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Abstract

Unitary k-designs are probabilistic ensembles of unitary matrices whose first k statistical
moments match that of the full unitary group endowed with the Haar measure. In prior work,
we showed that the automorphism group of classical Z4-linear Kerdock codes maps to a
unitary 2-design, which established a new classical-quantum connection via graph states. In
this paper, we construct a Markov process that mixes this Kerdock 2-design with symplectic
transvections, and show that this process produces an e-approximate unitary 3-design. We
construct a graph whose vertices are Pauli matrices, and two vertices are connected by directed
edges if and only if they commute. A unitary ensemble that is transitive on vertices, edges,
and non-edges of this Pauli graph is an exact 3-design, and the stationary distribution of our
process possesses this property. With respect to the symmetries of Kerdock codes, the Pauli
graph has two types of edges; the Kerdock 2-design mixes edges of the same type, and the
transvections mix the types. More precisely, on m qubits, the process samples O (log(N? /€))
random transvections, where N = 2™, followed by a random Kerdock 2-design element
and a random Pauli matrix. Hence, the simplicity of the protocol might make it attractive
for several applications. From a hardware perspective, 2-qubit transvections exactly map to
the Mglmer—Sgrensen gates that form the native 2-qubit operations for trapped-ion quantum
computers. Thus, it might be possible to extend our work to construct an approximate 3-design
that only involves such 2-qubit transvections.
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1 Introduction

Unitary k-designs are finite collections of m-qubit unitary matrices endowed with a proba-
bility distribution, and they satisfy a certain statistical criterion. Set N :=2". Then, the first
k statistical moments of this finite ensemble match that of the unique rotationally-invariant
Haar measure 7(-) on the group Uy of all N x N unitary operators p, i.e.,

Y U p)H® = /U dn(U)U* p(UH)®* (1
i N

1

for ensemble £ = {a;, U;}?_, where the unitary matrix U; is selected with probability o;.

Unitary designs serve several purposes in quantum information science such as quantum
data hiding [8], decoupling in quantum information theory [13,20,25,28], and channel fidelity
estimation [7].

Randomized benchmarking is a protocol commonly used to estimate the quality of state
preparation, measurement and operations (gates) in a quantum computer [9,18]. The actual
errors in the system could be gate- and time-dependent, so estimating the error environment
completely is challenging. Therefore, the procedure attempts to estimate the average gate
fidelity that characterizes the error environment. The protocol works by first preparing a
fixed initial state |v). Then, for a fixed sequence length s, one generates K, sequences of
(s + 1) operations each, where the first s operations are chosen randomly from a unitary
2-design and the last operation is defined to be the inverse of the composition of the first
s operations. Hence, ideally, the final state should be identical to the initial state. For each
sequence, one measures the average survival probability of the state, i.e., Tr[ITy S(|v) (¥ ])],
where ITy, is the POVM element to detect |1) and S(-) is the effective channel induced by
the aforementioned sequence of (noisy) operations. If the POVM is realized ideally, then
ITy, = |) (¥|. Then, one averages the results over the K sequences to compute the average
sequence fidelity. This procedure is repeated for each s and the results are fit to a fidelity
decay function.

This scheme amounts to “twirling” the underlying noise channel using a unitary 2-design
in order to arrive at the depolarizing channel with the same fidelity as the original channel
[9,18]. Then, the fidelity is estimated on this single-parameter depolarizing channel in order
to establish the quality of the computing environment. Small, practically feasible unitary
2-designs make it possible to efficiently characterize the reliability of a quantum computing
environment, thereby enabling the development of quantum computers.

In prior work, we showed that the unitary 2-design constructed by Cleve et al. [6] coincided
with the symmetry group of the Zs-linear Kerdock code [4]. The Kerdock codewords appear
as graph states, providing a new connection between classical and quantum information the-
ory. Our 2-design is a subgroup of the Clifford group, and the corresponding group of binary
symplectic matrices, J3,,, is isomorphic to the projective special linear group PSL(2, 2™).

It is well-known that the Clifford group is an exact unitary 3-design, meaning no proper
subgroup of the Clifford group gives a 3-design [29]. In this paper, we combine our (Kerdock)
2-design with symplectic transvections [14,24,26] to construct a Markov process that results
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Approximate unitary 3-designs from transvection Markov chains 2183

in an approximate unitary 3-design. Hence, our work demonstrates how one can “smoothly”
turn the Kerdock 2-design into a 3-design.

Symplectic transvections play the same role in the symplectic group as the reflections play
in the orthogonal group. More formally, the symplectic transvection 7, corresponding to the
row vector h € IF%"’ is the map tj : ]F%m — ]F%’” defined by

7 (x) == x + (x, h)sh, (@)
where (-, -)s denotes the symplectic inner product. More details can be found in Sect. 2.4.

Main result (Theorem 5) Random sampling of O (log(N 5/6)) transvections, followed
by a random element from %3,, = PSL(2,2™) and a random Pauli matrix, produces an
€-approximate unitary 3-design.

An exact unitary 3-design must be transitive on all Paulis, on ordered pairs of commuting
Paulis, and on ordered pairs of anti-commuting Paulis. The Kerdock 2-design acts transitively
on Pauli elements, but partitions the Pauli pairs into multiple orbits. Using a finite field
representation of Paulis, and the fact that transvections generate the symplectic group, we
characterize the orbits of Pauli pairs and analyze how each transvection acts on the orbits.
Finally, we analyze the convergence rate to an e-approximate 3-design using the second
largest eigenvalues of the transition matrices of the “edge”- and “orbit”-Markov chains.

While only few applications exist currently for unitary 3-designs [1,15,16], we think that
the simplicity of our protocol makes it an attractive candidate for any such application. Our
Markov process samples Clifford transformations uniformly from cosets of the Kerdock 2-
design that are determined by products of transvections. Since transvections form a conjugacy
class inside the Clifford group (see (21)), the intermediate Cliffords in the Markov process
(from B, = PSL(2, 2™)) can be combined into one final Clifford (from 3,, = PSL(2, 2"))
as stated in the result above. We emphasize here that, while the full Clifford group forms
a 3-design [29], transvections form a specific subset whose structure could be exploited for
practical implementations. In particular, 2-qubit transvections exactly correspond to Mglmer—
Sgrensen gates that form the native 2-qubit operations in a trapped-ion quantum computer
[17,22]. Therefore, it might be possible to suitably modify our approach in this paper to
construct an approximate 3-design with only 2-qubit transvections. This way, the design
could be tailor-made for trapped-ion systems.

