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Abstract—In high-rate structural health monitoring, it is
crucial to quickly and accurately assess the current state of a
component under dynamic loads. State information is needed to
make informed decisions about timely interventions to prevent
damage and extend the structure’s life. In previous studies, a
dynamic reproduction of projectiles in ballistic environments
(DROPBEAR) testbed was used to evaluate the accuracy of
state estimation techniques through dynamic analysis. This paper
extends previous research by incorporating the local eigenvalue
modification procedure (LEMP) and data fusion techniques to
create a more robust state estimate using optimal sampling
methodologies. The process of estimating the state involves taking a
measured frequency response of the structure, proposing
frequency response profiles, and accepting the most similar
profile as the new mean for the position estimate distribution.
Utilizing LEMP allows for a faster approximation of the proposed
model with linear time complexity, making it suitable for 2D or
sequential damage cases. The current study focuses on two
proposed sampling methodology refinements: distilling the
selection of candidate test models from the position distribution
and applying a Kalman filter after the distribution update to
find the mean. Both refinements were effective in improving the
position estimate and the structural state accuracy, as shown by
the time response assurance criterion and the signal-to-noise ratio
with up to 17% improvement. These two metrics demonstrate the
benefits of incorporating data fusion techniques into the high-rate
state identification process.

Index Terms—high-rate, structural health monitoring, data-
fusion, modal, local eigenvalue modification procedure, real-time
modeling

I. INTRODUC T I ON

In high-rate structural health monitoring (SHM) systems,
real-time assessment of the state of the structure is crucial
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for enabling critical interventions. Such systems have potential
to be used in various applications, such as aerospace, shock-
prone systems, and civil infrastructure under high-rate loading.
The system’s state must be accurately determined promptly
to allow control interventions to be made before failure. For
aerospace structures, the target time is sub-millisecond for high
rate and sub-100 nanoseconds for ultra-high rate [1].

Updating a physics-based model of the structure’s state in
real-time will create a digital twin of the structure [2]. A  digital
twin of a structure operating in high-rate environment needs to
integrate ultra-low latency simulations with the structures’ on-
board health management system and all available historical
and fleet data; to digitally mirror the condition of the physical
twin. The concept of digital twinning for a structure operating
in a high-rate environments was adopted from Glaessgen and
Stargel’s digital twin paradigm for next-generation aircraft [3].
Additionally, Digital twins, using first principle models, (such
as the dynamic data driven applications systems paradigm),
and generative A I  have shown promise in data fusion systems
as discussed by Paul et al. [4] and Lei et al. [5]

A  digital twin of the structure enables damage evolution
models informed by high-rate SHM; thereby enabling unprece-
dented levels of safety and reliability. The implementation
of a digital twin in high-rate SHM is necessary to limit
the search space and avoid testing all candidate models with
some arbitrary amount of damage characteristics, which grows
exponentially with the amount of considered data. In related
work on discrete dynamic systems, Ganguli and Adhikari [6]
developed a digital twin framework of a damped dynamic
system that can propose frequency profiles that may be non-
unique but identifiable; based on the previous belief of the
system state.

Sensor and information fusion techniques play a key role
in enabling computationally efficient digital twinning of struc-
tures discussed by Blasch et al. [7] and Wu et al. [8]. Previous



work on information fusion for structural model updating
includes that by Zhu et al. where a multi-rate Kalman filtering
approach was used to merge measured strain and acceleration
data to achieve low-noise displacement measurements in super
tall structures [9]. Likewise, Ren et al. used multi-rate Kalman
filtering with stochastic subspace identification to calculate
the strain mode before fusing strain-derived displacement
and acceleration data to reconstruct the structure’s dynamic
displacement [10]. In a direct-to-model approach, Mooij et
al. utilized an inverse finite element method to determine
structural deformation from a reduced number of distributed
sensors on cantilever beams [11].

