagonalized simultaneously with respect to a common orthonormal basis, and their eigen-

values are ±1 with algebraic multiplicity N/2. We refer to such a basis as the common

eigenbasis or simply the eigenbasis of the subgroup S, and to the subspace of eigenvectors

with eigenvalue +1 as the +1 eigenspace of S.

If the subgroup S is generated by E(ai , bi ), i = 1, . . . , k, then the operator

1

2k

k
∏

i=1

(IN + E(ai , bi )) (23)

projects onto the 2m−k-dimensional subspace V (S) fixed pointwise by S, i.e., the +1

eigenspace of S. The subspace V (S) is the stabilizer code determined by S. One uses the

notation [[m, m −k]] code to represent that V (S) encodes m −k logical qubits into m physical

qubits.

Let ψ(S) denote the subspace of F
2m
2 formed by the binary representations of the elements

of S using the homomorphism ψ in (11). A generator matrix for ψ(S) is

GS := [⌈ai⌉, ⌊bi⌋]i=1,...,k ∈ F
k×2m
2 s.t. GS Ω GT

S = 0, (24)

where 0 is the k × k matrix with all entries zero.

123



2188 X. Tan et al.

A stabilizer group S defined by k = m generators is called a maximal commutative

subgroup of PN and ψ(S) is called a maximal isotropic subspace of F
2m
2 . The generator

matrix GS has rank m and can be row-reduced to [0 | Im] if S = Z N := {E(0, b) : b ∈ F2m },
or to the form [Im | P] if S is disjoint from Z N . The condition GSΩGT

S = 0 implies P = PT.

Remark 1 We will denote these maximal commutative subgroups as E([0 | Im]) and E([Im |
P]), respectively, and E([Im | 0]) = X N := {E(a, 0) : a ∈ F2m }. Notice that we still employ

the form of E(a, b), where a, b ∈ F2m , to represent elements inside of each subgroup.

3.2 The Kerdock set

Kerdock sets connect Kerdock codes [11] with maximal commutative subgroups of the Pauli

group. We refer the reader to [4] for more information about connections between binary and

quaternary Kerdock codes and eigenbases of maximal commutative subgroups E([Im | Pz]),
where z ∈ F2m .

We write multiplication by z ∈ F2m as a linear transformation xz ≡ ⌈x⌉Az . For z =
0, A0 = 0, and for z = αi the matrix Az = Ai for i = 0, 1, . . . , 2m −2, where A is the matrix

that represents multiplication by the primitive element α. The matrix A is the companion

matrix of the primitive irreducible polynomial p(x) = p0 + p1x + · · · + pm−1xm−1 + xm

over the binary field. Thus,

A :=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1

p0 p1 p2 · · · pm−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (25)

Lemma 1 It follows directly from the arithmetic of F2m that the matrices Az and W satisfy:

(a) Az Ax = Ax Az = Axz;

(b) Ax + Az = Ax+z;

(c) Az W = W AT
z ;

Proof Specifically, for (c), observe that

(⌈x⌉Az)W⌈y⌉T = Tr((xz)y) = Tr(x(yz)) = ⌈x⌉W (⌈y⌉Az)
T.

The other two properties are easily verified. ⊓⊔

The Kerdock set PK (m) consists of all symmetric matrices Pz = Az W , where z ∈ F2m

[4]. It is closed under binary addition, and if P, Q ∈ PK(m) are distinct, then P + Q is

non-singular, which in turn implies that the maximal commutative subgroups E([Im | Pz])
determined by the Kerdock matrices Pz intersect trivially. Together with Z N = E([0 | Im]),
they partition all (N 2 −1) non-identity Hermitian Pauli matrices. Hence, given a non-identity

Hermitian Pauli matrix E(a, b), it follows that there is a sign ǫ ∈ {±1} such that ǫE(a, b)

is in one of the N + 1 subgroups determined by all Pz ∈ PK(m) and Z N . If E(a, b) is in the

maximal commutative subgroup E([Im | Pz]), then we must have

⌊b⌋ = ⌈a⌉Az W = ⌈az⌉W = ⌊az⌋ ⇒ b = az.

Therefore, each element in E([Im | Pz]) or E([0 | Im]) can be written as E(a, az) or E(0, a),

respectively, for some a ∈ F2m .
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Remark 2 Throughout this paper, we will illustrate theory developed for general m by reduc-

ing to the special case m = 3. We constructed F8 by adjoining a root α of p(x) = x3 + x +1

over F2. Then, we have F8 = {0, 1, α, α2, . . . , α6} and α7 = 1. The trace of 0, α, α2, α4 is

0 and the trace of 1, α3, α5, α6 is 1.

Example 1 It follows from (25) and (6) that

Aα = A1 =

⎡

⎣

0 1 0

0 0 1

1 1 0

⎤

⎦ and W =

⎡

⎣

1 0 0

0 0 1

0 1 0

⎤

⎦ . (26)

We may form Pz = Az W for any z ∈ F2m to generate the entire Kerdock set PK (m).

3.3 The Pauli graph

Definition 1 The Pauli graph PN has N 2 − 1 vertices, each of which is labeled by pairs

±E(a, b) with (a, b) �= (0, 0) and represented as (a, b). A directed edge connects vertex

(a, b) to vertex (c, d) if and only if E(a, b) commutes with E(c, d), represented as a 2 × 2

matrix
(

a b
c d

)

over F2m .