The rest of the paper is organized as follows. In Sect. 2, we introduce our finite field
representation of the Pauli group elements, show how it expresses commutativity, and discuss
other preliminaries including the Clifford group and symplectic transvections. In Sect. 3, we
define a graph on Pauli matrices, where Clifford elements act as graph automorphisms, and
explain how the Pauli graph works with the ideas of Pauli mixing and Pauli 2-mixing. In
Sect. 4, we introduce the Kerdock unitary 2-design which is a symplectic subgroup isomorphic
to the projective special linear group PSL(2, 2*). Then, using our finite field representation,
we define orbit invariants based on how PSL(2, 2™) partitions the directed edges of the Pauli
graph. In Sect. 5, we introduce the transvection Markov chains whose stationary distribution
gives an exact unitary 3-design. In Sect. 6, we analyze the convergence rate of the transvection
Markov process and prove that it produces an e-approximate unitary 3-design. In Sect. 7, we
conclude the paper.
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2184 X.Tanetal.

2 The Pauli and Clifford groups

In this section, we describe commutativity in the Pauli group by rewriting the standard
symplectic inner product as a trace inner product over a finite field. This translation simplifies
the description of the Clifford symmetries that generate the Kerdock unitary 2-design.

2.1 The finite field Fom

The field representation is fundamental to our description of commutativity in the Pauli group.
We obtain the finite field Fo» from the binary field IF» by adjoining a root « of a primitive irre-
ducible polynomial p(x) of degree m [19]. Each element of [Fo» corresponds to a polynomial
in « of degree at most m — 1 with coefficients in [F,. The field elements 1, «, a2, ... am!
form a basis for Fom over IF, which we call the primal basis. The corresponding dual basis

Bos Bis - - - » Bm—1 is defined by
: 1 ifi =j,
Tr(a'B;) = 3
(o' Bj) {0 ifi £ . 3)
where the trace Tr: Fom — TF5 is the F; linear map
Tr(x) i=x +x2+ ... +x2" . o

Given a field element a € Fom, we will write

m—1 m—1
a=7) falid' =) lalipi. )
i=0 i=0

The binary row vector [a] € {0, 1} represents the coefficients of a in the primal basis, and
the binary row vector |a| € {0, 1}"* represents the coefficients of @ in the dual basis.
The trace is linear over [F, and the binary symmetric matrix W given by

Wy i=Tr(oal), i, j=0,1,....m~1 ©6)
satisfies
la] = [alW, @

thereby translating primal coordinates to dual coordinates.
The trace inner product Tr(ab) = (a, b) is given by

Tr(ab) = [alW[b]" = [a] - |b) (mod 2). 8)

The matrix W is non-singular since the trace inner product is non-degenerate (if Tr(xz) = 0
for all z€ Fym then x = 0). Observe that W is a Hankel matrix, since if i + j = h + k then
Tr(ea’) = Tr(a" k).

2.2 The Pauli group

The single qubit (Hermitian) Pauli matrices are
10 01 10 . 0—i
O O o P R R o R
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where i :=+/—1 and I, is the 2 x 2 identity matrix [21].

Pauli matrices on m qubits are described by Kronecker products of m single qubit Pauli
matrices. We associate with each pair of finite field elements (a, b) € Fom x Fym the m-fold
Kronecker product

D(a, b) = Xra]OZLbJO R---® Xlra-‘mfl Z\_bjmfl c UNv (]0)

where N :=2" and Uy denotes the group of all N x N unitary operators.

The m-qubit Pauli group Py (also called the Heisenberg-Weyl group) consists of all oper-
ators i“ D(a, b). The values i*, where k € Z4:=1{0, 1, 2, 3}, are called quaternary phases.
The order | Py| = 4N? and the center of this groupis (ily) :={Ily,ily, —In, —iln}, where
Iy isthe N x N identity matrix. Hence, the homomorphism ¢ : Py — IE‘%’" defined by

Y(i“D(a,b)):=[lal, [b]1V k € Zs an

has kernel (i /) and allows us to represent elements of Py (up to multiplication by scalars)
as binary row vectors or pairs of [Fo» elements.
Multiplication in Py satisfies the identity

D(a,b)D(c,d) = (=DM De, d)Da, b). (12)
The standard symplectic inner product in F%m is defined as

([Tal, [b]]. [TcT, [d]D)s:=Tc] - [b] 4 [a] - |d]
=[[al, [b]] 2 [[c], Ld]1", (13)

0 1,

where the symplectic form £ := |: I (';1 ] (see [2,23,24]). It follows from (8) that
m

([Tal, Lb1], [Te, Ld1])s = Tr(ad + bc). (14)
Therefore, two operators D(a, b) and D(c, d) commute if and only if Tr(ad + bc) = 0.

2.3 The Clifford group

The Clifford group Cliffy is the normalizer of Py in the unitary group Uy. It consists of all
unitary matrices g € CV*V for which gD(a, b)g" € Py for all D(a, b) € Py, where g’ is
the Hermitian transpose of g [10].

The Clifford group contains Py and has size |Cliffy| = om*+2m ]_['}1:1 4/ —1) (ignoring
scalars ¢2™1% 9 € R) [2]. Every operator g € Cliffy induces an automorphism of Py by
conjugation. Note that the inner automorphisms induced by matrices in Py preserve every
conjugacy class {+D(a, b)} and {£i D(a, b)}, because (12) implies that elements in Py either
commute or anti-commute. Matrices D(a, b) are symmetric or anti-symmetric according as
Tr(ab) = 0 or 1, hence the matrix

E(a,b):=i" D(a, b) (15)

is Hermitian. Note that E (a, b) = Iy.
The automorphism induced by a Clifford element g satisfies

gE(a,b)g" = £E ([[al, Lb]1Fg) , where Fy = [é:’ gi] (16)
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2186 X.Tanetal.

Table 1 A generating set of

symplectic matrices and their Symplectic matrix Fg Clifford operator g
corresponding unitary operators _ [l?n I(’)"] Hy — Hgg’"
Lg= [g QO_T] Lo tey > eyg
Tp = [’6" Ipm] . p=pPT tp = diag (i0FVT mod4)
G = [Ln[},_t L:Z,] gt = Hot @ Iym—t

The number of 1s in Q and P directly relates to number of gates
involved in the circuit realizing the respective unitary operators (see
[23,24, Appendix I]). The N coordinates are indexed by binary vectors
v E IF’2", and e, denotes the standard basis vector in CN withan entry 1in
position v and all other entries 0. Here H,: denotes the Walsh-Hadamard
matrix of size 2/, U; = diag (I1, 0,y—¢) and Ly,—; = diag (O¢, Iy—;)

is a 2m x 2m binary matrix that preserves symplectic inner products:

([Tal, [b]1Fg, [Tcl, Ld]1Fg)s = ([Tal, [b]]. [TcT, [d]])s. a7

Hence, Fy is called a binary symplectic matrix and the symplectic property reduces to
F¢QF] = £2, or equivalently

T T T T T T
AgB] = ByAy, CyD = DyCy. AgD} + ByCy = I (18)

The symplectic property encodes the fact that the automorphism induced by g must respect
commutativity in Py. Let Sp(2m, ;) denote the group of symplectic 2m x 2m matrices over
F5. The map ¢ : Cliffy — Sp(2m, F») defined by

¢(g):=F; 19
is a homomorphism with kernel Py, and every Clifford operator projects onto a symplectic
matrix Fg. Thus, Py is a normal subgroup of Cliffy and Cliffy /Py = Sp(2m, IF>). This
implies that [Sp(2m, F»)| = om? ]_[;”:1(4j — 1) (also see [2]).

