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Optimized SAT solvers not only preprocess the clause set, they also transform it during solving as inprocess-
ing. Some preprocessing techniques have been generalized to first-order logic with equality. In this article,
we port inprocessing techniques to work with superposition, a leading first-order proof calculus, and we
strengthen known preprocessing techniques. Specifically, we look into elimination of hidden literals, vari-
ables (predicates), and blocked clauses. Our evaluation using the Zipperposition prover confirms that the
new techniques usefully supplement the existing superposition machinery.
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1 INTRODUCTION

Automated reasoning tools have become much more powerful in the last few decades thanks to
procedures such as conflict-driven clause learning (CDCL) [35] for propositional logic and super-
position [3] for first-order logic with equality. However, the effectiveness of these procedures cru-
cially depends on how the input problem is represented as a clause set. The clause set can be
optimized beforehand (preprocessing) or during the execution of the procedure (inprocessing). In
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this article, we lift several preprocessing and inprocessing techniques from propositional logic to
clausal first-order logic and demonstrate their usefulness in a superposition prover.

For many years, SAT solvers have used inexpensive clause simplification techniques such as
hidden literal elimination (HLE) and hidden tautology elimination (HTE) [27, 28] and failed lit-
eral detection [23, Section 1.6]. We generalize these techniques to first-order logic with equality
(Section 3). Since the generalization involves reasoning about infinite sets of literals, we propose
restrictions to make them usable.

Variable elimination, based on Davis—Putnam resolution [16], has been studied in the context of
both propositional logic [14, 45] and quantified Boolean formulas (QBFs) [8]. The basic idea is to
resolve all clauses with negative occurrences of a propositional variable (i.e., a nullary predicate
symbol) against clauses with positive occurrences and delete the parent clauses. Eén and Biere
[19] refined the technique to identify a subset of clauses that effectively define a variable and use
it to further optimize the clause set. This latter technique, variable elimination by substitution, has
been an important preprocessor component in many SAT solvers since its introduction in 2004.

Specializing second-order quantifier elimination [24, 38], Khasidashvili and Korovin [30]
adapted variable elimination to preprocess first-order problems, yielding a technique we call singu-
lar predicate elimination (SPE). We extend their work along two axes (Section 4): We generalize Eén
and Biere’s refinement to first-order logic, resulting in defined predicate elimination, and explain
how both types of predicate elimination can be used during the proof search as inprocessing.

The last technique we study is blocked clause elimination (BCE) (Section 5). It is used in both
SAT [29] and QBF solvers [9]. Its generalization to first-order logic has produced good results
when used as a preprocessor, especially on satisfiable problems [32]. We explore more ways to use
BCE on satisfiable problems, including using it to establish equisatisfiability with an empty clause
set or as an inprocessing rule. Unfortunately, we find that its use as inprocessing can compromise
the refutational completeness of superposition.

All techniques are implemented in the Zipperposition prover (Section 6), allowing us to ascertain
their usefulness (Section 7). The best configuration solves 160 additional problems on benchmarks
consisting of all 13,495 first-order TPTP theorems [46]. The raw experimental data are publicly
available.!

This article expands on our FMCAD 2021 paper [49]. It includes more examples, lemmas, and
proofs as well as a discussion section. It also corrects a mistake in the handling of variables in
Definition 5.2.

2 PRELIMINARIES

Our work relies on a clausal version of first-order logic. Some of our techniques and results apply
only to the superposition calculus. This section provides a brief introduction to these concepts.

2.1 Clausal First-Order Logic

Our setting is many-sorted, or many-typed, first-order logic [25] with interpreted equality and a
distinguished type (or sort) o. Each variable x is assigned a non-Boolean type, and each symbol f
is assigned a tuple (7, . .., 7y, 7) where n > 0, 7; are non-Boolean types, and 7 is the result type.
We distinguish between predicate symbols, with o as the result type, and function symbols. Nullary
function symbols are called constants. Terms are either variables x or applications f(ty, ..., t,), of
type v where f is assigned (71,..., 7y, 7), and each t; is a term of type 7;. The parentheses are
omitted if n = 0. A term is ground if it contains no variables. We assume standard definitions and

https://doi.org/10.5281/zenodo.4552499.
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notations for positions, subterms, and contexts [2]. We abbreviate a vector (ai, .. ., a,) to d, or d,
and write f!(s) for the i-fold application of a unary symbol f (e.g., f>(x) = f(f(f(x)))).

An atom is an equation s = t corresponding to an unordered pair {s, t}. A literal is an equation
s~t or a disequation s # t. For every predicate symbol p, the notation p(s) abbreviates p(s) ~ T, and
- p(s) abbreviates p(5) # T, where T is a distinguished constant of type o. We distinguish between
predicate literals (=) p(5) and functional literals s ~ t, where s and t are not of type o. Given a literal
L, we overload notation and write =L to denote its complement. A clause C is a finite multiset of
literals, written as L; V --- V L, and interpreted disjunctively. Clauses are often defined as sets
of literals, but superposition needs multisets; with multisets, an instance Co always has the same
number of literals as C, a most convenient property. Given a clause set N, N|, denotes the subset
of its binary clauses: N|, = {L; V Ly | L; V L, € N}.

A substitution o is a well-typed mapping from variables to terms such that the set {x | o(x) # x}
is finite. Substitutions are written as {x; + ti,...,x, — t,} or {X — f}. A substitution is a
variable renaming if it is a bijection from a set of variables to a set of variables.

We assume the natural extensions of domain, valuation, interpretation, and model (as defined
by Fitting [22]) from unsorted to many-sorted logic. The models we consider are normal—i.e., they
interpret ~ as an equality relation. Usual notions of (un)satisfiability and (in)validity are assumed.
We write J |:§ N to denote that a model J satisfies a clause set N, for a variable assignment &.
If J is a model of N (i.e., it satisfies it under every variable assignment), we simply write J |= N.
Abusing notation, we write M |= N to denote that M entails N, i.e., that every model of M is a
model of N.

A canonical model J is a normal model such that for every element d in one of J’s domains there
exists a ground term ¢t such that J interprets t as d. Canonical models generalize Herbrand models
to first-order logic with equality: If a clause set is satisfiable, then it is satisfiable in a canonical
model.

2.2 Superposition Provers

Superposition [3] is a calculus for clausal first-order logic that extends ordered resolution
[4] with equality reasoning. It is refutationally complete: Given a finite, unsatisfiable clause set,
it will eventually derive the empty clause. It is parameterized by a selection function that influences
which of a clause’s literals are eligible as the target of inferences. Moreover, it is compatible
with the standard redundancy criterion, which can be used to delete a clause C while preserving
completeness of the calculus.

The redundancy criterion relies on an order > that compares terms, literals, clauses, or finite
clause sets. The order is used to determine whether clauses can be deleted. If N is ground, C can
be deleted if it is entailed by <-smaller clauses in N. This definition is lifted to nonground sets
N. The criterion can be used to delete a clause that is subsumed by another clause (e.g., p(a) V q
by p(x)) or to simplify a clause C into C’, which amounts to adding C’ and then deleting C as
redundant with respect to N U {C’}. Subsumption and simplification are the main inprocessing
mechanisms available to superposition provers. Some provers also implement clause splitting
[20, 41, 48].

Superposition provers saturate the input problem with respect to the calculus’s inference rules
using the given clause procedure [1, 36]. It partitions the proof state into a passive set £ and an
active set A. All clauses start in #. At each iteration of the procedure’s main loop, the prover
chooses a clause C from P, simplifies it, and moves it to A. Then all inferences between C and
active clauses are performed. The resulting clauses are again simplified and put in #. The provers
differ in which clauses are used for simplification: Otter-loop [36] provers use both active and
passive clauses whereas DISCOUNT-loop [1] provers use only active clauses.
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3 HIDDEN-LITERAL-BASED ELIMINATION

In propositional logic, binary clauses from a clause set N can be used to efficiently discover
literals L, L’ for which the implication L’ -— L is entailed by N’s binary clauses—i.e., literals L,
L’ such that N|, |= L’ -—— L. Heule et al. [28] introduced the concept of hidden literals to capture
such implications.

Definition 3.1. Given a propositional literal L and a propositional clause set N, the set of propo-
sitional hidden literals for L and N is HLyrop(L,N) = {L" | L <>, L}\{L}, where <> pqp is
defined such that —L; <o, Ly whenever L; V L, € N. Moreover, HLpop(Ly V -+ V Ly, N) =

U?:1 HLprop(Li’ N)

Heule et al. used a fixpoint computation, but our definition based on the reflexive transitive
closure is equivalent. Intuitively, a hidden literal can be added to or removed from a clause without
affecting its semantics in models of N. By eliminating hidden literals from C, we simplify it. By
adding hidden literals to C, we might get a tautology C’ (i.e., a valid clause: |= C’), meaning that
N, [¢ C, thereby making C a candidate for deletion. Note that HLpop(L, N) is finite for a finite N.