Apparently, if there is a directed edge connecting (a, b) to (c, d), then (c, d) must also

connect to (a, b). The need for this deterministic additional edge between commuting Paulis

will be clear when we discuss orbits in Sect. 4.2 and our Markov process in Sect. 5. Then, it

follows from (8) that

Tr

(

det

(

a b

c d

))

= Tr(ad + bc) = 0. (27)

We shall distinguish two types of directed edges in PN :

1. Type-1 edges connect vertices from the same maximal commutative subgroup E([Im |
Pz]), z ∈ F2m , or from E([0 | Im]). The determinant of a type-1 edge matrix is 0:

det

(

a az

b bz

)

= 0, where a �= b, ab �= 0. (28)

2. Type-2 edges connect vertices from different maximal commutative subgroups. The deter-

minant of a type-2 edge matrix is a non-zero field element with trace 0:

det

(

a az1

b bz2

)

= ab(z1 + z2) �= 0, where z1 �= z2, ab �= 0. (29)

The determinant of a 2 × 2 matrix representing an ordered pair of non-commuting Pauli

matrices is a non-zero field element that has trace equal to 1. We shall refer to an arbitrary

2 × 2 matrix over F2m , which represents an edge or a non-edge as each row corresponds to

a Pauli element, as a Pauli pair matrix.

Lemma 2 The Pauli graph PN is a strongly regular graph with parameters

n = N 2 − 1, t =
N 2

2
− 2, λ =

N 2

4
− 3, μ =

N 2

4
− 1, (30)

where n is the number of vertices, t is the in-degree and out-degree of each vertex, and λ or

μ is the number of vertices joined to a pair of distinct vertices x, y according as x, y are

joined or not joined respectively [3, Definiton 2.4].
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Proof A vertex (c, d) joined to a given vertex (a, b) must satisfy Tr(ad + bc) = 0 and half

of the elements in F2m have trace 0. For each possible value of ad + bc, there exists N pairs

(c, d) that are feasible. After eliminating the solutions (0, 0) and (a, b), we are left with

t = N 2

2
− 2 distinct vertices (c, d) joined to (a, b).

Given vertices (a, b) and (c, d), a vertex (e, f ) joined to both (a, b) and (c, d) satisfies

Tr(a f + be) = 0 and Tr(c f + de) = 0. Half of the elements in F2m have trace 0 and each

pair of a f + be and c f + de values have one solution for (e, f ). When (a, b) is not joined to

(c, d), we only need to eliminate the solution (0, 0). When (a, b) is joined to (c, d) we need

to eliminate (0, 0), (a, b) and (c, d). ⊓⊔
The number of edges in PN is (N 2 − 1)(N 2 − 4)/2. The number of type-1 edges is

(N 2 − 1)(N − 2) and the number of type-2 edges is N (N 2 − 1)(N − 2)/2.

Using these properties of the Pauli graph, we can now discuss unitary designs. We denote

the linear operators acting on a complex Euclidean space X (e.g., X = C
N ) as L(X ) and the

quantum channels acting on L(X ) as C(X ).

Definition 2 Let k be a positive integer and E = {αi , Ui }n
i=1 be an ensemble where the

unitary matrix Ui is selected with probability αi . The superoperators GE , GH ∈ C((CN )⊗k)

are given by

GE (ρ) =
∑

i

αi U
⊗k
i ρ(U

†
i )⊗k, (31)

GH (ρ) =
∫

UN

dη(U )U⊗kρ(U †)⊗k, (32)

where η(·) represents the Haar measure on the unitary group UN . The ensemble E is a unitary

k-design if and only if GE = GH . The linear transformations determined by GE and GH are

called k-fold twirls. A unitary k-design is defined by the property that the ensemble twirl

coincides with the full unitary twirl.

Notice that elements of the Clifford group act by conjugation on PN , inducing auto-

morphisms of the graph PN . It is well known that the symplectic group Sp(2m, F2) acts

transitively on vertices, on edges, and on non-edges of PN .

Following Webb [29], we say that an ensemble E = {αi , Ui }n
i=1 of Clifford elements Ui

is Pauli mixing if for every vertex (a, b) the distribution {αi , Ui E(a, b)U
†
i } is uniform over

vertices of PN . The ensemble E is Pauli 2-mixing if it is Pauli mixing and if for every edge

(resp. non-edge)
(

a b
c d

)

, the distribution

{αi , (Ui E(a, b)U
†
i , Ui E(c, d)U

†
i )}

is uniform over edges (resp. non-edges) of PN .

Theorem 1 Let G be a subgroup of the Clifford group containing all D(a, b) ∈ H WN , and let

E = { 1
|G| , U }U∈G be the ensemble defined by the uniform distribution. If G acts transitively

on vertices of PN , then E is a unitary 2-design, and if G acts transitively on vertices, edges

and non-edges, then E is a unitary 3-design.

Proof Transitivity means a single orbit so that random sampling from G results in the uniform

distribution on vertices, edges, and non-edges. Hence, transitivity on vertices implies E is

Pauli mixing and transitivity on vertices, edges and non-edges implies E is Pauli 2-mixing. It

now follows from [29] or [6] that Pauli mixing (resp. Pauli 2-mixing) implies E is a unitary

2-design (resp. unitary 3-design). ⊓⊔
Theorem 1 implies that random sampling from the Clifford group gives an exact unitary

3-design.
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4 The unitary 2-design

The unitary 2-design we consider in this paper is a symplectic subgroup isomorphic to

PSL(2, 2m), and different descriptions may be found in [5], [6], and [4]. We will follow the

perspective provided in [4]. We first show that it acts transitively on vertices of the graph PN .