Table 1 lists elementary symplectic transformations Fy, that generate the binary symplectic
group Sp(2m, [F2), and the corresponding unitary automorphisms g € Cliffy, which together
with Py generate Cliffy. (See [23, Appendix I] for a discussion on the Clifford gates and
circuits corresponding to these transformations.)

2.4 Symplectic transvections

The symplectic transvection 7, corresponding to the row vector h € F%m is the map
o F %m — F%m defined by

h(x):=x + (x, h)sh = xZp, (20)

where Zj, := I, + 2k is the associated symplectic matrix of 7.
The set of symplectic transvections is a conjugacy class in Sp(2m, ), since if h =
[A1, ho]l with hy, hy € F'Zn, then

F&TthFg = Zhy Ag+hyCq,h1 By+haDg] = ZhFy s (21)

@ Springer



Approximate unitary 3-designs from transvection Markov chains 2187

where

_ [ B -1 _[DPf B
Fg = [Cg Dg:l,and Fg = C;‘ A:gr .

Hence, the group generated by the symplectic transvections is normal in Sp(2m, [Fp).
Since Sp(2m, ) is simple, it is generated by the set of symplectic transvections.

We shall view the row vectors that define a symplectic transvection as elements of the
finite field Fom. Given a, b, hy, ho € Fom,let h = [[h], h2]], then

Zp(UTal, [b]D) = [[al, [b]1+ (Tal - Lha] + [hy 1 - LDDITh1 ], Lh2]]
= (a b) + Tr(aha + bhy) (k1 h2) (22)

We will often write the transvection Z;, as Z, n,), where hy, hy € Fom.

3 The Pauli geometry

In this section, we will define a graph on Pauli matrices, where Clifford elements act as graph
automorphisms. We will build on prior work [29] showing that a set of automorphisms forms
a unitary 2-design if it acts transitively on vertices, or a unitary 3-design if it acts transitively
on vertices, on edges, and on non-edges.

3.1 The maximal commutative subgroups

To begin with, we shall review some concepts that are closely related to the Pauli group:
stabilizers, maximal commutative subgroups, and stabilizer states.

A stabilizer group is a subgroup S of Py generated by commuting Hermitian matrices
of the form £FE (a, b), with the additional property that if E(a,b) € S then —E(a, b) ¢
S [21, Chapter 10]. The operators W project onto the £1 eigenspaces of E(a, b),
respectively.

Since all elements of S are unitary, Hermitian and commute with each other, they can be
diagonalized simultaneously with respect to a common orthonormal basis, and their eigen-
values are £1 with algebraic multiplicity N /2. We refer to such a basis as the common
eigenbasis or simply the eigenbasis of the subgroup S, and to the subspace of eigenvectors
with eigenvalue +1 as the +/ eigenspace of S.

If the subgroup S is generated by E(a;, b;),i = 1, ..., k, then the operator

k
1
o [10x + Eai. b)) (23)
i=1

projects onto the 2"~ K-dimensional subspace V() fixed pointwise by S, i.e., the +1
eigenspace of S. The subspace V (S) is the stabilizer code determined by S. One uses the
notation [[m, m — k]| code to represent that V (S) encodes m —k logical qubits into m physical
qubits.

Let ¥ (S) denote the subspace of IF%’" formed by the binary representations of the elements

of S using the homomorphism v in (11). A generator matrix for ¥ (§) is
Gs:=Ila;1, billi=1...x € F5**" s.t. G5 2 G =0, (24)

.....

where 0 is the k x k matrix with all entries zero.
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2188 X.Tanetal.

A stabilizer group S defined by k = m generators is called a maximal commutative
subgroup of Py and ¥ (S) is called a maximal isotropic subspace of IF%’" The generator
matrix G g has rank m and can be row-reduced to [0 | [,,,]if S = Zx :={E(0,b): b € Fom},
or to the form [/, | P]if S is disjoint from Z . The condition GSQGE = Oimplies P = PT.

Remark 1 We will denote these maximal commutative subgroups as E([0 | I,,,]) and E([I,;, |
P]), respectively, and E([1,, | 0]) = Xy :={E(a,0): a € Fon}. Notice that we still employ
the form of E (a, b), where a, b € Fom, to represent elements inside of each subgroup.

3.2 The Kerdock set

Kerdock sets connect Kerdock codes [11] with maximal commutative subgroups of the Pauli
group. We refer the reader to [4] for more information about connections between binary and
quaternary Kerdock codes and eigenbases of maximal commutative subgroups E ([1,, | P;]),
where z € Fpm.

We write multiplication by z € Fo» as a linear transformation xz = [x]A;. For z =
0, Ag = 0, and for z = o' the matrix A, = Al fori =0,1,...,2™ —2, where A is the matrix
that represents multiplication by the primitive element «. The matrix A is the companion
matrix of the primitive irreducible polynomial p(x) = pg + p1x + - -+ + pm_1x™ 1 4+ x™
over the binary field. Thus,

0 1 0 0
0 0 1 0

A= : SO (25)
0 0 0 1
po pP1 p2 -t Pm—1

Lemma 1 It follows directly from the arithmetic of Fom that the matrices A; and W satisfy:
(@) A;Ax = AxA; = Aygs

(b) Ay +A;, =Arys;
() AW =WAT;

Proof Specifically, for (c), observe that
(TXTA)WTyT" = Tr((x2)y) = Tr(x(y2)) = [x]W([y1A.)".
The other two properties are easily verified. O

The Kerdock set Pk (m) consists of all symmetric matrices P, = AW, where z € Fon
[4]. It is closed under binary addition, and if P, Q € Pg(m) are distinct, then P + Q is
non-singular, which in turn implies that the maximal commutative subgroups E([/,, | P;])
determined by the Kerdock matrices P, intersect trivially. Together with Zy = E([0 | 1,,]),
they partition all (N2 — 1) non-identity Hermitian Pauli matrices. Hence, given a non-identity
Hermitian Pauli matrix E (a, b), it follows that there is a sign € € {£1} such that € E(a, b)
is in one of the N + 1 subgroups determined by all P, € Px(m) and Zy. If E(a, b) is in the
maximal commutative subgroup E([],, | P;]), then we must have

lb] = [alA W = [az]W = |az] = b = az.