This study utilizes the Dynamic Reproduction of Projectiles
in Ballistic Environments for Advanced Research (DROP-
BEAR) testbed [12] to generate controlled experimental data of
a structure undergoing structural degradation. The testbed
consists of a cantilever beam with a rolling pinned boundary
condition along its length, which is controlled in real-time by
a linear actuator. The system’s state is inferred from the
accelerometer mounted on the end of the cantilever beam.
In previous studies using the DROPBEAR testbed, the state
estimation problem was tackled by comparing the similarity
in frequency response between the proposed system state and
the modeled system response [13]. The beam was modeled
using a one-dimensional finite element formulation with Euler-
Bernoulli elements. Solving for the eigenvalues of the DROP-
BEAR system provides an estimate of the beam’s frequency
response under free excitation. However, the eigenvalue solu-
tion step requires O(N 2 ) time, where N  is proportional to the
number of nodes in the discretized beam.

The Local Eigenvalue Modification Procedure (LEMP) has
been previously shown to reformulate the eigenvalue estima-
tion step as an O(N ) task [14, 15]. Instead of solving for
eigenvalues, LEMP estimates changes in eigenvalues based on
a singular change in the stiffness or mass matrices describing
the system. LEMP allows for the estimation of eigenvalues as
an update to two previously solved reference states, with the
limitation that a singular modification must cause the change to
the system. For example, the reference state can be modeled
as a free one-dimensional cantilever beam, and the singular
modification can be modeled as a significant increase in the
stiffness matrix localized to the hypothesized pin location.

Although solving for all possible states and using a lookup
table for eigenvalue solutions is more effective than using
LEMP for singular modifications in one-dimensional prob-
lem spaces, LEMP holds promise for applications involving
modifications to two-dimensional systems (e.g., thin plates)
or multiple sequential modifications. For such a 2D problem,
the complexities introduced by the dimensionality make the
required size of a lookup table entirely impractical for appli-
cations where all pre-calculated solutions are required.

This study investigates the use of linear quadratic es-
timation (LQE), also known as Kalman filtering (KF), in
combination with optimal sampling methodologies to enable
high-rate structural twinning with great accuracy and reduced
computational load when compared to previously investigated

techniques [15], [16]. The model updating technique is ex-
plained in detail by Downey et al. [17] and, in brief, uses an
online error minimization model updating approach that seeks
to find the optimal finite element model (FEM) boundary
conditions by minimizing the error between the structure’s
and the model’s response, where the finite element model’s
response is calculated in real-time using LEMP.

The four sampling techniques investigated in this work are
1) Bayesian inference, 2) likelihood ratio test, 3) Metropolis-
Hasting algorithm, and 4) Gibbs sampling. Each sampling
method is investigated with and without a K F  formulation to
identify the optimal finite element analysis (FEA) model
boundary conditions by updating the sample distribution. By
minimizing the number of sample candidates that need to be
computed, the proposed work reduces the required compu-
tational resources, enabling the future deployment of high-
rate structural twinning at the edge. The contributions of this
work are twofold, 1) the LEMP model updating approach is
extended with the use of a K F  for real-time sample distribution
updating, and 2) four sampling methodologies are investigated
in combination with the K F  for high-rate model updating.

I I . BAC K G RO U N D

This section describes the relevant background covering the
DROPBEAR testbed and LEMP.

A. Testbed

In this work, a one-dimensional F E A  formulation of the
DROPBEAR, shown in Figure 1, is used to study the po-
tential benefits of data fusion techniques in structural health
monitoring applications [12]. The DROPBEAR consists of a
cantilever beam with an accelerometer mounted to its end,
and a rolling pin condition is used to excite the structure and
change the system’s state. As a result, the structure’s frequency
changes in a predictable way in response to the change in
boundary conditions. Several methods are proposed to obtain
the roller’s location (e.g., state) from a distribution of candidate
system states. Finally, to corroborate the ground truth of the
estimation, a magnetic position sensor is used to obtain the
roller’s true roller position or state. The dataset used in this
work is available through an open-source dataset [18].

Fig. 1. The experimental Dynamic Reproduction of Projectiles in Ballistic
Environments for Advanced Research (DROPBEAR) testbed used in this work
to generate the open-source dataset [18].