Then, we use our finite field representation to describe how this subgroup acts on ordered

pairs of commuting and anti-commuting Pauli Matrices.

4.1 The symplectic subgroup isomorphic to PSL(2, 2m)

We first introduce PSL(2, 2m) and realize each transformation as a symplectic matrix. Then,

we explain why this symplectic subgroup forms a unitary 2-design by showing how the

group elements permute the maximal commutative subgroups E([Im |Pz]) and E([0|Im])
and elements within each subgroup.

The projective special linear group of 2 × 2 matrices over F2m is defined as

PSL(2, 2m) :=
{(

α β

γ δ

)

: α, β, γ, δ ∈ F2m ; αδ + βγ = 1

}

. (33)

The order |PSL(2, 2m)| = (N + 1)N (N − 1) = 23m − 2m . The action of each 2 × 2 matrix
(

α β
γ δ

)

over F2m on 1-dimensional subspaces of F2m ×F2m is associated with a transformation

f (z) =
β + δz

α + γ z

acting on the projective line F2m ∪ {∞}, given that

(

1 z
)

(

α β

γ δ

)

=
(

α + γ z β + δz
)

≡
(

0 1
)

or
(

1
β+δz
α+γ z

)

. (34)

The group PSL(2, 2m) is generated by the transformations z �→ z + x, z �→ zx , and

z �→ 1/z. We realize each of these transformations as a symplectic transformation. We recall

that Az W AT
z = A2

z W from part (c) of Lemma 1, and for convenience we work with maximal

commutative subgroups E([Im | A2
z W ]), i.e., the Kerdock matrices are Pz = A2

z W . Note

that every field element β ∈ F2m is a square, so this is equivalent to Pz = Az W .

(a) z �→ z + x becomes [Im | A2
z W ] �→ [Im | A2

x+z W ] :

[Im | A2
z W ]

[

Im A2
x W

0 Im

]

= [Im | (A2
z + A2

x )W ]

≡ [Im | (A2
x+z)W ]. (35)

Example 2 When m = 3, x = α, and z = α3, we have x + z = 1, Ax = A, and Az = A3.

Then,

A2
x + A2

z = A2
x+z = I3 = A0. (36)

(b) z �→ xz becomes [Im | A2
z W ] �→ [Im | A2

xz W ] :

[Im | A2
z W ]

[

A−1
x 0

0 AT
x

]

= [A−1
x | A2

z W AT

x ]

= [A−1
x | Ax A2

z W ]

≡ [Im | A2
xz W ]. (37)
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(c) z �→ 1/z becomes [Im | A2
z W ] �→ [Im | A2

z−1 W ] :

[Im | A2
z W ]

[

0 Im

Im 0

] [

W −1 0

0 W T

]

= [A2
z W | Im]

[

W −1 0

0 W

]

= [A2
z | W ]

≡ [Im | A2
z−1 W ]. (38)

Note that if we start with z = 0, i.e., the subgroup E([Im | 0]), then since W is invertible

the final subgroup is E([0 | Im]), interpreted as z = ∞.

Therefore, PSL(2, 2m) is isomorphic to Pm , a group of symplectic matrices defined as

Pm := 〈TA2
x W , L

A−1
x

, ΩLW−1; x ∈ F2m 〉 ∼= PSL(2, 2m), (39)

and each PSL(2, 2m) element induces a product of basic symplectic matrices in Table 1. The

isomorphism θ : PSL(2, 2m) → Pm can be defined as

θ

((

α β

γ δ

))

:= TA2
δ/γ W · L

A−2
γ

· ΩLW−1 · TA2
α/γ W (40)

=
[

A2
δ A2

β W

W −1 A2
γ (A2

α)T

]

, (41)

where α, β, γ, δ ∈ F2m and αδ + βγ = 1 [4, Lemma 23 and Corollary 24]. The induced

action on maximal commutative subgroups is given by

E([Im | A2
z W ]) �→ E([Im | A2

β+δz
α+γ z

W ]) or E([0 | Im]). (42)

Notice that the corresponding Clifford subgroup is larger than PSL(2, 2m) since PN forms

the kernel of the homomorphism from CliffN to Sp(2m, F2).

The first two factors in (40) provide transitivity on the Hermitian matrices of all max-

imal commutative subgroups except Z N = E([0 | Im]), and the last two factors enables

exchanging any subgroup E([Im | Pz]) with E([0 | Im]).
To prove that PSL(2, 2m) acts transitively on vertices of the Pauli graph PN , we only need

to show that the group is transitive on a particular subgroup, say E([Im |0]). For any (a, 0)

and (b, 0) where a �= b ∈ F2m , there always exists a group element
(

a−1b 0
0 b−1a

)

that maps

(a, 0) to (b, 0).

It then follows from Theorem 1 and (16) that random sampling from the symplectic

subgroup Pm isomorphic to PSL(2, 2m) followed by a random Pauli matrix D(a, b) produces

a unitary 2-design.

However, PSL(2, 2m) is only able to permute maximal commutative subgroups or elements

within each subgroup. It is not transitive on edges of PN since it fails to mix type-1 edges

and type-2 edges. Thus, Pm cannot be a unitary 3-design.

4.2 Orbit invariants

PSL(2, 2m) partitions the edges of the Pauli graph into orbits, and we now identify orbit

invariants.

Definition 3 We calculate the orbit invariant from any representative Pauli pair matrix
(

a b
c d

)

as follows:
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(a) The determinant ad + bc is the orbit invariant for any non-edge matrix or type-2 edge

matrix.

