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ABSTRACT: The complex critical points are analyzed in the 4-dimensional Lorentzian Engle-Pereira-
Rovelli-Livine (EPRL) spinfoam model in the large-j regime. For the 4-simplex amplitude, taking
into account the complex critical point generalizes the large-j asymptotics to the situation with
non-Regge boundary data and relates to the twisted geometry. For generic simplicial complexes, we
present a general procedure to derive the effective theory of Regge geometries from the spinfoam
amplitude in the large-j regime by using the complex critical points. The effective theory is analyzed
in detail for the spinfoam amplitude on the double-Aj simplicial complex. We numerically compute
the effective action and the solution of the effective equation of motion on the double-A3 complex.
The effective theory reproduces the classical Regge gravity when the Barbero-Immirzi parameter ~
is small.
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1 Introduction

The perturbative expansion is widely used in quantum theory to make approximate predictions
order by order in certain parameter. The method of perturbative expansion is well-connected to
the path integral formulation, whose stationary phase approximation results in the semiclassical
expansion in h. By the stationary phase approximation, the path integral is approximately computed
by the dominant contribution from the critical point and neighborhood. The critical point is the
solution of the equation of motion, which is obtained from variating the action in the path integral.
Given a path integral in terms of real variables, traditionally, the semiclassical expansion only takes
into account critical points inside the real integration cycle. However, the recent progress in many
research areas demonstrates that the complex critical point generically away from the real integration
cycle plays a crucial role in the semiclassical expansion of the path integral (see e.g. [1-6]). The



complex critical point is the critical point of the analytically continued path integral, where the
integrand is analytically extended to the complexification of the real integration cycle.

The method of stationary phase approximation has been applied extensively to the spinfoam
amplitude in Loop Quantum Gravity (LQG) (see e.g. [7—11]). The importance of the complex
critical point has been demonstrated in the recent progress in the semiclassical analysis of spinfoam
amplitude [12-14]. A key result is that the semiclassical curved spacetime geometry can only emerge
from the complex critical point of the spinfoam amplitude. Taking into account the complex critical
point provides the resolution to the long-standing “flatness problem”, i.e., the problem of discovering
only the flat spacetime geometry in the spinfoam amplitude. This problem turns out to be the
confusion from ignoring the complex critical point.

The present work continues from the earlier work [12] and further study the complex critical
points and their implications in spinfoam amplitude. The discussion in this work focuses on
the 4-dimensional Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) spinfoam model. Our results
demonstrate the impact of the complex critical points mainly from two perspectives:

e At the level of one 4-simplex amplitude, taking into account the complex critical point
generalizes the large-j asymptotics by Barrett et al [8] to the case of non-Regge boundary data.
The geometry of the non-Regge boundary data gives the boundary tetrahedra that are glued
only with area-matching but without shape-matching, in contrast to the Regge boundary data
that requires the shape-matching condition (as well as the orientation matching condition) and
determines the Regge boundary geometry. The generalized 4-simplex amplitude asymptotic
behavior depends analytically on the boundary data. This analytic dependence is not manifest
in the original asymptotic formula in [8]. The computation of the generalized asymptotic
behavior relies on the numerical method. The discussion in Section 4 provides the general
algorithm of computing the complex critical point of the amplitude, and demonstrates the
numerical results of the asymptotics for a 1-parameter family of non-Regge boundary data.

e Based on the application of complex critical points, we develop a formalism to derive the
effective theory of Regge geometry from the large-j spinfoam amplitude. As the result, given
a simplicial complex I with M internal segments, the spinfoam amplitude A(K) with Regge

boundary data reduces to the integral over the internal line-segment lengths 7, I =1,--- , M,
M -
A(K) ~ / [[dutn) O n+0a/n),  A>1, (1.1)
I=1

within the neighborhood of the integration domain of A(K). A is the scaling parameter of
spins jp. ed () with the effective action S (l_j comes from evaluating the analytically continued
integrand of A(KC) at the complex critical point, which depend analytically on /;. The integral
in (1.1) reduced from A(K) is over the Regge geometries with the fixed boundary condition.
The equation of motion 0;,S (f) = 0 gives the effective dynamics of Regge geometry implied
by the spinfoam amplitude. The formalism of deriving the effective theory is discussed in
Section 3. In Sections 6 and 7, we apply the formalism to the double-Aj simplicial complex,
which contains only a single internal segment, i.e., M = 1. The complex critical points and the
effective action S (f) are computed numerically following the general algorithm. The spinfoam
amplitude depends on the Barbero-Immirzi parameter y. The computations are performed
for many different values of the Barbero-Immirzi parameter 7, ranging from small to large.

The resulting S (f) are compared with the Regge action on the double-Agz complex. S (f) is
well-approximated by the classical Regge action in the small-y regime, and S(I) provides the
correction to the Regge action with increasing . The solutions of the effective dynamics

are computed numerically for different values of «v and compared to the solution of Regge
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equation. The solution from S(I) well-approximates the Regge solution for small v and gives
larger correction when increasing . Recovering the classical Regge action and solution from
the effective dynamics of spinfoam amplitude gives evidence of the semiclassical consistency of
spinfoam quantum gravity.

Recovering the classical Regge gravity from the spinfoam amplitude with small v has been
argued earlier in [10, 15-20]. Our numerical result confirms this property for the spinfoam amplitude
on the double-A3 complex.