Definition 3.2. Given L’ V L V C € N, if L’ € HLp(L, N), HLE replaces N by (N\{L" vV L v
CHU{LV C}.GivenC € N, {Ly,...,Ly} = HLpop(C,N),and ¢’ =C V Ly V .-+ V L, if C'is a
tautology, HTE replaces N by N\{C}.

THEOREM 3.3. The result of applying HLE or HTE to a clause set N is equivalent to N.

Proor. For HLE, assume we have amodel of N and L’ V L V C that does not satisfy L V C. Then
the model must satisfy L, but since N implies =L’ V L, it must also satisfy L V C, a contradiction.
For HTE, it can be shown that the sets N and N U {C’}\{C} are equivalent [28, Section 2.1].
Since the clause C’ is a tautology, N and N\{C} are equivalent. O

We generalize hidden literals to first-order logic with equality by considering substitutivity of
variables as well as congruence of equality.

Definition 3.4. Given a literal L and a clause set N, the set of hidden literals for L and N is
HL(L,N) = {L’ | L’ —* L}\{L}, where < is defined so that (1) =L’c <> Lo if L’ VL € N and ¢
is a substitution; (2) s~ t < u[s]~u[t] for all terms s, t and contexts u[ |; and (3) u[s]Zu[t] < s#t
for all terms s, t and contexts u[ |. Moreover, HL(L; V --- V L,,N) = U, HL(L;, N).

The generalized definition also enjoys the key property that L’ € HL(L, N) implies N|, |=
L’ — L. However, HL(L, N) may be infinite even for predicate literals; for example, p(f'(x)) €
HL(p(x), {p(x) V =p(f(x))}) for every i

Based on Definition 3.4, we can generalize HLE and support a related technique called failed
literal elimination:

L'vLvC LvC
—————HLE ifL € HL(L,N)

FLE ifL’,~L’ € HL(~L,N)

LvcC

Double lines denote simplification rules: When the premises appear in the clause set, the prover
can use the redundancy criterion to replace them by the conclusions. The second rule, failed literal
elimination, is inspired by the SAT technique of asserting - L if L is a failed literal [23]. It is easy to
see that rule HLE is sound. From L’ € HL(L, N) we have N |= L’ -—— L (i.e, =L’ V L). Performing
subsumption resolution [4] between L’ V L vV C and =L’ Vv L yields the conclusion, which is
therefore entailed by N. For FLE, the condition L’,~L" € HL(—L, N) means that N|, |= {=L" Vv
L L'V AL} = -L.
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Example 3.5. Consider the clause set N = {p(x) V =p(f(x)), p(f(f(x))) V a =~ b} and the clause
C = f(a) # f(b) V p(x). The first clause in N induces p(f(x)) — p(x), p(f(f(x))) — p(f(x)),
and hence p(f(f(x))) < p(x). Together with the second clause in N, it can be used to derive
a# b <" p(x). Finally, using rule (3) of Definition 3.4, we derive f(a) # f(b) <—* p(x)—that is,
f(a) # f(b) € HL(p(x), N). This allows us to remove C’s first literal using HLE.

Two special cases of HLE exploit equality congruence as embodied by conditions (2) and (3) of
Definition 3.4 without requiring to compute the HL set:

s~tVu[s]~u[t] Vv C

CoNGHLE™

u[s]~ult] v C

s#tVuls]#u[t]vC

CoNGHLE™

stV C

Hidden literals can be combined with unit clauses L’ to remove more literals:
L'" LvC
————UniTHLE if L'c € HL(-L,N)
L' C
Given a unit clause L’ € N, the rule uses it to discharge L'c in N |= L’c -— —L. As a result, we
have N |= =L, making it possible to remove L from L Vv C.

Example 3.6. Consider the clause set N = {p(x) V q(f(x)), =q(f(a)) V f(b) = g(c), f(x) # g(y)}
and the clause C = —p(a) V —q(b). The first clause in N induces —q(f(a)) < p(a), whereas
the second one induces f(b) # g(c) < —q(f(a)). Thus, we have f(b) # g(c) —* p(a)—that is,
f(b) # f(c) € HL(p(a), N). By applying the substitution {x +— b, y + c} to the third clause in N,
we can fulfill the conditions of UNITHLE and remove C’s first literal.

Next, we generalize hidden tautologies to first-order logic.

Definition 3.7. A clause C is a hidden tautology for a clause set N if there exists a finite set
{Ly,...,L,} CSHL(C,N)suchthat CVv Ly V --- V L, is a tautology.

In general, hidden tautologies are not redundant and cannot be deleted during saturation, as
shown by the following example.

Example 3.8. Consider the unsatisfiable set N = {—a, =b, a V ¢, b V —c}, the ordera < b < c,
and the empty selection function. The only possible superposition inference from N is between
the last two clauses, yielding the clause a Vv b (after simplifying away T # T). This clause is a
hidden tautology: We have HL(a V b, N) = HL(a, N) U HL(b, N) = {—a, —b}, and there exists
the set {-a} € HL(a V b, N) such that —a V a V b is a tautology. The hidden tautology a V b
is entailed by the larger clauses a vV c and b V =—c. If the hidden tautology a V b is removed,
the prover could enter an infinite loop, forever generating and deleting the hidden tautology and
never getting the opportunity to derive the empty clause.

In practice, most provers use a variant of the given clause procedure. Removing hidden
tautologies breaks the invariant of the procedure that all inferences between clauses in A are
redundant. The end result is not that the prover diverges, but that it terminates without deriving
the empty clause.

To observe this, assume the setting as in Example 3.8, and let # = N and A = (. After moving
the first three clauses from # to A (leaving us with £ = {b V —c} and A = {—a,—b,a V c}), no
inferences are possible, and no new clauses are added to P. After the last clause is moved to A, the
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7:6 P. Vukmirovi¢ et al.

hidden tautology a V b is produced. If it is deleted, the prover terminates with the unsatisfiable
set A, but does not derive the empty clause.

To delete hidden tautologies during saturation, the prover could check that all the relevant clause
instances encountered along the computation of HL are <-smaller than a given hidden tautology.
However, this would be expensive and seldom succeed, given that superposition creates lots of
nonredundant hidden tautologies. Instead, we propose to simplify hidden tautologies using the
following rules:

LvL vcC LvC
——————HTR if-L € HL(L,N)and C # L
LvL L

FLR ifL’,~L' € HL(L,N)and C # L

We call these techniques hidden tautology reduction and failed literal reduction, respectively. Both
rules are sound. As with hidden literals, unit clauses L’ can be exploited:

L' LvC
————UNITHTR ifL’0 € HL(L,N) and C # L
L L

We give the simplification rules above (for HLE, hidden tautology reduction, failed literal de-
tection, and their variants) the collective name of hidden-literal-based elimination (HLBE). Yet an-
other use of hidden literals is for equivalent literal substitution [27]: If both L’ € HL(L, N) and
L € HL(L’, N), we can often simplify L’c to Lo in N if L’c > Lo. We want to investigate this fur-
ther.

THEOREM 3.9. The rules HLE, FLE, CONGHLE', CoNGHLE~, UNITHLE, HTR, FLR, and UNITHTR
are sound simplification rules.

Proor. It is easy to see that the deleted premises are entailed by the conclusions that replace
them and that the conclusions’ instances are <-smaller than the premises’ instances, as required
by the redundancy criterion. It remains to check soundness.

Case HLE: We have N, L’ |= L by the side condition and must show N, L’ VLV C | LV C. Let
JEN,L"VLVC.IfJ |= L, then we also have J |= L thanks to the side condition and hence
d = L Vv C. Otherwise, we have J |= L V C, which is exactly what we need to show.

Case FLE: We have N, L |= L’ and N, L |= =L’ by the side condition. If J |= N, L, then both J |= L’
and J |= —L’, an absurdity. Otherwise, we have J |= C, as desired.

Case CoNGHLE™, CoNnGHLE™: Obvious by congruence of equality.

Caste UNITHLE: We have N, L |= —L’c by the side condition. If J |= N, L, then N |= =L’c. But
since L’ € N, this is an absurdity. Otherwise, we have J |= C, as desired.

Case HTR: We have N, =L’ |= L by the side condition. If either J |= L or J |= L’, the desired
result follows directly. Otherwise, from J |= =L’ we also have J |= L thanks to the side condition,
contradicting J |= —L.

Case FLR: We have N, L’ |= L and N, =L’ |= L by the side condition. Hence N |= L, as desired.

Case UNITHTR: We have N, L’c |= L. Since L’ € N, we have N |= L, as desired. O
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4 PREDICATE ELIMINATION

For propositional logic, variable elimination [19] is one of the main preprocessing and inprocessing
techniques. Following Gabbay and Ohlbach’s ideas [24], Khasidashvili and Korovin [30] general-
ized variable elimination to first-order logic with equality and demonstrated that it is effective as
a preprocessor. We propose an improvement—defined predicate elimination—that can both elimi-
nate more predicates and generate fewer clauses—and show that, with a minor restriction, predi-
cate elimination can be integrated in a superposition prover without compromising its refutational
completeness.