(b) For any type-1 edge matrix, the first row is a scalar multiple of the second row, given

that the two vertices (a, b) and (c, d) are in the same maximal commutative subgroup.

Its orbit invariant is the scalar a
c

= b
d

∈ F2m \ {0, 1}.

Example 3 When m = 3, the following three Pauli pair matrices

E1 =
(

α 0

1 α2

)

, E2 =
(

α 0

1 α

)

, and E3 =
(

α 0

1 0

)

(43)

have orbit invariants α3, α2, and α. According to Definition 3, (27), (28), and (29), we can

recognize that E1 is a non-edge, E2 is a type-2 edge, and E3 is a type-1 edge.

Theorem 2 Consider PSL(2, 2m) acting on Pauli pair matrices by right multiplication. Two

Pauli pair matrices are in the same orbit if and only if they have the same orbit invariant.

Proof Every matrix in PSL(2, 2m) has determinant 1, so Pauli pair matrices in the same orbit

share the same determinant. If the determinant is 0, then one row is a scalar multiple of the

other and the scalar relation between rows is preserved by any linear transformation.

Consider two matrices, either with the same non-zero determinant, or with determinant 0

and the same scalar relation between the two rows. There always exists a linear transformation

with determinant 1 that maps one to the other. ⊓⊔

It follows directly from Theorem 2 that we can use orbit invariants to represent and

differentiate the orbits. We give some statistics about these orbits below:

(a) There are N
2

non-edge orbits and there are an equal number of finite field elements with

trace 1. Each orbit has (N 2 − 1)N elements.

(b) There are N−2
2

type-2 edge orbits and there are an equal number of non-zero finite field

elements with trace 0. Each orbit also has (N 2 − 1)N elements.

(c) There are N − 2 type-1 edge orbits and there are an equal number of field elements in

F2m \ {0, 1}. Each orbit has N 2 − 1 elements.

Example 4 For m = 3, there are 4 non-edge orbits whose invariants are 1, α3, α5, and α6;

3 type-2 edge orbits whose invariants are α, α2, and α4; and 6 type-1 edge orbits whose

invariants are α, α2, · · · , α6.

5 The transvectionMarkov process

We define a Markov process by applying a sequence of transvections to mix orbits, and a final

PSL(2, 2m) element to mix edges or non-edges within each orbit. We claim that it gives an

approximate unitary 3-design by showing convergence to the uniform distribution on edges

and on non-edges, in addition to the transitivity on vertices (Sect. 4.1).

Let K = (N 2 − 1)(N 2 − 4)/2 be the number of edges and K ′ = (N 2 − 1)N 2/2 be the

number of non-edges in PN . Consider the underlying Markov chain on directed edges (resp.

non-edges) with a K × K (resp. K ′ × K ′) transition matrix. Since transvections generate

the full Clifford group and Clifford elements act transitively on edges and non-edges, the

uniform distribution on all edges (resp. non-edges) is stationary. We are interested in the rates

at which the two Markov processes converge to their corresponding stationary distributions.
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Sampling PSL(2, 2m) elements results in uniform probabilities within orbits. Therefore,

it suffices to reduce the two underlying Markov chains to orbits and only consider how

non-identity (symplectic) transvections transfer probability mass within the reduced state

space. The dimensions of the new transition matrix on edge (resp. non-edge) orbits are
3
2
(N − 2) × 3

2
(N − 2) (resp. N

2
× N

2
).

5.1 The transvectionMarkov chain on non-edges

Theorem 3 Consider the Markov process with state space consisting of all non-edge orbits.

The matrix Q1 of state transition probabilities is given by

Q1 =
1

4(N 2 − 1)

[

(N 2 − 4)IN/2 + 6N JN/2

]

∈ R
N
2 × N

2 , (44)

where IN/2, JN/2 ∈ R
N
2 × N

2 , IN/2 is the identity matrix, and JN/2 is the all ones matrix.

Proof We apply a random transvection Z(h1,h2), where h1, h2 ∈ F2m and (h1, h2) �= (0, 0),

to a non-edge matrix
(

a 0
0 b

)

with orbit invariant ab, where Tr(ab) = 1. According to (22), we

have the following four cases:

(a) Applying a transvection with Tr(ah2) = 0 and Tr(bh1) = 0 fixes the non-edge:
(

a 0

0 b

)

Z(h1,h2)

−−−−→
(

a 0

0 b

)

. (45)

There are two constraints on h1 and h2, also (h1, h2) �= (0, 0). Therefore, the number of

possible transvections is
(

N
2

)2 − 1 = N 2

4
− 1.

(b) Applying a transvection with Tr(ah2) = 1 and Tr(bh1) = 1, we obtain
(

a 0

0 b

)

Z(h1,h2)

−−−−→
(

a + h1 h2

h1 b + h2

)

(46)

and the new orbit invariant is

(a + h1)(b + h2) + h1h2 = ab + ah2 + bh1.

Since Tr(ab) + Tr(ah2) + Tr(bh1) = 1, the resulting Pauli pair is not an edge. The

products ah2 and bh1 range over all field elements with trace 1. Given a field element x

with Tr(x) = 1, the number of solutions to x = ab + ah2 + bh1 is simply the number

of solutions to ah2 + bh1 = 0. There are N/2 transvections to each of the N/2 orbits.

(c) Applying a transvection with Tr(ah2) = 0 and Tr(bh1) = 1, we obtain
(

a 0

0 b

)

Z(h1,h2)

−−−−→
(

a 0

h1 b + h2

)

(47)

and the new orbit invariant is

a(b + h2) = ab + ah2.