The numerical computations are performed for different +’s ranging from small to large. Fixing
the boundary data, the solutions of the effective dynamics give a trajectory in the space of Regge
geometries parametrized by . The trajectory approaches the solution of the classical Regge equation
for small v as mentioned above. For large =, the trajectory stablizes at the Regge geometry that is
different from the classical Regge solution. It suggests that the effective theory for large ~ differs
significantly from the Regge gravity. The solutions both at small and large v give non-suppressed
contributions to the spinfoam amplitude. In particular, the solutions for large ~ violate the known
bound |y, < A~1/2 [11-13] (8, is the deficit angle of the Regge geometry), which is valid for
non-suppressed contributions to the amplitude with finite and small ~.

Studying the complex critical points in the spinfoam amplitude closely relates to the recent
progress in numerical studies of spinfoam amplitudes [21]. Given the complexity of the spinfoam
amplitude, the complex critical point and the corresponding contribution to the spinfoam amplitude
has to be computed numerically. The numerical analysis of complex critical points connects to
the Lefschetz-thimble and Monte-Carlo computation for the spinfoam integral [22], because every
complex critical point associates to an integration cycle known as Lefschetz thimble, and the integral
on the Lefschetz thimble collects all contributions associated to the complex critical point. Another
related numerical result is the semiclassical expansion of the spinfoam amplitude to the next-to-
leading order from the stationary phase approximation [23]. We also would like to mention a few
other numerical approaches for spinfoam quantum gravity, including the “sl2cfoam-next” code for
the non-perturbative computation of the spinfoam amplitude [24-26], the effective spinfoam model
[13, 27], the hybrid algorithm [28], and the spinfoam renormalization [29, 30], etc.

This paper is organized as follows: Section 2 gives a brief review of the integral representation of
the EPRL spinfoam amplitude and the definition of the large-j regime. In Section 3, we define the
real and complex critical points and discuss the general formalism of deriving the effective dynamics
of Regge geometry. Section 4 studies the complex critical point of the 4-simplex amplitude and
generalizes the large-j asymptotics to include the non-Regge boundary data. Section 5 revisits
the known results on the spinfoam amplitude on Az complex as the preparation for analyzing the
amplitude on the double-A3 complex. Section 6 discusses the complex critical point in the spinfoam
amplitude on the double-As complex and computes the effective action. Section 7 discusses the
numerical solution of the effective dynamics on the double-A3 complex. In Section 8, we conclude
and discuss some outlooks.

2 Spinfoam amplitude

A 4-dimensional simplicial complex IC contains 4-simplices v, tetrahedra e, triangles f, line segments,
and points. The internal and boundary triangles are denoted by h and b (f is either h or b). The
SU(2) spins jn, jp € Np/2 are assigned to internal and boundary triangles h,b. The spins label the
quanta of triangle areas. The LQG area spectrum indicates that the quantum area of triangle f is
given by ay = 81yGh\/j; (55 + 1) [31, 32]. In the large-j regime, which we will focus on, the area
spectrum gives ay ~ 8myGhjs, or ay ~ vj; when we set the unit such that 87Gh = 1.



The Lorentzian EPRL spinfoam amplitude on K is given by summing over internal spins {jj }:

K) = Z Hd\j‘:(f)\-i-l /[dgdz] es(jhvgvcyzvjf?jb1§eb)7 (2.1)

{in} h

[dgdz] = ] dgee [] d9%.,, (2.2)
(ve)  (v.f)

where dj, = 2, +1. The boundary states are SU(2) coherent states |jp, &) Where &ep = uep > (1,0)7T,
uep € SU(2). jp and & are determined by the area and the 3-normal of the boundary triangle b.
The summed/integrated variables are g,. € SL(2,C), 2,5 € CP', and jj,. dgee is the Haar measure
on SL(2,C),

dg =

dBdB*dydy*dsds* _(ap
e , Vg = (7 5 ) €SL2,C), (2.3)

and df),,, is the scaling invariant measure on CP':

) (Zo dz1 — 21 dZo) AN (20 dzy — z1 dzo)

1
szv e = 35 )
! 2 <ZU€f7 Zvef> <Zve’f; Zve’f>

Yz, = (20,21)7, (2.4)

where Zye; = g} Zvf, (-,-) is the Hermitian inner product on C2, and z,; is a 2-component spinor
for the face f.

The spinfoam action S in Eq.(2.1) is complex and linear to jp, j in an expression of the form
[33],

= Sk + SRR+ S r @5
e’ (e,b) (e’,b)
Zveb geb> . 2
Fout = 21n<7’+l In||Zyes||”, 2.6
(e,b) ||Zve || gl || b” ( )
in <£eb7 veb> . 2
F(e,b) =2In———— ||Zve ” Z’Yh’l”Zv/ebH ) (27)
(Zoergs Zwers) . N Zoes]
Fep=2h——"7F———+iyln ———. (2.8)
0 1Zoer 5[ Zurers| 1Zorer I

Here, e and ¢’ are boundary and internal tetrahedra, respectively. In the dual complex K*, the
orientation of df* is outgoing from the vertex dual to v and incoming to another vertex dual to v’,
and the orientation of the face f* dual to f induces Jf*’s orientation. As for the logarithms in the
spinfoam action, we fix all the logarithms to be the principal values. The derivation of the spinfoam
action S is given in [33].

