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Abstract: The complex critical points are analyzed in the 4-dimensional Lorentzian Engle-Pereira-

Rovelli-Livine (EPRL) spinfoam model in the large-j regime. For the 4-simplex amplitude, taking

into account the complex critical point generalizes the large-j asymptotics to the situation with

non-Regge boundary data and relates to the twisted geometry. For generic simplicial complexes, we

present a general procedure to derive the effective theory of Regge geometries from the spinfoam

amplitude in the large-j regime by using the complex critical points. The effective theory is analyzed

in detail for the spinfoam amplitude on the double-∆3 simplicial complex. We numerically compute

the effective action and the solution of the effective equation of motion on the double-∆3 complex.

The effective theory reproduces the classical Regge gravity when the Barbero-Immirzi parameter γ

is small.
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1 Introduction

The perturbative expansion is widely used in quantum theory to make approximate predictions

order by order in certain parameter. The method of perturbative expansion is well-connected to

the path integral formulation, whose stationary phase approximation results in the semiclassical

expansion in ℏ. By the stationary phase approximation, the path integral is approximately computed

by the dominant contribution from the critical point and neighborhood. The critical point is the

solution of the equation of motion, which is obtained from variating the action in the path integral.

Given a path integral in terms of real variables, traditionally, the semiclassical expansion only takes

into account critical points inside the real integration cycle. However, the recent progress in many

research areas demonstrates that the complex critical point generically away from the real integration

cycle plays a crucial role in the semiclassical expansion of the path integral (see e.g. [1–6]). The
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complex critical point is the critical point of the analytically continued path integral, where the

integrand is analytically extended to the complexification of the real integration cycle.

The method of stationary phase approximation has been applied extensively to the spinfoam

amplitude in Loop Quantum Gravity (LQG) (see e.g. [7–11]). The importance of the complex

critical point has been demonstrated in the recent progress in the semiclassical analysis of spinfoam

amplitude [12–14]. A key result is that the semiclassical curved spacetime geometry can only emerge

from the complex critical point of the spinfoam amplitude. Taking into account the complex critical

point provides the resolution to the long-standing “flatness problem”, i.e., the problem of discovering

only the flat spacetime geometry in the spinfoam amplitude. This problem turns out to be the

confusion from ignoring the complex critical point.

The present work continues from the earlier work [12] and further study the complex critical

points and their implications in spinfoam amplitude. The discussion in this work focuses on

the 4-dimensional Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) spinfoam model. Our results

demonstrate the impact of the complex critical points mainly from two perspectives:

• At the level of one 4-simplex amplitude, taking into account the complex critical point

generalizes the large-j asymptotics by Barrett et al [8] to the case of non-Regge boundary data.

The geometry of the non-Regge boundary data gives the boundary tetrahedra that are glued

only with area-matching but without shape-matching, in contrast to the Regge boundary data

that requires the shape-matching condition (as well as the orientation matching condition) and

determines the Regge boundary geometry. The generalized 4-simplex amplitude asymptotic

behavior depends analytically on the boundary data. This analytic dependence is not manifest

in the original asymptotic formula in [8]. The computation of the generalized asymptotic

behavior relies on the numerical method. The discussion in Section 4 provides the general

algorithm of computing the complex critical point of the amplitude, and demonstrates the

numerical results of the asymptotics for a 1-parameter family of non-Regge boundary data.

• Based on the application of complex critical points, we develop a formalism to derive the

effective theory of Regge geometry from the large-j spinfoam amplitude. As the result, given

a simplicial complex K with M internal segments, the spinfoam amplitude A(K) with Regge

boundary data reduces to the integral over the internal line-segment lengths lI , I = 1, · · · ,M ,

A(K) ∼
∫ M∏

I=1

dµ(lI) e
λS (⃗l) [1 +O(1/λ)] , λ ≫ 1, (1.1)

within the neighborhood of the integration domain of A(K). λ is the scaling parameter of

spins jf . e
λS (⃗l) with the effective action S (⃗l) comes from evaluating the analytically continued

integrand of A(K) at the complex critical point, which depend analytically on lI . The integral

in (1.1) reduced from A(K) is over the Regge geometries with the fixed boundary condition.

The equation of motion ∂lIS (⃗l) = 0 gives the effective dynamics of Regge geometry implied

by the spinfoam amplitude. The formalism of deriving the effective theory is discussed in

Section 3. In Sections 6 and 7, we apply the formalism to the double-∆3 simplicial complex,

which contains only a single internal segment, i.e., M = 1. The complex critical points and the

effective action S (⃗l) are computed numerically following the general algorithm. The spinfoam

amplitude depends on the Barbero-Immirzi parameter γ. The computations are performed

for many different values of the Barbero-Immirzi parameter γ, ranging from small to large.

The resulting S (⃗l) are compared with the Regge action on the double-∆3 complex. S (⃗l) is
well-approximated by the classical Regge action in the small-γ regime, and S (⃗l) provides the
correction to the Regge action with increasing γ. The solutions of the effective dynamics

are computed numerically for different values of γ and compared to the solution of Regge
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equation. The solution from S (⃗l) well-approximates the Regge solution for small γ and gives

larger correction when increasing γ. Recovering the classical Regge action and solution from

the effective dynamics of spinfoam amplitude gives evidence of the semiclassical consistency of

spinfoam quantum gravity.

Recovering the classical Regge gravity from the spinfoam amplitude with small γ has been

argued earlier in [10, 15–20]. Our numerical result confirms this property for the spinfoam amplitude

on the double-∆3 complex.

The numerical computations are performed for different γ’s ranging from small to large. Fixing

the boundary data, the solutions of the effective dynamics give a trajectory in the space of Regge

geometries parametrized by γ. The trajectory approaches the solution of the classical Regge equation

for small γ as mentioned above. For large γ, the trajectory stablizes at the Regge geometry that is

different from the classical Regge solution. It suggests that the effective theory for large γ differs

significantly from the Regge gravity. The solutions both at small and large γ give non-suppressed

contributions to the spinfoam amplitude. In particular, the solutions for large γ violate the known

bound |γδh| ≲ λ−1/2 [11–13] (δh is the deficit angle of the Regge geometry), which is valid for

non-suppressed contributions to the amplitude with finite and small γ.

Studying the complex critical points in the spinfoam amplitude closely relates to the recent

progress in numerical studies of spinfoam amplitudes [21]. Given the complexity of the spinfoam

amplitude, the complex critical point and the corresponding contribution to the spinfoam amplitude

has to be computed numerically. The numerical analysis of complex critical points connects to

the Lefschetz-thimble and Monte-Carlo computation for the spinfoam integral [22], because every

complex critical point associates to an integration cycle known as Lefschetz thimble, and the integral

on the Lefschetz thimble collects all contributions associated to the complex critical point. Another

related numerical result is the semiclassical expansion of the spinfoam amplitude to the next-to-

leading order from the stationary phase approximation [23]. We also would like to mention a few

other numerical approaches for spinfoam quantum gravity, including the “sl2cfoam-next” code for

the non-perturbative computation of the spinfoam amplitude [24–26], the effective spinfoam model

[13, 27], the hybrid algorithm [28], and the spinfoam renormalization [29, 30], etc.

This paper is organized as follows: Section 2 gives a brief review of the integral representation of

the EPRL spinfoam amplitude and the definition of the large-j regime. In Section 3, we define the

real and complex critical points and discuss the general formalism of deriving the effective dynamics

of Regge geometry. Section 4 studies the complex critical point of the 4-simplex amplitude and

generalizes the large-j asymptotics to include the non-Regge boundary data. Section 5 revisits

the known results on the spinfoam amplitude on ∆3 complex as the preparation for analyzing the

amplitude on the double-∆3 complex. Section 6 discusses the complex critical point in the spinfoam

amplitude on the double-∆3 complex and computes the effective action. Section 7 discusses the

numerical solution of the effective dynamics on the double-∆3 complex. In Section 8, we conclude

and discuss some outlooks.

2 Spinfoam amplitude

A 4-dimensional simplicial complex K contains 4-simplices v, tetrahedra e, triangles f , line segments,

and points. The internal and boundary triangles are denoted by h and b (f is either h or b). The

SU(2) spins jh, jb ∈ N0/2 are assigned to internal and boundary triangles h, b. The spins label the

quanta of triangle areas. The LQG area spectrum indicates that the quantum area of triangle f is

given by af = 8πγGℏ
√
jf (jf + 1) [31, 32]. In the large-j regime, which we will focus on, the area

spectrum gives af ≃ 8πγGℏjf , or af ≃ γjf when we set the unit such that 8πGℏ = 1.
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The Lorentzian EPRL spinfoam amplitude on K is given by summing over internal spins {jh}:

A(K) =
∑

{jh}

∏

h

d
|V (f)|+1
jh

∫
[dgdz] eS(jh,gve,zvf ;jb,ξeb), (2.1)

[dgdz] =
∏

(v,e)

dgve
∏

(v,f)

dΩzvf
, (2.2)

where djh = 2jh+1. The boundary states are SU(2) coherent states |jb, ξeb⟩ where ξeb = ueb�(1, 0)T,

ueb ∈ SU(2). jb and ξeb are determined by the area and the 3-normal of the boundary triangle b.

The summed/integrated variables are gve ∈ SL(2,C), zvf ∈ CP
1, and jh. dgve is the Haar measure

on SL(2,C),

dg =
dβdβ∗dγdγ∗dδdδ∗

|δ|2 , ∀g =

(
α β

γ δ

)
∈ SL(2,C), (2.3)

and dΩzvf
is the scaling invariant measure on CP

1:

dΩzvf
=

i

2

(z0 dz1 − z1 dz0) ∧ (z̄0 dz̄1 − z̄1 dz̄0)

⟨Zvef , Zvef ⟩ ⟨Zve′f , Zve′f ⟩
, ∀ zvf = (z0, z1)

T, (2.4)

where Zvef = g†vezvf , ⟨·, ·⟩ is the Hermitian inner product on C
2, and zvf is a 2-component spinor

for the face f .

The spinfoam action S in Eq.(2.1) is complex and linear to jh, jb in an expression of the form

[33],

S =
∑

e′

jhF(e′,h) +
∑

(e,b)

jbF
in/out
(e,b) +

∑

(e′,b)

jbF
in/out
(e′,b) , (2.5)

F out
(e,b) = 2 ln

⟨Zveb, ξeb⟩
∥Zveb∥

+ iγ ln ∥Zveb∥2 , (2.6)

F in
(e,b) = 2 ln

⟨ξeb, Zv′eb⟩
∥Zv′eb∥

− iγ ln ∥Zv′eb∥2 , (2.7)

F(e′,f) = 2 ln
⟨Zve′f , Zv′e′f ⟩
∥Zve′f∥ ∥Zv′e′f∥

+ iγ ln
∥Zve′f∥2

∥Zv′e′f∥2
. (2.8)

Here, e and e′ are boundary and internal tetrahedra, respectively. In the dual complex K∗, the

orientation of ∂f∗ is outgoing from the vertex dual to v and incoming to another vertex dual to v′,

and the orientation of the face f∗ dual to f induces ∂f∗’s orientation. As for the logarithms in the

spinfoam action, we fix all the logarithms to be the principal values. The derivation of the spinfoam

action S is given in [33].

The spinfoam amplitude in the formulation (2.1) has the following three types of continuous

gauge degrees of freedom, and thus some gauge fixings are needed to remove the redundant degrees

of freedom:

• Firstly, there is SL(2,C) gauge transformation at each v:

gve 7→ x−1
v gve, zvf 7→ x†

vzvf , xv ∈ SL(2,C). (2.9)

To remove this gauge degree of freedom, we fix one gve to be a constant SL(2,C) matrix for

each 4-simplex. The amplitude is independent of the choices of constant matrices.
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• Secondly, there is SU(2) gauge transformation on each internal e:

gv′e 7→ gv′eh
−1
e , gve 7→ gveh

−1
e , he ∈ SU(2). (2.10)

To fix this SU(2) gauge freedom, one can parameterize one of two SL(2,C) elements: gve, or

gv′e by the upper triangular matrix

k =

(
λ−1 µ

0 λ

)
, λ ∈ R \ {0}, µ ∈ C (2.11)

Here, we use the fact that any g ∈ SL(2,C) can be decomposed as g = kh with h ∈ SU(2) and

k an upper triangular matrix in Eq.(2.11).

• Thirdly, for each zvf , there is the scaling gauge freedom:

zvf 7→ λvfzvf , λvf ∈ C. (2.12)

Here, we fix the gauge by setting the first component of zvf to 1, i.e. zvf = (1, αvf )
T
, where

αvf ∈ C.

Furthermore, in Eq.(2.1), we assume the summation over internal jh ∈ N0/2 is bounded by jmax.

In some situations, jmax is determined by boundary spins jb via the triangle inequality, otherwise

jmax are imposed as the cut-off to regularize the infinite sum over spins. To prepare for the stationary

phase analysis, we would like to change the summation over jh in Eq.(2.1) to integrals. The idea is

to apply the Poisson summation formula. Firstly, we replace each djh by a smooth compact support

function τ[−ϵ,jmax+ϵ](jh) satisfying

τ[−ϵ,jmax+ϵ](jh) = d
|V (f)|+1
jh

, for jh ∈ [0, jmax], and τ[−ϵ,jmax+ϵ](jh) = 0, for jh ̸∈ [−ϵ, jmax + ϵ],

for any 0 < ϵ < 1/2. This replacement does not change the value of the amplitude A(K) but makes

the summand of
∑

jh
smooth and compact support in jh. Then, by applying the Poisson summation

formula, ∑

n∈Z

f(n) =
∑

k∈Z

∫

R

dnf(n) e2πikn,

the discrete summation over jh in Eq.(2.1) becomes summing of integrals:

A(K) =
∑

{kh∈Z}

∫ ∏

h

djh
∏

h

2τ[−ϵ,jmax+ϵ](jh)

∫
[dgdz] eS

(k)

, (2.13)

S(k) = S + 4πi
∑

h

jhkh. (2.14)

By the area spectrum, the classical area af and small ℏ imply the large spin jf ≫ 1. This motivates

understanding the large-j regime as the semiclassical regime of A(K). Then, to probe the semiclassical

regime, we scale uniformly both the boundary spins jb and the internal spin cut-off jmax by

jb → λjb, jmax → λjmax, λ ≫ 1, (2.15)

so S → λS as a result from S being linear in jb, jh. As a consequence, the spinfoam amlitude A(K)
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in the large-j regime is

A(K) =
∑

{kh∈Z}

∫

R

∏

h

djh
∏

h

2λ τ[−ϵ,λjmax+ϵ](λjh)

∫
[dgdz] eλS

(k)

, (2.16)

S(k) = S + 4πi
∑

h

jhkh, (2.17)

by the change of integration variables jh → λjh, and jh is continous.