Since Tr(ab) + Tr(ah2) = 1, the resulting Pauli pair is not an edge. A similar argument

to that used in part (b) shows that there are N/2 transvections to each of the N/2 orbits.

(d) Applying a tranvection with Tr(ah2) = 1 and Tr(bh1) = 0, we obtain
(

a 0

0 b

)

Z(h1,h2)

−−−−→
(

a + h1 h2

0 b

)

(48)
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and the new orbit invariant is

(ah1)b = ab + bh1.

The same argument used in part (c) shows that there are N/2 transvections to each of

the N/2 orbits.

There are N 2 − 1 transvections, and each is a symplectic matrix that preserves non-edges

in the Pauli graph. Case (a) contributes to the diagonal component N 2−4
4(N 2−1)

IN/2 in Q1 and

cases (b), (c), and (d) contribute to 6N
4(N 2−1)

JN/2 in Q1. ⊓⊔

5.2 The transvectionMarkov chain on edges

Theorem 4 Consider the Markov process with state space consisting of all edge orbits. Set

M1 = N − 2 and M2 = N−2
2

. Index the first M1 rows and columns of the state transition

matrix Q0 by the type-1 orbits, and the remaining M2 rows and columns by the type-2 orbits.

Then, Q0 is given by

Q0 =
1

4(N 2 − 1)

[

(N 2 − 4)IM1 N RT

R (N 2 − 4)IM2 + 6N JM2 ,

]

(49)

where IM1 and IM2 are the identity matrices, JM2 is the all ones matrix, R is non-negative,

each row sum of R is 6N, and each column sum of R is 3N.

Proof We determine the lower right block of the transition matrix Q0 by making a slight

modification to the proof of Theorem 3. Starting with Tr(ab) = 0, we consider x with

Tr(x) = 0 in cases (b), (c), and (d). In each case, if x = 0, we get a type-1 orbit and there

are N/2 such transvections. Thus, the matrix R/4 in the lower left block has row sum 3N/2.

If x �= 0, of which there are (N − 2)/2 cases, we a get a transition to one of the (N − 2)/2

type-2 orbits and there are still N/2 such transvections in each case. This contributes to the

JM2 term in the lower right block. Finally, case (a) from Theorem 3 produces the identity

component.

We now start with a type-1 edge
(

a 0
b 0

)

, where a �= b, ab �= 0, and has orbit invariant a
b

,

and apply a random transvection Z(h1,h2), where h1, h2 ∈ F2m and (h1, h2) �= (0, 0). By

distinguishing four cases similar to the proof of Theorem 3, we notice that the upper left

block of Q0, which describes the probability of transiting from type-1 orbits to type-1 orbits

by transvections, contains only the diagonal component N 2−4
4(N 2−1)

IM1 .

Since transvections are self-inverse, the upper right block of Q0 must be some scalar

multiple of RT. The transvection Markov chain on edges is irreducible, so by the Perron-

Frobenius Theorem, there is a unique stationary distribution. Since the uniform distribution

on edges is stationary, we observe that

w1 =
[

1
N

. . . 1
N

1 . . . 1
]

∈ R
N−2+ N−2

2 (50)

is the stationary distribution of the Markov chain on edge orbits. Given that the row sum of

R is 6N , the upper right block is N RT. ⊓⊔

Example 5 Here m = 3, and we derive the matrix R. Starting with a type-2 edge
(

a 0
0 b

)

for

which the orbit invariant is ab = α, we consider the following three cases:
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(a) Applying a transvection with Tr(ah2) = 1 and Tr(bh1) = 1, we obtain

(

a 0

0 b

)

Z(h1,h2)

−−−−→
(

a + h1 h2

h1 b + h2

)

, (51)

with determinant

(a + h1)(b + h2) + h1h2 = ab + ah1 + bh2.

When ah1 + bh2 = ab = α, the resulting Pauli pair is a type-1 edge with orbit invariant

a + h1

h1
=

ab + bh1

bh1
=

α

bh1
+ 1.

Since bh1 takes the values 1, α3, α5, or α6 with equal probability, the corresponding orbit

invariants take the values

α

1
+ 1 = α3,

α

α3
+ 1 = α4,

α

α5
+ 1 = α, or

α

α6
+ 1 = α6 (52)

with equal probability.

(b) Applying a transvection with Tr(ah2) = 0 and Tr(bh1) = 1, we obtain

(

a 0

0 b

)

Z(h1,h2)

−−−−→
(

a 0

h1 b + h2

)

(53)

with determinant

a(b + h2) = ab + ah2.

When ah2 = ab = α, the resulting Pauli pair is a type-1 edge with orbit invarint

a

h1
=

ab

bh1
=

α

bh1
.

Again, bh1 takes the values 1, α3, α5, or α6 with equal probability, so the corresponding

orbit invariants take the values

α

1
= α,

α

α3
= α5,

α

α5
= α3, or

α

α6
= α2 (54)

with equal probability.

(c) By symmetry, the result of applying a transvection with Tr(ah2) = 1 and Tr(bh1) = 0

is the same as part (b).

A type-2 edge with orbit invariant α is equally likely to transition to any of the type-1

orbits. The same conclusion holds for a type-2 edge with orbit invariant α2 or α4, and so

R3 =

α α2 α3 α4 α5 α6

[ ]

α 1 1 1 1 1 1

α2 1 1 1 1 1 1

α4 1 1 1 1 1 1

× 8. (55)

Remark 3 When m = 3, the matrix R is a scalar multiple of a all ones matrix, but for general

m, it may not be the case that a type-2 orbit is equally likely to transition to all type-1 orbits.