The spinfoam amplitude in the formulation (2.1) has the following three types of continuous
gauge degrees of freedom, and thus some gauge fixings are needed to remove the redundant degrees
of freedom:

e Firstly, there is SL(2,C) gauge transformation at each v:
Jue > x;lgve, Zyf — xlzvf, x, € SL(2,C). (2.9)

To remove this gauge degree of freedom, we fix one g, to be a constant SL(2,C) matrix for
each 4-simplex. The amplitude is independent of the choices of constant matrices.



e Secondly, there is SU(2) gauge transformation on each internal e:
Gv'e = gv’ehgl, Gue = gveh(?la he € SU(Q) (210)

To fix this SU(2) gauge freedom, one can parameterize one of two SL(2,C) elements: gy, or
gure Dy the upper triangular matrix

A
k= 0 A , AeR\ {0}, neC (2.11)
Here, we use the fact that any g € SL(2,C) can be decomposed as g = kh with h € SU(2) and
k an upper triangular matrix in Eq.(2.11).

e Thirdly, for each z,#, there is the scaling gauge freedom:
Zyf )\yfzvf, )\vf e C. (2.12)

Here, we fix the gauge by setting the first component of z,; to 1, i.e. z,; = (1, ozvf)T, where
Quf € C.

Furthermore, in Eq.(2.1), we assume the summation over internal j, € Ny/2 is bounded by j™a*.
In some situations, j™2* is determined by boundary spins j, via the triangle inequality, otherwise
j™2% are imposed as the cut-off to regularize the infinite sum over spins. To prepare for the stationary
phase analysis, we would like to change the summation over j, in Eq.(2.1) to integrals. The idea is
to apply the Poisson summation formula. Firstly, we replace each d;, by a smooth compact support
function 7(_, jmax ¢ (jn) satisfying

. V()41 ) . . . .

T[—e,jmax+e] (]h) - d.|7h(f)| , for jp € [O’]max}’ and T[—e,jmax+€] (]h) =0, for jp ¢ [76’jmax + 6],
for any 0 < e < 1/2. This replacement does not change the value of the amplitude A(K) but makes
the summand of > n smooth and compact support in j;. Then, by applying the Poisson summation

> s =3 [ dngimy e,

nez kEZ

formula,

the discrete summation over jj, in Eq.(2.1) becomes summing of integrals:

AK) = Y / T din [T 2i-e o (i) / [dgdz] 5", (2.13)
h h

{kn€Z}

SW =S+ 4mi > jukn. (2.14)
h

By the area spectrum, the classical area ay and small /# imply the large spin jf > 1. This motivates
understanding the large-j regime as the semiclassical regime of A(XC). Then, to probe the semiclassical
regime, we scale uniformly both the boundary spins j, and the internal spin cut-off j™* by

Jo = Aje,  JU 2 AT A, (2.15)

so S — AS as a result from S being linear in jp, j,. As a consequence, the spinfoam amlitude A(K)



in the large-j regime is

. . (k)
A(K) = Z /Hd]hH2>\T[—e,)\jma"+e]()\7h)/[dgdz] s, (2.16)
{knez} "% h h
SW =8+ 4mi " jukn, (2.17)
h

by the change of integration variables j;, — Ajn, and jp is continous.

3 Complex critical point and effective dynamics

The integral in (2.16) at each kj, can be analyzed with the stationary phase method in the regime
A > 1. By the standard argument of the stationary phase approximation, by fixing the boundary
data, the integral with A > 1 is approximated by the dominant contributions from the solutions of
critical equations and neighborhood. In the case of the integrals in (2.16), the critical equations are

Re(S) = 0,5 = y,,5 =0, (3.1)
8j,LS = 471'i/<3h7 ky € 7.

The solutions inside the integration domain are denoted by { }h, Gve, Zyf }. The integration domain is
viewed as a real manifold, and the integration variables are real and imaginary parts of the matrix
elements in g, and z,y. We call { ]D'h, Gue, Zo s} the real critical point accordingly.

The existence of the real critical point in (2.16) depends on the boundary condition. The real
critical point may not exist for the generic boundary condition. We know that S is a complex
action with n real variables x, and 0,5 = 0 gives n complex thus 2n real equations, which is
over-constrained for n real variables. Consequently, the critical equations (3.1) and (3.2) coupled
with one more equation Re(S) = 0 result in the nonexistence of the general real solution, unless for
some special boundary conditions.

As a solution to this problem of over-constrained equations, the integration variables have to
be complexified, and action S has to be analytically continued to the complex variables z. We are
only interested in the integration domain where the spinfoam action S is analytic. The analytically
continued action is denoted by S. On the space of complex variables, the complex critical equation
0.S = 0 is not over-constrained anymore because it gives n complex equations for n complex
variables. Re(S) = 0 is dropped when we study S instead of S. In the space of complex variables,
the solutions of 9,8 = 0 are called the complex critical points, which play the dominant role for the
asymptotics of A(K) in the case that the real critical point is absent.