3 Complex critical point and effective dynamics

The integral in (2.16) at each kh can be analyzed with the stationary phase method in the regime

λ ≫ 1. By the standard argument of the stationary phase approximation, by fixing the boundary

data, the integral with λ ≫ 1 is approximated by the dominant contributions from the solutions of

critical equations and neighborhood. In the case of the integrals in (2.16), the critical equations are

Re(S) = ∂gve
S = ∂zvf

S = 0, (3.1)

∂jhS = 4πikh, kh ∈ Z. (3.2)

The solutions inside the integration domain are denoted by {̊jh, g̊ve, z̊vf}. The integration domain is

viewed as a real manifold, and the integration variables are real and imaginary parts of the matrix

elements in gve and zvf . We call {̊jh, g̊ve, z̊vf} the real critical point accordingly.

The existence of the real critical point in (2.16) depends on the boundary condition. The real

critical point may not exist for the generic boundary condition. We know that S is a complex

action with n real variables x, and ∂xS = 0 gives n complex thus 2n real equations, which is

over-constrained for n real variables. Consequently, the critical equations (3.1) and (3.2) coupled

with one more equation Re(S) = 0 result in the nonexistence of the general real solution, unless for

some special boundary conditions.

As a solution to this problem of over-constrained equations, the integration variables have to

be complexified, and action S has to be analytically continued to the complex variables z. We are

only interested in the integration domain where the spinfoam action S is analytic. The analytically

continued action is denoted by S. On the space of complex variables, the complex critical equation

∂zS = 0 is not over-constrained anymore because it gives n complex equations for n complex

variables. Re(S) = 0 is dropped when we study S instead of S. In the space of complex variables,

the solutions of ∂zS = 0 are called the complex critical points, which play the dominant role for the

asymptotics of A(K) in the case that the real critical point is absent.

Before discussing the complex critical point, let us firstly review some known results from the

critical equations (3.1) and (3.2) with the boundary data corresponding to Regge geometry on

∂K. The real solutions of the part (3.1) have been well-studied in the literature [7–9, 33]. We call

these solutions the pseudo-critical points. As one of the results, the pseudo-critical point satisfying

a nondegeneracy condition endows a Regge geometry on K with certain 4-simplex orientations.

When focusing on the pseudo-critical points endowing the uniform orientations to all 4-simplices,

further imposing (3.2) to them gives the accidental flatness constraint to their corresponding Regge

geometries, i.e., every deficit angle δh hinged by the internal triangle h [11, 34] satisfies:

γδh = 4πkh, kh ∈ Z. (3.3)

When kh = 0, δh at every internal triangle is zero, and the Regge geometry endowed by the real

critical point is flat. Eq.(3.3) is a strong constraint to the allowed geometry from the spinfoams and
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can be satisfied only for special boundary conditions that admit the flat bulk geometry (mod 4πZ).

The accidental flatness constraint is consistent with the above argument about over-constrained

equations, and it has been demonstrated explicitly in the example well-studied in, e.g., [12, 35]. If

one only considers the real critical point for the dominant contribution to A(K), Eq.(3.3) would

imply that only the flat geometry (mod 4πZ) exists. This confusion leading to the flatness problem

results from ignoring the complex critical point in the stationary phase analysis.

In the following discussion, we show that the large-λ spinfoam amplitude does receive dominant

contributions from the complex critical points away from the real integration domain. The complex

critical points precisely correspond to the curved Regge geometries emergent from the spinfoam

amplitude. Interestingly, the application of complex critical points leads to a derivation of effective

dynamics of Regge geometry from the spinfoam amplitude. The emergent curved Regge geometries

are constrained by the effective dynamics. We firstly provide a general formalism below, then we

apply the formalism to the concrete models with several different K in the following sections.

Motivated by relating to the dynamics of Regge geometry, we separate the integral in the

amplitude (2.16) into two parts. Suppose K has M internal segments, the dynamics of Regge

geometry should relate to the dynamics of these internal segment-lengths. Motivated by this, we

separate M internal areas jho
(ho = 1, · · · ,M) from other jh̄ (h̄ = 1, · · · , F −M), where jho

relates

to the segment-lengths. Here, F is the total number of internal triangles in K, and M equals the

number of the separated internal segments. The spinfoam amplitude (2.16) then becomes

A(K) =
∑

{kh}

∫ M∏

ho=1

djho
Z{kh}

K (jho
) , (3.4)

where Z{kh}
K , called the partial amplitude, is given by

Z{kh}
K (jho

) =

∫ ∏

h̄

djh̄
∏

h

(2λdλjh)

∫
[dgdz]eλS

(k)

. (3.5)

We can then change variables from the areas jho
to the internal segment-lengths {lI}MI=1, with I

denoting the internal segment. The internal triangles ho = 1, · · · ,M are suitably chosen such that

the change of variables is well-defined in the interested region, e.g. a neighborhood of {̊jho
} of

{̊jh, g̊ve, z̊vf} corresponding to the flat geometry. Indeed, the chosen M areas {jho
} are related

to M segment-lengths {lI} by Heron’s formula. Inverting the relation between {jho
}Mho=1 and

{lI}MI=1 defines the local change of variables (jho
, jh̄) → (lI , jh̄) in a neighborhood K of a given

Regge geometry in the integration domain of (2.16). This procedure is just changing variables

without imposing any restrictions. When focusing on the integrals in the neighborhood K, we have

dM+N jh = Jld
M lI d

F−M jh̄, where Jl = det(∂jho
/∂lI) is the jacobian obtained by the derivatives

of Heron’s formula. Therefore, the contribution to A(K) from the neighborhood K is expressed as

∑

{kh}

∫ M∏

I=1

dlIJlZ{kh}
K (lI) , (3.6)

The partial amplitude Z{kh}
K has the external parameters r ≡ {lI , jb, ξeb} including not only the

boundary data jb, ξeb but also internal segment-lengths lI . The above decomposition of jh-integrals

closely relates to the earlier proposal [36, 37] (see also [38] in the context of area Regge calculus). lI
parametrizes a submanifold MRegge in the space of jh. The submanifold MRegge collects jh’s that

can be interpreted as areas determined by the segment lengths lI (by Heron’s formula). Generically

the space of jh is much larger than the space of segment lengths [39]. jh̄ parametrizes the direction
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transverse to MRegge.

To study the partial amplitude Z{kh}
K , we apply the theory of stationary phase approximation

for complex action with parameters [40, 41]. In the following, we only consider the partial amplitude

with kh = 0, while the situation with other kh can be studied analogously. We consider the large-λ

integral
∫
K
eλS(r,x)dNx, and regard r as the external parameters. S(r, x) is an analytic function of

r ∈ U ⊂ R
k, x ∈ K ⊂ R

N . U ×K is a neighborhood of (̊r, x̊), where x̊ is a real critical point of

S (̊r, x). S(r, z) with z = x+ iy ∈ C
N is the analytic extension of S(r, x) to a complex neighborhood

of x̊. The complex critical equation is

∂zS = 0, (3.7)

whose solution is z = Z(r). Here, Z(r) is an analytic function of r in the neighborhood U . When

r = r̊, Z (̊r) = x̊ reduces to the real critical point. When r deviates away from r̊, Z(r) ∈ C
N can

move away from the real plane R
N , thus is called the complex critical point (see Figure. 1). With

Figure 1. The real and complex critical points x̊ and Z(r). S(r, z) is analytic extended from the real axis
to the complex neighborhood illustrated by the red disk.

this in mind, we have the following large-λ asymptotic expansion for the integral

∫

K

eλS(r,x)dNx =

(
1

λ

)N
2 eλS(r,Z(r))

√
det
(
−∂2

z,zS(r, Z(r))/2π
) [1 +O(1/λ)] (3.8)

where S(r, Z(r)) and δ2z,zS(r, Z(r)) are the action and Hessian at the complex critical point. In

addition, the real part of S is zero or negative. More precisely, there exists a constant C > 0 such

that

Re(S) ≤ −C| Im(Z)|2. (3.9)

See [40, 41] for the proof of this inequality. This inequality indicates that Re(S) = 0 resulting in the

oscillatory phase in (3.8) can only happen at the real critical point, where Im(Z) = 0 and r = r̊.

When r deviates from r̊ with a finite distance, such that Im(Z) is finite and Re(S) is negative,

(3.8) is exponentially suppressed when scaling λ to large. The asymptotic formula (3.8) depends

analytically on r and interpolates the two different behaviors smoothly in the parameter space of r:

• The critical point is not real, then Re(S) < 0, which gives the exponentially decaying amplitude.

• The critical point is real, then Re(S) = 0, and thus eλS gives an oscillatory phase.

These two distinct behaviors are obtained by fixing r and scaling λ. But since the asymptotic

formula (3.8) depends on r analytically, we can vary r simultaneously as scaling λ. Then we can
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arrive at the regime where the asymptotic behavior (3.8) is not suppressed at the complex critical

point. Indeed, for any large λ, there always exists r ≠ r̊ but sufficiently close to r̊, such that Im(Z)

and Re(S) are small enough, then eλS in (3.8) is not suppressed at the complex critical point.

The importance of (3.8) is that the integral can receive a dominant contribution from the

complex critical point away from the real plane. These complex critical points indeed give the curved

Regge geometries missing in the argument of the flatness problem. The parameter r including both

the boundary data and internal segment lengths determines the Regge geometry that is generically

curved. Hence the asymptotic formula (3.8) computes the weight of the Regge geometry contributing

to the amplitude and reduces A(K) in K to

(
1

λ

)N
2
∫ M∏

I=1

dlINl e
λS(r,Z(r)) [1 +O(1/λ)] (3.10)

at each kh. Here, Nl ∝
∏

h (4jh)Jl[det
(
−δ2z,zS/2π

)
]−1/2 at Z(r), and r = {lI , jb, ξeb}. Given that

{lI} determines the Regge geometry on K, Eq.(3.10) is a path integral of Regge geometries with

the effective action S. The integration domain of lI includes curved geometries. The integral (3.10)

derived from the spinfoam amplitude defines an effective theory of Regge geometries. Indeed, if

we focus on the dominant contribution and neglect corrections of O(1/λ), by the stationary phase

approximation of (3.10), the effective action S gives the equation of motion

∂S
∂lI

= 0, I = 1, · · · ,M, (3.11)

which determines the effective dynamics of Regge geometry. S is generally complex, so (3.11) should

be analytically continued to complex lI , and thus the solution is generally not real. As we are going

to see in Section 7, we are mainly interested in the regime where the imaginary part of the solution

lI is negligible, then the solution has the interpretation of the Regge geometry.

In the following, we make the above general analysis concrete by considering the examples

of spinfoam amplitudes on a single 4-simplex and the double-∆3 complex. We also revisit briefly

the existing results on ∆3 complex for the completeness. We compute numerically the complex

critical points and S, confirming the contribution of the complex critical points to the spinfoam

amplitude. In particular, the double-∆3 model corresponding to M = 1 exhibits the non-trivial

effective dynamics of the Regge geometries. The effective dynamics approximates the classical Regge

calculus in the small-γ regime.

4 Four-simplex amplitude

This section applies the above general procedure to the simplest situation: the 4-simplex amplitude.

In this case, there is no internal triangle: F = M = 0. The external parameter r only contains the

boundary data r = (jb, ξeb). The 4-simplex and its dual diagram are illustrated in Figure 2 (a) and

(b). The points of the 4-simplex v are labelled by (1, 2, 3, 4, 5). The five tetrahedra on the boundary

are labelled by

{e1, e2, e3, e4, e5} = {(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 5), (1, 3, 4, 5), (2, 3, 4, 5)}.

These tetrahedra carry group variable gve ∈ SL(2,C). The triangle is shared by the tetrahedra and

carries an SU(2) spin jf , e.g., the tetrahedron e1 = (1, 2, 3, 4) and the tetrahedron e2 = (1, 2, 3, 5)

share the face f1 = (1, 2, 3).

2The shared faces are labelled by {f1, f2, ..., f10} = {(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (2, 3, 4), (2, 3, 5), (3, 4, 5)}.
For convenience, in this section, the notations e and f mean that e ∈ {e1, ..., e5} and f ∈ {f1, ..., f10}.
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Figure 2. Panel (a) plots the 4-simplex v = (1, 2, 3, 4, 5). The boundary comprises five tetrahedra ei sharing
ten faces fi

2. Panel (b) is the dual complex of the 4-simplex. Five boxes correspond to boundary tetrahedra
carrying gve ∈ SL(2,C). The strands correspond to triangles carrying spins jf . The circles as endpoints of
strands carry boundary states ξef . The arrows represent the orientations of strands.

4.1 The amplitude and parametrization of variables

According to (2.1), the EPRL 4-simplex amplitude with the boundary state has the following

expression [7–9, 42–44]:

Av (jf , ξef ) =

∫ ∏

e

dgve δiσ3 (gve1)

∫

(CP1)10
eS
∏

f

djf
π

dΩzvf
. (4.1)

Here, all triangles are on the boundary, jf = jb. To fix the SL(2,C) gauge, gve1 is fixed to be

constant matrix diag(i,−i) (the timelike normal of the reference tetrahedron e1 is past-pointing).

The integrand in (4.1) is written as an exponential eS with the action

S =
∑

f

2jf ln
⟨ξef , Zvef ⟩ ⟨Zve′f , ξe′f ⟩

∥Zvef∥ ∥Zve′f∥
+ iγjf ln

⟨Zve′f , Zve′f ⟩
⟨Zvef , Zvef ⟩

. (4.2)

The orientations of dual faces follow from Figure 2(c). To study the large-j behavior of the amplitude,

we scale all boundary spins jf → λjf by the parameter λ ≫ 1. The scaling of spins results in

the scaling of action S 7→ λS, such that the integral (4.1) can be studied by the stationary phase

approximation. In the following, we firstly compute the real critical point {̊gve, z̊vf}, which is the

solution of the critical equation (3.1) and then describe the algorithm to compute the complex

critical point in the neighborhood.