B. LEMP

The local eigenvalue modification procedure (LEMP) was
introduced to simplify Structural Dynamic Modification
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(SDM) calculations, especially when only one change is made
to the system. SDM is a method for identifying changes made to
a system’s physical parameters, such as mass, stiffness, or
damping, by monitoring its dynamic response [14].

LEMP simplifies the state’s calculations by truncating the
number of independent single-degree-of-freedom systems to
include only the most significant modes of interest. The gen-
eralized eigenvalue equation is then reduced to a set of second-
order equations whose roots are determined by the system’s
initial frequencies, which reduces the number and complexity
of equations required to compute the structure’s state [19].
The LEMP process leads to shorter computation times as the
dynamic response of the structure can be solved for without
computing the generalized eigenvalue problem. However, to
implement LEMP, it is important to make assumptions about
the system’s current state, such as the geometry, material, and
boundary conditions. The initial guess about the system’s state
can be any arbitrary singular structural modification from that
assumption. It is also noted that LEMP will converge to the
closest representation of the actual state.

Prior work by Ogunniyi et al. [16] developed a real-time
computing module to enable the use of LEMP in high-rate
model updating with a stringent latency constraint of 1 ms.
The real-time computing module uses a divide-and-conquer
approach to iteratively solve the roots of the secular equations,
leading to faster root convergence. Using the divide-and-
conquer approach result, the LEMP algorithm provides a more
efficient and streamlined approach to calculating the altered
state of a system compared to traditional SDM methods.

I I I . ME T HODO L OGY

The LEMP model updating methodology is presented in
Figure 2. It extends the previously proposed and investigated
error minimization model updating technique [15] with the
K F  to obtain an optimal selection of potential candidate mod-
els and is investigated alongside four different modifications
mathematically robust sampling. The extended aspects of the
error minimization model updating technique are denoted with
the dashed-red box in Figure 2. The remainder of this Section
discusses the details of the extended error minimization model
updating technique.

Key metrics of the signal-to-noise ratio (SNRdB) and the
time response assurance criterion (TRAC) in Eq. (1, 2), are
used to quantify the error in state estimation, where tm and
te are time traces of the measured and estimated data,
respectively. T R AC  is a method that quantifies between zero
and one the similarity between time traces by comparing the
numerical error and time delay of each estimation [20]. A
T R AC  score of 1 means perfect timing alignment, while a
score of 0 means no temporal correlation between signals.

SNRdB =  10 log 
 Psignal (1)

noise

T R AC  =  
[{tm }T {tm }][{t

}
}T {te }]

(2)

A. Kalman Filter
The K F  is a method for estimating the unknown state of

a system based on observations of its dynamic behavior. In
tracking applications, several models can be used. However,
the constant velocity model is particularly useful when it is
assumed that the rate of change of the system is constant
between measurement samples, especially when the sampling
rate is high [21]. Furthermore, a K F  model offers several
advantages, such as linearity and simplicity in implementation.
In the present case, where the hidden state models the roller’s
position along the beam, and the measurement is obtained
using the LEMP-enabled structural health monitoring scheme
(as outlined in Figure 2), where utilizing the K F  appears to
be an ideal solution for isolating and refining the estimation
of the roller’s true position.

Fig. 2. Flowchart of the LEMP process used in this work to enable real-time
structural state estimation where the red box denotes the extension to the
previously proposed LEMP model-updating approach.

In terms of the state equation modeling for the KF,  the
measured variable for the DROPBEAR application is the noisy
estimate of the current roller yk ,  using the time step subscript k
for this discrete model, that is used to ascertain the true
hidden state of the roller xk .  In the state space representation,
x k  is the expected transition from the previous state to the
current time step, linearly proportional to the transition matrix
A k .  The measurement of each step is described as a linear
relation between the measurement transition matrix C k  and the
output y k  from state x k  from the measurement zk . The process
is modeled as a linear Gaussian process where the noise (wp
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, wr ) is additive, and the distributions are independently and
identically distributed.

x k  =  A k x k − 1  +  wp

y k  =  C k x k  +  wr

• a posteriori state estimate

x̂s , k  =  x̂a , k  +  L k ỹ k (10)