Before discussing the complex critical point, let us firstly review some known results from the
critical equations (3.1) and (3.2) with the boundary data corresponding to Regge geometry on
OK. The real solutions of the part (3.1) have been well-studied in the literature [7-9, 33]. We call
these solutions the pseudo-critical points. As one of the results, the pseudo-critical point satisfying
a nondegeneracy condition endows a Regge geometry on K with certain 4-simplex orientations.
When focusing on the pseudo-critical points endowing the uniform orientations to all 4-simplices,
further imposing (3.2) to them gives the accidental flatness constraint to their corresponding Regge
geometries, i.e., every deficit angle d; hinged by the internal triangle h [11, 34] satisfies:

’Y(Sh = 47‘(‘]{1}“ kn € Z. (3.3)

When kp, = 0, §;, at every internal triangle is zero, and the Regge geometry endowed by the real
critical point is flat. Eq.(3.3) is a strong constraint to the allowed geometry from the spinfoams and



can be satisfied only for special boundary conditions that admit the flat bulk geometry (mod 47Z).
The accidental flatness constraint is consistent with the above argument about over-constrained
equations, and it has been demonstrated explicitly in the example well-studied in, e.g., [12, 35]. If
one only considers the real critical point for the dominant contribution to A(K), Eq.(3.3) would
imply that only the flat geometry (mod 47Z) exists. This confusion leading to the flatness problem
results from ignoring the complex critical point in the stationary phase analysis.

In the following discussion, we show that the large-A spinfoam amplitude does receive dominant
contributions from the complex critical points away from the real integration domain. The complex
critical points precisely correspond to the curved Regge geometries emergent from the spinfoam
amplitude. Interestingly, the application of complex critical points leads to a derivation of effective
dynamics of Regge geometry from the spinfoam amplitude. The emergent curved Regge geometries
are constrained by the effective dynamics. We firstly provide a general formalism below, then we
apply the formalism to the concrete models with several different K in the following sections.

Motivated by relating to the dynamics of Regge geometry, we separate the integral in the
amplitude (2.16) into two parts. Suppose K has M internal segments, the dynamics of Regge
geometry should relate to the dynamics of these internal segment-lengths. Motivated by this, we
separate M internal areas j,, (h, = 1,---, M) from other j; (h=1,--- ,F — M), where jj,, relates
to the segment-lengths. Here, F' is the total number of internal triangles in I, and M equals the
number of the separated internal segments. The spinfoam amplitude (2.16) then becomes

M
AK) = Y [ TT @25 Gin) (3.4)

{knt” ho=1

where Z,{Ckh}, called the partial amplitude, is given by
, . *
2 () = [ T in [T @A) [ldgaalers”. (3.5)
h h

We can then change variables from the areas jp, to the internal segment-lengths {I 1}?": 1, With T
denoting the internal segment. The internal triangles h, = 1,--- , M are suitably chosen such that
the change of variables is well-defined in the interested region, e.g. a neighborhood of { 5';,,0} of
{jh, Gve, Zys } corresponding to the flat geometry. Indeed, the chosen M areas {ji,} are related
to M segment-lengths {l;} by Heron’s formula. Inverting the relation between {jho}ﬁ/[o _, and
{I;}M | defines the local change of variables (jn,,j,) — (Ir,7) in a neighborhood K of a given
Regge geometry in the integration domain of (2.16). This procedure is just changing variables
without imposing any restrictions. When focusing on the integrals in the neighborhood K, we have
dMAN 5, = 7.dMip dF =M, where J; = det(djp, /0l1) is the jacobian obtained by the derivatives
of Heron’s formula. Therefore, the contribution to A(X) from the neighborhood K is expressed as

M
3 /Il"[l Al JZE 1), (3.6)

{kh}

The partial amplitude Z,Ckh} has the external parameters r = {1, jp, &ep } including not only the
boundary data j, &, but also internal segment-lengths [;. The above decomposition of j,-integrals
closely relates to the earlier proposal [36, 37] (see also [38] in the context of area Regge calculus). I;
parametrizes a submanifold .#pegqe in the space of j,. The submanifold .#Zgcgqe collects jp,’s that
can be interpreted as areas determined by the segment lengths I; (by Heron’s formula). Generically
the space of jj is much larger than the space of segment lengths [39]. j; parametrizes the direction



transverse to .#Regge-

To study the partial amplitude Z,{Ckh}, we apply the theory of stationary phase approximation
for complex action with parameters [40, 41]. In the following, we only consider the partial amplitude
with kp = 0, while the situation with other k; can be studied analogously. We consider the large-\
integral [, e?("®)dNz, and regard r as the external parameters. S(r,z) is an analytic function of
reU Cc R,z € K CRY. U x K is a neighborhood of (#,1), where & is a real critical point of
S(7,2). S(r,z) with z = z + iy € C¥ is the analytic extension of S(r, ) to a complex neighborhood
of . The complex critical equation is

0.8 =0, (3.7)

whose solution is z = Z(r). Here, Z(r) is an analytic function of r in the neighborhood U. When
r =+, Z(#) = & reduces to the real critical point. When r deviates away from 7, Z(r) € CV can
move away from the real plane RY, thus is called the complex critical point (see Figure. 1). With

Im(z)
~ -7 T~ .
e
« Z@r) .
// e \\
{ o !
xX=Z@F) | R@
\ ; /
N
S ///

Figure 1. The real and complex critical points & and Z(r). S(r, z) is analytic extended from the real axis
to the complex neighborhood illustrated by the red disk.

this in mind, we have the following large-A asymptotic expansion for the integral

AS(r.Z(r)

AS(r) g N, — 1 T |
=) Jaor ootz Y .

where S(r, Z(r)) and 62 ,S(r, Z(r)) are the action and Hessian at the complex critical point. In
addition, the real part of S is zero or negative. More precisely, there exists a constant C' > 0 such
that

Re(S) < —C|Im(2)|2. (3.9)

See [40, 41] for the proof of this inequality. This inequality indicates that Re(S) = 0 resulting in the
oscillatory phase in (3.8) can only happen at the real critical point, where Im(Z) = 0 and r = 7.
When r deviates from 7 with a finite distance, such that Im(Z) is finite and Re(S) is negative,
(3.8) is exponentially suppressed when scaling A to large. The asymptotic formula (3.8) depends
analytically on r and interpolates the two different behaviors smoothly in the parameter space of r:

e The critical point is not real, then Re(S) < 0, which gives the exponentially decaying amplitude.
e The critical point is real, then Re(S) = 0, and thus e*® gives an oscillatory phase.