To obtain the real critical point, we adopt the 4-simplex geometry used in [22, 23, 45] to generate

the boundary state. The coordinates of the five vertices Pa in Figure 2(a) in the Minkowski spacetime
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are set as

P1 = (0, 0, 0, 0), P2 =
(
0, 0, 0,−2

√
5/31/4

)
, P3 =

(
0, 0,−31/4

√
5,−31/4

√
5
)

P4 =
(
0,−2

√
10/33/4,−

√
5/33/4,−

√
5/31/4

)

P5 =
(
−3−1/410−1/2,−

√
5/2/33/4,−

√
5/33/4,−

√
5/31/4

)
(4.3)

Then, the 4-d normals of the tetrahedra are

Ne1 = (−1, 0, 0, 0), Ne2 =

(
5√
22

,

√
3

22
, 0, 0

)
, Ne3 =

(
5√
22

,− 1√
66

,
2√
33

, 0

)

Ne4 =

(
5√
22

,− 1√
66

,− 1√
33

,
1√
11

)
, Ne5 =

(
5√
22

,− 1√
66

,− 1√
33

,− 1√
11

)
.

(4.4)

The spinor ξef relates to the 3d normals nef by nef = ⟨ξef , σ⃗ξef ⟩ (σ⃗ are Pauli matrices). The Regge

boundary data of ten areas j̊f , 3d normals n̊ef and the corresponding spinors ξ̊ef of the 4-simplex

are listed in Appendix A.

With the Lorentzian Regge boundary data r̊ = (̊jf , ξ̊ef ), we solve for the real critical point

(̊gve, z̊vf ) which satisfies Re(S) = ∂gve
S = ∂zvf

S = 0. The results in the literature [8, 9] show that

there are exactly 2 real critical points, which have the interpretations as the geometrical 4-simplex

with opposite 4-orientations. The 4-simplex geometrical interpretation of the critical points results

in the same geometry as the one given by (4.3). We compute the real critical point following the

strategy described in [12, 14, 45], where the boundary data and critical points for a single 4-simplex

are studied in detail. The data of the real critical point (̊gve, z̊vf ) is given in Appendix A.

By fixing the re-scaling gauge of zvf , each zvf can be parameterized with two real variables

xvf , yvf :

zvf = (1, xvf + iyvf )
T
. (4.5)

gvei , i = (2, 3, 4, 5) are parameterized as

(
1 +

(
x1
ve + iy1ve

)
/
√
2

(
x2
ve + iy2ve

)
/
√
2

(
x3
ve + iy3ve

)
/
√
2

1+(x2
ve+iy2

ve)(x
3
ve+iy3

ve)/2
1+(x1

ve+iy1
ve)/

√
2

)
, x1

ve, y
1
ve, x

2
ve, y

2
ve, x

3
ve, y

3
ve ∈ R. (4.6)

Therefore, the 4-simplex action is a function in terms of all real variables x = (xvf , yvf , x
1
ve, y

1
ve, x

2
ve, y

2
ve, x

3
ve, y

3
ve)

for all f in {f1, ...f10} and e in {e2, ..e5}. The real critical point z̊vf is in the form z̊vf = (1, α̊vf )
T
,

where α̊vf = x̊vf + i̊yvf ∈ C. It is convenient to set one of the critical points at the origin

x̊ = {0, 0, ..., 0} by modifying (4.5) and (4.6) to

zvf = (1, α̊vf + xvf + iyvf )
T
,

gve = g̊ve

(
1 +

(
x1
ve + iy1ve

)
/
√
2

(
x2
ve + iy2ve

)
/
√
2

(
x3
ve + iy3ve

)
/
√
2

1+(x2
ve+iy2

ve)(x
3
ve+iy3

ve)/2
1+(x1

ve+iy1
ve)/

√
2

)
. (4.7)
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With the parameterization in (4.7), the measures dgve and dΩzvf
are

dgve =
1

128π4

dx1
vedx

2
vedx

3
vedy

1
vedy

2
vedy

3
ve∣∣∣1 + x1

ve+iy1
ve√

2

∣∣∣
2 ,

dΩzvf
=

dxvf dyvf
⟨Zvef , Zvef ⟩ ⟨Zve′f , Zve′f ⟩

.

(4.8)

As a result, the 4-simplex amplitude is in the form

Av =

∫
d44xµ(x) eλS(r,x), (4.9)

where r = (jf , ξef ) are boundary data. The integral is 44 real-dimensional. In the following, we

focus on a neighborhood K of x̊. We have defined the local coordinates x ∈ R
44 covering K.

4.2 Deviating from the shape-matching

The amplitude Av has the real critical points with the non-degenerate Regge boundary data r̊.

However, the real critical point disappears when the boundary data deviates away from r̊. Considering

a neighborhood U of r̊ in the space of boundary data, such that any r ∈ U (different from r̊) does

not correspond to any Regge geometry or vector geometry3. If we fix r ∈ U and scale the spins with

a large λ, there are two possible behaviors for the amplitude [8, 43]

• For r = r̊, the amplitude has two critical points whose geometrical interpretations have

opposite orientations. S evaluated at critical points gives the Regge action of the 4-simplex

with opposite sign. Therefore, the asymptotic amplitude of the 4-simplex gives two oscillatory

phases

Av ≃ λ−12
(
N+e

iλSRegge +N−e
−iλSRegge

)
. (4.10)

• For r ̸= r̊, it leads to no solutions to (3.1) and the exponentially suppressed amplitude.

To interpolate smoothly between the oscillatory phases and the exponential suppression in the

asymptotics (4.10), the discussion in section 3 suggests making r vary and introducing the complex

critical points.

The boundary data r̊ = {̊jf , ξ̊ef} of the Lorentzian Regge geometry satisfies the shape-matching

condition, i.e., five geometrical tetrahedra determined by r̊ on the boundary are glued with the

triangles matching in shapes. Consider the 4-simplex action S(r, x) in the neighborhood K × U of

(̊r, x̊). We define z ∈ C
44 as the complexification of x, and S(r, z) extends holomorphically S(r, x)

to a complex neighborhood of x̊. To avoid confusion, we note that the integration variables x are

complexified, while the boundary data r = (jf , ξef ) is real.

Next, we let r = r̊ + δr vary, such that the shape-matching condition violates. We describe

below a parametrization of the tetrahedron shapes. A tetrahedron in R
3 is determined by 4 points

{P̃a, P̃b, P̃c, P̃d} up to a R
3
⋊O(3) symmetry. We gauge fix the R

3
⋊O(3) symmetry by choosing

P̃a at the origin, P̃b along the z axis, and P̃c within the (y, z)-plane. The last point P̃d is not

constrained. Given the tetrahedron’s segment lengths, the coordinates of the points are fixed in

R
3 by the above gauge fixing. For example, for the tetrahedron e2 = {1, 2, 3, 5}, r̊ implies that the

coordinates of the points in R
3 are given by

P̃1 = (0, 0, 0), P̃2 = (0, 0,−3.40), P̃3 = (0,−2.94,−1.70),

3In the Lorentzian EPRL spinfoam amplitude, the critical points corresponding to the non-degenerate Regge
geometry are isolated critical points.
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P̃5 = (−0.651,−0.981,−1.70). (4.11)

All other four tetrahedra can be described similarly, and the coordinates of the points in R
3 are

determined by r̊. The 3d face-normals n⃗ implied by the coordinates match with the data in Table 3

up to a simultaneous SO(3) rotation. The spinors ξ associating with each face are given by

ξ =
1√
2

(√
1 + w,

x+ iy√
1 + w

)T

, if n⃗ = (x, y, w)T. (4.12)

When we deform the boundary data, we keep the areas jf = j̊f unchanged, while ξef are

deformed, such that the boundary data r is deformed to violate the shape-matching condition. We

move the vertices P̃a ∈ R
3 to deform the tetrahedron shapes. For example, the vertices in (4.11) are

moved to new positions

P̃1 = (0, 0, 0), P̃2 = (0, 0,−3.40 + δw
(2)
2 ), P̃3 = (0,−2.94 + δy

(2)
3 ,−1.70 + δw

(2)
3 ),

P̃5 = (−0.651 + δx
(2)
5 ,−0.981 + δy

(2)
5 ,−1.70 + δw

(2)
5 ). (4.13)

In the notations δx
(a)
i , δy

(a)
i ,δw

(a)
i , a = 1, · · · , 5 labels the tetrahedron, and i = 1, · · · , 5 labels the

variables associated to the vertex P̃i. There are 30 variables δx
(a)
i , δy

(a)
i ,δw

(a)
i in total. We keep the

face areas unchanged. Then in each tetrahedron, Heron’s formula gives 4 constraint equations, each

corresponding to a face area. For example, in the tetrahedron e2 = {1, 2, 3, 5}, the equations are





A123(δw
(2)
2 , δy

(2)
3 , δw

(2)
3 ) = 5

A125(δw
(2)
2 , δx

(2)
5 , δy

(2)
5 , δw

(2)
5 ) = 2

A135(δy
(2)
3 , δw

(2)
3 , δx

(2)
5 , δy

(2)
5 , δw

(2)
5 ) = 2

A235(δw
(2)
2 , δy

(2)
3 , δw

(2)
3 , δx

(2)
5 , δy

(2)
5 , δw

(2)
5 ) = 2.

(4.14)

At least in a neighborhood of the deformation, δw
(2)
2 , δy

(2)
3 , δw

(2)
3 , δx

(2)
5 can be solved in terms of

δy
(2)
5 , δw

(2)
5 from (4.14). The shape of the tetrahedron is parameterized by 2 variables δy

(2)
5 , δw

(2)
5 .

This way of parametrization is convenient in our computation. However, it is different from

the known strategy, such as the Kapovich-Millson phase space [46] or using dihedral angles

[47]. For each tetrahedron, we adopt the same strategy. We have in total ten variables B ≡
(δy

(1)
4 , δw

(1)
4 , δy

(2)
5 , δw

(2)
5 , δy

(3)
5 , δw

(3)
5 , δy

(4)
5 , δw

(4)
5 , δw

(5)
5 , δw

(5)
5 ) to parameterize the deformation of

five tetrahedra. The spinors ξef of each face can be expressed in terms of B according to (4.12).

At this point, the boundary data is r(B) = (jf , ξef (B)). We insert r(B) into the action S(r(B), x)

in (4.2), whose analytical extension is S(r(B), z). Then, the complex critical equations are

F (B, z) = ∂zS(r(B), z) = 0, from which we solve for the complex critical point z(B).

The asymptotics of the 4-simplex amplitude with the boundary data violating the shape-matching

condition is given by (3.8). Here, the complex critical point z(B) inserting into the analytic continued

action gives S(r(B), z(B)). In contrast to the Regge action obtained from spinfoam asymptotics in

[8], S(r(B), z(B)) is an action of the twisted geometry[48]. 4 Indeed, S(r(B), z(B)) depends on the

degrees of freedom of semiclassical tetrahedra, which are not constrained by the shape-matching

condition. These degrees of freedom are beyond the Regge geometry and belong to the twisted

geometry of the boundary.

To solve the complex critical point, we can linearize (4.14) and obtain the linear solution

4The condition for shape matching differs from the shape matching condition discussed in [48]. In their work,
Freidel et al. [48] introduced an additional angle variable as a degree of freedom in twisted geometry, which is
canonically conjugate to the area variable. While these two conditions share an intuitive similarity, they are not
precisely identical.

– 13 –



(δw
(2)
2 , δy

(2)
3 , δw

(2)
3 , δx

(2)
5 ) in terms of δy

(2)
5 , δw

(2)
5 . We can also linearize the complex critical equation

at B = (0, · · · , 0), and then solve for the complex critical point z = z(lin)(B). The solution z(lin)(B)

is a linear function of the perturbations B. The coefficients in the linear function can be computed

numerically. Inserting this linear solution into the action, we obtain S(r(B), z(lin)(B)) as a function

of B and expand it to the second order:

S(r(B), z(lin)(B)) = QijB
iBj + LjB

j + S0 (4.15)

where the coefficients Qij ,Lj can be computed numerically. S0 is the spinfoam action evaluated

at the real critical point with B = (0, · · · , 0). In Figure 3, we let B = (0, 0, 0, δw
(2)
5 , 0, 0, 0, 0, 0, 0),

the red curves in (a) and (b) are the real part and imaginary part of S(r(B), z(lin)(B)) with δw
(2)
5

varying from -1 to 1.

The linear solution may have a large error when components in B are large. We apply the

Newton-Raphson method to numerically search for the solution, which is more accurate than the

linear solution. To compare with the linear solution in Figure 3, we still only focus on the deformation

of e2 = {1, 2, 3, 5} and set δy
(2)
5 = 0. We outline the procedure in the following.

For any given δw
(2)
5 , we can numerically solve equations (4.14) for (δw

(a)
2 , δy

(a)
3 , δw

(a)
3 , δx

(a)
5 ).

There are multiple solutions. We select the solution that is within a neighborhood at (0, 0, 0, 0),

by requiring |δw2
2 + δy23 + δw2

3 + δx2
5| ≤ 4|δw2

5|. The coordinates in (4.13) given by the solution

result in the 3d face normal vectors n⃗ and spinors ξ, which are the boundary data r violating the

shape-matching condition.

We apply the Newton-Raphson method to search for the complex critical point satisfying

∂zS = 0. An outline of the procedure in the Newton-Raphson method is given in Appendix B. In

Figure 3, the blue curves in (a) and (b) are the real part and imaginary part of the analytically

continued action at the complex critical points. This numerical result (blue curves) and the result

from the linear solution (red curves) are close when the deformation is small. However, the linear

solution is less accurate when the deformation is large.

Figure 3. In both panels, the blue curves are the numerical results with the Newton-Raphson method,
and the red curves are the results from the linear solution. Panel (a) is the real part of the analytically

continued action S at the complex critical points varying with δw
(2)
5 . Panel (b) is the imaginary part of S

at the complex critical points varying with δw
(2)
5 . The range of δw

(2)
5 is [-1,1].

Figure 3 demonstrates the smooth interpolation between the oscillatory and exponential suppres-

sion behaviors mentioned at the beginning of this subsection. In addition to scaling large λ, we need

to consider the smooth deformation B. For any given λ, there exists sufficiently small deformation

B beyond the shape-matching, such that Re(S) is small, and thus the amplitude is not suppressed.