P s , k  =  ( I  −  L k C k ) P a , k (11)

The K F  is a Bayesian filter that starts by setting a priori belief
about the state at the current time step k and then adjusts this
belief based on the measurement, considering its likelihood
given the prior [22]. Eqs. (4, 5) show the calculation of the a
priori estimate of the state and the estimate of the covariance
P ,  where A k P s , k − 1 A T      denotes the expected noise propa-
gated in the model from the prior time step and Q k  quantifies
the estimated state covariance, of the distribution around that
state [22, 23] where the hat denotes an estimated value. All
estimations made by the K F  prior to the measurement update
are denoted by the subscript a, as in antecedent, indicating that
they are made before the measurement update. The subscript
s, as in subsequent for this notation, denotes that they are
made after the measurement update.

• a priori estimate

x̂a , k  =  A k x̂ s , k − 1 (4)

P a , k  =  A k P s , k − 1 A T +  Q k (5)

• measurement innovation and update

The a posteriori state estimate is obtained by combining the a
priori estimate and the measurement innovation, weighted by
the Kalman gain. If the NIS value is rejected, the Kalman gain
is set to zero, thus rejecting the measurement innovation, and
the a priori estimate is used as the best estimate [22, 23]. On
the other hand, suppose the NIS falls within the acceptable
interval. In that case, the a posteriori estimate of the state
and covariance, x̂s , k  and P s , k ,  respectively, are considered
the most likely state of the system and are used for further
processing. In eq 11, I  is the identity matrix.

B. Sampling

Sampling is used to select an optimal point along the
length of the DROPBEAR beam. This work investigates four
sampling methods for obtaining an appropriate roller location
on which LEMP is applied for state estimation. This is in
contrast to the authors’ prior method of randomly selecting a
point from a Gaussian distribution to apply LEMP. The four
sampling methods used are shown in Figure 3.

ỹ k  =  z k  −  C k x̂ a , k (6)

S k  =  C k P a , k C k  +  R k (7)

ϵk =  ỹ k  ( S k ) ỹ k (8)

L k  =  P a , k C k  S − 1 (9)

The measurement and apriori expected measurement, z k  and
C k x̂ a , k  respectively, are then incorporated by computing the
innovation ỹ k  shown in Eq. (6). The innovation covariance Sk ,
or the believability of the innovation, is calculated as the sum of
the noise covariance in the innovation R k  and the predicted
innovation covariance C k P a , k C T  as shown in Eq. (7). The
innovation values are used to calculate the Kalman gain L k

and the Normalized Innovation Squared (NIS) metric ϵk , as
shown in Eqs. (8, 9). The NIS is a chi-square distributed metric
that can be used to assess whether the residual, as measured
by the innovation, is consistent with the innovation covariance.
Suppose the NIS value exceeds an acceptable interval [24]. In
that case, the measurement can be rejected as an outlier, which is
useful in systems where inputs may be faulty, or outliers may
be present in the noise     [25]. The NIS is particularly
important for the tracking problem, as the noise covariance of
the innovation should enable us to automatically enable
rejection of large changes in the measured position, which
may result from similarities in the first mode response across
the structures.

Fig. 3. Sampling process used for selecting roller locations on the DROP-
BEAR testbed structure where only one of the four listed sampling methods is
used at a time.

1) Bayesian Inference: Three points are selected by sam-
pling from a normal distribution centered on the previous
roller position. The first point is assumed to be the previous
mean µ B  without damage. A  random point (x) is then chosen
above the mean, and the likelihood functions for this point
(x) are calculated using Eqs. (12, 13) for the two previous
distributions, where σ is the standard deviation. Here, the
distribution prior to ”B” is represented by ”A” and ”B”
represents the previous distribution to determine the estimate
(E) given the right (R) and left (L) movements.
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P (R|E )  = (14)

α =  min(1, ) (16)

1

P (E |R)  =  √
2πσ

 exp
−1 (x  −  µB )2                      

(12)