For example, when m = 4 and α is a root of x4 + x + 1. Suppose we start with a type-2 edge
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(

a 0
0 b

)

for which the orbit invariant is ab = α, then the number of possible transvections to

achieve each type-1 orbits is

α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14
[ ]

α 1 2 1 1 3 2 2 2 2 3 1 1 2 1

(56)

5.3 Eigenvectors and eigenvalues

We first discuss the eigenvectors and eigenvalues of Q1. The all-one vector x1 of length N/2

is an eigenvector of Q1 with eigenvalue 1, i.e., x1 Q1 = x1. Any vector orthogonal to x1 is

an eigenvector of JN/2 with eigenvalue 0. Then, for any vector x2 such that x2 JN/2 = 0, we

have

x2 Q1 =
N 2 − 4

4(N 2 − 1)
x2. (57)

Therefore, the second largest eigenvalue of Q1 is

λQ1 =
N 2 − 4

4(N 2 − 1)
(58)

with multiplicity N
2

− 1.

We proceed to discuss the eigenvectors and eigenvalues of Q0. Define

J ′ =
1

4(N 2 − 1)(N − 2)

[

(N 2 − 4)JM1 6N 2 JM1×M2

6N JM2×M1 (8N 2 − 12N − 8)JM2

]

, (59)

where JM1×M2 and JM2×M1 are the M1 × M2 and M2 × M1 all ones matrices. By direct

calculation we obtain

J ′Q0 = Q0 J ′ = J ′ J ′. (60)

Then, for any eigenvector w of J ′ with eigenvalue λ, we have

wJ ′Q0 = wJ ′ J ′ ⇒ λwQ0 = λ2w ⇒ wQ0 = λw. (61)

Therefore, w1 in (50) and

w2 =
[

1 . . . 1 −2 . . . −2
]

∈ R
N−2+ N−2

2 (62)

are two (left) eigenvectors for both J ′ and Q0 with corresponding eigenvalues 1 and N 2−6N−4
4(N 2−1)

.

The eigenvector w1 is the stationary distribution of Q0.

Additionally, for any eigenvector v of Q0 with eigenvalue λ, we have

vJ ′ J ′ = vQ0 J ′ = λvJ ′. (63)

Thus, either vJ ′ = 0 or vJ ′ is an eigenvector of J ′ with eigenvalue λ. It remains to calculate

the eigenvalues associated with eigenvectors v of Q0 that satisfy vJ ′ = 0. The action of Q0

on these eigenvectors is given by the matrix

Q′
0 =

1

4(N 2 − 1)

[

(N 2 − 4)IM1 N RT

R (N 2 − 4)IM2

]

. (64)
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Setting

R′ =
1

4(N 2 − 1)

[

0 N RT

R 0

]

, (65)

we have

R′2 =
1

16(N 2 − 1)2

[

N RTR 0

0 N R RT

]

. (66)

Since the row sum of R is 6N and the column sum is 3N , the largest singular value of R is

3
√

2N . Therefore, the largest eigenvalue of R′2 is N (3
√

2N )2

16(N 2−1)2 . Then, the largest eigenvalue of

R′ is 3
√

2N
√

N
4(N 2−1)

. If λQ0 is the second largest eigenvalue of Q0, then

λQ0 <
N 2 − 4 + 3N

√
2N

4(N 2 − 1)
(67)

and the minimum eigenvalue λmin,Q0 of Q0 is positive when m ≥ 5 (i.e., N ≥ 32) since

λmin,Q0 >
N 2 − 4 − 3N

√
2N

4(N 2 − 1)
> 0. (68)

6 Convergence analysis

In this section, we prove that the transvection Markov process gives an ǫ-approximate unitary

3-design and analyze its convergence rate using the second largest eigenvalues obtained in

Sect. 5.3. The proof is also inspired by Sect. 6 in [12] and how Webb [29] proved that the

Pauli 2-mixing forms an exact unitary 3-design.

We now describe the general idea of our proof. The diamond norm difference, which can

be upperbounded by l2 norm, tells us how “approximate” our design GE is to an exact unitary

3-design GH . For an exact 3-design, we know it acts transitively on edges and non-edges. For

our approximate 3-design, we have the transition matrices Q1 and Q0 that describe how it

acts on edges and non-edges. Therefore, we can expand GE and GH using Pauli elements and

transition probabilities. Since the second largest eigenvalues of Q1 and Q0 tell us how fast

the Markov processes converge, the transition probabilities can be accurately characterized.

6.1 The approximate unitary k-designs

Definition 4 ([30, Chapter 9.1.6], [12, Definition 2.4]) For quantum channels N , M ∈ C(X ),

the diamond-norm distance is given by

‖N − M‖⋄ = sup
ρ

‖(N ⊗ IR)(ρ) − (M ⊗ IR)(ρ)‖1 (69)

where dim(R) = dim(X ). The diamond norm tells us the distinguishability of two quantum

channels in an operational sense.

Definition 5 ([12, Definition 2.5]) GE is an ǫ-approximate unitary k-design if

‖GE − GH ‖⋄ ≤ ǫ. (70)
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Theorem 5 Random sampling of O(log(N 5/ǫ)) transvections, followed by a random element

from Pm
∼= PSL(2, 2m) and a random Pauli matrix D(a, b) gives a ǫ-approximate unitary

3-design.