– 14 –



5 Revisit the ∆3 amplitude

In this section, we revisit briefly the existing result on the spinfoam amplitude on the ∆3 complex,

for the completeness and preparing the discussion of the double-∆3 complex in the next section.

The ∆3 complex contains a single internal face F = 1 but has no internal segment M = 0. There is

an internal jh that is an integrated variable in the amplitude A(∆3) in (2.16).

The ∆3 complex and its dual cable diagram are represented in Figure 4. All tetrahedra and

triangles are spacelike. The Regge geometry on ∆3 is completely fixed by the Regge boundary data

{jb, ξeb} that is determined by the boundary segment lengths. In this section, we only focus on the

Regge boundary data, in contrast to the discussion of 4-simplex amplitude in the previous section.

The generalization to non-Regge boundary data should be straightforward. In terms of the notations

in Section 3, we have r = {jb, ξeb} as the boundary data. r̊ = {̊jb, ξ̊eb} fixes the flat geometry g(̊r)

with deficit angle δh = 0. x̊ = {̊jh, g̊ve, z̊vf} is the real critical point associated to r̊. The data r̊,

g(̊r), and x̊ are computed numerically in [12].

Figure 4. Panel (a) illustrates the simplicial complex ∆3 made by three 4-simplices {v1, v2, v3} and 12
tetrahedra ei sharing nineteen faces fi. There are eighteen boundary faces and one internal face. Panel
(b) is the dual cable diagram of the ∆3 spinfoam amplitude: The boxes correspond to tetrahedra carrying
gve ∈ SL(2,C). The strands stand for triangles carrying spins jf . The strand with the same color belonging
to a different dual vertex corresponds to the triangle shared by the different 4-simplices. The circles as the
endpoints of the strands carry boundary states |jb, ξeb⟩. The arrows represent orientations. This figure is
adapted from [49].

According to the general spinfoam amplitude (2.16) and the spinfoam action (2.17), the ∆3

amplitude A(∆3) can be written as

A (∆3) =
∑

kh∈Z

2λ

∫
djhdλjh

∫
[dgdz]eλS

(k)

,

S(k) = S + 4πi
∑

h

jhkh.
(5.1)
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For each kh in (5.1), the real critical point {̊jh, g̊ve, z̊vf} happens only when the boundary data

satisfies the accidental flatness constraint (3.3).

Given the boundary data r̊ corresponding to δh = 0, we consider its neighborhood U in the

space of the non-degenerate Regge boundary data, such that any boundary data r ∈ U satisfies

|γδh| < 4π. For large λ, the sectors with kh ≠ 0 do not give dominant contribution to A(∆3) as far

as r ∈ U . If we arbitrarily fix the boundary data r ∈ U and scale λ large, the amplitude has two

asymptotic behaviors analogs to the discussion at the beginning of Section 4.2

• For the boundary data that corresponds to a flat Regge geometry, there is a real critical point,

and the amplitude gives an oscillatory phase.

• For the boundary data corresponding to a curved Regge geometry, there are no real critical

points, and the amplitude is exponentially suppressed.

However, this way of presenting the asymptotic behavior leads to confusion about the flatness

problem. From the discussion in Section 3, it is clear that there is a smooth interpolation between

the oscillatory phase and the exponential suppression behaviors, since the boundary data varies

smoothly. The interpolation is obtained by applying the method of the complex critical point. The

formal discussion of the complex critical point and the asymptotic behavior of this model have been

given in [12]. Figure 5(a) plots eλRe(S) in the asymptotic formula (3.8) versus δh determined by

the boundary data and demonstrates the smooth interpolation between the above two asymptotic

behaviors. Letting the boundary data vary at the same time as scaling λ, we find the boundary

data for the curved geometries with small nonzero δh for any λ, such that the amplitude A(∆3) is

not suppressed, shown in Figure 5(b). The range of δh for non-suppressed A(∆3) is nonvanishing as

far as λ is finite. The range of δh is enlarged when γ is small, shown in Figure 5(c). δh that leads to

non-suppressed eλRe[S(Z(r))] satisfies the bound

|γδh| ≲ λ−1/2. (5.2)

The above result provides evidence for the emergence of curved geometries from the spinfoam

amplitude. The bound (5.2) is consistent with the earlier proposal [11] and the result in the effective

spinfoam model [13, 27, 50]. So far, the bound (5.2) has only been confirmed in the regime of small

or finite γ as we are going to see in Section 7, in the large-γ regime, geometries are violating the

bound (5.2) but still giving a non-suppressed contribution to the spinfoam amplitude.

6 Double-∆3 amplitude and effective action

6.1 Some setups

The ∆3 complex does not have any internal segment, and the boundary data determines the Regge

geometry completely. A(∆3) does not give the lI -integral as in (3.10) by M = 0, so the effective

dynamics of Regge geometry is trivial. In this section, we study the spinfoam amplitude on the

“double-∆3” complex (see Figure 6(a)), which is denoted by ∆2
3. The double-∆3 complex contains a

single internal segment, so M = 1, and thus A(∆2
3) gives (3.10) as 1-dimensional integral. So the

double-∆3 complex admits non-trivial effective dynamics of the Regge geometry. Note that the

same complex is also considered in the context of the effective spinfoam model [50].

The double-∆3 complex glues a pair of ∆3 complex around the internal segment (1, 2). The

complex has seven points P1..., P7. The 4-simplices are given by

{v1, · · · , v6} = {(1, 2, 3, 4, 6), (1, 2, 3, 5, 6), (1, 2, 4, 5, 6), (1, 2, 3, 4, 7), (1, 2, 3, 5, 7), (1, 2, 4, 5, 7)}.
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Figure 5. Panel (a) plots eλRe(S) versus the deficit angle δh at λ = 1011 and γ = 0.1 in A(∆3). The panels
(b) and (c) are the contour plots of eλRe(S) as functions of (λ, δh) at γ = 0.1 and of (γ, δh) at λ = 5× 1010

in A(∆3). They demonstrate the (non-blue) regime of curved geometries where the spinfoam amplitude is
not suppressed. These figures first appeared in [12].

The tetrahedra are labelled by {e1, · · · , e21}5. There are twelve boundary tetrahedra and nine

internal tetrahedra among them. jh = {j123, j124, j125, j126, j127} are carried by 5 internal triangles,

whose dual faces are bounded by red loops shown in the dual diagram Figure 6 (b). Since there is

only one internal segment (1, 2) and all other segments are on the boundary, the boundary data and

the length l12 of the internal segment determine the Regge geometry g(r) on ∆2
3. Following the

procedure described in (3.6) and (3.5), we pick up the internal spin j123 and express the spinfoam

amplitude as

A
(
∆2

3

)
=

∫
dj123 Z (j123; jb, ξeb) ,

Z (j123; jb, ξeb) =
∑

{kh}

∫ 4∏

h̄=1

djh̄

5∏

h=1

2λ τ[−ϵ,λjmax+ϵ](λjh)

∫
dµ(g, z) eλS

(k)

,
(6.1)

where jh̄ = {j124, j125, j126, j127}. The external data of Z is rl = {j123(l12); jb, ξeb} including both

the boundary data and j123(l12). Identifying γjf to be the area of f (in Planck unit), the Heron’s

formula

γj123(l12) =
1

4

√
4l212l

2
13 − (l212 + l213 − l223)

2
(6.2)

relates j123 to the internal segment length l12 and boundary segment lengths l13, l23. We consider

the Regge boundary data that determines all the boundary segment lengths. We can always make a

local change of the real variable j123 → l12 within a neighborhood K of a given Regge geometry,

where the correspondence j123 ↔ l12 is 1-to-1.

In the following discussion, we only focus on the case with kh = 0. The Regge geometries under

consideration are of small deficit angles. The following describes the procedure to compute the

complex critical points Z(rl) of Z.

We embed the double-∆3 complex in (R4, ηIJ) and determines a flat Regge geometry with all

5The tetrahedra are {e1, · · · , e21} = {{1, 2, 3, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 4, 6}, {2, 3, 4, 6}, {1, 2, 3, 5}, {1, 2, 5, 6},
{1, 3, 5, 6}, {2, 3, 5, 6}, {1, 2, 4, 5}, {1, 4, 5, 6}, {2, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 3, 4, 7}, {2, 3, 4, 7}, {1, 2, 5, 7}, {1, 3, 5, 7},
{2, 3, 5, 7}, {1, 4, 5, 7}, {2, 4, 5, 7}}.
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Figure 6. A complex made of six simplices sharing the bulk edge (1, 2) with length l12 (the red line in panel
(a)). In panel (a), the boundary edges are colored black, blue, violet and cyan. The bulk edge is colored red.
Panel (b) is the dual complex of the triangulation. The internal faces carrying j123, j124, j125, j126, j127 are
bounded by red loops, and other faces are boundary faces.

tetrahedra spacelike. We assign the following coordinates to the points,

P1 = (0, 0, 0, 0), P2 = (−0.0680,−0.220,−0.532,−1.33) , P3 = (0, 0, 0,−3.40) ,

P4 = (−0.240,−0.694,−0.981,−1.70) , P5 = (0, 0,−2.94,−1.70) , P6 = (0,−2.77,−0.981,−1.70) ,

P7 = (−2.47,−3.89,−1.36,−1.91) .

From the coordinates, we can compute the length of the segments of the triangulation by using

lij =
√
ηIJ(Pi − Pj)I(Pi − Pj)J . (6.3)

with ηIJ = Diag({−1, 1, 1, 1}) the Minkowski metric. The segment lengths are shown in Table 1.

The triangles within a 4-simplex are classified into two categories [8]: The triangle corresponds to

Table 1. Each cell of the table is the segment length for vertice Pi and Pj .

i

lij j
1 2 3 4 5 6 7

1 1.45 3.40 2.07 3.40 3.40 3.81
2 1.45 2.14 0.729 2.45 2.62 2.96
3 3.40 2.14 2.07 3.40 3.40 3.62
4 2.07 0.729 2.07 2.07 2.07 2.34
5 3.40 2.45 3.40 2.07 3.40 3.41
6 3.40 2.62 3.40 2.07 3.40
7 3.81 2.96 3.62 2.34 3.41

the thin wedge if the inner product between the timelike normals of the two adjacent tetrahedra is
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positive, otherwise the triangle corresponds to the thick wedge. The dihedral angle θv,ei,ej are given

by:

thin wedge: Nvei ·Nvej = cosh θv,ei,ej ,

thick wedge: Nvei ·Nvej = − cosh θv,ei,ej , (6.4)

where the inner product is the Minkowski inner product defined by η. Then we check the deficit

angles δhi
associated to the shared triangles hi

0 = δh1
= θv1,e1,e2 + θv2,e2,e6 + θv4,e1,e13 + θv5,e6,e13 ≈ 0.514 + 0.464− 0.575− 0.404,

0 = δh2
= θv1,e1,e3 + θv3,e3,e10 + θv4,e1,e15 + θv6,e10,e15 ≈ 1.08− 1.02− 1.30 + 1.24,

0 = δh3
= θv2,e6,e7 + θv3,e7,e10 + θv5,e6,e17 + θv6,e10,e17 ≈ −0.360− 0.481 + 0.414 + 0.426,

0 = δh4 = θv1,e2,e3 + θv2,e2,e7 + θv3,e7,e10 ≈ −0.723− 0.208 + 0.931,

0 = δh5
= θv4,e1,e15 + θv5,e13,e17 + θv6,e15,e17 ≈ −0.903 + 1.20− 0.301,

(6.5)

which implies the Regge geometry is flat. The data of the flat geometry determines the external data

r̊l for the partial amplitude Z, which has the real critical points (̊jh̄, g̊ve, z̊vf ) corresponding to this

flat Regge geometry and endowing the consistent 4-orientations to all 4-simplices. The boundary

data of the flat geometry and the real critical point can be found in Appendix C.1, and Mathematica

code can be found in [51] and [52]. In this case, given the boundary data, the flat Regge geometry is

the solution of the classical Regge equation of motion, and it is also the solution (̊jh̄, g̊ve, z̊vf ) to

the critical equations from the spinfoam amplitude.

We are going to compare the classical Regge dynamics and the spinfoam effective dynamics

for curved geometries. This comparison is based on the numerical computations. In concrete,

we deform the boundary segment length l35 → l35 + 10−3 but keep the other boundary segment

lengths unchanged. The boundary data does not admit any flat geometry on ∆2
3 (see Figure 7(b))6.

With this deformation, a classical Regge solution (i.e. the solution to the classical Regge equation

δSRegge = 0) gives the deficit angles

δh1 = 0.0118, δh2 = 0.0661, δh3 = −0.0215,

δh4 = −0.0236, δh5 = −0.0252,
(6.6)

which implies that the classical Regge dynamics gives curved geometry. We fix the boundary data

and vary the internal segment length l12 = L0 + δL where L0 = 1.45 is the length l12 in the flat

geometry. The change of l12 is denoted by δL with δL ∈ [−0.0129, 0.00251] 7. The classical Regge

action SRegge as a function of δL is plotted in Figure 7(a). The above solution leading to (6.6) is

close to the origin δL = 0 and is denoted by δLRegge
c . There exists another Regge solution in δL < 0

and far from δL = 0 as shown in Figure 7(a). We denote this solution by δL̃Regge
c .

Likely, the solution δL̃Regge
c is a discretization artifact because when smoothly deforming the

boundary data l35 back to the one for the flat geometry, δLRegge
c reduces back to the flat solution.

In contrast, δL̃Regge
c still reduces to a curved Regge geometry. Some boundary data also exist such

that the second solution δL̃Regge
c disappears. Nevertheless, we will take into account both solutions

δLRegge
c and δL̃Regge

c in discussing the effective dynamics in Section 7.

The boundary data (jb, ξef ) and the corresponding pseudo-critical points (j0h, g
0
ve, z

0
vf ) for

the curved geometry with the boundary segment length l35 → l35 + 10−3 and the internal edge

6If the boundary data admitted a flat Regge geometry on the complex, the flat geometry would be a solution to
the Regge equation. However, the solution of the Regge equation is a curved geometry with the given boundary data,
contradicting the assumption of admitting the flat geometry.

7The range used here is restricted by the existence of curved Regge geometry with all tetrahedra spacelike.
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l12 = L0 + δLRegge
c are listed in Appendix C.2.