Therefore, each elementin E([Z,, | P.]) or E([O | I,;]) can be written as E (a, az) or E(0, a),
respectively, for some a € Fom.
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Remark 2 Throughout this paper, we will illustrate theory developed for general m by reduc-
ing to the special case m = 3. We constructed Fg by adjoining a root « of p(x) = x> +x + 1

over IF,. Then, we have Fg = {0, 1, «, a?, ..., ot6} and o’ = 1. The trace of 0, a, a2, a* is
0 and the trace of 1, o3, &, a® is 1.
Example 1 Tt follows from (25) and (6) that
0 1 0 1 0 0
Ag=A'=[0 0 1|andwW=|0 0 1]. (26)
1 1 0 0 1 0

We may form P, = A, W for any z € Fon to generate the entire Kerdock set Pk (m).

3.3 The Pauli graph

Definition 1 The Pauli graph Py has N% — 1 vertices, each of which is labeled by pairs
+E(a, b) with (a, b) # (0,0) and represented as (a, b). A directed edge connects vertex
(a, b) to vertex (c, d) if and only if E(a, b) commutes with E(c, d), represented as a 2 x 2
matrix (‘C‘ 2 ) over Fom.

Apparently, if there is a directed edge connecting (a, b) to (c, d), then (¢, d) must also
connect to (a, b). The need for this deterministic additional edge between commuting Paulis
will be clear when we discuss orbits in Sect. 4.2 and our Markov process in Sect. 5. Then, it
follows from (8) that

Tr (det (Z Z)) = Tr(ad + be) = 0. Q27

We shall distinguish two types of directed edges in Py :

1. Type-1 edges connect vertices from the same maximal commutative subgroup E ([1;, |
P;]), z € Fom, or from E([O | I,,]). The determinant of a type-1 edge matrix is O:

aaz
det (b bz) =0, where a # b, ab # 0. (28)

2. Type-2 edges connect vertices from different maximal commutative subgroups. The deter-
minant of a type-2 edge matrix is a non-zero field element with trace 0:

aa
det (b b;;) =ab(z; + z2) # 0, where z1 # z2,ab # 0. (29)

The determinant of a 2 x 2 matrix representing an ordered pair of non-commuting Pauli
matrices is a non-zero field element that has trace equal to 1. We shall refer to an arbitrary
2 x 2 matrix over [Fom, which represents an edge or a non-edge as each row corresponds to
a Pauli element, as a Pauli pair matrix.

Lemma 2 The Pauli graph Py is a strongly regular graph with parameters
N2 2 N2

N
=N’ 1, t=— -2 A=——3, u=——1, 30
n 5 1 n=- (30)

where n is the number of vertices, t is the in-degree and out-degree of each vertex, and A or
W is the number of vertices joined to a pair of distinct vertices x, y according as x, y are
Jjoined or not joined respectively [3, Definiton 2.4].

@ Springer



2190 X.Tanetal.

Proof A vertex (c, d) joined to a given vertex (a, b) must satisfy Tr(ad + bc) = 0 and half
of the elements in Fo» have trace 0. For each possible value of ad + bc, there exists N pairs
(c, d) that are feasible. After eliminating the solutions (0, 0) and (a, b), we are left with
t= NTZ — 2 distinct vertices (c, d) joined to (a, b).

Given vertices (a, b) and (c, d), a vertex (e, f) joined to both (a, b) and (c, d) satisfies
Tr(af 4+ be) = 0 and Tr(cf + de) = 0. Half of the elements in Fo» have trace 0 and each
pair of af + be and cf + de values have one solution for (e, f). When (a, b) is not joined to
(c, d), we only need to eliminate the solution (0, 0). When (a, b) is joined to (c, d) we need
to eliminate (0, 0), (a, b) and (c, d). ]

The number of edges in Py is (N> — 1)(N? — 4)/2. The number of type-1 edges is
(N2 — 1)(N — 2) and the number of type-2 edges is N(NZ = 1)(N — 2)/2.

Using these properties of the Pauli graph, we can now discuss unitary designs. We denote
the linear operators acting on a complex Euclidean space X (e.g., X = CN)as L(X) and the
quantum channels acting on L(X') as C(X).

Definition 2 Let k be a positive integer and £ = {a;, U;}!_; be an ensemble where the
unitary matrix Uj is selected with probability «;. The superoperators Ge, Gy € C ((CNH®ky
are given by

Ge(p) = Y U p (U, 31

Gu(p) = f dn(U)USkp(UT)®*, (32)
Un

where 7 (-) represents the Haar measure on the unitary group Uy . The ensemble £ is a unitary
k-design if and only if Gg¢ = Gp. The linear transformations determined by G¢ and Gy are
called k-fold twirls. A unitary k-design is defined by the property that the ensemble twirl
coincides with the full unitary twirl.

Notice that elements of the Clifford group act by conjugation on Py, inducing auto-
morphisms of the graph Py. It is well known that the symplectic group Sp(2m, [F») acts
transitively on vertices, on edges, and on non-edges of Py .

Following Webb [29], we say that an ensemble £ = {a;, U;}}_, of Clifford elements U;
is Pauli mixing if for every vertex (a, b) the distribution {o;, U; E (a, b) Uf} is uniform over
vertices of Py . The ensemble & is Pauli 2-mixing if it is Pauli mixing and if for every edge
(resp. non-edge) (‘C‘ Z), the distribution

(e (UiE(a. b)U]', Ui E(c. d)U)))
is uniform over edges (resp. non-edges) of Py.

Theorem 1 Let G be a subgroup of the Clifford group containing all D(a, b) € HWy, and let
&= {ﬁ, Ulyeg be the ensemble defined by the uniform distribution. If G acts transitively
on vertices of Py, then £ is a unitary 2-design, and if G acts transitively on vertices, edges
and non-edges, then £ is a unitary 3-design.

Proof Transitivity means a single orbit so that random sampling from G results in the uniform
distribution on vertices, edges, and non-edges. Hence, transitivity on vertices implies & is
Pauli mixing and transitivity on vertices, edges and non-edges implies £ is Pauli 2-mixing. It
now follows from [29] or [6] that Pauli mixing (resp. Pauli 2-mixing) implies £ is a unitary
2-design (resp. unitary 3-design). O

Theorem 1 implies that random sampling from the Clifford group gives an exact unitary
3-design.
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4 The unitary 2-design

The unitary 2-design we consider in this paper is a symplectic subgroup isomorphic to
PSL(2,2™), and different descriptions may be found in [5], [6], and [4]. We will follow the
perspective provided in [4]. We first show that it acts transitively on vertices of the graph Py .
Then, we use our finite field representation to describe how this subgroup acts on ordered
pairs of commuting and anti-commuting Pauli Matrices.

4.1 The symplectic subgroup isomorphic to PSL(2, 2™)

We first introduce PSL(2, 2™) and realize each transformation as a symplectic matrix. Then,
we explain why this symplectic subgroup forms a unitary 2-design by showing how the
group elements permute the maximal commutative subgroups E([I,| P;]) and E([0|7,])
and elements within each subgroup.