These two distinct behaviors are obtained by fixing r and scaling A. But since the asymptotic
formula (3.8) depends on r analytically, we can vary r simultaneously as scaling A. Then we can



arrive at the regime where the asymptotic behavior (3.8) is not suppressed at the complex critical
point. Indeed, for any large A, there always exists r # 7 but sufficiently close to 7, such that Im(Z)
and Re(S) are small enough, then e*® in (3.8) is not suppressed at the complex critical point.

The importance of (3.8) is that the integral can receive a dominant contribution from the
complex critical point away from the real plane. These complex critical points indeed give the curved
Regge geometries missing in the argument of the flatness problem. The parameter r including both
the boundary data and internal segment lengths determines the Regge geometry that is generically
curved. Hence the asymptotic formula (3.8) computes the weight of the Regge geometry contributing
to the amplitude and reduces A(K) in K to

1 % t T T
(A) /Edzlmew 214+ 0(1/N)] (3.10)

at each kj,. Here, A7 o< [],, (4jn) \%[det(—éizS/Qw)]_l/Q at Z(r), and r = {l1, jp, &b }. Given that
{l;} determines the Regge geometry on K, Eq.(3.10) is a path integral of Regge geometries with
the effective action S. The integration domain of I; includes curved geometries. The integral (3.10)
derived from the spinfoam amplitude defines an effective theory of Regge geometries. Indeed, if
we focus on the dominant contribution and neglect corrections of O(1/)), by the stationary phase
approximation of (3.10), the effective action S gives the equation of motion

oS
8—l1—0, I=1,--- M, (3.11)
which determines the effective dynamics of Regge geometry. S is generally complex, so (3.11) should
be analytically continued to complex [7, and thus the solution is generally not real. As we are going
to see in Section 7, we are mainly interested in the regime where the imaginary part of the solution
l1 is negligible, then the solution has the interpretation of the Regge geometry.

In the following, we make the above general analysis concrete by considering the examples
of spinfoam amplitudes on a single 4-simplex and the double-A3 complex. We also revisit briefly
the existing results on Az complex for the completeness. We compute numerically the complex
critical points and S, confirming the contribution of the complex critical points to the spinfoam
amplitude. In particular, the double-A3 model corresponding to M = 1 exhibits the non-trivial
effective dynamics of the Regge geometries. The effective dynamics approximates the classical Regge
calculus in the small-y regime.

4 Four-simplex amplitude

This section applies the above general procedure to the simplest situation: the 4-simplex amplitude.
In this case, there is no internal triangle: F' = M = 0. The external parameter r only contains the
boundary data r = (jp, ep). The 4-simplex and its dual diagram are illustrated in Figure 2 (a) and
(b). The points of the 4-simplex v are labelled by (1,2,3,4,5). The five tetrahedra on the boundary
are labelled by

{ela €2, €3, €4, 65} = {(17 27 37 4)7 (17 2a 3) 5)7 (17 27 4) 5)7 (1a 3) 47 5)7 (27 3) 47 5)}
These tetrahedra carry group variable g,. € SL(2,C). The triangle is shared by the tetrahedra and

carries an SU(2) spin jy, e.g., the tetrahedron e; = (1,2, 3,4) and the tetrahedron e, = (1,2, 3,5)
share the face f1 = (1,2,3).

2The shared faces are labelled by {fl’ f2’ ceey flo} = {(17 2, 3)7 (17 2, 4)’ (17 2, 5)7 (1) 3, 4)7 (1’ 3, 5)7 (27 3, 4)) (27 3, 5)’ (37 4, 5)}
For convenience, in this section, the notations e and f mean that e € {e1,...,e5} and f € {f1, ..., fio}-



(a)

Figure 2. Panel (a) plots the 4-simplex v = (1,2, 3,4,5). The boundary comprises five tetrahedra e; sharing
ten faces f;2. Panel (b) is the dual complex of the 4-simplex. Five boxes correspond to boundary tetrahedra
carrying gve € SL(2,C). The strands correspond to triangles carrying spins js. The circles as endpoints of
strands carry boundary states &.¢. The arrows represent the orientations of strands.

4.1 The amplitude and parametrization of variables

According to (2.1), the EPRL 4-simplex amplitude with the boundary state has the following
expression [7-9, 42-44):

. d;
Av (jfa fef) = / H dgve 6i03 (gvel) [Cpl)lo eS H ’/_jrf dQZuf . (41)
e f

Here, all triangles are on the boundary, j; = j,. To fix the SL(2,C) gauge, gue, is fixed to be
constant matrix diag(i, —i) (the timelike normal of the reference tetrahedron ey is past-pointing).
The integrand in (4.1) is written as an exponential e with the action

<Zve’f7 Zve’f> ) (42)
<Z'uef7 Zvef>

. <§ef7Zvef> <Zve/fa€e’f> .