Notice that the geometrical areas in the boundary data relate to jb by ab = γjb, and the area ab

relates to the lengths lij by Heron’s formula. The following discussion involves fixing the geometrical

area ab and performing computations at different Barbero-Immirzi parameter γ, so this leads to

different jb at different γ. Fixing the geometrical area instead of fixing jb is useful when we compare

with the Regge action SRegge, since SRegge only depends on the geometrical boundary data.

Figure 7. Panel (a) is the Regge action varying with δL when we deform the boundary segment length
l35 → l35 + 10−3 from the boundary data of the flat geometry. In this case, the Regge solutions are given

by δLRegge
c ≃ 0.000439 and δL̃Regge

c ≃ −0.00834. Panel (b) is
√

(
∑5

i=1 δ
2
hi
)/5 versus δL with the deformed

boundary data. All geometries in the range of δL are not flat. The minimum of
√

(
∑5

i=1 δ
2
hi
)/5 is 0.013.

6.2 Numerical computing the effective action

Given the boundary condition (jb, ξeb) corresponds to the above Regge boundary data with the

deformed l35, and given any l12 and j123(l12) taking value inside a neighborhood of the value for the

flat geometry, we find the pseudo-critical point (j0
h̄
, g0ve, z

0
vf ) close to the real critical point inside

the real integration domain. The pseudo-critical point only satisfies Re(S) = ∂gve
S = ∂zvf

S = 0

but does not necessarily satisfy ∂jh̄S = 0. The pseudo-critical point (j0
h̄
, g0ve, z

0
vf ) is the critical

point of the spinfoam amplitude with fixed jh, jb [9], and endows the Regge geometry g(r) and

consistent 4-simplex orientations to ∆2
3 complex8. It reduces to the real critical point (̊jh̄, g̊ve, z̊vf )

when rl = r̊l corresponds to the flat geometry on ∆2
3. As the deformation of segment length l35 is

small, this curved geometry is close to the flat geometry, so (j0
h̄
, g0ve, z

0
vf ) is close to (̊jh̄, g̊ve, z̊vf ) in

the integration domain. The data for the pseudo-critical point is listed in Appendix C.2.

In this computation, we still adopt the similar parametrizations of variables as in (4.5), (4.6),

and (4.7), but with the pseudo-critical points as the origin. The parametrizations of the group

element gv1e2 , gv2e7 , gv3e3 , gv4e13 , gv5e17 , gv6e15 , gv1e1 , gv2e6 , and gv3e10 are upper-triangular matrices

due to the SU(2) gauge fixing at 9 internal tetrahedra

gve = g0ve

(
1 +

x1
ve√
2

x2
ve+iy2

ve√
2

0 ∗

)
, (6.7)

8Since the correspondence between j123 and l12 is not 1-to-1 globally, it might be possible to have multiple pseudo-
critical points corresponding to different Regge geometries with the same value of j123. However, in our numerical
analysis, the other l12 from the same j123 does not satisfy the triangle inequality. Therefore all pseudo-critical points
correspond to the same Regge geometry but with different 4-simplex orientations, although we only focus on a fixed
orientation.
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where the entry ∗ is determined by det(gve) = 1. The internal spin jh̄ is parametrized as

jh̄ = j0h̄ + jh̄, jh̄ ∈ R. (6.8)

As a result, for kh = 0, the spinfoam amplitude A(∆2
3) and Z(j123) in (6.1) can be written in the

form of

A(∆2
3) =

∫
dl12

∣∣∣∣
∂j123
∂l12

∣∣∣∣Z(j123(l12); jb, ξeb),

Z(j123(l12); jb, ξeb) ∼
∫

d241xµ(x)eλS(rl,x), rl = (j123(l12), jb, ξeb)

(6.9)

where x ≡ (x1
ve, y

1
ve, x

2
ve, y

2
ve, x

3
ve, y

3
ve, xvf , yvf , jh̄). The parametrizations of (l12, x) define the

coordinate chart covering the neighborhood K enclosing x̃0 = (j123, x0) = (j0h, g
0
ve, z

0
vf ), and

˚̃x = (̊j123, x̊) = (̊jh, g̊ve, z̊vf ). This neighbourhood is large enough since the parametrizations are

valid generically. The pseudo-critical point is x0 = (0, 0, ..., 0), which contains 241 zero components.

Here we use “∼” instead of “=” because (1) we only consider kh = 0 but ignore other kh terms9, (2)

we only focus on the contribution from the neighborhood K enclosing a single pseudo-critical point10.

In our discussion, we only consider the effective dynamics within a sector of Regge geometries with

the fixed 4d orientation.

We compute the complex critical point of Z for any given external data rl: Here, both S(r, x)

and µ(x) are analytic in the neighborhood K of x0. S(r, x) can be analytically continued to a

holomorphic function S(rl, z), and z ∈ C
241 is in a complex neighborhood of x0. The analytic

continuation is obtained by simply extending x ∈ R
241 to z ∈ C

241. The formal discussion of the

analytic continuation of the spinfoam action is given in [14]. We fix the boundary data to be the one

resulting in (6.6) and vary the length l12 = L0 + δL, where L0 = 1.45 (the value of l12 in Table 1)

and the change of l12, δL ∈ [−0.0129, 0.00251]. For any given δL, combining the boundary data, we

repeat the steps above (from the beginning of this subsection) to reconstruct the Regge geometry and

the corresponding pseudo-critical point. Taking the pseudo-critical point as the starting point, we

apply the Newton-Raphson method by repeating the steps in (B.2) - (B.8) to numerically compute

the complex critical point Z(rl) for a sequence of δL. By evaluating S at the complex critical point

and apply the asymptotic formula (3.8), we obtain the following asymptotic behavior of Z and

A(∆2
3) for the dominant contribution from the integral on K

Z (j123(l12); jb, ξeb) ∼
(
1

λ

) 241
2

Nl e
λS(rl,Z(rl)) [1 +O(1/λ)] ,

A
(
∆2

3

)
∼
(
1

λ

) 241
2
∫

dl12

∣∣∣∣
∂j123
∂l12

∣∣∣∣Nl e
λS(rl,Z(rl)) [1 +O(1/λ)] ,

(6.10)

where Nl = µ(Z(rl)) det
(
−∂2

z,zS(rl, Z(rl))/2π
)−1/2

. Effectively, A
(
∆2

3

)
gives a path integral of

Regge geometry on ∆2
3. S (rl, Z (rl)) is the effective action for the Regge geometry in the large-λ

regime of the spinfoam amplitude. The stationary phase approximation of the l12-integral in (6.10)

relates to the variation of S (rl, Z (rl)) with respect to l12. The effective equation of motion

∂l12S (rl, Z (rl)) = 0 (6.11)

determines the effective dynamics of Regge geometry.

9The integrals in the neighborhood K with kh ̸= 0 give exponentially suppressed contributions.
10there may exist other pseudo-critical points outside K in Z, e.g. the ones corresponding to different orientations

of 4-simplices. But our discuss only focuses on the critical points inside K.
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Figure 8. The red curves plots the Regge action as a function of δL. In comparison to the Regge action,
the blue curves plots S ′

I of the analytic continued spinfoam action at complex critical points. The green
curve plots the real part SR of the analytic continued spinfoam action at complex critical points.

6.3 Comparing to Regge action

It is interesting to compare the effective action S (rl, Z (rl)) to the classical Regge action SRegge

since both actions define the dynamics of Regge geometry. The definition of Regge action SRegge(l12)

is reviewed in Appendix D. In order to compare, we compute and plot the real and imaginary parts

SR and SI of S (rl, Z (rl)) respectively,

S (rl, Z (rl)) = SR(γ, δL) + iSI(γ, δL), (6.12)

We view both SR and SI as functions of two variables γ and δL, and we compute the numerical

values of SR and SI with samples of γ ∈ [10−9, 106] and δL ∈ [−0.0129, 0.00251].

It is known that the spinfoam action contains an overall phase, which needs to be subtracted

to compare to the Regge action. We denote the overall phase by ϕ(γ). This overall phase can be

computed numerically by inserting the pseudo-critical point (j0
h̄
, g0ve, z

0
vf ) in the spinfoam action S
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Figure 9. Panels (a) and (b) are log-log plots of the distances (7.5) between the spinfoam and Regge
solutions in a neighbourhood of δL = 0 as a function of γ. The boundary data has the boundary segment
length l35 deformed from the flat geometry by l35 → l35 + 10−3 for (a) and l35 → l35 + 10−10 for (b).

and subtracting the Regge action at the corresponding geometry. Generally, we have

ϕ(γ) = α/γ (6.13)

where the coefficient α depends on the boundary data. In terms of the spinfoam variables, the

overall phase comes from the γ-independent terms in S and is linear to the boundary spins ϕ ∼ jb,

but here we fix the boundary area and let γ vary, then ϕ ∼ ab/γ. The numerical value of α is

α = 0.003993 resulting from our setup of the boundary data. In general, the overall phase in the

spinfoam action can be cancelled by the phase choice of boundary ξeb. To remove the overall phase

from SI , we define S ′
I by

SI(γ, δL) = −S ′
I(γ, δL) + ϕ(γ). (6.14)

S ′
I as a function of δL is compared to the classical Regge action for different values of γ in Figure 8.

The minus sign in front of S ′
I relates to the 4-simplex orientation in the real and pseudo-critical

points. As indicated by Figure 8, S ′
I well-approximates the Regge action for small γ with negligible

corrections. When increasing γ, S ′
I gives nontrivial corrections to the Regge action.

For any given γ, the real part SR is always negative, and |SR| is larger for larger |δL|, so eλS is

smaller for larger |δL|. However, if we fix δL and vary γ, |SR| is smaller so eλS is less suppressed for

any λ, when γ is smaller. In other words, the smaller γ opens a larger range of δL, in which |SR| is
small and eλS is not suppressed for a given λ. In this range of δL, the numerical result indicates

that S (rl, Z (rl)) well-approximates the Regge action. The similar situation has appeared in the

∆3 amplitude, where the amplitude with smaller γ admits a wider range of curved geometries (see

Figure 5(c)).

7 Solutions of effective dynamics on double-∆3

7.1 Spinfoam complex critical point and the Regge solution δLRegge
c

The above discussion compares the effective action S(rl, Z(rl)) to the classical Regge action. It is

also interesting to compare the solution of the effective equation ∂l12S(rl, Z(rl)) = 0 to the solution

of the Regge equation. By the above computation, the real and imaginary parts of S(rl, Z(rl))
are obtained as the numerical function. Numerically solving the effective equation involves finding

the possible complex roots of numerical derivatives of the complex S(rl, Z(rl)), which requires an
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Figure 10. Panels (a) show the real part of the spinfoam solution δLSpinfoam
c v.s. log-scaled γ value with

the boundary data deformed from the flat geometry by l35 → l35 + 10−3. Panels (b) is the log-log plot of
the absolute value of the imaginary parts of the spinfoam solution δLSpinfoam

c as a function of γ.

Figure 11. The log-log plot of the average of the absolute value of the imaginary part of the complex
critical point v.s. γ.

Figure 12. Panels (a) are the log-log plot of the negative real parts of S̃(r′, δL, z) at the complex critical
points z = Z̃(r′, δL) as a function of γ with the boundary data deformed from the flat geometry by
l35 → l35 + 10−3. Panels (b) show the imaginary parts of S̃(r′, δL, z) at the complex critical points
z = Z̃(r′, δL) v.s. log-scaled γ. We subtract the overall phase ϕ(γ) from Im[S̃(r′, δLSpinfoam

c , Z̃)] and add
a minus sign in plotting (b). In Panel (b), the overall phase ϕ(γ) ≃ 0.003993γ−1, and the maximum and
minimum of the plot range are Maxa ≃ 0.121606 and Mina ≃ 0.121596.
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estimation of S(rl, Z(rl)) on the complex δL plane and may give a relatively large numerical error.

In the following, we introduce an alternative strategy, which computes the solution of the effective

equation more efficiently.

Instead of introducing the partial amplitude Z, we consider the full spinfoam amplitude, which

can be written as the following integral for the same contribution as in (6.10)

A(∆2
3) ∼

∫
dδLd241xµ(δL, x)eλS̃(r′,δL,x). (7.1)

Here the external parameter r′ is just the boundary data r′ = (jb, ξeb). S̃(r
′, δL, x) is the spinfoam

action S with j123 = j123(l12) and l12 = L0 + δL.

Recall that δLRegge
c is a solution of the classical Regge equation. The Regge geometry with

δLRegge
c corresponds to a pseudo-critical point of S̃(r′, δL, x). Both S̃(r′, δL, x) and µ(δL, x) are

analytic in the neighbourhood of this pseudo-critical point. Therefore, S̃(r′, δL, x) and µ(δL, x) can

be analytic continued to the holomorphic functions S̃(r′, δL, z) and µ(δL, z), where (δL, z) ∈ C
242

is in a complex neighborhood of the pseudo-critical point. We fix the boundary data r′ to be the

same as the one used in Figure 7. Since r′ is a small deformation from the boundary data of the flat

geometry, the neighbourhood covers the real critical point corresponding to the flat geometry and

the boundary data before the deformation.

For each γ, we would like to numerically compute the complex critical points (δL, z) =

(δLSpinfoam
c , Z̃)(r′) as the solution to the following equations,

∂zS̃(r′, δL, z) = 0, (7.2)

∂δLS̃(r′, δL, z) = 0. (7.3)

Since we fix the boundary data r′ and vary γ, the complex critical points give a continuous trajectory

parametrized by γ in the complex space of (δL, z). In the numerical computation, we sample a

sequence of γ ∈ [10−9, 106] and compute the complex critical point for each γ by the Newton-Raphson

method, following the steps in (B.2) - (B.8). For any γ, the recursion of the Newton-Raphson

method can be initialized at the pseudo-critical point and give the convergent result within the

desired tolerance. Moreover, all resulting complex critical points depend smoothly on the boundary

data δl35 and reduces to the real critical point when δl35 → 0 (see Figure 13 for an example).