Khasidashvili and Korovin’s (K&K) preprocessing technique removes singular predicates (which
they call “non-self-referential predicates”) from the problem using so-called flat resolution.

Definition 4.1. A predicate symbol is called singular for a clause set N if it occurs at most once
in every clause contained in N.

Definition 4.2. Let C = p(5,) V C"and D = —p(f,) V D’ be clauses with no variables in common.
The clauses; 2t; V -+ V sy, #£t, VC' VvV D’ is a flat resolvent of C and D on p.

Given two clause sets M, N, predicate elimination iteratively replaces clauses from N contain-
ing the symbol p with all flat resolvents against clauses in M. Eventually, it yields a set with no
occurrences of p. The sets M and N can be initialized to be the same set, but they can also be
different sets; for example, with defined predicate elimination, M will be a so-called definition set,
whereas N will be an arbitrary clause set in which p may be nonsingular.

Definition 4.3. Let M, N be clause sets and p be a singular predicate for M. Let ~» be the following
relation on clause set pairs and clause sets:

(1) M, {(=)p(5) V C'} & N)~» (M, N’ U N) if N’ is the set that consists of all clauses (up to
variable renaming) that are flat resolvents with (=)p(s) V C’ on p and a clause from M as
premises. The premises’ variables are renamed apart.

(2) (M,N) ~> N if N has no occurrences of p.
The resolved set M >4, N is the clause set N’ such that (M, N) ~* N’.

LEMMA 4.4. Let M,N be clause sets and p be a singular predicate for M. The resolved set N’ is
reached in a finite number of ~> steps, and it is unique up to variable renaming.

Proor. To show ~» is terminating we use the following ordinal measure on clause sets:
v({D1,....Dy}) = 0"P) @ - ® ©'Pr), where v(D) is the number of occurrences of p in D,
w is the first infinite ordinal, and @ is the Hessenberg, or natural, sum, which is commutative.
For every transition (M, {C} U N) ~ (M,N’ U N), we have v({C} U N) > v(N’ U N) because
w"©) > "(©-1.|N’|. Eventually, a state (M, N’) with v(N’) = ° - n is reached. Then, we apply
the second rule of Definition 4.3 to obtain the resolved set N”.

To show that N’ is unique, i.e., ~ is confluent, it suffices to show (since ~» is terminating and
Newmann’s lemma applies [2]) that ~» is locally confluent. In other words, whenever (M, N) ~»
(M, N7) and (M, N) ~» (M, N3), there exists a set N’ such that (M, N;) ~> (M, N’) and (M, N,) ~>»
(M, N").

There are two main sources of nondeterminism of ~»: The choice of C € N and the choice of
the literal in C to act on. Let us focus on the choice of C in N; the same discussion applies for the
choice of literal in C.

Let N = {C;} W{C;} W N’, where C; and C; are clauses with occurrences of p. Then, (M, {C;} @
{CoUN'})~> (M,N]U{C,UN"}) and (M, {C2} W {C; UN'})~> (M, N, U{C; UN"}), where N| and
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7:8 P. Vukmirovi¢ et al.

N, are sets of corresponding resolvents. Both ~» steps can be joined (up to variable renaming) to
(M,N]/ UN, UN’), showing that ~» is locally confluent. O

Next, it is useful to partition clause sets into subsets based on the presence and polarity of a
singular predicate.

Definition 4.5. Let N be a clause set and p be a singular predicate for N. Let N, consist of all
clauses of the form p(s) vV C’ € N, let N, consist of all clauses of the form -p(s) vV C’ € N, let
N, = Nj UN;, and let N, = N\N;.

Definition 4.6. Let N be a clause set and p be a singular predicate for N. SPE of p in N replaces
N by N, U(Ny >, N;).

The result of SPE is satisfiable if and only if N is satisfiable [30, Theorem 1], justifying SPE’s use
in a preprocessor. However, eliminating singular predicates aggressively can dramatically increase
the number of clauses. To prevent this, Khasidashvili and Korovin suggested to replace N by N’
only if A(N”) < A(N) and u(N’) < p(N), where A(N) is the number of literals in N and p(N) is the
sum for all clauses C € N of the square of the number of distinct variables in C.

Compared with what modern SAT solvers use, this criterion is fairly restrictive. We relax it to
make it possible to eliminate more predicates, within reason. Let K, € IN be a tolerance parameter.
A predicate elimination step from N to N’ is allowed if A(N") < A(N) + Ko or g(N’) < u(N) or
IN’] < |N| + Kol A refinement, which we will not study, would be to gradually increment the
tolerance K, as is done in some SAT solvers.

SPE is effective, but an important refinement has not yet been adapted to first-order logic: vari-
able elimination by substitution. Eén and Biere [19] discovered that a propositional variable x can
be eliminated without computing all resolvents if it is expressible as an equivalence x «— ¢, where
@, the “gate,” is an arbitrary formula that does not reference x. They extract from a set N of propo-
sitional clauses into a definition set G, essentially the clausification of x «= ¢, and R = Np\G, the
remaining clauses containing p. To eliminate x from N while preserving satisfiability, it suffices to
resolve clauses from G against clauses from R, effectively substituting ¢ for x in R. Crucially, we
do not need to resolve pairs of clauses from G or pairs of clauses from R. We generalize this idea
to first-order logic.

Definition 4.7. Let G be a clause set and p be a predicate symbol. The set G is a definition set
for p if (1) p is singular for G; (2) G consists of clauses of the form (=)p(X) V C’ (up to variable
renaming), where the variables X are distinct; (3) the variables in C’ are all among p’s arguments
X; (4) all clauses in G; >, G, are tautologies; and (5) E(¢) is unsatisfiable, where the environment
E(X) consists of all subclauses C’ of any (=)p(X)VC’ € G and € is a tuple of distinct fresh constants
substituted in for X.

A definition set G corresponds intuitively to a definition by cases in mathematics—e.g.,
- T if (%)
P = {L if §3)
Part (4) states that the case conditions are mutually exclusive (e.g., =¢(¥) V =¢/(X)), and part
(5) states that they are exhaustive (e.g., AC. —¢(¢) A =/(<)). Given a quantifier-free formula

p(¥) «— ¢(X) with distinct variables ¥ such that ¢(X) does not contain p, any reasonable clausifi-
cation algorithm would produce a definition set for p.

Example 4.8. Given the formula p(x) <> q(x) A (r(x) V s(x)), a standard clausification algo-
rithm [37] produces {—p(x) V q(x), =p(x) V r(x) V s(x), p(x) V =q(x) V =r(x), p(x) V =q(x) V
—s(x)}, which qualifies as a definition set for p.
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Definition sets generalize Eén and Biere’s gates. They can be recognized syntactically for formu-
las such as p(¥) «— V/; qi(5;) or p(X) <= A; qi(5;), or semantically: Condition (4) can be checked
using the congruence closure algorithm, and condition (5) amounts to a propositional unsatisfia-
bility check.

The key result about propositional gates carries over to definition sets.

Definition 4.9. Let N be a clause set, p be a predicate symbol, G € N be a definition set for p,
and R = N,\G. Defined predicate elimination (DPE) of p in N replaces N by N, U (G >, R).

LEMMA 4.10. Let N(X) be a clause set such that the variables of all clauses in it are among the
argument n-tuple X, and let € be an n-tuple of distinct fresh constants. If N(C) (i.e., N(X){X > C}) is
unsatisfiable, then for every interpretation J and valuation &, J 1#5 N.

ProoF. We show the contrapositive. Assume that for some J and &, J ¢ N (X). Then let J’ be
a model that assigns each c; the interpretation of x; under J and ¢, and otherwise coincides with
J. We obtain J’ |= N(¢). O

LEMMA 4.11. Let G be a definition set for p and N be an arbitrary clause set. If (G,N) ~> (G, N’)
for some N’, then G U N and G U N’ are equivalent.

ProoF. Since flat resolution is sound, the nontrivial direction is to show that a model J of the
set GU N’ is also a model of G U N. Since the only clause in N\N’ is the clause C = (=) p(s,) V C’
on which the ~» step is performed, it suffices to show J |= C.

Without loss of generality, we assume that the leading literal of C is positive. Toward a contra-
diction, assume ¢ is a valuation such that J |+ C. Then, J &+ p(5,). Consider an arbitrary clause
D=p(,) v D e G, and a valuation ¢’ that assigns each x; the interpretation of s; under J and
£ AsJ [Fg p(Xn) and J |= G, then J |=¢ D’ for every such clause D. However, by part (5) of Def-
inition 4.7 and by Lemma 4.10, J ¢ E(X,), where E(X,) is the environment associated with the
definition set G. Therefore, there must exist a clause D = —p(¥,) V D’ in G, suchthat g |£; D'.