S D A e+ 99T

The orientations of dual faces follow from Figure 2(c). To study the large-j behavior of the amplitude,

we scale all boundary spins j; — Aj; by the parameter A > 1. The scaling of spins results in

the scaling of action S + AS, such that the integral (4.1) can be studied by the stationary phase

approximation. In the following, we firstly compute the real critical point {gye, 2,7}, which is the

solution of the critical equation (3.1) and then describe the algorithm to compute the complex
critical point in the neighborhood.

To obtain the real critical point, we adopt the 4-simplex geometry used in [22, 23, 45] to generate

the boundary state. The coordinates of the five vertices P, in Figure 2(a) in the Minkowski spacetime
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are set as
Py =(0,0,0,0), P, = (0,0,0,-2v5/3"%) , Py = (0,0,-3"/4v/5, ~3'/1V5)
Py = (0, —2V10/3%/4, —/5/33/4, —\/5/31/4) (4.3)
P, = (_3—1/410—1/27 —/572/334, /5334, _\/5/31/4)

Then, the 4-d normals of the tetrahedra are
5 3 5 1 2
N, = _1707070»Ne =\ 7= 77030 aNe = y T ; 30
- )2<@V22>3(mmm>
N _< 5 1 11 ) N _( 5 1 1 1 )
“ w220 V66 VB3 VIT) T \V22' Ve6T V33 VIl

The spinor &5 relates to the 3d normals ney by ney = (€, 6€er) (7 are Pauli matrices). The Regge
boundary data of ten areas _7 f, 3d normals 7.y and the corresponding spinors &y of the 4-simplex

(4.4)

are listed in Appendix A.

With the Lorentzian Regge boundary data # = (j f,fe r), we solve for the real critical point
(Gves Zvy) which satisfies Re(S) = d;,.S = 9.,,S = 0. The results in the literature [8, 9] show that
there are exactly 2 real critical points, which have the interpretations as the geometrical 4-simplex
with opposite 4-orientations. The 4-simplex geometrical interpretation of the critical points results
in the same geometry as the one given by (4.3). We compute the real critical point following the
strategy described in [12, 14, 45], where the boundary data and critical points for a single 4-simplex
are studied in detail. The data of the real critical point (gue, Zys) is given in Appendix A.

By fixing the re-scaling gauge of z,f, each z,s can be parameterized with two real variables

Tyfs Yof:
. T
Zyf = (LIUf + lyvf) . (4.5)
Jve;»t = (2,3,4,5) are parameterized as

(1 +(we +iyse) V2 (@l +iy5e) /V2 )

s .3 1+(a2 +iys. ) (a9 +ivd. ) /2
(xve + lyve) /\/i 1+(I},C+iy%c)/ﬁ

1 1 2 2 3 3
Zyer Yver Tuer Yver Tver Yve € R. (46)

Therefore, the 4-simplex action is a function in terms of all real variables & = (Tu f, Yo s Toe, Ybes Toes Yoes Togs Yoo )

for all fin {f1,...fi0} and e in {eq,..e5}. The real critical point z,¢ is in the form z,; = (1, é’zvf)T7
where &5 = Z,r + i,y € C. It is convenient to set one of the critical points at the origin
2 ={0,0,...,0} by modifying (4.5) and (4.6) to

Z’Uf = (17 Ooévf + -va + lyvf)T 9
. ( L+ (2 +iyse) /V2 (2. +iype) /V2 )
Gue = Gue .

3 .3 1+(x12)c+iy121a)(z3e+iygc)/2
(w0 +i93c) V2 L+ (bt vt/ V2
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With the parameterization in (4.7), the measures dg,. and dQ,,; are

1 da) do? dad dy, . dy2.dyd,

d ve — )
Jve = 1984 ’1 L ot [?
V2 (4.8)
dxvf dyvf
dQ,,, = .
! <Zvef>Zvef> <Zve’f7Zve’f>
As a result, the 4-simplex amplitude is in the form
A, = /d44x w(z) NS (4.9)

where r = (jr,&.s) are boundary data. The integral is 44 real-dimensional. In the following, we
focus on a neighborhood K of &. We have defined the local coordinates x € R** covering K.

4.2 Deviating from the shape-matching

The amplitude A, has the real critical points with the non-degenerate Regge boundary data r.
However, the real critical point disappears when the boundary data deviates away from 7. Considering
a neighborhood U of 7 in the space of boundary data, such that any r € U (different from 7) does
not correspond to any Regge geometry or vector geometry®. If we fix » € U and scale the spins with
a large A, there are two possible behaviors for the amplitude [8, 43]

e For r = 7, the amplitude has two critical points whose geometrical interpretations have
opposite orientations. S evaluated at critical points gives the Regge action of the 4-simplex
with opposite sign. Therefore, the asymptotic amplitude of the 4-simplex gives two oscillatory
phases

Ay o2 X712 (NP Fresse  N_ 7 iM5Rense ) | (4.10)

e For r # 7, it leads to no solutions to (3.1) and the exponentially suppressed amplitude.

To interpolate smoothly between the oscillatory phases and the exponential suppression in the
asymptotics (4.10), the discussion in section 3 suggests making r vary and introducing the complex
critical points.

The boundary data 7 = { ] £ ée 7} of the Lorentzian Regge geometry satisfies the shape-matching
condition, i.e., five geometrical tetrahedra determined by 7 on the boundary are glued with the
triangles matching in shapes. Consider the 4-simplex action S(r,z) in the neighborhood K x U of
(#,4). We define z € C* as the complexification of x, and S(r, 2) extends holomorphically S(r, )
to a complex neighborhood of . To avoid confusion, we note that the integration variables = are
complexified, while the boundary data r = (jy, &) is real.