P (E |L)  =  √
2πσ2 

exp 
2 

(x  −  µA )2                      
(13)

The direction of the roller’s last movement can be determined
by comparing µ B  to µA . If µ B  was greater than µA , the roller
moved to the right. The roller moved to the left if µA  is greater
than µB . The likelihood function is used in Bayes’ theorem to
update the probability of a hypothesis given new data. The
output of Eq. (14) represents the updated distribution for the
roller’s location after considering previous location selections
and likelihoods [26]. If the probability of the roller moving to
the right P (R|E )  is greater than 0.5, the two remaining
sample locations are chosen above the previous mean value.
If the probability of the roller moving to the left is less than
0.5, the two remaining sample locations are chosen below the
previous mean value. If P (R|E )  = 0.5, the remaining two
sample locations are chosen randomly.

P (R )P (E |R)
P (R )P (E |R)  +  P ( L ) P ( E | L )

2) Likelihood Ratio Test: The likelihood ratio test (LRT) is
a statistical test used to compare the fit of two different models
to a given data set. It is based on the ratio of the maximum
likelihoods (ML) of the two models and is used to determine
which model best fits the data.

Given a set of data and two models, M1 and M2, the
likelihood ratio test statistic is given by:

L RT  =  2 ×  (ln(L(M1 )) −  ln(L(M2 ))) (15)

where L(M1 ) and L(M2 ) are the maximum likelihoods of
the two models, respectively. Under the null hypothesis that
M1 is the true model, the L RT  statistic follows a chi-squared
distribution with the degrees of freedom equal to the difference
in the number of parameters between the two models.

Two models for the data are defined to use the L RT  to select
a roller location from a uniform distribution. The first model,
M1, is a uniform distribution over the range (a, b), and the
second model, M2, is a uniform distribution over the range
(c, d) where c >  a and d >  b. The maximum likelihoods of
the two models are then calculated using the data. Suppose
L(M1 ) >  L(M2 ), the null hypothesis that M1 is the true
model is rejected, and M2 is accepted as the true model.
This means that the location is selected from the range (c, d),
whereas if L(M1 ) <  L(M2 ), the location is selected from the
range (a, b) [27].

3) Metropolis-Hasting Algorithm: The Metropolis-Hastings
Algorithm is a Markov Chain Monte Carlo (MCMC) technique
that generates samples from a target distribution by proposing
new states and accepting or rejecting them based on the target
distribution. The MH algorithm is used to select a roller
location from a uniform distribution on a beam.

The Metropolis-Hastings Algorithm requires defining a pro-
posal distribution, q(x′ |x) is the conditional probability of

proposing a state x ′  given x. Conversely, q(x|x′ ) denotes
the probability of proposing a state x  given x ′ . In this case, a
simple proposal distribution is a normal distribution with
mean x  and fixed standard deviation over the range (a, b).
The acceptance probability (α) of a candidate state x ′  is given
by the formula:

p(x ′ ) ×  q(x|x′ )
p(x) ×  q(x′|x)

where p(x) is the target distribution. Here α is calculated as
the ratio of the target distribution at the candidate state to the
current state [28]. The process for the Metropolis-Hastings
Algorithm begins by initializing the chain with an initial value
of x. In each iteration, a candidate state, x ′ , is generated from
the proposal distribution, q(x′ |x). The candidate state is then
accepted with probability α. If the candidate state is accepted,
the chain is updated to the new state, x ′ . Otherwise, the chain
remains in the current state, x. The process is repeated for a
specified number of iterations, and the resulting samples are
stored in a list.

4) Gibbs Sampling: The Gibbs sampling algorithm is a
Markov Chain Monte Carlo (MCMC) method used to gen-
erate samples from a multivariate distribution. It operates by
iteratively sampling each variable from its full-conditional
distribution, given the current values of all other variables.