Now consider the flat resolvent of Cand Donp: R=x; #s; V- Vx, %5, VC' VvV D'. Let {
be a valuation coinciding with ¢ on variables of C and with ¢’ on X,,. Clearly, J |#§ R.Yet,R € N’,
and as J |= N’, we reach a contradiction. O

LEMMA 4.12. Let G be a definition set for p and N be a clause set with no occurrences of p. Then
G U N is satisfiable if and only if N is satisfiable.

Proor. The nontrivial direction is to show that if N is satisfiable, G U N is as well. Let J be
a model of N. We construct a model J’ of G over the same universe as J. For any atom A such
that p does not occur in A and for every &, we set J’ |=¢ A if and only if J |=¢ A. For any clause
p(Xn) V C’ € G and any assignment ¢ such that J [£; C’, we define J’ so that J’ [z p(X,). By
construction, J’ |= G;,’ U N. It remains to show that J’ = G™.

Let C = =p(X,) V C’ € G and let & be an arbitrary assignment. Toward a contradiction, assume
J’" ¢ C, and consequently J’ |=¢ p(X,). By construction of J’, there exists a clause p(3,) V D’ € G
and an assignment ¢’ that assigns each y; value of £(x;) such that J [f# D’. The resolvent R =
xX12y1 V- Vx, #y, VC' VD' is atautology, according to condition (4) of Definition 4.7. However,
for a valuation that behaves like £ on X and £’ on 7, J’ does not satisfy R € N, contradicting our
assumption. O

THEOREM 4.13. The result of applying DPE to a clause set N is satisfiable if and only if N is
satisfiable.
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7:10 P. Vukmirovi¢ et al.

Proor. Let p be a predicate symbol and G € N be the definition set used by DPE, and let
R = N,\G.

Using Lemma 4.4, we get that there is a derivation (G, R)~" (G, R")~> R’. Applying Lemma 4.11
n times, we get that GUR is equivalent to GUR’. Finally, Lemma 4.12 gives us the desired result. O

Since there will typically be at most only a few defined predicates in the problem, it makes sense
to fall back on SPE when no definition is found.

Definition 4.14. Let N be a clause set and p be a predicate symbol. If there exists a definition set
G C N for p, portfolio predicate elimination (PPE) on p in N replaces N with ]Vp U (G >4, R), where
R = Np\G. Otherwise, if p is singular in N, it results in Z\_]p U (N; >, NP_). In all other cases, it is
not applicable.

Hidden-literal-based techniques fit within the traditional framework of saturation, because they
delete or reduce a clause based on the presence of other clauses. In contrast, predicate elimination
relies on the absence of clauses from the proof state. We can still integrate it with superposition
as follows: At every kth iteration of the given clause procedure, perform predicate elimination on
A U P, and add all new clauses to P.

One may wonder whether such an approach preserves the refutational completeness of the
calculus. The answer is no.

To see why, consider the following binary splitting rule based on Riazanov and Voronkov [41]:

CcCvD
———— RS
p\/C DV =p

Provisos: C and D have no free variables in common, p is fresh, and p is <-smaller than C and
D. Since the conclusions are smaller than the premise, the rule can be applied aggressively as a
simplification. But notice that the effect of splitting can be undone by SPE, possibly giving rise to
loops BS, SPE, BS, SPE, ... ..

Under which conditions is predicate elimination refutationally complete? To answer this ques-
tion, we employ the saturation framework of Waldmann, Tourret, Robillard, and Blanchette [50, 51].
Let (FInf, Red) be the base calculus without predicate elimination—e.g., resolution or superposition
inferences together with the standard redundancy criterion [4, Section 4.2]. The inference system
FInf is a set of inferences (Cp, . .., Ci, (), for n > 1, where Cp, ..., C; are the premises and Cj is
the conclusion. C; is called the main premise. The redundancy criterion is a pair Red = (Reds, Redr)
where Red] determines which inferences can be omitted and Redr is used to remove clauses.

Next, consider an abstract proving process working on a single clause set. Let >g.4 denote the
transition relation that supports (1) adding arbitrary clauses and (2) removing clauses deemed use-
less by Redr. Typically, the added clauses are the result of performing inferences and are entailed
by the premises, but other clauses can be added as well. A >g.4-derivation is a finite or infinite
sequence of clause sets Ny D>peg N1 DReg - - - -

We fix a finite set P of predicate symbols that may be subjected to predicate elimination. These
might include all the predicate symbols occurring in the input problem, but exclude any symbols
introduced by splitting or other rules. Given a clause or clause set N, we write P(N) to denote the
set of all predicate symbols from P occurring in N. Let >p denote the elimination of a singular
or defined predicate symbol from P. A mixed derivation consists of transitions either of the form
N >p N’ or of the form N >g.q N’ where P(N) 2 P(N’). Because P is finite, any mixed derivation
consists of at most finitely many >p transitions. Hence, in any derivation, there exists an index k
from which all transitions are standard > p.4-transitions.
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This suggests the following path to completeness: Pretend that the transitions between Ny and
Ny are merely preprocessing and start the actual derivation at Ni. This works at the abstract
level of derivations on single clause sets. It fails, however, for an actual saturation prover that
distinguishes between passive and active clauses.

Example 4.15. The counterexample below is based on the given clause prover GC from the satu-
ration framework. It shows how predicate elimination can break GC’s key invariant, which states
that all inferences between active clauses are redundant. Breaking the invariant means that the
limit might be unsaturated, breaking the refutational completeness proof.

We use superposition with the order a < b < ¢ < d and without selection. Assume a € P and
suppose we start with the satisfiable clause set

-aVvd —-aV —d avVbVvec cvd bv —-d

where gray boxes mark maximal literals. Suppose the prover makes ¢ V d and b V —d active.
From these two clauses, a superposition inference ¢ could derive the conclusion b vV c. However,
the three passive clauses are <-smaller than /’s main premise b V —d and collectively entail /’s
conclusion. This means that ¢ is redundant and can be ignored.

If the prover now eliminates the predicate a using SPE, the passive set is reduced to {b V ¢ V
d, b V ¢ v —d}. Either clause is subsumed by an active clause, so the prover deletes it. It stops
with the active set {c V d, b V =d}, which is unsaturated because ! is no longer redundant. The
invariant is broken.

Example 4.16. In Example 4.15, the initial clause set was satisfiable. If it is unsatisfiable, we can
even lose refutational completeness. To see why, we add the unit clauses —b and —c to the initial
clause set of Example 4.15 to make it unsatisfiable. We repeat the same steps as above, including the
subsumptions at the end, yielding the passive set { =b, —c} and the active set {c V d, b vV —d}.
Then, making —b and —c active triggers no inferences. The prover stops with an unsatisfiable
four-clause active set that does not contain the empty clause.

A solution could be to move all active clauses to the passive set at step k or later, but this would
be costly, since it would force the prover to redo inferences whose conclusions might then have
to be simplified or subsumed again. Instead, we salvage the existing completeness proof for GC,
by resolving the issues concerning splitting and the GC invariant. Our approach is to weaken the
redundancy criterion slightly, enough both to disable splitting on P-predicates and to ensure that
inferences such as 1 in Examples 4.15 and 4.16 are performed. The required weakening is so mild
that it does not invalidate any practical simplification or subsumption techniques we are aware of,
except of course splitting.

In accordance with the saturation framework, let F be the set of first-order >-clauses, let G be
its ground subset, and let G be a function that maps an F-clause to the set of its G-clause instances
and analogously for F-inferences. We define an extension G of G for ¥"-clauses in an ad hoc
nonclassical logic reminiscent of paraconsistent logics [13]. The signature X" extends % with a
distinguished predicate symbol L that is interpreted differently from T. For 3”, the Boolean type
o may be interpreted as any set of cardinality at least 2.

The objective is to disallow the entailment that makes splitting and Examples 4.15 and 4.16
possible. The weaker entailment will be used to define a weaker redundancy criterion, which will
curtail splitting. Properties such as soundness of the calculus can still be established using the
standard entailment notion.
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Definition 4.17. The operator ” translates 3-literals to 3"-literals as follows, where p € P, q ¢ P,
and s, t are non-Boolean terms:

p@)’ =p(@) % L q®)’ =qdO~T (s~t) =s~t
—p()’ =pdH# T —q@)’ =q) % T (s#t) =s#t

The operator is lifted elementwise to G-clauses and G-clause sets. The weak entailment |=° over
G-clause sets are defined via an encoding into X°-clauses: M |=° N if and only if M” |= N°. The
lifting to F-clauses and F-clause set is achieved in the standard way via grounding.

The following property of weak entailment will allow us to eliminate P-predicates without los-
ing completeness:

LEMMA 4.18. Let C be a clause that contains the predicate symbol p € P and D be a clause that
does not contain p. If N U {C} =" {D}, then N |=" {D}.

Proor. Suppose J |= NP. We will define J’ so that J’ = N’ U {Cb}, retrieve J’ |= D, and
then argue that J |= D”. We take J’ to coincide with § except that we extend the domain for o
with one fresh value and use this value as the interpretation of p(f) for all argument tuples 7. This
modification makes any p literal of C” true, and it preserves the truth of N”. By the hypothesis,
JE D. And since p does not occur in D, we have J |= Db. O

Note that the above lemma does not hold for classical entailment |=; indeed, {p V q, =p V
q} = {q} yet {p vV q} [~ {q}. On the other hand, the law of excluded middle does hold for weak
entailment: |= p V = p. In fact, all classical clausal tautologies are tautologies for |=.