The solution δL from (7.2) and (7.3) is the same as the solution of ∂δLS(rl, Z(rl)) = 0. Indeed,

0 = ∂δLS(rl, Z(rl)) =
∂S(rl, Z(rl))

∂rl

∣∣∣
Z(rl)

· ∂rl
∂δL

+
∂S(rl, Z(rl))

∂Z(rl)

∣∣∣
rl
· ∂Z(rl)

∂δL

=
∂S(rl, Z(rl))

∂rl

∣∣∣
Z(rl)

· ∂rl
∂δL

= [∂δLS(rl, z)]z=Z(rl)
, (7.4)

where we have used ∂S(rl, Z(rl))/∂Z(rl)|rl = 0. Z(rl) depends on δL. z = Z(rl) is the solution of

(7.2), when analytic continuing δL → δL. The result [∂δLS(rl, z)]z=Z(rl)
= 0 from (7.4), followed by

analytic continuing δL → δL, is equivalent to (7.3) with the solution of (7.2) inserted.

The complex critical point gives δL ≡ δLSpinfoam
c (γ) as a trajectory parametrized by γ in a

complex neighborhood at δL = 0. This solution is compared to the Regge solution δLRegge
c ≃ 0.000439

(recall Figure 7(a)). This solution δLSpinfoam
c (γ) is complex generically, although it is close to the

real axis, especially for small γ. Figure 9 (a) demonstrates the distance (in the complex plane)

between the spinfoam solution δLSpinfoam
c (γ) and the classical Regge solution δLRegge

c :

∣∣δLSpinfoam
c (γ)− δLRegge

c

∣∣ . (7.5)
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Figure 13. The red points are the list-plot of the norm of the complex critical point
(δLSpinfoam

c , Z̃) v.s. the deformation of the boundary segment length δl35. For any complex criti-
cal points (δLSpinfoam

c , Z̃) = (δLSpinfoam
c , z1, z2, · · · , z241), the norm is defined as ∥(δLSpinfoam

c , Z̃)∥ =√∣∣∣δLSpinfoam
c

∣∣∣
2

+ |z1|
2 + |z2|

2 + · · ·+ |z241|
2. Here, the boundary segment length l35 is deformed from

the flat geometry by l35 → l35 + δl35 at γ = 10−6, δl35 ∈ [0, 10−3]. The blue point is the complex critical
point as δl35 = 10−3, and the green point is the real critical point at the origin (0, 0) corresponding to the flat
geometry. The cyan curve represents the fitted function ∥(δLSpinfoam

c , Z̃)∥ ≃ 1.97×106 δl35−5.49×107 (δl35)
2.

This distance is small in the small-γ regime. So the classical Regge dynamics is reproduced by the

spinfoam effective dynamics for small γ. This result is consistent with comparing the actions in

Figure 8. This result is also consistent with some earlier arguments in [17–20] about the semiclassical

approximation of spinfoams with small γ.

The distance (7.5) becomes larger when increasing γ. It indicates that the spinfoam amplitude

with larger γ gives larger correction to the classical Regge solution. Therefore the effective theory in

the large-γ regime has more significant difference from the Regge gravity. Furthermore, the distance

(7.5) stabilizes in the large-γ regimes, as shown in Figure 9(a). The distance value where it stablizes

becomes smaller when the boundary data is closer to the one for the flat geometry, by comparing

Figure 9(a) and (b). The small and large γ regimes might be viewed as two phases of the spinfoam

amplitude. The effective dynamics is closer to the Regge dynamics for small γ but more different

from the Regge dynamics for large γ.

The critical point (δLSpinfoam
c , Z̃)(r′) is generally complex for every γ (see Figure 11). Figure

12(a) and (b) plot the analytic continued action S̃(r′, δL, z) (with the overall phase ϕ(γ) removed)

evaluated at the complex critical points for a large number of samples of γ. The real part Re(S̃) is
close to zero for both the small-γ and large-γ regimes, so eλS̃ in the asymptotic formula (3.8) is not

suppressed for large λ for both the small and large γ. The non-suppressed eλS̃ for small γ has been

anticipated since it can be predicted by the bound (5.2). But the non-suppressed eλS̃ with large

λ in the large-γ regime violates the bound (5.2). This result suggests that the bound (5.2) is not

universal but only valid for the small or finite γ.

Figures 9(b) plots
∣∣δLSpinfoam

c − δLRegge
c

∣∣ for the different boundary data, which deform the

boundary data of the flat geometry by l35 → l35 + 10−10. This boundary data is closer to the

boundary data for the flat geometry. The results are qualitatively similar to the results from the

previous boundary data, although the maximum of
∣∣δLSpinfoam

c − δLRegge
c

∣∣ become smaller comparing

to the results from the previous boundary data. Changing the boundary data seems not to shift the

location in the γ-space, where the small-γ phase (where (7.5) is small) transits to the large-γ phase

(where (7.5) is stablizes), as suggested by comparing Figures 9 (a) and (b).
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Figure 14. Panel (a) is the log-log plot of the distance between the spinfoam solution and the Regge

solution in a neighborhood of δL̃ = δL̃Regge
c as a function of γ. Panel (b1) shows the real of the spinfoam

solution δL̃Spinfoam
c v.s. γ. Panel (b2) is the log-log plot of the imaginary parts of the spinfoam solution

δL̃Spinfoam
c v.s. γ. Panel (c1) is the real parts of S̃(r′, δL̃, z) at the complex critical points v.s. γ, and the

small figure in (c1) is the log-log plot. Panel (c2) plots the imaginary parts of S̃(r′, δL̃, z) at the complex
critical points v.s. γ.

7.2 Complex critical point and the other Regge solution δL̃Regge
c

Recall Figure 7(a) that there is another classical Regge solution δL = δL̃Regge
c with the boundary

condition under consideration. This solution corresponds to a different pseudo-critical point, which we

use as the starting point of initializing the recursion in the Newton-Raphson method. Following the

same procedure discussed above, we obtain a new trajectory of complex critical points parameterized

by γ. The complex critical point gives δL = δL̃Spinfoam
c (γ), which is generically complex. Figure 14

plots the distance |δL̃Spinfoam
c (γ)− δL̃Regge

c |, the real and imaginary part of the δL̃Spinfoam
c (γ), and

the real and imaginary part of the action S̃ evaluated at the complex critical points. For small γ,

δL̃Spinfoam
c (γ) is approximately real and close to the classical Regge solution δL̃Regge

c . Increasing γ
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Figure 15. Figure is the log-log plot of eλRe[S̃(r′,δLSpinfoam
c ,Z̃)] (blue curve) and eλRe[S̃(r′,δL̃Spinfoam

c ,Z̃)] (red
curve) as a function of λ at γ = 10−8.

results in that δL̃Spinfoam
c (γ) makes larger corrections to δL̃Regge

c .

Both the complex critical point here, denoted by (δL̃Spinfoam
c , Z̃)(r′), and (δLSpinfoam

c , Z̃)(r′)

discussed in the last subsection give contributions to A(∆2
3). When we compare their contributions.

eλS is suppressed faster at the critical point here than at the one in the last subsection (see Figure

15) for fixed γ < 0.1. This relates to the fact that δL̃Regge
c gives larger deficit angles. Therefore

the complex critical point here contributes to the amplitude much less than the one in the last

subsection for generic small γ and large λ. Recall that δL̃Regge
c likely relates to the discretization

artifact. The result suggests that the spinfoam amplitude should suppress the contribution from the

discretization artifact, in favor of a good continuum limit.

The complex critical points used in Figure 14 are likely beyond the stationary phase approxima-

tion (for complex action) described above and below (3.7), because these complex critical points

do not analytically relate to the real critical point (̊jh, g̊ve, z̊vf ) for the flat geometry. It relates to

the existence of complex critical points with Re(S̃) > 0 in Figure 14(c1) violating (3.9). Indeed,

when we continuously deform the boundary data r′ by the deformation by l35 → l35 + δl35 from the

boundary data of flat geometry to the one that does not admit flat geometry, the solution of (7.2)

and (7.3) deforms analytically from the real critical point to the previous complex critical point

(δLSpinfoam
c , Z̃)(r′) (see Figure 13, and the similar property holds for the complex critical points in

Section 6), but not to any of the complex critical points used in Figure 14.

The complex critical point used in Figure 14 has to be studied by the fully-fledged Picard-

Lefschetz theory (see, e.g. [22, 53, 54]). Consequently, given that the spinfoam amplitude is defined

on the real integration cycle where Re(S) ≤ 0, the complex critical point with Re(S̃) > 0 does

not contribute to the asymptotics of the amplitude, because the steepest-ascent flow associated to

this critical point turns out to have no intersection with the real integration cycle. Therefore, the

contributions from the complex critical points in Figure 15 are vanishing or suppressed for finite or

larger γ, where Re(S) > 0 or eλRe(S) is suppressed.

8 Conclusion and Outlook

Our above analysis demonstrates the importance of complex critical points in understanding the

asymptotic behaviour of the spinfoam amplitude in the large-j regime. In the case of the 4-simplex

amplitude, taking into account the complex critical point generalizes the asymptotics to non-Regge

boundary data and relates to the twisted geometry. In the case of the simplicial complex, the

complex critical point plays an important role in deriving the effective dynamics from the spinfoam

amplitude. The effective dynamics closely relate to the Regge gravity in the small γ regime, as

demonstrated by the numerical computation for the amplitude on the double-∆3 complex.
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In this paper, we examine the semiclassical behavior of the spinfoam amplitude within the

regime of large-j. The semiclassical limit characterizes a scenario where the spinfoam amplitude

exhibits behavior akin to classical gravity. This limit relates to the region where the values of

Planck’s constant are small, leading to the emergence of classical behavior. On the other hand,

the continuous limit relates to the situation in which a discrete system approaches a continuous or

smooth description. This typically involves taking a large number of discrete elements or degrees of

freedom and allowing them to become infinitely numerous, resulting in a continuous and infinitely

divisible system. It may relate to the situation that the triangulations underlining spinfoams are

refined such that the geometries are made by refined Planckian size cells. Note that it is actually

possible to relate certain refinement and small-j spinfoam amplitudes to some semiclassical behaviors,

as shown in [55]. Generally speaking, while these two limits are related, they are not interchangeable.

For spinfoams, both limits are relevant and may be taken simultaneously. It is indeed possible, as

shown in [37, 56], where the semiclassical gravity on the continuum is recovered in certain regime

with both the large-j and refinement.

Our work provides a general procedure to derive the effective theory in the large-j regime.

From the perspective of semiclassical analysis, our numerical computation should be generalized to

triangulations larger than double-∆3, which has more internal segments. One should check if the

Regge gravity still can be reproduced by the large-j effective dynamics on larger triangulations.

The effective dynamics in LQG has been primarily investigated in the context of symmetry-

reduced models, such as Loop Quantum Cosmology (LQG) and black holes, see, e.g. [57, 58]. The

effective dynamics is useful in deriving the singularity resolution. Our result shows that the spinfoam

amplitude also results in certain effective dynamics. However, this effective dynamics is in terms

of the discrete Regge geometry, in contrast to the effective dynamics in terms of smooth fields in

LQC and black holes. A research in progress is to understand if the effective dynamics from the

spinfoam amplitude can relate to LQC and black holes. If the relation exists, it might provide a new

approach toward embedding LQC and black hole models in the full theory of LQG.

It is also interesting to investigate the behavior of the effective dynamics under the lattice

refinement for spinfoam amplitudes. The Regge geometries approach to the continuum limit under

the refinement, so we expect that the effective dynamics of Regge geometries from spinfoams should

reduce to certain effective dynamics of the smooth geometry.
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A Boundary data for single 4-simplex

In Section 3, we introduce the real critical points of the 4-simplex, which corresponds to the Regge

geometry. We construct the Regge boundary geometry, Table 2, 3 and 4 record areas åf = γ̊jf , 3d

normals n̊ef and the corresponding spinors ξ̊ef of the single 4-simplex.
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Table 2. Each cell shows the area of the face shared by line number tetrahedra and column number
tetrahedra.

e

åf e′
e′1 e′2 e′3 e′4 e′5

e1 5 5
e2 2 2
e3 5 2
e4 2 2
e5 5 2

Table 3. Each cell shows the 3d normal vectors of the face shared by line number tetrahedra and column
number tetrahedra.

e

n̊ef e′
e′1 e′2 e′3 e′4 e′5

e1 (1.00, 0, 0) (-0.333, -0.943, 0) (-0.333, 0.471, -0.816) (-0.333, 0.471, 0.816)
e2 (0.938, 0, -0.346) (-0.782, -0.553, 0.289) (-0.948, 0.276, -0.160) (-0.616, 0.276, 0.738)
e3 (-0.313, -0.884, -0.346) (0.782, 0.553, 0.289) (0.0553, 0.986, -0.160) (-0.0553, 0.673, 0.738)
e4 (-0.244, 0.345, -0.907) (0.739, -0.215, 0.639) (-0.0431, -0.768, 0.639) (-0.0862, 0.122, 0.989)
e5 (-0.436, 0.617, 0.655) (0.859, -0.385, -0.338) (0.0771, -0.938, -0.338) (0.154, -0.218, -0.964)

Table 4. Each cell shows a spinor ξef corresponding to a 3-normal to the face.

e

ξ̊ef e′
e′1 e′2 e′3 e′4 e′5

e1 (0.707, -0.707) (0.707, -0.236 - 0.667i) (0.953, 0.175 - 0.247i) (0.953, -0.175 + 0.247i)
e2 (0.820, -0.572) (0.803, -0.487 - 0.344i) (0.762,0.622 - 0.181i) (0.932, -0.330 + 0.148i)
e3 (0.572, -0.273 - 0.774i) (0.596, -0.655 - 0.463i) (0.648, 0.043 + 0.761i) (0.362, 0.076 - 0.929i)
e4 (0.976, 0.125 - 0.177 i) (0.905, 0.408 - 0.119 i) (0.425, 0.051 + 0.904i) (0.997, -0.0432 + 0.0611i)
e5 (0.910, -0.240 + 0.339 i) (0.818, -0.525 + 0.236i) (0.576, 0.067 - 0.815 i) (0.991, -0.0778 + 0.1100)

Table 5 and 6 record the values of the real critical point g̊ve and z̊vf for the 4-simplex with the

boundary data (̊jf , ξ̊ef ).