We will use the rest of Sect. 6 to prove Theorem 5. Denote P N as the set of all E(a, b)

Pauli matrices. Since P N forms an orthogonal basis for L(CN ), each linear operator ρ ∈
L((CN )⊗6) can be written as

ρ =
1

N 3

∑

pi ∈ P N ,

i ∈ {1, . . . , 6}

Γ (p1, . . . , p6)p1 ⊗ · · · ⊗ p6, (71)

where

Γ (p1, . . . , p6) =
1

N 3
Tr((p1 ⊗ · · · ⊗ p6)ρ) ∈ R (72)

and
∑

pi ∈ P N ,

i ∈ {1, . . . , 6}

Γ 2(p1, . . . , p6) ≤ 1. (73)

Because of this nice expansion into Pauli elements, we only need to understand the effect

of GE and GH acting on each element of P
⊗3

N . Notice that Theorem 5 gives an exact unitary

2-design since it still acts transitively on vertices. Then, it follows from Webb [29, Proof of

Lemma 4] that when ρ = p1 ⊗ p2 ⊗ I or ρ = p1 ⊗ p2 ⊗ p3 with p1 p2 p3 �∝ I (up to

permutations of the underlying registers), we have

GE (ρ) = GH (ρ). (74)

Therefore, we only need to consider the case when ρ = p1 ⊗ p2 ⊗ p1 p2 and p1 �= p2:

‖GE − GH ‖2
⋄ = sup

ρ
‖(GE ⊗ IR)(ρ) − (GH ⊗ IR)(ρ)‖2

1

≤N 6 sup
ρ

‖(GE ⊗ IR)(ρ) − (GH ⊗ IR)(ρ)‖2
2

= sup
ρ

∥

∥

∥

∥

∑

pi ∈P N

Γ (p1, . . . , p6)

[

GE (p1 ⊗ p2 ⊗ p3) ⊗ p4 ⊗ p5 ⊗ p6

− GH (p1 ⊗ p2 ⊗ p3) ⊗ p4 ⊗ p5 ⊗ p6

]∥

∥

∥

∥

2

2

= sup
ρ

∥

∥

∥

∥

∑

pi ∈ P N

p3 = p1 p2, p1 �= p2

Γ (p1, . . . , p6)

[

GE (p1 ⊗ p2 ⊗ p1 p2)

− GH (p1 ⊗ p2 ⊗ p1 p2)

]

⊗ p4 ⊗ p5 ⊗ p6

∥

∥

∥

∥

2

2

. (75)

Define

E(p1,p2)→(q1,q2) = {(α, U ) ∈ E : U p1U † = q1, U p2U † = q2}. (76)
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Suppose the transition matrices for the Markov chains of sampling random transvections on

all edges and non-edges are P0 and P1 respectively. Then, if we start from the Pauli pair

(p1, p2), the probability of reaching (q1, q2) after t steps on the chain is

g
[p1,p2]
t (q1, q2; p1, p2) = e(p1,p2) P t

[p1,p2]e
T

(q1,q2), (77)

where [p1, p2] = 0 if p1 and p2 commute, otherwise [p1, p2] = 1 and e(p1,p2) is a unit row

vector where only position (p1, p2) is non-zero. Then, for the ensemble E generated after t

steps on the corresponding Markov chain, we have

GE (p1 ⊗ p2 ⊗ p1 p2) =
∑

(α,U )∈E

αU p1U † ⊗ U p2U † ⊗ U p1U †U p2U †

=
∑

q1,q2∈P N :
[q1,q2]=[p1,p2]

∑

(α,U )∈E(p1,p2)→(q1,q2)

αq1 ⊗ q2 ⊗ q1q2

=
∑

q1,q2∈P N :
[q1,q2]=[p1,p2]

g
[p1,p2]
t (q1, q2; p1, p2)q1 ⊗ q2 ⊗ q1q2 (78)

and

GH (p1 ⊗ p2 ⊗ p1 p2) =
∑

q1,q2∈P N :
[q1,q2]=[p1,p2]

g
[p1,p2]
∞ (q1, q2; p1, p2)q1 ⊗ q2 ⊗ q1q2. (79)

Then, by continuing (75) and following the orthogonality of the Pauli operators under the

Hilbert-Schmidt inner product, we obtain

‖GE − GH ‖2
⋄ = sup

ρ

∥

∥

∥

∥

∑

pi ∈ P N

[p1, p2] = 0

Γ (p1, . . . , p6)
∑

q1, q2 ∈ P N :
[q1, q2] = 0

[

g0
t (q1, q2; p1, p2)

− g0
∞(q1, q2; p1, p2)

]

q1 ⊗ q2 ⊗ q1q2 ⊗ p4 ⊗ p5 ⊗ p6

+
∑

pi ∈ P N

[p1, p2] = 1

Γ (p1, . . . , p6)
∑

q1, q2 ∈ P N :
[q1, q2] = 1

[

g1
t (q1, q2; p1, p2)

− g1
∞(q1, q2; p1, p2)

]

q1 ⊗ q2 ⊗ q1q2 ⊗ p4 ⊗ p5 ⊗ p6

∥

∥

∥

∥

2

2

=N 6 sup
ρ

[

∑

[p1,p2]=0

Γ 2(· · · )
∑

[q1,q2]=0

(g0
t (· · · ) − g0

∞(· · · ))2

+
∑

[p1,p2]=1

Γ 2(· · · )
∑

[q1,q2]=1

(g1
t (· · · ) − g1

∞(· · · ))2

]

. (80)