The projective special linear group of 2 x 2 matrices over Fon is defined as

PSL(2,2") := {(JO: ’g) ca, B, y,8 €Fom; ad + By = 1}. (33)

The order |PSL(2, 2)| = (N + )N (N — 1) = 23" — 2™ _The action of each 2 x 2 matrix

( }Oj ’3 ) over [Fom on 1-dimensional subspaces of Fom x Fom is associated with a transformation

acting on the projective line Fo» U {oo}, given that

(12) (;‘f ’g) =(@+yzB+82)=(01) or (1 fjjzz). (34)

The group PSL(2, 2") is generated by the transformations z +— z + x,z — zx, and
7z > 1/z. We realize each of these transformations as a symplectic transformation. We recall
that A, WAI = A% W from part (c) of Lemma 1, and for convenience we work with maximal
commutative subgroups E([I,, | Ag W1), i.e., the Kerdock matrices are P, = AEW. Note
that every field element 8 € Fon is a square, so this is equivalent to P, = A, W.

() z+> z+ x becomes [I, | AZW]1+> [, | A2, W]:

Iy A2W

[1m|A§W][O ]

] = [In | (A2 + AHW]

= [In | (A2, )W]. 35)

Example2 Whenm =3, x = a,andz = o>, wehavex + z = 1, A, = A, and A, = A>.
Then,

A2+ A2=42 =5 =A" (36)
(b) z+> xz becomes [1, | AZW1 > [1,, | A2 W]:

A7 O

[ | A?W][ 5 AT] = (A7 A2waAl)
X
= [A;' | ALAIW]

=1, | A2, W]. (37)
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(¢) z+> 1/z becomes [1, | A2W1 > [1, | A% W]:

L] [w! !
oo [2 5 el )
=[AZ | W]
=[In | A2, W1. (38)

Note that if we start with z = 0, i.e., the subgroup E([I,, | 0]), then since W is invertible
the final subgroup is E([0 | ,,]), interpreted as z = oo.

Therefore, PSL(2, 2™) is isomorphic to 3,,, a group of symplectic matrices defined as
B = (Tazw, Ly, 2Ly-1; x € Fom) ZPSL(2,2™), (39)

and each PSL(2, 2™) element induces a product of basic symplectic matrices in Table 1. The
isomorphism 6 : PSL(2, 2™) — B,, can be defined as

af
0 <<)/ 5)) = TA%/VW . LA;z - 2Ly - TAi/yW (40)
A? AZW]
= B, 41
[W‘A)z, (A2)T “1)

where «, B, y,8 € Fom and ad 4+ By = 1 [4, Lemma 23 and Corollary 24]. The induced
action on maximal commutative subgroups is given by

E([Ly | AZW]) = E(U | A%s; W) 01 E(0 ] I,]). (42)

atyz

Notice that the corresponding Clifford subgroup is larger than PSL(2, 2™) since Py forms
the kernel of the homomorphism from Cliffy to Sp(2m, F7).

The first two factors in (40) provide transitivity on the Hermitian matrices of all max-
imal commutative subgroups except Zy = E([0 | I,,]), and the last two factors enables
exchanging any subgroup E([1,, | P;]) with E([0 | I,,]).

To prove that PSL(2, 2™) acts transitively on vertices of the Pauli graph Py, we only need
to show that the group is transitive on a particular subgroup, say E([/,,]0]). For any (a, 0)

and (b, 0) where a # b € Fon, there always exists a group element (“;b h,ol

(a,0) to (b, 0).

It then follows from Theorem 1 and (16) that random sampling from the symplectic
subgroup 3, isomorphic to PSL(2, 2") followed by a random Pauli matrix D(a, b) produces
a unitary 2-design.

However, PSL(2, 2) is only able to permute maximal commutative subgroups or elements
within each subgroup. It is not transitive on edges of Py since it fails to mix type-1 edges
and type-2 edges. Thus, 3, cannot be a unitary 3-design.

; ) that maps

4.2 Orbit invariants

PSL(2,2™) partitions the edges of the Pauli graph into orbits, and we now identify orbit
invariants.

Definition 3 We calculate the orbit invariant from any representative Pauli pair matrix (‘C‘ Z )
as follows:
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(a) The determinant ad + bc is the orbit invariant for any non-edge matrix or type-2 edge
matrix.

(b) For any type-1 edge matrix, the first row is a scalar multiple of the second row, given
that the two vertices (a, b) and (c, d) are in the same maximal commutative subgroup.
Its orbit invariant is the scalar % = g € Fom \ {0, 1}.

Example 3 When m = 3, the following three Pauli pair matrices

a 0 a0 a0
E1 = <1 a2>,E2: (1 a),andE3: (1 0) (43)

have orbit invariants 3, &%, and . According to Definition 3, (27), (28), and (29), we can
recognize that E is a non-edge, E; is a type-2 edge, and E3 is a type-1 edge.

Theorem 2 Consider PSL(2, 2™) acting on Pauli pair matrices by right multiplication. Two
Pauli pair matrices are in the same orbit if and only if they have the same orbit invariant.

Proof Every matrix in PSL(2, 2m) has determinant 1, so Pauli pair matrices in the same orbit
share the same determinant. If the determinant is O, then one row is a scalar multiple of the
other and the scalar relation between rows is preserved by any linear transformation.
Consider two matrices, either with the same non-zero determinant, or with determinant 0
and the same scalar relation between the two rows. There always exists a linear transformation
with determinant 1 that maps one to the other. O

It follows directly from Theorem 2 that we can use orbit invariants to represent and
differentiate the orbits. We give some statistics about these orbits below:

(a) There are % non-edge orbits and there are an equal number of finite field elements with

trace 1. Each orbit has (N2 — 1)N elements.

(b) There are NT_Z type-2 edge orbits and there are an equal number of non-zero finite field
elements with trace 0. Each orbit also has (N2 — 1) N elements.

(c) There are N — 2 type-1 edge orbits and there are an equal number of field elements in
Fom \ {0, 1}. Each orbit has N 2 _ | elements.

Example 4 For m = 3, there are 4 non-edge orbits whose invariants are 1, a3, o, and of;
3 type-2 edge orbits whose invariants are o, o, and o*; and 6 type-1 edge orbits whose

invariants are o, @2, - - -, af.

5 The transvection Markov process

We define a Markov process by applying a sequence of transvections to mix orbits, and a final
PSL(2, 2™) element to mix edges or non-edges within each orbit. We claim that it gives an
approximate unitary 3-design by showing convergence to the uniform distribution on edges
and on non-edges, in addition to the transitivity on vertices (Sect. 4.1).