Table 5. Each cell of the table is the critical point of g̊ve.
e e1 e2 e3 e4 e5

g̊ve

(
0 −i
−i 0

) (
0 −1.03i
−0.969i −0.358i

) (
0 −1.03i
−0.969i 0.337 + 0.119i

) (
0 −1.17i
−0.855i −0.149 + 0.105i

) (
0 −0.874i
−1.14i −0.199 + 0.141i

)

Table 6. Each cell shows the critical points of z̊vf

e

z̊vf e′
e1 e2 e3 e4 e5

e1 (1,-1) (1.00, 1.82 + 2.57i)
e2 (1.00,−0.915 + 0.402i) (1.00,−1.41− 0.31i)
e3 (1.00,−0.333 + 0.943i) (1.00, 0.086− 0.690i)
e4 (1.00, 1.86 + 0.99i) (1.00, 5.72 + 8.08i)
e5 (1.00,−1.82− 2.57i) (1.00, 0.071 + 0.470i)

All the Regge boundary data r̊ = (̊jf , ξ̊ef ) and the data of the real critical point (̊gve, z̊vf ) for

the 4-simplex amplitude can be found in the Mathematica notebook [59].

B The Newton-Raphson method

The Newton-Raphson method for the single-variable equation f(x) = 0 is initialized with a starting

point x0, and then one iterate

xn+1 = xn − f (xn)

f ′ (xn)
, (B.1)
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to approach the solution with higher accuracy. In single 4-simplex case as an example, the equations

of motion is 44 dimensions, we denote by

F







z1
...

z44





 =




f1(z1, ..., z44)
...

f44(z1, ..., z44).


 (B.2)

The derivative of this system is the 44×44 Jacobian given by:

J(z1, ..., z44) =




∂f1
∂z1

... ∂f1
∂z44

...
...

...
∂f44
∂z1

... ∂f44
∂z44


 (B.3)

We define the function G by

G(z) = z − J(z)−1F (z). (B.4)

The functional Newton-Raphson method for nonlinear systems is the iteration procedure that evolves

from the initial z(0), which in our case is the real critical point x̊, and generates

z(k) = G
(
z(k−1)

)
= z(k−1) − J

(
z(k−1)

)−1

F
(
z(k−1)

)
, k ≥ 1. (B.5)

We can write this as



z
(k)
1
...

z
(k)
44


 =




z
(k−1)
1
...

z
(k−1)
44


+




∆z
(k−1)
1
...

∆z
(k−1)
44


 , (B.6)

where



∆z
(k−1)
1
...

∆z
(k−1)
44


 = −J

(
z(k−1)

)−1

F
(
z(k−1)

)
. (B.7)

We set the desired tolerance ϵ = 10−100, and we stop after n iterations when

√∣∣∣(∆z
(n−1)
1 )2 + · · ·+ (∆z

(n−1)
44 )2

∣∣∣ < ϵ (B.8)

The resulting z(n) is the approximated solution within the tolerance. We evaluate the analytic

continued 4-simplex action S at z(n) and apply it to the asymptotic formula (3.8).

C Boundary data for the ∆2
3 complex

C.1 Boundary data and the real critical point for the flat ∆2
3 complex

We construct the flat geometry with the segment lengths in Table 1. The corresponding boundary

data for flat geometry is shown in Table 7, 8, 9, 10, 11 and 12. Here, the area af and the spins jf
satisfy af = γjf .
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Table 7. Boundary data (̊ab, ξ̊eb) for the 4-simplex v1 = {1, 2, 3, 4, 6}

e

ξ̊eb e′

e′1 e′2 e′3 e′4 e′5

e1 (-0.41 + 0.73i, -0.15 - 0.52i)
e2 (-0.61 + 0.22i, -0.76i)
e3 (-0.078 - 0.033i, 0.04 - 1.0i)
e4 (0.60, -0.66 - 0.46i) (0.76, -0.04 - 0.65i)
e5 (0.43, -0.18 - 0.88i) (0.95, -0.03 + 0.31i)

e

åb e’
e′1 e′2 e′3 e′4 e′5

e1 0.75
e2 5
e3 0.55
e4 2 2
e5 2.8 2.0

Table 8. Boundary data (̊ab, ξ̊eb) for the 4-simplex v2 = {1, 2, 3, 5, 6}

e

ξ̊eb e′

e′2 e′6 e′7 e′8 e′9

e2 (-0.72 + 0.13 i, 0.02 - 0.68 i)
e6 (0.81 i, -0.59i)
e7 (-0.27 - 0.19i, -0.94i)
e8 (0.71, -0.24 - 0.67 i) (0.95, -0.17 + 0.25 i)
e9 (0.74, -0.67 + 0.05i) (1.0, 0.048 - 0.068i)

e

åb e′

e′2 e′6 e′7 e′8 e′9

e2 2.8
e6 5
e7 5
e8 5 5
e9 2.6 3.2

Table 9. Boundary data (̊ab, ξ̊eb) for the 4-simplex v3 = {1, 2, 4, 5, 6}

e

ξ̊eb e′

e′3 e′7 e′10 e′11 e′12

e3 (-0.22 - 0.03 i, 0.07 - 0.97 i)
e7 (-0.10 - 0.073i, -0.99i)
e10 (0.18 + 0.98 i, 0.065 - 0.11 i)
e11 (0.98, 0.12 - 0.18i) (0.43, -0.87 + 0.25i)
e12 (0.99, -0.01 - 0.17i) (1.0, -0.018 + 0.025 i)

e

åb e′

e′3 e′7 e′10 e′11 e′12

e3 2
e7 3.2
e10 0.69
e11 5 2
e12 0.55 2

Table 10. Boundary data (̊ab, ξ̊eb) for the 4-simplex v4 = {1, 2, 3, 4, 7}

e

ξ̊eb e′

e′1 e′13 e′14 e′15 e′16

e1 (-0.33 + 0.75 i, -0.11 - 0.56 i)
e13 (-0.52 + 0.71 i, -0.35 - 0.32 i)
e14 (-0.59 + 0.71 i, -0.18 - 0.35 i)
e15 (0.90, -0.14 - 0.41 i) (0.63, 0.33 + 0.71 i)
e16 (0.94, -0.25 - 0.22 i) (0.94, 0.28 - 0.18i)

e

åb e′

e′1 e′13 e′14 e′15 e′16

e1 2
e13 3.2
e14 2.1
e15 5.6 2.3
e16 0.75 0.5

Table 12. Boundary data (̊ab, ξ̊eb) for the 4-simplex v6 = {1, 2, 4, 5, 7}

e

ξ̊eb e′

e′10 e′14 e′17 e′20 e′21

e10 (0.20 + 0.91 i, 0.07 - 0.35 i)
e14 (-0.55 + 0.68 i, -0.16 - 0.46 i)
e17
e20 (0.76, 0.22 - 0.61 i) (0.74, 0.57 - 0.36 i) (0.85, 0.52 - 0.1 i)
e21 (0.95, -0.31 + 0.07 i) (0.39, 0.89 - 0.23 i)

e

åb e′

e′10 e′14 e′17 e′20 e′21

e10 2
e14 0.5
e17
e20 2.1 5.4 2.4
e21 0.69 3.5

Once the flat geometry is constructed, the real critical points
(
j̊h, g̊ve, z̊vf

)
can be obtained by

solving the critical equations Eq.(3.1) and (3.2). The solution of the critical point equations relates

to the Lorentzian Regge geometry, as described in [8, 9]. g̊ve relates to the Lorentzian transformation

acting on each tetrahedron and glueing them together to form the ∆2
3 complex. In this model, we fix

gve to be constant SL(2,C) matrices for v1e5, v2e9, v3e12, v4e16, v5e19, v6e21. The group elements gve
for the bulk tetrahedra v1e1, v1e2, v2e6, v2e7, v3e3, v3e10, v4e13, v5e17, v6e14 are fixed to be the upper

triangular matrix. For the ∆2
3 triangulation, there are five internal faces h(12k) with k = 3, 4, 5, 6, 7.

The areas of these internal faces are shown in Table C.1. The numerical results of the real critical

point (̊gve, z̊vf ) corresponding to the flat geometry are listed in Table 14, 15, 16, 17, 18 and 19.

Table 18. The real critical point (̊gve, z̊vf ) for the 4-simplex v5 = (1, 2, 3, 5, 7).

e e6 e13 e17

g̊v5e

(
0.98 0.32
0 1

) (
0.84 0.82 + 0.19i
0 1.2

) (
0.84 0.73− 0.05i
0 1.2

)

e e18 e19

g̊v5e

(
0 −1.1i

−0.88i −0.72i

) (
0 −1.2i

−0.86i 0.03− 0.72i

)

e

|̊zv5f ⟩ e′

e′6 e′13 e′17 e′18 e′19

e6 (1,-0.86 - 0.07i) (1,-1.09 - 0.05i)
e13 (1,0.87 - 0.49i) (1,-0.83 + 0.56i)
e17 (1,-0.92 + 0.75i) (1,1,-3.2 + 0.6i)
e18 (1,-1) (1,-1.9 + 2.2i)
e19 (1,-0.73 + 0.54i) (1,-1.8 - 0.8 i)
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Table 11. Boundary data (̊ab, ξ̊eb) for the 4-simplex v5 = {1, 2, 3, 5, 7}

e

ξ̊eb e′

e′6 e′13 e′17 e′18 e′19

e6 (0.04 + 0.77 i, 0.01 - 0.63 i)
e13 (-0.48 + 0.71 i, -0.31 - 0.41 i)
e17 (-0.19 + 0.17 i, -0.18 - 0.95 i) (-0.05 + 0.25 i, -0.06 - 0.97 i)
e18 (0.90, -0.43)
e19 (0.71, -0.26 - 0.65 i) (0.95, 0.19 + 0.25 i)

e

åb e′

e′6 e′13 e′17 e′18 e′19

e6 2.6
e13 5.6
e17 5.4 3.5
e18 5
e19 3.2 5.2

Table 13. Areas of internal faces h in ∆2
3 complex.

ah(123) ah(124) ah(125) ah(126) ah(127)

0.971 0.333 1.55 1.78 1.93

Table 14. The real critical point (̊gve, z̊vf ) for the 4-simplex v1 = (1, 2, 3, 4, 6)

e e1 e2 e3

g̊v1e

(
0.96 0.42 + 0.04i
0 1

) (
0.99 −0.05− 0.15i
0 1

) (
0.77 −0.13− 0.72i
0 1.3

)

e e4 e5

g̊v1e

(
0 −1.0i

−0.97i 0.34 + 0.12i

) (
0 −1.1i

−0.91i 0.46 + 0.12i

)

e

|̊zv1f ⟩ e′

e′1 e′2 e′3 e′4 e′5

e1 (1,-0.94 + 0.69i) (1,-0.82 + 0.45i)
e2 (1,0.87 - 0.49i) (1,-0.33 + 0.94i)
e3 (1,-0.1 + 1.5i) (1,2.5 + 6.0i)
e4 (1,-0.92 + 0.40i) (1,0.3 + 2.1i)
e5 (1,-0.14 + 0.75i) (1,0.2 - 1.4i)

Table 15. The real critical point (̊gve, z̊vf ) for the 4-simplex v2 = (1, 2, 3, 5, 6).

e e2 e6 e7

g̊v2e

(
0.99 −0.05− 0.15i
0.99 −0.05− 0.15i

) (
0.98 0.32
0 1

) (
1.0 −0.031 + 0.044i
0 0.96

)

e e8 e9

g̊v2e

(
0 −1.0i

−1.0i 0

) (
1.26 0.09− 0.13i

0.09 + 0.13i 0.82

)

e

|̊zv2f ⟩ e′

e′2 e′6 e′7 e′8 e′9

e2 (1,-0.1 + 1.5 i) (1,-0.14 + 0.75i)
e6 (1,0.87 - 0.49i) (1, 0.87 - 0.49i)
e7 (1,-0.86 - 0.07i) (1,1.8 + 2.6i)
e8 (1,-0.33 + 0.94i) (1,-1.8 - 2.6 i)
e9 (1,-1.09 - 0.05i) (1,4.9 + 7.0 i)

All the boundary data r̊ = (̊jb, ξ̊eb) and the data of the real critical point (̊jh, g̊ve, z̊vf ) can be

found in the Mathematica notebook in [59].

C.2 Boundary data and the pseudo critical points for the curved ∆2
3 complex

The boundary data in Appendix C.1 admits a flat geometry. To construct a curved geometry, we

deform the segment length l35 → l35+10−3 and keep the other boundary segment lengths unchanged.

We list the boundary data for this curved geometry in Table 20, 21, 22, 23, 24 and 25 as the internal

segment length is l12 = L0 + δLRegge
c .