To implement Gibbs sampling, the target distribution, p(x),
is decomposed into a set of full-conditional distributions,
one for each variable. In the case of a uniform distribution
over (a, b), the full-conditional for the variable x  is simply
a uniform distribution over the same range (a, b). The full-
conditional for x  is represented by the following probability
density function (PDF) [29]:

p(x|x1, ..., x n )  =  
b −  a 

for a ≤  x  ≤  b (17)

where x1, x2, ... , x n  are the current values of all other vari-
ables. To generate a roller location from the target distribution
using Gibbs sampling, the chain is initialized with an initial
value of x. Then the chain is updated iteratively by drawing
new samples from the full-conditional distribution for x, given
the current value of x. The locations generated by the chain
are stored in a list, and a random point is selected from the list
of locations.

C. Comparison Criteria
Real-time updating of the model can be done in two

stages: 1) determining the analytical frequency at specific
roller positions, and 2) selecting the best estimation to depict
the current system state by using comparison techniques. This
study’s analytical solutions for system states are obtained using
LEMP under four sampling methods.

The analytical solutions are utilized to approximate sys-
tem states through error minimization, referred to as nearest
neighbor, and bounded regression. Both methods use three
comparison points. The nearest neighbor method compares the
actual (measured) frequency with the frequency at the three
test points and selects the location that minimizes the absolute
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error. The bounded regression method is taken from Hong et
al. [30], where the linear model by the least-squares method
is represented by Eq. (18) [31].

a =  ( X T X ) − 1 X T  Y (18)

Three locations have been selected for analysis when com-
paring the frequency of roller locations. Locations X  and Y
are defined as follows, where x n  are sample locations along
the beam:

x1 1
X  = x2 1 (19)

x3 1
ω1 −  ωtrue

Y = ω2 −  ωtrue (20)
ω3 −  ωtrue

The regression model’s parameters a and b represent the
slope and y-intercept, respectively. The difference between the
estimated ω and the true ωtrue can be represented by the linear
equation ω −  ωtrue =  ax +  b. The estimated ω will equal the
true ω when the input variable x  equals −b/a. However, due
to limitations in the sample data used for the regression, the
estimated roller location is restricted to the range between the
minimum and maximum comparison locations.

I V. R E S U LT S

The results presented here discuss the use of sampling
methodologies in data fusion and analysis for state estimation
of high-rate dynamic systems.

A. LEMP Estimate

Figure 4 displays the roller state estimation described previ-
ously, where the roller locations are sampled randomly from a
Gaussian distribution and input into the LEMP algorithm [16].
The roller is assumed to be continuously moving to the right,
signifying a system deterioration over time (i.e..., progressive
damage). As a result, roller locations are randomly selected
above the previous mean (current roller position). The initial

Fig. 4. Estimation results obtained using LEMP with a 21-node and 101-
node model of the beam and the previously investigated Gaussian sampling
technique without the use of a KF;  termed the “base state”.

roller location on the distribution before applying the sampling
techniques is selected using Eq. (21), where r  represents a
random number, σ is the standard deviation, and B  is the
current roller location.

abs(r ×  σ +  B ) (21)

The estimation was compared using both the nearest neighbor
and least square regression comparison criteria. As shown in
Figure 4, many outliers exist in the estimated roller position
when using a 21-node beam model. However, increasing the
number of nodes to 101 improves the estimation result, as seen
in the same Figure 4. Although increasing the number of nodes
improves the accuracy, it also increases the computational
time. The nearest neighbor considers the closest to the true
value as the current roller position, hence the reason for the
steps or square edges shown in the estimate of the roller
location in Figure 4. The regression uses the least square
regression formula to calculate the roller position using the
output from LEMP. Of the two metrics used to evaluate the
estimation accuracy, the least square regression criteria
performed better than the nearest neighbor. As a result, only
the least square regression will be used to introduce sampling
techniques, as the goal is to achieve optimal estimation.

Fig. 5. State estimation results on a 21-node model of the beam with LEMP in
the filtered and unfiltered configuration where Bayes inference, Likelihood ratio
test, Metropolis-Hasting Algorithm, and Gibbs sampling are used to sample
roller location.