Next, we let » = 7 + dr vary, such that the shape-matching condition violates. We describe
below a parametrization of the tetrahedron shapes. A tetrahedron in R? is determined by 4 points
{P,, Py, P., P;} up to a R? x O(3) symmetry. We gauge fix the R? x O(3) symmetry by choosing
P, at the origin, P, along the z axis, and P, within the (y,z)-plane. The last point P, is not
constrained. Given the tetrahedron’s segment lengths, the coordinates of the points are fixed in
R? by the above gauge fixing. For example, for the tetrahedron e, = {1,2, 3,5}, # implies that the
coordinates of the points in R? are given by

P, =(0,0,0), P,=(0,0,-3.40), P3=(0,—2.94,—1.70),

3In the Lorentzian EPRL spinfoam amplitude, the critical points corresponding to the non-degenerate Regge
geometry are isolated critical points.

- 12 —



Ps = (—0.651, —0.981, —1.70). (4.11)

All other four tetrahedra can be described similarly, and the coordinates of the points in R? are
determined by 7. The 3d face-normals 7 implied by the coordinates match with the data in Table 3
up to a simultaneous SO(3) rotation. The spinors £ associating with each face are given by

. T
= % <\/1 Fw, j%) , it 7= (z,y,w)T. (4.12)

When we deform the boundary data, we keep the areas j; = ] ¢ unchanged, while & are
deformed, such that the boundary data r is deformed to violate the shape-matching condition. We
move the vertices P, € R? to deform the tetrahedron shapes. For example, the vertices in (4.11) are
moved to new positions

Py =(0,0,0), P, =(0,0,-3.40+6wl?), Py=(0,-2.94+ 645", —1.70 + sw(?),
Py = (—0.651 + 62, —0.981 + 6312, —1.70 + sw'?). (4.13)

In the notations (5:1:1(-(1), 6yfa),§w§a), a=1,---,5 labels the tetrahedron, and ¢ = 1,--- ,5 labels the
variables associated to the vertex P;. There are 30 variables 5331(-“), 5yia),(5w§a) in total. We keep the
face areas unchanged. Then in each tetrahedron, Heron’s formula gives 4 constraint equations, each
corresponding to a face area. For example, in the tetrahedron es = {1,2,3,5}, the equations are

Az (6wS? 52 swl?) = 5
Aoy (5w 528?  5yl? 5w = 2
Augs (0952 6w 528, 5y swl?) = 2

@), (4.14)
5
Aoas (6w§2), 6y§2), 5w§2), 5339, 5yé2), 5wé2)) = 2.

At least in a neighborhood of the deformation, 5w52), 5y§2), 5w§2), 5xé2) can be solved in terms of

6yé2), §wé2) from (4.14). The shape of the tetrahedron is parameterized by 2 variables §yé2), §wé2).
This way of parametrization is convenient in our computation. However, it is different from
the known strategy, such as the Kapovich-Millson phase space [46] or using dihedral angles
[47]. For each tetrahedron, we adopt the same strategy. We have in total ten variables B =
(5yil),5w£1),5y§)2),5wé2), 5yé3), 5w§3), §y§4), (‘5wé4)7 5wé5),5wé5)) to parameterize the deformation of
five tetrahedra. The spinors &.¢ of each face can be expressed in terms of B according to (4.12).
At this point, the boundary data is 7(B) = (js,&s(B)). We insert 7(B) into the action S(r(B), z)
in (4.2), whose analytical extension is S(r(B),z). Then, the complex critical equations are
F(B,z) = 0,S8(r(B),z) =0, from which we solve for the complex critical point z(B).

The asymptotics of the 4-simplex amplitude with the boundary data violating the shape-matching
condition is given by (3.8). Here, the complex critical point z(B) inserting into the analytic continued
action gives S(r(B), z(B)). In contrast to the Regge action obtained from spinfoam asymptotics in
[8], S(7(B), 2(B)) is an action of the twisted geometry[48]. * Indeed, S(r(B), 2(B)) depends on the
degrees of freedom of semiclassical tetrahedra, which are not constrained by the shape-matching
condition. These degrees of freedom are beyond the Regge geometry and belong to the twisted
geometry of the boundary.

To solve the complex critical point, we can linearize (4.14) and obtain the linear solution

4The condition for shape matching differs from the shape matching condition discussed in [48]. In their work,
Freidel et al. [48] introduced an additional angle variable as a degree of freedom in twisted geometry, which is
canonically conjugate to the area variable. While these two conditions share an intuitive similarity, they are not
precisely identical.
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(5w§2), 6y§2), 5w§2), 6xé2)) in terms of 5yé2), 5wé2). We can also linearize the complex critical equation
at B = (0,---,0), and then solve for the complex critical point z = 2(")(B). The solution 2 (B)
is a linear function of the perturbations B. The coefficients in the linear function can be computed
numerically. Inserting this linear solution into the action, we obtain S(r(B), 2(")(B)) as a function
of B and expand it to the second order:

S(r(B), 2 (B)) = Q;;B'B + £,B + S (4.15)

where the coefficients 9,5, £; can be computed numerically. Sy is the spinfoam action evaluated
at the real critical point with B = (0,---,0). In Figure 3, we let B = (0, 070,5wé2), 0,0,0,0,0,0),
the red curves in (a) and (b) are the real part and imaginary part of S(r(B), 2("™)(B)) with (5wéz)
varying from -1 to 1.