Let K = (N? — 1)(N? — 4)/2 be the number of edges and K’ = (N> — 1)N?/2 be the
number of non-edges in Py . Consider the underlying Markov chain on directed edges (resp.
non-edges) with a K x K (resp. K’ x K’) transition matrix. Since transvections generate
the full Clifford group and Clifford elements act transitively on edges and non-edges, the
uniform distribution on all edges (resp. non-edges) is stationary. We are interested in the rates
at which the two Markov processes converge to their corresponding stationary distributions.
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Sampling PSL(2, 2™) elements results in uniform probabilities within orbits. Therefore,
it suffices to reduce the two underlying Markov chains to orbits and only consider how
non-identity (symplectic) transvections transfer probability mass within the reduced state
space. The dimensions of the new transition matrix on edge (resp. non-edge) orbits are
%(N —2) x %(N — 2) (resp. % X %).

5.1 The transvection Markov chain on non-edges

Theorem 3 Consider the Markov process with state space consisting of all non-edge orbits.
The matrix Q1 of state transition probabilities is given by

N
2

[(N?> —4)Inj2 +6NJyp] e RT¥2, (44)

oz

Q= awio

N _N . . . . . .
where Iy, Jnjp € R2%2, Iy is the identity matrix, and Jy s is the all ones matrix.

Proof We apply a random transvection Z, n,), where iy, hy € Fom and (hy, ha) # (0, 0),
to a non-edge matrix (8 2) with orbit invariant ab, where Tr(ab) = 1. According to (22), we

have the following four cases:

(a) Applying a transvection with Tr(ah,) = 0 and Tr(bh) = 0O fixes the non-edge:

a0\ Zuny (a0
(65) == () )
There are two constraints on &1 and h», also (h1, ha) # (0, 0). Therefore, the number of
possible transvections is (%)2 —1= NTZ -1
(b) Applying a transvection with Tr(ah,) = 1 and Tr(bh1) = 1, we obtain
a 0\ Zwn . a -+ h1 h2
(0 b) < hy b+hy (46)

and the new orbit invariant is
(a+h1)(b+ hy) + hihy = ab + ahy + bh;.

Since Tr(ab) + Tr(ahy) + Tr(bh;) = 1, the resulting Pauli pair is not an edge. The

products ahy and bh; range over all field elements with trace 1. Given a field element x

with Tr(x) = 1, the number of solutions to x = ab + ahy + bh is simply the number

of solutions to ahy + bh; = 0. There are N /2 transvections to each of the N /2 orbits.
(c) Applying a transvection with Tr(ahy) = 0 and Tr(bh1) = 1, we obtain

a0\ Zuay (a 0
(60) == (i 5 2n) @)

and the new orbit invariant is
a(b+ hy) =ab + ah;.

Since Tr(ab) + Tr(ahy) = 1, the resulting Pauli pair is not an edge. A similar argument
to that used in part (b) shows that there are N /2 transvections to each of the N /2 orbits.
(d) Applying a tranvection with Tr(ah2) = 1 and Tr(bh;) = 0, we obtain

a0\ Zuny (a+hy hy
(0 b) 3 ( 0 b (“8)
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and the new orbit invariant is
(ah1)b = ab + bh;.

The same argument used in part (c) shows that there are N /2 transvections to each of
the N /2 orbits.

There are N2 — 1 transvections, and each is a symplectic matrix that preserves non-edges
. . . . 2_ .
in the Pauli graph. Case (a) contributes to the diagonal component AJVT_‘*I)I N/2 in Q1 and

cases (b), (¢), and (d) contribute to %JN ,2in Q1. ]

5.2 The transvection Markov chain on edges

Theorem 4 Consider the Markov process with state space consisting of all edge orbits. Set
My =N —2and M, = NT_Z Index the first M| rows and columns of the state transition
matrix Qo by the type-1 orbits, and the remaining M> rows and columns by the type-2 orbits.
Then, Qq is given by

Qo

2 T
1 [(N — M)y, NR } 49)

T AN o) R (N2 = )y, + 6N Iy,

where Iy, and Iy, are the identity matrices, Jy, is the all ones matrix, R is non-negative,
each row sum of R is 6N, and each column sum of R is 3N.

Proof We determine the lower right block of the transition matrix Qg by making a slight
modification to the proof of Theorem 3. Starting with Tr(ab) = 0, we consider x with
Tr(x) = 0 in cases (b), (c), and (d). In each case, if x = 0, we get a type-1 orbit and there
are N /2 such transvections. Thus, the matrix R/4 in the lower left block has row sum 3N /2.
If x # 0, of which there are (N — 2)/2 cases, we a get a transition to one of the (N — 2)/2
type-2 orbits and there are still N /2 such transvections in each case. This contributes to the
Ju, term in the lower right block. Finally, case (a) from Theorem 3 produces the identity
component.

We now start with a type-1 edge (g 8), where a # b, ab # 0, and has orbit invariant %,
and apply a random transvection Z, »,), where hyi, hy € Fom and (h1, hy) # (0,0). By
distinguishing four cases similar to the proof of Theorem 3, we notice that the upper left
block of Qg, which describes the probability of transiting from type-1 orbits to type-1 orbits
by transvections, contains only the diagonal component 4(NN%_—41) Iy, .

Since transvections are self-inverse, the upper right block of Qg must be some scalar
multiple of RT. The transvection Markov chain on edges is irreducible, so by the Perron-
Frobenius Theorem, there is a unique stationary distribution. Since the uniform distribution
on edges is stationary, we observe that

_hiN=2
wi=[4 ...+ 1. 1]eRV 3 (50)

is the stationary distribution of the Markov chain on edge orbits. Given that the row sum of
R is 6N, the upper right block is NRT. O

Example 5 Here m = 3, and we derive the matrix R. Starting with a type-2 edge (&9 ) for
which the orbit invariant is ab = o, we consider the following three cases:

@ Springer



2196 X.Tanetal.

(a) Applying a transvection with Tr(ahz) = 1 and Tr(bh) = 1, we obtain

a0\ Zmmy (a+hy hy
(60) 2 (“ ). sy

(a+h1)(b+ hy) + hihy = ab + ahy + bhs.

with determinant

When ah + bhy = ab = «, the resulting Pauli pair is a type-1 edge with orbit invariant

a+hy ab + bh o
= = — +1.
hy bhy bhy

Since bh| takes the values 1, o3, &, or «® with equal probability, the corresponding orbit
invariants take the values

Ci1=d L ii=et, Lil=a, or Z +1=4° (52)
1 o3 od a®
with equal probability.
(b) Applying a transvection with Tr(ah,) = 0 and Tr(bh;) = 1, we obtain
a0 Z(hlvhz) a 0
(65) ™ (i o) 2

with determinant
a(b+ hy) =ab + ah;.
When ahy = ab = «, the resulting Pauli pair is a type-1 edge with orbit invarint

a ab o

hi ~ bhy by

5

Again, bl takes the values 1, &%, &, or «® with equal probability, so the corresponding

orbit invariants take the values
g:oz, a:as,gzoﬁ,ori:az 54)
1 ol
with equal probability.
(c) By symmetry, the result of applying a transvection with Tr(ah,) = 1 and Tr(bh;) = 0
is the same as part (b).