The standard redundancy criterion Red is obtained by lifting a criterion on G-clauses to
F-clauses. The same construction can be replicated using |=" instead of |=, yielding the weak redun-
dancy criterion Red. Tt is easy to check that the usual simplification techniques implemented in
superposition provers can be justified using Red". Specifically, this concerns the following rules de-
scribed by Schulz [42, Sections 2.3.1 and 2.3.2]: deletion of duplicated literals, deletion of resolved
literals, syntactic tautology deletion, semantic tautology deletion, rewriting of negative literals,
positive simplify-reflect, negative simplify-reflect, clause subsumption, and equality subsumption.
Moreover, rewriting of positive literals is possible if the rewriting clause is smaller than the rewrit-
ten clause (a condition that is also needed with |= but omitted by Schulz). Finally, destructive
equality resolution cannot be justified with |=, let alone |=°.

We instantiate the saturation framework with (FInf, Red”) to obtain a given clause prover GC.
The prover operates on sets of labeled clauses (C, I), where C is a standard clause and [ € L is a
label. The active label identifies active clauses; all other clauses are passive. The prover takes the
form of two rules, PRocEss and INFER, restricted to prevent the introduction of P-predicates. We
extend it with a third rule, PREDELIM, for predicate elimination, and call the extended prover GCP.
The rules are as follows, using again the framework notations:

Process NUM =gcp NUM’
where M C LRed? (N U M’), M'|cine = 0, and
P(IM']) S P(IN UM])
INFER N U {(C,])} =gcp N U{(C,active)} U M
where [ # active, M| ctive = 0,
FInf (LN Lactive ) {C}) € Red?"9(IN] U {C} U [IM]), and
P(IM]) c P(INJU{C})
PREDELIM N UM =gcp NUM’
where N UM p N UM’ and M’|ive = 0
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Here is a summary of the main framework notations:

— The letters M, N range over sets of labeled clauses. M|, denotes the subset of clauses in M
labeled with . The operator | | erases all labels in a labeled clause or clause set.

— FInf(N) denotes the set of all base calculus inferences with premises in N, and FInf(N, M) =
FInf(N U M)\FInf(N\M). The same notations are also available for the straightforward ex-
tension FLInf of FInf with labels.

— LRed™ is the extension of the standard redundancy criterion Red” defined using =¥ to
nonground labeled clauses with subsumption (C).

— Given a sequence (N;);, its limit (inferior) is Noo = U; (5 N

The completeness proof follows the invariance-based argument found in the article by
Waldmann et al. [51] about the saturation framework.

LEmMMA 4.19. Every == cp-derivation is a mixed derivation.

Proor. The cases for PRocEss and INFER are almost as in Waldmann et al., with adjustments to
show that P-predicates cannot appear from nowhere. The case for ELIMPRED is trivial. O

Let Inv'l’v(k) denote the condition FLInf(Nk|active) € LRed? (N'k). Notice the difference with
the definition of the key invariant Invy in the saturation framework, whose right-hand side is

%, Red(N;). We cannot use the big union | starting at i = 0 because we will need to truncate
a sequence prefix of an a priori unknown length. The argument will still work thanks to mono-
tonicity properties of redundancy criteria.

. ;EMAZA 4.20. Let (N;); be a =>gcp-derivation. If Nol,ciive = 0, then Inv?\((k) holds for all
indices k.

Proor. The base case is as in Waldmann et al.

For ProCESss and INFER, the proof'is essentially as in Waldmann et al., except that we also need to
show that LRed? (Ny) € LRedII’ (N'k+1)- This is a consequence of Ny >, .».2 Nk11 and of properties
(R2) and (R3) of redundancy criteria.

A new case to consider is that of a PREDELIM transition Ny =gcp Niy1. Let N = N U
M =ccp NUM’ = N1, where NUMBp NN M and M’ |, ive = 0. We assume without loss
of generality that MN M’ = 0. Let p be the eliminated predicate. Note that p occurs in every clause
in M but in none of the clauses in N or M’. We must show FLInf (N r+1lactive) € LRed'I’ (Nk+1)- As
for Process, we have the inclusion FLInNf(N k+1lactive) S FLINf(Nk|active)> DY the side condition
that M’|,ive = 0. Moreover, by the induction hypothesis, FLInf (N i | active) LRed'I’ (Nk). Thus,
FLInf(N i Lactive) S LRed? (N U M).

Let 1 € FLInf(N | ctive)- By the argument above, we have 1 € LRedII’ (N U M). We must show
1€ LRedi’ (N U M’). By definition of LRed", it suffices to show that for every ground instance
(Cp,...,C1,Cp) of 1, there exists a finite clause set D C G(N) U G(M’) that is <-smaller than
C; and such that {Cy, ..., C} UD = {C,}. Without loss of generality, we assume that D is the
<-smallest such set; such a set exists because < is well founded.

By definition of N, p cannot occur in Cy. By Lemma 4.18, if p occurred in D € D, we could
remove D, but this would mean P is not minimal. As a result, 9 cannot contain clauses from
G(M) and hence D C G(N). Thus, : € LRed? (N). By property (R2) of redundancy criteria, we
have the desired result: 1 € LRed?(N uMmM). O
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LEmmA 4.21. Let (N;); be a >, ».--derivation. If Inv?\/(i) holds for all indices i, then
FLINf(N ol active) € U; LRed? (N;) holds.

Proor. We assume ¢ € FLINf(N ool ,ctive) and show ¢ € | J; LRedII’ (N;) for some arbitrary 1. For : to
belong to FLINf (N ool sctive)s all of its finitely many premises must be in N ,.tive- Therefore, there
must exist an index k such that Ny |, contains all of them, and therefore 1 € FLInf (N k| active)-
Since Invy(k) holds, 1 € LRedII’(Nk). Hence, 1 € |J; LRedII’(Nl-). O

LEMMA 4.22. Let (N;); be a = ¢cp-derivation. If Nol,cive = 0 and N«l; = 0 for every label
[ # active, then there exists an index k such that (N'r4;); is a fair > p .~ -derivation.

Proor. By Lemma 4.19, there must exist an index k such that the sequence (N;;); is a pure
B>, pegt-2-derivation. By Lemma 4.20, Inv?v(k + i) holds for all indices i. Hence, by Lemma 4.21,

FLInf (N ool active) < UiLRedf (Nk+i)- By the second hypothesis, this inclusion simplifies to
FLInf(N o) € U; LRed? (N k1), O

THEOREM 4.23. Let (N;); be a == gcp-derivation with Nol,ciive = 0 and N |; = 0 for every label
I # active. If | No] is unsatisfiable, then some N; contains the empty clause with some arbitrary label.

Proor. By Lemma 4.22, we know that there exists an index k such that (N;); is a fair > p .o~
derivation. Moreover, since &> , .o and >p preserve unsatisfiability (by (R1) of redundancy criteria,
K&K Theorem 1, and our Theorem 4.13), we have that | N | is unsatisfiable. Since the base calculus
(FLInf, LRed) is assumed to be statically refutationally complete with respect to |=, the calculus
(FLInf, LRed") with a weaker redundancy criterion is also statically complete with respect to |=,
and by the saturation framework, (FLInf, LRedb’:') preserves this. Exploiting the equivalence of
static and dynamic completeness (Lemmas 10 and 11 in Waldmann et al. [51]), we conclude that
some N,; must contain a labeled empty clause. |

To summarize, we have shown that predicate elimination can be used as inprocessing in a super-
position prover based on the given clause procedure, with one minor restriction: To avoid loops,
predicate symbols arising from clause splitting should not be eliminated.

5 SATISFIABILITY BY CLAUSE ELIMINATION

The main approaches to show satisfiability of a first-order problem are to produce either a finite
Herbrand model or a saturated clause set. Saturations rarely occur except for very small problems
or within decidable fragments. In this section, we explore an alternative approach that establishes
satisfiability by iteratively removing clauses while preserving unsatisfiability, until the clause
set has been transformed into the empty set. So far, this technique has been studied only for
QBF [26]. We show that BCE can be used for this purpose. It can efficiently solve some problems
for which the saturated set would be infinite. However, it can break the refutational completeness
of a saturation prover. We conclude with a procedure that transforms a finite Herbrand model
into a sequence of clause elimination steps ending in the empty clause set, thereby demonstrating
the theoretical power of clause elimination.

Kiesl et al. [32] generalized BCE to first-order logic. Their generalization uses flat L-resolvents,
an extension of flat resolvents that resolves a single literal L against m literals of the other clause.