B. Improved LEMP Estimate
A  state estimation using LEMP was performed by pairing

four sampling methods with a K F  to track the roller positions
on a beam. Two approaches were taken. First, an unfiltered
estimation, where the roller positions were sampled using
the four methods and fed directly into the LEMP algorithm
without K F  refinement. Second, a filtered estimation, where
the sampled roller locations were optimized using the KF,
and then the LEMP algorithm was used to determine the
new position frequency. Figure 5 shows the estimation results
using a 21-node beam model to estimate the roller position.
In the unfiltered configuration, the Bayesian sampling showed
the best results with a T R AC  of 0.972 and a signal-to-noise
ratio of 15.456. All sampling methods produced improved
results compared to results without sampling on the 21-node
beam model (Figure 4). Table I  displays the improvement
in estimation results, measured as a percentage, using the
K F  alongside each sampling technique. The Table I  result is
calculated by comparing results from Figure 5 and Figure 7 to
results in Figure 4.

An extended view of the estimation result is shown in
Figure 6. The Figure 6 shows how sampling improves the
state estimation of the roller position on the beam. Fig-ure
6(a) is the generic LEMP estimate. Figure 6(b) displays the
improved LEMP estimate that uses Bayesian sampling to
identify suitable roller positions. Finally, Figure 6(c) shows
the LEMP estimate refined using the K F  after Bayesian search
space sampling. The results showed that the estimated position
becomes better aligned with the true measured position from
Figure 6(a)-(c), and the T R AC  and SNR values also increase
accordingly.

Fig. 7. State estimation results on 101-noded beam with LEMP in the filtered
and unfiltered configuration where Bayes inference, Likelihood ratio test,
Metropolis-Hasting Algorithm, and Gibbs sampling are used to sample roller
location.

While the K F  improved the estimation results, further
improvement can be made by increasing the number of nodes
used to model the beam. The sampled roller positions will be
closer to the true values with more nodes. Figure 7 shows the
estimation results with a 101-node beam model, which show a
significant improvement in the estimated roller position. The
unfiltered configuration was compared to the filtered
configuration for this beam model. For each sampling method,
the results were better with the use of the K F  to refine the mean of
the distribution. The improvement was observed in both the 21-
node and 101-node models, where the likelihood ratio test
(LRT) alongside the K F  showed the best improvement.

TA B L E  I
AV E R A G E  P E R C E N TA G E  I M P ROV E M E N T IN SN R D B C O M PA R E D T O

E S T I M AT I O N W I T H O U T S A M P L I N G A N D K F  A T  21 A N D 101 N O D E S F O R
T H R E E  PA R T I C L E  M O D E L S  O V E R  100 T R I A L S .

SNRdB improvement
21 nodes 101 nodes

sampling method unfiltered filtered       unfiltered filtered

Fig. 6. Roller position estimation using a 21-node beam model for: (a) LEMP
estimate without sampling methodology and K F  application, and; (b) LEMP
estimate where roller positions are sampled using Bayesian search space; (c)
improved LEMP estimate where roller positions are sampled using the
Bayesian search space and also filtered with the KF.
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15.86%         0.95%         13.93%
17.18%         2.64%         14.69%
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V. CO N C L U S I O N S

The study demonstrated the benefits of using the K F  in
the model updating process to improve accuracy and main-
tain timely updates. The traditional model updating method
involved finding the closest frequency match to the observed
frequencies of the live structure, but this was improved upon
by introducing the extended error minimization approach. In
this new method, the closest frequency estimate was treated
as a noisy measurement for a KF,  which was used to track
changes in the boundary conditions. The refined state estimate
produced by the K F  was then used to generate new models
for the next time step. The study found that the likelihood
ratio test alongside the linear K F  effectively produced accurate
results, with an � 17% increase in accuracy for a 21-node
model of the considered structure. The study also highlighted
the importance of filtering outliers, as demonstrated by using
the Normalized Innovation Squared (NIS) metric. This study
successfully improved accuracy over traditional model updat-
ing methods, especially for lightweight models with low node
counts on all the methodologies tested.

In future studies, the methodology would be expanded to
include two-dimensional analysis and sequential damage
cases, emphasizing the need for intelligent model selection
and outlier filtering.
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