A type-2 edge with orbit invariant « is equally likely to transition to any of the type-1

orbits. The same conclusion holds for a type-2 edge with orbit invariant & or a*, and so
a o o ot @@ of
a 11 1 1 1 1 1
Ry= 42 [1 (S B T | 1} x 8. (55)
ot L1111

Remark 3 When m = 3, the matrix R is a scalar multiple of a all ones matrix, but for general
m, it may not be the case that a type-2 orbit is equally likely to transition to all type-1 orbits.
For example, when m = 4 and « is a root of x* + x + 1. Suppose we start with a type-2 edge
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(¢9) for which the orbit invariant is ab = «, then the number of possible transvections to
achieve each type-1 orbits is

5.3 Eigenvectors and eigenvalues

We first discuss the eigenvectors and eigenvalues of Q1. The all-one vector X1 of length N /2
is an eigenvector of Q| with eigenvalue 1, i.e., X1 Q1 = X1. Any vector orthogonal to X1 is
an eigenvector of Jy > with eigenvalue 0. Then, for any vector X, such that x; Jy 2 = 0, we
have

L (57)
X = ———X3.
RGP
Therefore, the second largest eigenvalue of Qg is
N2 —4
Aoy = —5—= 58
QLT 4N ) ©8)
with multiplicity 5§ — 1.
We proceed to discuss the eigenvectors and eigenvalues of Qq. Define
J_ 1 (N? —4)Jy, 6N Tyt x M (59)
4(N2 = 1)(N —2) | 6N Jsyumr, (8N* — 12N —8)Jny, |

where Jy, xm, and Jy,xpm, are the My x M> and M x M all ones matrices. By direct
calculation we obtain

J'Qo=QoJ =J'J. (60)
Then, for any eigenvector w of J’ with eigenvalue A, we have
wJ' Qo =wJ'J = AawQo = 12w = wQo = Aw. 61)

Therefore, wy in (50) and

wp=[1...1-2... —2]eRV2+"7 (62)
are two (left) eigenvectors for both J and Q¢ with corresponding eigenvalues 1 and % .
The eigenvector wy is the stationary distribution of Qy.
Additionally, for any eigenvector v of Q¢ with eigenvalue X, we have
vJ'] =vQoJ =avJ . (63)

Thus, either vJ’' = 0 or vJ’ is an eigenvector of J’ with eigenvalue A. It remains to calculate
the eigenvalues associated with eigenvectors v of Qy that satisfy vJ’ = 0. The action of Qg
on these eigenvectors is given by the matrix

1 |:(N2—4)IM1 NRT }

T AN R (N* — &)1y, (64

Qp
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Setting
1 0 NRT
/ _

K== [R 0 ] (©

we have
1 NR™R 0
7 __
- 16(N2 —1)? [ 0 NRRT]' (66)

Since the row sum of R is 6N and the column sum is 3N, the largest singular value of R is
3+/2N. Therefore, the largest eigenvalue of R’ is NGYIN) Then, the largest eigenvalue of

16(N2=1)2*
R is 34“(/1%,12\’:/1)@ If X ¢, is the second largest eigenvalue of Qg, then

N2 —4+3N/2N
AQy < 5
4(N2 - 1)

(67)

and the minimum eigenvalue Anmin, o, 0f Qo is positive when m > 5 (i.e., N > 32) since

N2 —4—3NJ/2N
>
4(N2 —1)

0. (68)

Amin, 0y >

6 Convergence analysis

In this section, we prove that the transvection Markov process gives an e-approximate unitary
3-design and analyze its convergence rate using the second largest eigenvalues obtained in
Sect. 5.3. The proof is also inspired by Sect. 6 in [12] and how Webb [29] proved that the
Pauli 2-mixing forms an exact unitary 3-design.

We now describe the general idea of our proof. The diamond norm difference, which can
be upperbounded by /> norm, tells us how “approximate” our design Gg is to an exact unitary
3-design Gy . For an exact 3-design, we know it acts transitively on edges and non-edges. For
our approximate 3-design, we have the transition matrices Q1 and Qg that describe how it
acts on edges and non-edges. Therefore, we can expand Gg and Gy using Pauli elements and
transition probabilities. Since the second largest eigenvalues of Q) and Qg tell us how fast
the Markov processes converge, the transition probabilities can be accurately characterized.

6.1 The approximate unitary k-designs

Definition 4 ([30, Chapter9.1.6], [12, Definition 2.4]) For quantum channels A/, M € C(X),
the diamond-norm distance is given by

[N — Mll, = sup (N ® Ir)(p) — (M @ Ig)(0)l; (69)
o

where dim(R) = dim(X’). The diamond norm tells us the distinguishability of two quantum
channels in an operational sense.

Definition 5 ([12, Definition 2.5]) G¢ is an e-approximate unitary k-design if

IGe — GHulls < €. (70)
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Theorem 5 Random sampling of O (log(N? /€)) transvections, followed by a random element
from P, = PSL(2,2™) and a random Pauli matrix D(a, b) gives a €-approximate unitary
3-design.

We will use the rest of Sect. 6 to prove Theorem 5. Denote Py as the set of all E(a, b)
Pauli matrices. Since Py forms an orthogonal basis for L(CN), each linear operator p €
L((CN)®%) can be written as

1
p=5 Z I'(p1,...,pe)p1 ® - ® pe, (71
pi € Py,
ief{l,...,6}

where

1
I'(pt,....pe) = FTT((pl ®- - Qpe)p) €R (72)
and

Y I(pi...pe) <1 (73)
pi € Py,
iefl,...,6}

Because of this nice expansion into Pauli elements, we only need to understand the effect

of G¢ and Gy acting on each element of f%. Notice that Theorem 5 gives an exact unitary
2-design since it still acts transitively on vertices. Then, it follows from Webb [29, Proof of
Lemma 4] that when p = p1 @ pp @ I or p = p; ® p» ® p3 with py1pap3 & I (up to
permutations of the underlying registers), we have

Ge(p) = Gu(p). (74)
Therefore, we only need to consider the case when p = p; ® p2» ® p1p2 and p; # pa:

IGe — G ll2 =sup|(Ge ® Ir)(p) — (G ® IR)(P)I?
o

<NSsup [[(Ge ® I)(p) — (Gu ® IR)(P)I3
P

=sup| ) F(pl,...,ps)[gs(pl®pz®p3)®p4®ps®p6
PiEFN
2
—Gu(p ®pz®p3)®p4®p5®p6]
2
= sup > F(Pl,-..,Ps)[gs(Pl®Pz®p1p2)
0 —_
pi € Py
P3 = P1P2, P1 # P2
2
—Gu(p1®p2® p1pz)] ® p4® ps ® pes (75)
2
Define
Epr,p—(qrg =@, U) € E: UpiU" = q1,UpU" = go). (76)
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Suppose the transition matrices for the Markov chains of sampling random transvections on
all edges and non-edges are Py and P; respectively. Then, if we start from the Pauli pair
(p1, p2), the probability of reaching (q1, g2) after ¢ steps on the chain is