Definition 5.1. Let C =LV C’and D =Ly V --- V L, V D', where (1) m > 1, (2) the literals
L; are of opposite polarity to L, (3) L’s atom is p(5,), (4) L;’s atom is p(f;) for each i, and (5) C and
D have no variables in common. The clause (\/1, Viiysj # tij) vV C' v D' is a flat L-resolvent of
C and D.
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Definition 5.2. Let C = L V C’ be a clause and N be a clause set. Let N’ consist of all clauses
from N\{C} with their variables renamed so that they share no variables with C. The clause C
is (equality-)blocked by L in the set N if all flat L-resolvents between C and clauses in N’ are
tautologies.

Removing a blocked clause from a set preserves unsatisfiability [32]. Kiesl et al. evaluated the ef-
fect of removing all blocked clauses as a preprocessing step and found that it increases the prover’s
success rate.

In fact, there exist satisfiable problems that cannot be saturated in finitely many steps regardless
of the calculus’s parameters but that can be reduced to an empty, vacuously satisfiable problem
through BCE.

Example 5.3. Consider the clause set N consisting of C = p(x,x) and D = =p(y;,y3) V
p(y1,y2) V p(y2, ys). Note that if no literal is selected, all literals are eligible for superposition. In
particular, the superposition of p(x, x) into D’s negative literal eventually needs to be performed
regardless of the chosen selection function or term order, with the conclusion E; = p(z1,22) V
p(z2, z1). Then, superposition of E; into D yields E; = p(z1,22) V p(z2,23) V p(z3,21). Repeating
this process yields infinitely many clauses E; = p(z1,22) V --- V p(zi,zi41) V p(zit1,21) that
cannot be eliminated using standard redundancy-based techniques.

In the example above, the clause D is blocked by its second or third literal. If we delete D, C
becomes blocked in turn. Deleting C leaves us with the empty set, which is vacuously satisfiable.
The example suggests that using BCE during saturation might help focus the proof search. Indeed,
Kiesl et al. ended their investigations by asking whether BCE can be used as an inprocessing
technique in a saturation prover. Unfortunately, in general the answer is no:

Example 5.4. Consider the unsatisfiable set N = {Cy, ..., Cs}, where
Ci=-cVeV ma Cy ==cV —e C3=bVc
C4=—|bV—|C C5:aVb C6=C\/—|b

Assume the simplification ordering a < b < ¢ < d < e and the selection function that chooses
the last negative literal of a clause as presented. Gray boxes indicate literals that can take part in
superposition inferences. Only two superposition inferences are possible: from Cs into Cy, yielding
the tautology C; = b vV =b, and from Cs into Cg, yielding Cs = a VvV c. Clause C; is clearly
redundant, whereas Cg is blocked by its first literal. If we allow removing blocked clauses, the
prover enters a loop: Cs is repeatedly generated and deleted. Thus, the prover will never generate
the empty clause for this unsatisfiable set.

As with hidden tautologies, removing blocked clauses breaks the invariant of the given clause
procedure that all inferences between clauses in A are redundant. To see this, assume the setting
of Example 5.4, and let # = N and A = 0. Assume Cy,Cy,C3 are moved to the active set. As
there are no possible inferences between them, the proof state becomes A = {Ci,C,,C3} and
P = {C4,Cs,Cs}. After Cy is moved to A, the conclusion C; is computed, but it is not added to
P as it is redundant. Moving Cs to A produces no new conclusions, but after Cs is moved, Cs
is produced. However, if we allow eliminating blocked clauses, it will not be added to P as it is
blocked. The prover then terminates with A = N and £ = 0, even though the original set N is
unsatisfiable.

Although using BCE as inprocessing breaks the completeness of superposition in general, it is
conceivable that a well-behaved fragment of BCE might exist. This could be investigated further.

Not only can BCE prevent infinite saturation (Example 5.3), but it can also be used to convert
a finite Herbrand model into a certificate of clause set satisfiability. The certificate uses only BCE
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and addition, in conjunction with a transformation to reduce the clause set to an empty set. This
theoretical result explores the relationship between Herbrand models and satisfiability certificates
based on clause elimination and addition. It is conceivable that it can form the basis of an efficient
way to certify Herbrand models.

In propositional logic, asymmetric literals can be added to or removed from clauses, retaining
the equivalence of the resulting clause set with the original one. Kiesl and Suda [31] described
an extension of this technique to first-order logic. Their definition of asymmetric literals can be
relaxed to allow the addition of more literals, but the resulting set is then only equisatisfiable to
the original one, not equivalent. This, in turn, allows us to show that a problem is satisfiable by
reducing it to an empty problem, as is done in some SAT solvers.

For the rest of this section, we work with clausal first-order logic without equality. We use
Herbrand models as canonical representatives of first-order models, recalling that every satisfiable
set has a Herbrand model [22, Section 5.4].

Definition 5.5. A literal L is a global asymmetric literal (GAL) for a clause C and a clause set N
if for every ground instance Co of C, there exists a ground instance Do V L’o of D V L’ € N\{C}
such that Dp € Co and - L’p = Lo.

Every asymmetric literal is GAL, but the converse does not hold:

Example 5.6. Consider a clause C = p(x, y) and a clause set N = {q V p(a,a)}. Then, —q is not
an asymmetric literal for C and N, but it is a GAL for C and N.

Adding and removing GALs preserves and reflects satisfiability:

THEOREM 5.7. IfL is a GAL for the clause C and the clause set N, then the set (N\{C})U {C V L}
is satisfiable if and only if N is satisfiable.

Proor. Let N’ = N\{C} U {C Vv L}. The nontrivial direction is to prove that if N’ has a model,
so does N. If N’ has a model, it has an Herbrand model g. Clearly, J satisfies every clause in N,
with the possible exception of C. Assume there exists a ground instance Co falsified by J. Since L
is a GAL for C and N, then there exists a ground instance Dz V L't of D V L’ € N’ and -L't = Lo.
IfJ |= L'r, for Co Vv Lo to be satisfied by J, some literal in Co must be satisfied by J, contradicting
that Co is falsified by J. If J [£ L't then some literal in D7 must be satisfied. Since Dr C Co, we
get the same contradiction. Therefore, J satisfies N, as needed. m]

For first-order logic without equality, a clause L V C is blocked if all its L-resolvents are
tautologies [32]. The L-resolvent between L V C and =L; V --- V =L, V Dis (C V D)o, where o
is the most general unifier of the literals L, L1, ..., L, [4]. Given a Herbrand model J of a problem,
the following procedure removes all clauses while preserving satisfiability:

(1) Let q be a fresh predicate symbol. For each atom p(s) in the Herbrand universe: If J |=
p(5), add the clause q V p(s); otherwise, add q V =p(s). Adding either clause preserves
satisfiability as both are blocked by q.

(2) Since J is a model, for each ground instance Co, there exists a clause q V L with L € Co. We
can transform C € N into C V —q, since —q is a GAL for C and N.

(3) Consider the clause q V L added by step 1. Since L is ground and no clause q V =L was
added (since J is a model), the only L-resolvents are against clauses added by step 2. Since
all of those clauses contain —q, the resolvents are tautologies. Thus, each q Vv L is blocked
and can be removed in turn.

(4) The remaining clauses all contain the literal =q. They can be removed by BCE as well.
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The procedure is limited to first-order logic without equality, since step 3 is justified only if L is
a predicate literal. (Otherwise, L cannot block clause q V L [32].) The procedure also terminates
only for finite Herbrand models.

Example 5.8. Consider the satisfiable clause set N = {r(x) V s(x), =r(a), =s(b)} and a Herbrand
model J over {a,b,r,s} such that r(b) and s(a) are the only true atoms in J. We show how to
remove all clauses in N using J by following the procedure above.

Let Ny = {q V =r(a), q V r(b), q V s(a), q V —s(b)}. We set N « N U Nj. This preserves
satisfiability since all clauses in Ny are blocked. It is easy to check that — q is GAL for every clause in
N\Nj. The only substitutions that need to be considered are {x - a} and {x +— b} for r(x) Vv s(x).
Sowe set N < {—~q V r(x) V s(x), =q V —r(a), =q V =s(b)} U Nj. Clearly, all clauses in Ny are
blocked, so we set N «— N\Nj. All clauses remaining in N have a literal —q and can be removed,
leaving N empty as desired.

6 IMPLEMENTATION

HLBE, predicate elimination, and BCE all admit efficient implementations in a superposition
prover. In this section, we describe how to implement the first two sets of techniques. For BCE, we
refer to Kiesl et al. [32]. All techniques are implemented in the Zipperposition prover [15]. Zipper-
position is designed for fast prototyping of improvements to superposition, but it implements many
of the most successful heuristics from the E prover [43] and has recently become competitive [47].