Table 24. Boundary data (ab, ξeb) of the curved geometry for the 4-simplex v5 = {1, 2, 3, 5, 7}

e

ξeb e′

e′6 e′13 e′17 e′18 e′19

e6 (0.04 + 0.77 i, 0.01 - 0.64 i)
e13 (-0.48 + 0.71 i, -0.31 - 0.41 i)
e17 (-0.19 + 0.17 i, -0.18 - 0.95 i) (-0.05 + 0.25 i, -0.05 - 0.97 i)
e18 (0.90, -0.43)
e19 (0.71, -0.26 - 0.66 i) (0.95, 0.19 + 0.24 i)

e

ab e′

e′6 e′13 e′17 e′18 e′19

e6 2.6
e13 5.6
e17 5.4 3.5
e18 5
e19 3.2 5.2

The curved geometry does not have real critical point. However, we can find the pseudo-critical

point (j0h, g
0
ve, z

0
vf ), which is close to the real critical point inside the real integration domain. The

pseudo-critical point satisfies the critical equation (3.1) but violates critical equation (3.2). The

data for the pseudo-critical point is listed in Table 26, 27, 28, 29, 30 and 31.
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Table 16. The real critical point (̊gve, z̊vf ) for the 4-simplex v3 = (1, 2, 4, 5, 6).

e e3 e7 e10

g̊v3e

(
0.77 −0.13− 0.72i
0 1.3

) (
1.0 −0.031 + 0.044i
0 0.96

) (
0.96 0.38
0 1

)

e e11 e12

g̊v3e

(
0 −1.2i

−0.86i −0.15 + 0.11i

) (
0 −1.8i

−0.55i −0.16 + 0.12i

)

e

|̊zv3f ⟩ e′

e′3 e′7 e′10 e′11 e′12

e3 (1,-0.94 + 0.69i) (1,0.3 + 2.1i)
e7 (1,-0.1 + 1.5i) (1, 4.9 + 7.0i)
e10 (1,-0.86 - 0.07i) (1,-0.45 - 0.08i)
e11 (1,1.8 + 2.6i) (1,-0.68 - 0.15i)
e12 (1,2.5 + 6.0i) (1,5.7 + 8.1 i)

Table 17. The real critical point (̊gve, z̊vf ) for the 4-simplex v4 = (1, 2, 3, 4, 7).

e e1 e13 e14

g̊v4e

(
0.96 0.42 + 0.04i
0 1

) (
0.84 0.82 + 0.19i
0 1.2

) (
0.68 1.3 + 0.9i
0 1.5

)

e e15 e16

g̊v4e

(
0 −1.3i

−0.79i −0.34− 0.92i

) (
0 −1.3i

−0.77i −0.49− 1.01i

)

e

|̊zv4f ⟩ e′

e′1 e′13 e′14 e′15 e′16

e1 (1,0.87 - 0.49i) (1,-0.92 + 0.40 i)
e13 (1,-0.92 + 0.75i) (1, -0.73 + 0.54i)
e14 (1,-0.94 + 0.69i) (1,-0.94 + 0.77i)
e15 (1,-0.83 + 0.56i) (1,-1.1 - 1.2i)
e16 (1,-0.82 + 0.45i) (1,-1.0 + 0.81i)

Table 19. The real critical point (̊gve, z̊vf ) for the 4-simplex v6 = (1, 2, 4, 5, 7).

e e10 e14 e17

g̊v6e

(
0.96, 0.38

0 1

) (
0.68 1.3 + 0.9i
0 1.5

) (
0.84 0.73− 0.05i
0 1.2

)

e e20 e21

g̊v6e

(
0 −1.1i

−0.93i 0.17− 0.96i

) (
0 −1.2i

−0.84i 0.4− 2.3i

)

e

|̊zv6f ⟩ e′

e′10 e′14 e′17 e′20 e′21

e10 (1,-0.94 + 0.69i) (1,-0.68 - 0.15i)
e14 (1,-0.92 + 0.75i) (1,-1+0.81i)
e17 (1,-0.86 - 0.07i) (1,-1.9+2.2i)
e20 (1,-0.94 + 0.77i) (1,-2.7 - 0.4i)
e21 (1,-0.45 - 0.08i) (1,-3.2+0.6i)

Table 20. Boundary data (ab, ξeb) of the curved geometry for the 4-simplex v1 = {1, 2, 3, 4, 6}

e

ξeb e′

e′1 e′2 e′3 e′4 e′5

e1 (-0.40 + 0.73i, -0.15 - 0.53i)
e2 (-0.61 + 0.22i, - 0.76i)
e3 (-0.079 - 0.033i, 0.04 - 1.0i)
e4 (0.60, -0.66 - 0.46i) (0.76, -0.04 - 0.65i)
e5 (0.43, -0.18 - 0.88i) (0.95, -0.03 + 0.31i)

e

ab e’
e′1 e′2 e′3 e′4 e′5

e1 0.75
e2 5
e3 0.55
e4 2 2
e5 2.8 2.0

Table 30. The pseudo-critical point (g0ve, z
0
vf ) for the 4-simplex v5 = (1, 2, 3, 5, 7).

e e6 e13 e17

g0v5e

(
0.98 0.32

0.011 + 0.006i 1.03

) (
0.84 0.82 + 0.19i

−0.0012 + 0.011i 1.19

) (
0.84 0.73− 0.05i
0 1.2

)

e e18 e19

g0v5e

(
−0.00066 + 0.00052 −1.1i

−0.88i −0.72i

) (
0 −1.2i

−0.86i 0.03− 0.72i

)

e

|z0v5f
⟩ e′

e′6 e′13 e′17 e′18 e′19

e6 (1,-0.86 - 0.07i) (1,-1.09 - 0.06i)
e13 (1,0.87 - 0.50i) (1,-0.83 + 0.56i)
e17 (1,-0.93 + 0.75i) (1,1,-3.2 + 0.6i)
e18 (1,-1) (1,-2 + 2.2i)
e19 (1,-0.73 + 0.54i) (1,-1.8 - 0.8 i)

The boundary data for the curved geometry and the corresponding pseudo-critical point can be

found in Mathematica notebook [59].

D Regge Action

Let’s first recall the volume of the simplex. The volume formula for the Lorentzian 4-simplex σ is

given by [60, 61]

Vσ =
(−1)4

24(4!)2
det(Cσ) (D.1)

where Vσ is the volume square and det(Cσ) is the Cayley–Menger determinant. The Cayley–Menger

matrix Cσ is the 6 × 6 matrix with entries l2ij for i, j = 0, · · · , 4, where lij is the segment length.

The Cayley–Menger matrix is augmented by an additional row and column with entries given by

(Cσ)5,5 = 0 and (Cσ)i,5 = (Cσ)5,j = 1. That is

Cσ =

[
l2ij 1i
1j 0

]
(D.2)
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Table 21. Boundary data (ab, ξeb) of the curved geometry for the 4-simplex v2 = {1, 2, 3, 5, 6}

e

ξeb e′

e′2 e′6 e′7 e′8 e′9

e2 (-0.71 + 0.13i, 0.02 - 0.69i)
e6 (0.81 i, -0.59i)
e7 (-0.27 - 0.19i, -0.94i)
e8 (0.71, -0.24 - 0.67 i) (0.95, -0.17 + 0.25 i)
e9 (0.74, -0.67 + 0.05i) (1.0, 0.049 - 0.065i)

e

ab e′

e′2 e′6 e′7 e′8 e′9

e2 2.8
e6 5
e7 5
e8 5 5
e9 2.6 3.2

Table 22. Boundary data (ab, ξeb) of curved geometry for the 4-simplex v3 = {1, 2, 4, 5, 6}

e

ξeb e′

e′3 e′7 e′10 e′11 e′12

e3 (-0.22 - 0.03 i, 0.07 - 0.97 i)
e7 (-0.105 - 0.072i, -0.99i)
e10 (0.18 + 0.98 i, 0.065 - 0.106 i)
e11 (0.98, 0.12 - 0.18i) (0.43, -0.87 + 0.25i)
e12 (0.99, -0.01 - 0.17i) (1.0, -0.018 + 0.025 i)

e

ab e′

e′3 e′7 e′10 e′11 e′12

e3 2.0
e7 3.2
e10 0.69
e11 5 2
e12 0.55 2

Table 23. Boundary data (ab, ξeb) of curved geometry for the 4-simplex v4 = {1, 2, 3, 4, 7}

e

ξeb e′

e′1 e′13 e′14 e′15 e′16

e1 (-0.33 + 0.75 i, -0.12 - 0.57 i)
e13 (-0.52 + 0.71 i, -0.35 - 0.32 i)
e14 (-0.58 + 0.71 i, -0.19 - 0.35 i)
e15 (0.90, -0.14 - 0.41 i) (0.63, 0.33 + 0.71 i)
e16 (0.94, -0.25 - 0.22 i) (0.94, 0.28 - 0.18i)

e

ab e′

e′1 e′13 e′14 e′15 e′16

e1 2
e13 3.2
e14 2.1
e15 5.6 2.3
e16 0.75 0.5

Table 25. Boundary data (ab, ξeb) of the curved geometry for the 4-simplex v6 = {1, 2, 4, 5, 7}

e

ξeb e′

e′10 e′14 e′17 e′20 e′21

e10 (0.20 + 0.91 i, 0.07 - 0.35 i)
e14 (-0.55 + 0.68 i, -0.16 - 0.47 i)
e17
e20 (0.76, 0.22 - 0.61 i) (0.74, 0.57 - 0.36 i) (0.85, 0.52 - 0.1 i)
e21 (0.95, -0.31 + 0.07 i) (0.39, 0.89 - 0.23 i)

e

ab e′

e′10 e′14 e′17 e′20 e′21

e10 2
e14 0.5
e17
e20 2.1 5.4 2.4
e21 0.69 3.5

Similarly, the volume formula of the Euclidean tetrahedron is given by

Vτ =
(−1)3+1

23(3!)2
det(Cτ ) (D.3)

here, Cτ is the Cayley–Menger matrix for the tetrahedron, which is a 5× 5 matrix defined similarly

as the above.

Given a⃗ and b⃗ as timelike normal vector of two tetrahedra τa, τb of the 4-simplex σ, the Lorentzian

dihedral angles are [62, 63]

θt(σ) = sgn(⃗a · b⃗) cosh−1

(
sgn(⃗a · b⃗) a⃗ · b⃗

|⃗a||⃗b|

)
, sgn(⃗a · b⃗) =

√
(⃗a · b⃗)2

a⃗ · b⃗
. (D.4)

In the 4-dimentional triangulation, the hinge of the angle is a triangle denoted by t. Given a triangle

t, it is shared by τa and τb, and st̄ is the length square of the segment opposite to the triangle t in σ.

For example, in the 4-simplex σ = (12345), the tetrahedra τa = (1234) and τb = (1235) share the

triangle t = (123). Then t̄ is the segment (45). The dihedral angles w.r.t t are given by [64]

θt(σ) =

√(
1
Vt

∂Vσ

∂st̄

)2

1
Vt

∂Vσ

∂st̄

cosh−1




√(
1
Vt

∂Vσ

∂st̄

)2

1
Vt

∂Vσ

∂st̄

32·42
Vt

∂Vσ

∂st̄√
32

Vτa

Vt

√
32

Vτb

Vt


 (D.5)

Here, V are volume square (Vt = a2t is the area square) and s is length square. As we only consider
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Table 26. The pseudo-critical point (g0ve, z
0
vf ) for the 4-simplex v1 = (1, 2, 3, 4, 6)

e e1 e2 e3

g0v1e

(
0.96 0.40 + 0.02i
0 1

) (
0.99 −0.06− 0.16i
0 1

) (
0.78 −0.12− 0.71i

−0.00024− 0.00065i 1.29

)

e e4 e5

g0v1e

(
−0.0016− 0.0001i −1.0i

−0.97i 0.34 + 0.12i

) (
0 −1.1i

−0.91i 0.46 + 0.12i

)

e

|z0v1f ⟩ e′

e′1 e′2 e′3 e′4 e′5

e1 (1,-0.95 + 0.70i) (1,-0.82 + 0.45i)
e2 (1, 0.87 - 0.50i) (1,-0.34 + 0.95i)
e3 (1,-0.1 + 1.5i) (1,2.5 + 6.0i)
e4 (1,-0.92 + 0.40i) (1,0.3 + 2.1i)
e5 (1,-0.14 + 0.75i) (1,0.2 - 1.4i)

Table 27. The pseudo-critical point (g0ve, z
0
vf ) for the 4-simplex v2 = (1, 2, 3, 5, 6).

e e2 e6 e7

g0v2e

(
0.99 −0.05− 0.15i

0.0024− 0.0112i 1.01

) (
0.98 0.30
0 1

) (
1.0 −0.029 + 0.048i
0 0.97

)

e e8 e9

g0v2e

(
0.0008 + 0.00056i −1.0i

−1.0i −0.0054− 0.0011i

) (
0 −0.98i

−1.0i −0.029 + 0.016i

)

e

|z0v2f ⟩ e′

e′2 e′6 e′7 e′8 e′9

e2 (1,-0.1 + 1.5 i) (1,-0.14 + 0.75i)
e6 (1,0.87 - 0.48i) (1, -1)
e7 (1,-0.86 - 0.07i) (1,1.8 + 2.6i)
e8 (1,-0.33 + 0.94i) (1,-1.8 - 2.6 i)
e9 (1,-1.09 - 0.05i) (1,4.7 + 6.9i)

Table 28. The real critical point (g0ve, z
0
vf ) for the 4-simplex v3 = (1, 2, 4, 5, 6).

e e3 e7 e10

g0v3e

(
0.78 −0.13− 0.72i
0 1.29

) (
1.04 −0.030 + 0.046i

−0.0010 + 0.0018i 0.96

) (
0.96 0.38
0 1

)

e e11 e12

g0v3e

(
−0.00013− 0.0001i −1.2i

−0.85i −0.15 + 0.11i

) (
0 −1.8i

−0.55i −0.16 + 0.12i

)

e

|z0v3f
⟩ e′

e′3 e′7 e′10 e′11 e′12

e3 (1,-0.94 + 0.69i) (1,0.3 + 2.1i)
e7 (1,-0.1 + 1.5i) (1, 4.9 + 7.0i)
e10 (1,-0.86 - 0.07i) (1,-0.45 - 0.08i)
e11 (1,1.8 + 2.6i) (1,-0.68 - 0.15i)
e12 (1,2.5 + 6.0i) (1,5.7 + 8.1 i)

Table 29. The pseudo-critical point (g0ve, z
0
vf ) for the 4-simplex v4 = (1, 2, 3, 4, 7).

e e1 e13 e14

g0v4e

(
0.96 0.42 + 0.04i

0.02− 0.02i 1.05

) (
0.84 0.82 + 0.2i
0 1.2

) (
0.68 1.3 + 0.9i

−0.0023 + 0.0038i 1.5 + 0.01i

)

e e15 e16

g0v4e

(
0.0032− 0.0015i −1.3i

−0.79i −0.34− 0.92i

) (
0 −1.3i

−0.77i −0.49− 1.01i

)

e

|z0v4f
⟩ e′

e′1 e′13 e′14 e′15 e′16

e1 (1,0.88 - 0.46i) (1,-0.91 + 0.40 i)
e13 (1,-0.92 + 0.75i) (1, -0.73 + 0.54i)
e14 (1,-0.94 + 0.68i) (1,-0.94 + 0.77i)
e15 (1,-0.83 + 0.56i) (1,-1.1 - 1.2i)
e16 (1,-0.82 + 0.45i) (1,-1.0 + 0.81i)

the space-like triangles and tetrahedra, so all the volume square are positive. The above formula

can be simplified as

θt(σ) =

√(
1
Vt

∂Vσ

∂st̄

)2

1
Vt

∂Vσ

∂st̄

cosh−1



42
√(

1
Vt

∂Vσ

∂st̄

)2

√
Vτa

√
Vτb


 . (D.6)

Here, the volume of 4-simplex, tetrahedra and areas of triangles can be computed by following

Eq.(D.1) and Eq.(D.3). Given any simplicial complex K, Regge action can be defined as

SRegge =
∑

σ⊂K

∑

t⊂σ

atθt(σ), (D.7)

where at are the areas of the triangles t and θt is the dihedral angle of triangle t.
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