2" " g1, @2 p1. p2) = € Py pal®laran- (77)

where [p1, p2] = 0if p; and p> commute, otherwise [p1, p2] = 1 and ey, p,) is a unit row
vector where only position (pi, p2) is non-zero. Then, for the ensemble £ generated after ¢
steps on the corresponding Markov chain, we have

Ge(p®@p@pip))= Y aUpiU' @ UpUT @ UpiUTUpUT
(@.U)e€

= ) > g1 ® 42 ® q192

q1.02€Py:  (@UIEE py)—(41.42)
[q1.921=[p1,p2]

= Y g"Paasp.pma®a®an (78

q1.92€P N :
[g1.921=[p1,p2]

and

(P ®P@pip) = Y. g g1, g pr PN @ 2 ® q1ga. (19)

q1.92€Py:
[q1.921=[p1,p2]

Then, by continuing (75) and following the orthogonality of the Pauli operators under the
Hilbert-Schmidt inner product, we obtain

Ge — Gull2 =sup

P

> I'(p1, ..., pe) > [g?(éh,qz;pl,pz)

pi € Py q1,q2 € Py:
[p1,p2]1=0 [q1, 421 =0

- ggo(fh’ q2; P, P2)}]1 ®q2®q192 Q pa ® p5 ® pe

+ Y. Tpu....pe) Y. [g}(ql,qz; pi, p2)

pi € Py q1,q2 € Py:
[p1, ;21 =1 [q1, 21 =1
2
— gl @1, a2 p1, Pz)]cn ® ¢ ®q192 Q@ p4s ® p5 @ ps
2
=N° sup[ Yoo Y @) =gk’
» [p1,p2]=0 [91.921=0
+ Y ) Y (g,‘(~-~)—g;o(-~->)2]. (80)
[p1,p2l=1 [q1,42]1=1
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We shall show in Sect. 6.2 that when t = O (log(N° /€)), using the second largest eigenvalues
of Q¢ and Q defined in (49) and (44), we have

2
Y@=kt < (35) 81)
[41.421=0
and
2
Y @ =gk < (55) - (82)
l91,921=1

Therefore, we can prove Theorem 5 by further simplifying (80) into
2 6 2 €\ _ 2
I9e = Gulls < Nosup 3512 (35)" = € (83)
6.2 Orbits mixing time

We first find the connection between the probability distribution of the Markov chain on
edges and that of edge orbits. Suppose

X:[X],-.-,XN_z,XN_l,.-.,X%(N_z)] (84)

is a probability distribution on all edge orbits. Sampling Clifford elements will distribute the
probability mass equally among all the edges within each orbit. Since each type-1 orbit has
N? —1 elements and each type-2 orbit has (N2 — 1) N elements, we define the corresponding
probability distribution on all edges after sampling a random Clifford element as

_ X1 XN/2
f(x)_[NZ—l"”’(N2—1)N""]’ (85)

X
N2_
is repeated (N2 — 1)N times, fori > N — 1. Then, we see that

where each entry is repeated N2 — 1 times, for | < i < (N — 2), and each entry

Xi
(N2—1)N

(N2-1)(N2-4)/2

If —f@ih= Y 1f&i— fyil
i=1
N-2 . v
_ 2 _ 1 _ 1
_;(N 1)‘1\72—1 N2 —1
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3(N-2)
Xi yi
N?— DN : -
+_Z( ) ‘(Nz—l)N (N2 —1)N
i=N-1
3(N-2)
= Y i—vl=lx—yl. (86)

i=1

Definition 6 Let Q be the transition matrix of an irreducible and aperiodic Markov process
whose stationary distribution is 7. The mixing time t is given by

() = max min{t > 0: ||sQ" — 7|} <€} (87)
st lIslhi=1 ¢

Theorem 6 ([12, Theorem 4.5]) The mixing time can be bounded above as

1 1
T(e) < 3 In , (38)

TT4€

where w, = minw(x) and A = min(1 — X2, 1 + Amin). Here, Xy is the second largest
eigenvalue and hin is the smallest.

Therefore, following from (50) and (67), the mixing time for Q¢ is bounded by

; (e - 1 I 1
min =T | >3] = n
N3) 1—x : W )L
o ml“(uwuh N7
1 1
< n
T — N2-443NV2N L(L)/(N2—4)
A(N2-1) N3\N 2N

1 N3(N* —4)
A In
1—1/4 2€

= O(log(N’/e)) (89)

[27] and tpiy is larger than the mixing time of Q; defined in (44). Since

) =Wz = 1/ = fWIh = lIx =yl (90)

2
both (81) and (82) can be upper bounded by (%) . Theorem 5 is thus proved.

7 Conclusion

In this paper, we have proved that we can obtain an e-approximate unitary 3-design by random
sampling O (log(N? /¢)) transvections followed by a random Clifford PSL(2, 2") element
and a random Pauli matrix.

The key to an exact unitary 3-design is the transitivity on the Pauli element pairs of the
same commutativity. The transvection Markov process that we designed exactly enables
all Pauli pairs to converge to such a uniform stationary distribution. We first start from a
well-established unitary 2-design, a symplectic subgroup isomorphic to PSL(2, 2") based
on Kerdock sets. This unitary 2-design acts transitively on Pauli elements, but partitions the
Pauli pairs into multiple orbits. Using a finite field representation of Paulis, and the fact that
transvections generate the symplectic group, we characterize the orbits of Pauli pairs and
analyze how each transvection acts on the orbits. Finally, we analyze the convergence rate to
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an e-approximate 3-design using the second largest eigenvalues of the transition matrices of
the “edge”- and “orbit”’-Markov chains.

Interestingly, when we look at the history of related research, scientists have already
discovered that the Clifford group forms a unitary 2-design early in 2001 [8]. But it was not
proved until 2016 that it is also a unitary 3-design and it is the minimal 3-design except for
dimension 4 [29,31]. Our work fills in the gap by constructing the 3-design using the exact
building blocks provided by the 2-design.

Given that Mglmer—Sgrensen gates (i.e., 2-qubit transvections [22]) are native gates in
trapped-ion systems, it would be interesting to investigate if employing only these transvec-
tions in our Markov chain suffices to produce an approximate unitary 3-design. Moreover,
it might be possible to extend this Markov chain approximation framework to create uni-
tary k-designs for + > 3 by mixing the Kerdock design with, perhaps, a generalization of
symplectic transvections.
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