6.1 Hidden-Literal-Based Elimination

For HLBE, an efficient representation of HL(L, N) is crucial. Because this set may be infinite, we
underapproximate it by restricting the length of the transitive chains via a parameter Kje,. Given
the current clause set N, the finite map Imp[L’] associates with each literal L’ a set of pairs (L, M)
such that L’ <—* L, where k < Kjen and M is the multiset of clauses used to derive L’ <—¥ L.
Moreover, we consider only transitions of type (1) (as per Definition 3.4). The following algorithm
maintains Imp dynamically, updating it as the prover derives and deletes clauses. It depends on
the global variable Imp and the parameters Kjc, and Kinp.

procedure ADDIMPLICATION(L,, L., C)
if Imp[L,o] # 0 for some renaming o then
(La, L) < (Lao, Leo)
if there are no L,L’, M, o such that (L', M) € Imp[L],
5 Lo =L, and L0 = L. then
for all (o, M) such that (L.o, M) € Imp[L, o] do
erase all (L, M) such that M C M’ from Imp[L,o]
for all L such that (L', M) € Imp[L]
and L,o = L’ for some ¢ do
10 if |M| < Kje,, then
Imp[L] « Imp|L] U {(Lco, M & {C})}
for all L such that Imp[L] # 0
and Lo = L, for some o do
Concl «— {(L’'o,M & {C}) |
15 (L', M) € Imp[L], IM| < Kien}
Imp[L,]| « Imp[L,] U Concl
Congr «— {(s # t,{C}) | 3u. L. = u[s] # u[t]}
Imp|La] < Imp[La] U {(Lc, {C})} U Congr
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procedure TRACKCLAUSE(C)

20 if C= Ll Y Lz then
ADDIMPLICATION(= L1, Ly, C)
ADDIMPLICATION(=L;, Ly, C)
if L, = = L0 for some nonidempotent o then

for all i < 1 to Kjy, do
25 L, «— Lyo
ADDIMPLICATION(= Ly, Ly, C)

procedure UNTRACKCLAUSE(C)
for all L,, L., M such that (L., M) € Imp[L,] do
if C € M then
30 erase (L, M) from Imp[L,]

The algorithm views a clause L V L’ as two implications =L -— L" and =L’ -— L. It stores only
one entry for all literals equal up to variable renaming (line 2). Each implication L, — L. repre-
sented by the clause is stored only if its generalization is not present in Imp (line 4). Conversely,
all instances of the implication are removed (line 6).

Next, the algorithm finds each implication stored in Imp that can be linked to L, — L.: Either
L. becomes the new consequent (line 9) or L, becomes the new antecedent (line 13). If L. can be
decomposed into u[s] # u[t], rule (3) of Definition 3.4 allows us to store s # ¢ in Imp[L,] (line 18).
This is an exception to the idea that transitive chains should use only rule (1). The application
of rule (3) does not count toward the bound Kje,,. If L, is of the form u[s] ~ u[t], then Imp could
be extended so that Imp[s = t] = Imp[L,], but this would substantially increase Imp’s memory
footprint.

In first-order logic, different instances of the same clause can be used along a transitive chain.
For example, the clause C = —p(x) Vv p(f(x)) induces p(x) < p(fi(x)) for all i. The algorithm
discovers such self-implications (line 23): For each clause C of the form =L Vv Lo, where ¢ is some
nonidempotent substitution, the pairs (Lo, {C}), ..., (LoXm*1 {C}) are added to Imp[L], where
Kimp is a parameter.

To track and untrack clauses efficiently, we implement the mapping Imp as a nonperfect
discrimination tree [39]. Given a query literal L, this indexing data structure efficiently finds all
literals L’ such that for some o, L’c = L and Imp[L’] # 0. We can use it to optimize all lookups
except the one on line 9. For this remaining lookup, we add an index Imp ™! that inverts Imp, i.e.,
Imp~'[L] = {L" | Imp[L’] = (L, M) for some M}. To avoid sequentially going through all entries in
Imp when the prover deletes them, for each clause C we keep track of each literal L such that C
appears in Imp[L]. Finally, we limit the number of entries stored in Imp[L]—by default, up to 48
pairs in each Imp[L] are stored.

To implement the HLE rule, we use Imp[L] as follows: Given a clause C = L vV L’ v C’, if there
are two literals Ly, L, and a substitution ¢ such that (L, M) € Imp[L,], C ¢ M, Ly = L, and
Lyo = L', we remove L from C. Literal L can also be removed if Lyc = =L’ and Lyo = = L. Rule
HTR is implemented analogously.

The UN1THTR rule relies on maintaining the index Unit, which is built as follows. Whenever the
prover derives a unit clause C = {L}, we find all entries L, in Imp such that L, and L are unifiable
with the most general unifier o. Then, we set Unit «— UnitU {(L.o, M U{C}) | (L¢, M) € Imp[L,]}.
Given a clause L vV C’ we apply UNITHLE by looking for (L', M) € Unit such that L'c = —L,
for some substitution o; we apply UNITHTR by looking for L’ such that L’c = L. The sets stored
together with literals in Unit are used for building the proof object and to remove literals from Unit
once a clause from the given set becomes redundant.
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The same data structure is used for supporting FLE and FLR. When (L’, M) is added to Imp[L],
we check whether (= L', M’) € Imp[L] for some M’. If so, (=L, M U M) is added to Unit.

In propositional logic, the conventional approach constructs the binary implication graph for the
clause set N [28], with edges (=L, L") and (=L’, L) whenever L V L’ € N. To avoid traversing the
graph repeatedly, solvers rely on timestamps to discover connections between literals. This relies
on syntactic literal comparisons, which is very fast in propositional logic but not in first-order
logic, because of substitutions and congruence.

6.2 Predicate Elimination

To implement portfolio predicate elimination, we maintain a record for each predicate symbol p
occurring in the problem with the following fields: set of definition clauses for p, set of nondefini-
tion clauses in which p occurs once, and set of clauses in which p occurs more than once. These
records are kept in a priority queue, prioritized by properties such as presence of definition sets
and number of estimated resolutions. If p is the highest-priority symbol that is eligible for SPE
or DPE, we eliminate it by removing all the clauses stored in p’s record from the proof state and
by adding flat resolvents to the passive set. Eliminating a symbol might make another symbol
eligible.

As an optimization, predicate elimination keeps track only of symbols that appear at most
Koce times in the clause set. For inprocessing, we use signals that the prover emits whenever a
clause is added to or removed from the proof state and update the records. At the beginning of the
1st, (Kiter + 1)st, (2Kjter + 1)st, . .. iteration of the given clause procedure’s loop body, predicate
elimination is systematically applied to the entire proof state. The first application of inprocessing
amounts to preprocessing. By default, Koo = 512 and Kiter = 10. The same ideas and limits apply
for BCE.

The most important novel aspect of our predicate elimination implementation recognizes the
definition clauses for a symbol p in a clause set N. It is performed as follows:

(1) Let G = {C | C = (=)p(¥) V C’,C € N, ¥ are distinct, and the variables of C’ are all among
X}. If G is empty, report failure; otherwise, continue.

(2) Rename all clauses in G so that their only variables are X.

(3) Let LA] be an injective function that assigns a propositional variable to each atom A. This
function is lifted to literals by assigning | -A] = —x, if [a] = x, and to clauses elementwise.
Furthermore, let E = {|C’] | (=)p(X) V C’ € G}. If E is satisfiable, report failure. Otherwise,
let E’ be an unsatisfiable core of E and G’ be the set of corresponding first-order clauses, and
continue.

(4) If all resolvents in G| >, G, are tautologies, then G’ is a definition set for symbol p. Other-
wise, report failure.

The invalidity of set E in step 3 is checked using a SAT solver, which is already integrated in
Zipperposition. As modern theorem provers (including E and Vampire) also use SAT solvers, the
method can easily be implemented.

During experimentation, we noticed that recognizing definitions of symbols that occur in the
conjecture often harms performance. Thus, Zipperposition recognizes definitions only for the re-
maining symbols.

In contrast to SAT practice, we do not combine predicate elimination and subsumption when
predicate elimination is used as preprocessing.
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Tracked clauses
250 500 1000 oo

Active -14 -16 -8 —-12
Passive +7 +10 +5 35
Both +12 +10 +7 —45

Fig. 1. Impact of the number and kinds of tracked clauses on HLBE performance, when only predicate literals
are tracked.

Tracked clauses
250 500 1000 oo

Active -10 -14 -8 -—18
Passive -5 -5 —-14 -71
Both +2 -1 -8 =79

Fig. 2. Impact of the number and kinds of tracked clauses on HLBE performance, when all literals are tracked.

7 EVALUATION

We measure the impact of our elimination techniques for various values of their parameters.
As a baseline, we use Zipperposition’s first-order portfolio mode, which runs the prover in
13 configurations of heuristic parameters in consecutive time slices. None of these configurations
use our new techniques. To evaluate a given parameter value, we fix it across all 13 configurations
and compare the results with the baseline.

The benchmark set consists of all 13495 CNF and FOF TPTP 7.3.0 theorems [46]. The experi-
ments were carried out on StarExec servers [44] equipped with Intel Xeon E5-2609 CPUs clocked at
2.40 GHz. The portfolio mode uses a single CPU core with a CPU time limit of 180 s. The base config-
uration solves 7897 problems. The values in the tables indicate the number of problems solved mi-
nus 7897. Thus, positive numbers indicate gains over the baseline. The best result is shown in bold.