123



Approximate unitary 3-designs from transvection Markov chains 2201

We shall show in Sect. 6.2 that when t = O(log(N 5/ǫ)), using the second largest eigenvalues

of Q0 and Q1 defined in (49) and (44), we have

∑

[q1,q2]=0

(g0
t (· · · ) − g0

∞(· · · ))2 <

( ǫ

N 3

)2
(81)

and

∑

[q1,q2]=1

(g1
t (· · · ) − g1

∞(· · · ))2 <

( ǫ

N 3

)2
. (82)

Therefore, we can prove Theorem 5 by further simplifying (80) into

‖GE − GH ‖2
⋄ ≤ N 6 sup

ρ

∑

Γ 2(· · · )
( ǫ

N 3

)2
≤ ǫ2. (83)

6.2 Orbits mixing time

We first find the connection between the probability distribution of the Markov chain on

edges and that of edge orbits. Suppose

x = [x1, . . . , xN−2, xN−1, . . . , x 3
2 (N−2)

] (84)

is a probability distribution on all edge orbits. Sampling Clifford elements will distribute the

probability mass equally among all the edges within each orbit. Since each type-1 orbit has

N 2 −1 elements and each type-2 orbit has (N 2 −1)N elements, we define the corresponding

probability distribution on all edges after sampling a random Clifford element as

f (x) =
[

x1

N 2 − 1
, . . . ,

xN/2

(N 2 − 1)N
, . . .

]

, (85)

where each entry xi

N 2−1
is repeated N 2 − 1 times, for 1 ≤ i ≤ (N − 2), and each entry

xi

(N 2−1)N
is repeated (N 2 − 1)N times, for i ≥ N − 1. Then, we see that

‖ f (x) − f (y)‖1 =
(N 2−1)(N 2−4)/2

∑

i=1

| f (x)i − f (y)i |

=
N−2
∑

i=1

(N 2 − 1)

∣

∣

∣

∣

xi

N 2 − 1
−

yi

N 2 − 1

∣

∣

∣

∣
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+

3
2 (N−2)
∑

i=N−1

(N 2 − 1)N

∣

∣

∣

∣

xi

(N 2 − 1)N
−

yi

(N 2 − 1)N

∣

∣

∣

∣

=

3
2 (N−2)
∑

i=1

|xi − yi | = ‖x − y‖1. (86)

Definition 6 Let Q be the transition matrix of an irreducible and aperiodic Markov process

whose stationary distribution is π . The mixing time τ is given by

τ(ǫ) = max
s : ‖s‖1=1

min
t

{t ≥ 0 : ‖sQt − π‖1 ≤ ǫ}. (87)

Theorem 6 ([12, Theorem 4.5]) The mixing time can be bounded above as

τ(ǫ) ≤
1

Δ
ln

1

π∗ǫ
, (88)

where π∗ = min π(x) and Δ = min(1 − λ2, 1 + λmin). Here, λ2 is the second largest

eigenvalue and λmin is the smallest.

Therefore, following from (50) and (67), the mixing time for Q0 is bounded by

tmin = τ

( ǫ

N 3

)

≤
1

1 − λQ0

ln
1

min
(

w1
‖w1‖1

)

ǫ

N 3

≤
1

1 − N 2−4+3N
√

2N
4(N 2−1)

ln
1

ǫ

N 3 ( 1
N

)/( N 2−4
2N

)

≈
1

1 − 1/4
ln

N 3(N 2 − 4)

2ǫ
= O(log(N 5/ǫ)) (89)

[27] and tmin is larger than the mixing time of Q1 defined in (44). Since

‖ f (x) − f (y)‖2 ≤ ‖ f (x) − f (y)‖1 = ‖x − y‖1, (90)

both (81) and (82) can be upper bounded by
(

ǫ

N 3

)2
. Theorem 5 is thus proved.

7 Conclusion

In this paper, we have proved that we can obtain an ǫ-approximate unitary 3-design by random

sampling O(log(N 5/ǫ)) transvections followed by a random Clifford PSL(2, 2m) element

and a random Pauli matrix.

The key to an exact unitary 3-design is the transitivity on the Pauli element pairs of the

same commutativity. The transvection Markov process that we designed exactly enables

all Pauli pairs to converge to such a uniform stationary distribution. We first start from a

well-established unitary 2-design, a symplectic subgroup isomorphic to PSL(2, 2m) based

on Kerdock sets. This unitary 2-design acts transitively on Pauli elements, but partitions the

Pauli pairs into multiple orbits. Using a finite field representation of Paulis, and the fact that

transvections generate the symplectic group, we characterize the orbits of Pauli pairs and

analyze how each transvection acts on the orbits. Finally, we analyze the convergence rate to
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an ǫ-approximate 3-design using the second largest eigenvalues of the transition matrices of

the “edge”- and “orbit”-Markov chains.

Interestingly, when we look at the history of related research, scientists have already

discovered that the Clifford group forms a unitary 2-design early in 2001 [8]. But it was not

proved until 2016 that it is also a unitary 3-design and it is the minimal 3-design except for

dimension 4 [29,31]. Our work fills in the gap by constructing the 3-design using the exact

building blocks provided by the 2-design.

Given that Mølmer–Sørensen gates (i.e., 2-qubit transvections [22]) are native gates in

trapped-ion systems, it would be interesting to investigate if employing only these transvec-

tions in our Markov chain suffices to produce an approximate unitary 3-design. Moreover,

it might be possible to extend this Markov chain approximation framework to create uni-

tary k-designs for t > 3 by mixing the Kerdock design with, perhaps, a generalization of

symplectic transvections.
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