7.1 Hidden-Literal-Based Elimination

The first experiments use all implemented HLBE rules. To avoid overburdening Zipperposition, we
can enable an option to limit the number of tracked clauses for hidden literals. Once the limit has
been reached, any request for tracking a clause will be rejected until a tracked clause is deleted.
We can choose which kind of clauses are tracked: only clauses from the active set A, only clauses
from the passive set P, or both. We also vary the maximal implication chain length Kj., and the
number of computed self-implications Kipp.

In Zipperposition, every lookup for instances or generalizations of s ~ t must be done once for
each orientation of the equation. To avoid this inefficiency, and also because the implementation
of hidden literals does not fully exploit congruence, we can disable tracking clauses with at least
one functional literal. Clauses containing functional literals can then still be simplified.

Figures 1 and 2 show the results, without and with functional literal tracking enabled, for K}, =
2 and Kiymp = 0. The columns specify different limits on the number of tracked clauses, with
oo denoting that no limit is imposed. The rows represent different kinds of tracked clauses. The
results suggest that tracking functional literals is not worth the effort but that tracking predicate
literals is. The best improvement is observed when both active and passive clauses are tracked.
Normally DISCOUNT-loop provers [1], such as Zipperposition do not simplify active clauses using
passive clauses, but here we see that this can be effective. Figure 3 shows the impact of varying
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Chain length K¢,
1 2 4 8

Kimp =0 +9  +10 47 45
Kimp =1 +5 +11 47 44
Kimp =2 +6 +11  +8 48

Fig. 3. Impact of the parameters Kje,, and Ky on HLBE performance.

Relaxed with K
K&K 0 25 50 100 200

SPE preprocessing +70 +117 +154 4160 +154 +158
PPE preprocessing +71 +124 +160 +164 +165 +162

Fig. 4. Impact of the choice of criterion on predicate elimination performance.

Kien and Kjmp, when 500 clauses from the entire proof state are tracked. These results suggest that
computing long implication chains is counterproductive.

7.2 Predicate and Blocked Clause Elimination

For defined predicate elimination, the number of resolvents grows exponentially with the number
of occurrences of p. To avoid this expensive computation, we limit the applicability of PPE to
proof states for which p is singular. According to our informal experiments, full PPE, without this
restriction, generally performs less well.

Predicate elimination can be done using the K&K criterion or using our relaxed criterion with
different values of K. Figure 4 shows the results for SPE and PPE used as preprocessors. Our
numbers corroborate K&K findings: SPE with K&K proves 70 more problems than the base, a 0.9%
increase, comparable to the 1.8% they observe when they combine SPE with additional preprocess-
ing. Remarkably, the number of additional proved problems more than doubles when we use our
criterion with K;, > 0, for both SPE and PPE.

Although this is not evident in Figure 4, varying K, substantially changes the set of problems
solved. For example, when Kj,) = 0, SPE proves 60 theorems not proved using K;,; = 50. The effect
weakens as Ki,] grows. When K, = 100, SPE proves only 13 problems not found when K, = 200.
Similarly, the set of problems proved by SPE and PPE differs: When K, = 25, 14 problems are
proved by PPE but missed by SPE. Recognizing definition sets is useful: PPE outperforms SPE
regardless of the criterion.

Performing BCE and variable elimination until fixpoint increases the performance of SAT
solvers [29]. We can check whether the same holds for superposition provers. In this experiment,
we use the relaxed criterion with Ky, = 25 and HLBE, which tracks up to 500 clauses from any
clause set, Kjen = 2, and Kjp,p = 0. We use each technique as preprocessing and inprocessing.

The results are summarized in Figure 5, where the + sign denotes the combination of techniques.
We confirm the results obtained by Kiesl et al. about the performance of BCE as preprocessing: It
helps prove 30 more problems from our benchmark set, increasing the success rate by roughly
0.4%. The same percentage increase was obtained Kiesl et al. Using BCE as inprocessing, however,
hurts performance, presumably because of its incompatibility with the redundancy criterion.

For preprocessing, the combinations SPE+BCE and PPE+BCE performed roughly on a par
with SPE and PPE, respectively. This stands in contrast to the situation with SAT solvers, where
such a combination usually helps. It is also worth noting that the inprocessing techniques never
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HLBE
SPE PPE +PPE
BCE SPE +BCE PPE +BCE +BCE

Preprocessing +30  +154 +159  +160 +166 +162
Inprocessing ~ —48  +140 +127  +146 +131 +127

Fig. 5. Performance of predicate elimination and BCE.

HLBE
SPE PPE  +PPE
BCE SPE +BCE PPE +BCE +BCE

Preprocessing +29  +46  +60 +47 459 +55

Fig. 6. Performance of predicate elimination and BCE for establishing satisfiability.

outperform their preprocessing counterparts. The last column shows that combining HLBE with
other elimination techniques overburdens the prover.

7.3 Satisfiability by Blocked Clause Elimination

Kiesl et al. found that BCE is especially effective on satisfiable problems. To corroborate their re-
sults and ascertain whether a combination of predicate elimination and BCE increases the success
rate, we evaluate BCE on all 2 273 satisfiable or TPTP FOF and CNF problems. The hardware and
CPU time limits are the same as in the experiments above. Figure 6 presents the results.

The baseline establishes the satisfiability of 856 problems. We consider only preprocessing
techniques, since BCE compromises refutational completeness—a saturation does not guarantee
that the original problem was satisfiable. We note that recognizing definition sets makes almost
no difference on satisfiable problems. The sets of problems solved by BCE and PPE differ—30
problems are solved by BCE and not by PPE.

8 DISCUSSION AND RELATED WORK

We briefly surveyed related work in Section 1. In this section, we give a more detailed overview
and further discuss connections with the related work.

The research presented in this article is two-pronged. For SAT elimination techniques already
generalized to preprocess first-order problems, we looked for ways to interleave them with the
given clause procedure of a superposition prover, as inprocessing. For techniques that had not yet
been ported to first-order logic, we looked for generalizations that allow both preprocessing and
inprocessing.

HTE was first described by Heule et al. [27]. Better implementation that also supports HLE
was later described by the same group of authors [28]. We generalized the underlying theoretical
concepts to first-order logic, and provided an efficient way to deal with the infinite number of
hidden literals that arise with this generalization. More efficient graph-based techniques are yet
to be explored.

Variable elimination, based on Davis—Putnam resolution [16], has been studied in the context
of both propositional logic [14, 45] and QBF [8]. It was generalized to first-order logic (as a prepro-
cessor) by Khasidashvili and Korovin [30] yielding a technique called predicate elimination. An
improvement of variable elimination that uses formula definition information has been popular-
ized as a preprocessing and inprocessing technique for CDCL solvers by Eén and Biere [19]. We
generalized this improvement to first-order logic and combined it with the K&K approach. With
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reasonable restrictions, this extension can be used as an inprocessing technique. In SAT and QBF,
it was observed that allowing variable elimination to slightly increase in the clause set size im-
proves performance [9]. We implemented a similar approach, achieving the double the number of
additional proofs found compared to more restrictive approaches.

BCE is used in both SAT [29] and QBF solvers [9]. Its generalization to first-order logic [32] has
showed positive effects when used as a preprocessor. We showed that blocked clauses cannot be
removed during saturation, but that they can be effectively used to show satisfiability of the clause
set. A combination of BCE and variable elimination performs well in propositional logic [29], but
we observed no comparable improvement when their generalizations are combined.

Our general approach is one of many ways to combine ideas from SAT solving and first-order
proving. Other noteworthy architectures that either incorporate a SAT solver or that generalize
the CDCL calculus include DPLL(T) with quantifier instantiation [5, 18, 40], DPLL(T + T) [11],
labeled splitting [20], AVATAR [48], MCSAT [17], CDSAT [10], SGGS [12], and SCL [21].

9 CONCLUSION

We adapted several preprocessing and inprocessing elimination techniques implemented in mod-
ern SAT solvers so that they work in a superposition prover. This involved lifting the techniques
to first-order logic with equality but also tailoring them to work in tandem with superposition
and its redundancy criterion. Although SAT solvers and superposition provers embody radically
different philosophies, we found that the lifted SAT techniques provide valuable optimizations.

We see several avenues for future work. First, the implementation of hidden literals could be
extended to exploit equality congruence. Second, although BCE is generally incomplete as an in-
processing technique, we hope to achieve refutational completeness for a substantial fragment of
it. Third, predicate elimination and BCE, which thrives on the absence of clauses from the proof
state, could be enhanced by tagging and ignoring generated clauses that have not yet been used to
subsume or simplify untagged clauses. Fourth, predicate elimination and BCE could be extended
to work with functional literals. Fifth, more SAT techniques could be adapted, including bounded
variable addition [34] and blocked clause addition [33]. Sixth, the techniques we covered could be
adapted to work with other first-order calculi, or generalized further to work with higher-order
calculi such as combinatory superposition [7] and A-superposition [6].
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