The linear solution may have a large error when components in B are large. We apply the
Newton-Raphson method to numerically search for the solution, which is more accurate than the
linear solution. To compare with the linear solution in Figure 3, we still only focus on the deformation
of e3 = {1,2,3,5} and set 6yé2) = 0. We outline the procedure in the following.

For any given dwg ', we can numerically solve equations (4.14) for ((5w§a), 5y§a), (5w§a), 6xéa)).
There are multiple solutions. We select the solution that is within a neighborhood at (0,0, 0,0),
by requiring |§w? + dy3 + dw? + dz2| < 4|6w?|. The coordinates in (4.13) given by the solution
result in the 3d face normal vectors 77 and spinors £, which are the boundary data r violating the
shape-matching condition.

We apply the Newton-Raphson method to search for the complex critical point satisfying
0,8 = 0. An outline of the procedure in the Newton-Raphson method is given in Appendix B. In
Figure 3, the blue curves in (a) and (b) are the real part and imaginary part of the analytically
continued action at the complex critical points. This numerical result (blue curves) and the result
from the linear solution (red curves) are close when the deformation is small. However, the linear
solution is less accurate when the deformation is large.

Re(S) Im(S)

@
1.09%s 15
10
5

0.5

®
-1.0 ~05 0.5 10 M

-5

-10

-15
(b)

Figure 3. In both panels, the blue curves are the numerical results with the Newton-Raphson method,
and the red curves are the results from the linear solution. Panel (a) is the real part of the analytically

continued action S at the complex critical points varying with 6w§)2). Panel (b) is the imaginary part of S
at the complex critical points varying with 5w§2). The range of 5wéz> is [-1,1].

Figure 3 demonstrates the smooth interpolation between the oscillatory and exponential suppres-
sion behaviors mentioned at the beginning of this subsection. In addition to scaling large A, we need
to consider the smooth deformation B. For any given A, there exists sufficiently small deformation
B beyond the shape-matching, such that Re(S) is small, and thus the amplitude is not suppressed.
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5 Revisit the A3z amplitude

In this section, we revisit briefly the existing result on the spinfoam amplitude on the Az complex,
for the completeness and preparing the discussion of the double-A3 complex in the next section.
The A3 complex contains a single internal face F' = 1 but has no internal segment M = 0. There is
an internal jp, that is an integrated variable in the amplitude A(A3) in (2.16).

The Aj complex and its dual cable diagram are represented in Figure 4. All tetrahedra and
triangles are spacelike. The Regge geometry on Ag is completely fixed by the Regge boundary data
{jb, €ep} that is determined by the boundary segment lengths. In this section, we only focus on the
Regge boundary data, in contrast to the discussion of 4-simplex amplitude in the previous section.
The generalization to non-Regge boundary data should be straightforward. In terms of the notations
in Section 3, we have r = {jy, e} as the boundary data. # = {jj, foeb} fixes the flat geometry g(r)
with deficit angle §;, = 0. = = {]D'h, Gue,Zy s+ 18 the real critical point associated to 7. The data 7,
g(r), and & are computed numerically in [12].

Figure 4. Panel (a) illustrates the simplicial complex As made by three 4-simplices {v1,v2,v3} and 12
tetrahedra e; sharing nineteen faces f;. There are eighteen boundary faces and one internal face. Panel
(b) is the dual cable diagram of the As spinfoam amplitude: The boxes correspond to tetrahedra carrying
gve € SL(2,C). The strands stand for triangles carrying spins j. The strand with the same color belonging
to a different dual vertex corresponds to the triangle shared by the different 4-simplices. The circles as the
endpoints of the strands carry boundary states |jp, &ep). The arrows represent orientations. This figure is
adapted from [49].

According to the general spinfoam amplitude (2.16) and the spinfoam action (2.17), the Aj
amplitude A(Asz) can be written as

A(dg) =) QA/djhdAjh /[dgdz]e’\sm,
kn €L (5.1)
S(k) =S + 47TiZjhkh.
h
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For each kj, in (5.1), the real critical point {}h,éve,ivf} happens only when the boundary data
satisfies the accidental flatness constraint (3.3).

Given the boundary data 7 corresponding to §, = 0, we consider its neighborhood U in the
space of the non-degenerate Regge boundary data, such that any boundary data r € U satisfies
|v0n| < 4m. For large A, the sectors with kj, # 0 do not give dominant contribution to A(A3) as far
as r € U. If we arbitrarily fix the boundary data r € U and scale A large, the amplitude has two
asymptotic behaviors analogs to the discussion at the beginning of Section 4.2

e For the boundary data that corresponds to a flat Regge geometry, there is a real critical point,
and the amplitude gives an oscillatory phase.

e For the boundary data corresponding to a curved Regge geometry, there are no real critical
points, and the amplitude is exponentially suppressed.

However, this way of presenting the asymptotic behavior leads to confusion about the flatness
problem. From the discussion in Section 3, it is clear that there is a smooth interpolation between
the oscillatory phase and the exponential suppression behaviors, since the boundary data varies
smoothly. The interpolation is obtained by applying the method of the complex critical point. The
formal discussion of the complex critical point and the asymptotic behavior of this model have been
given in [12]. Figure 5(a) plots e*®¢(S) in the asymptotic formula (3.8) versus &), determined by
the boundary data and demonstrates the smooth interpolation between the above two asymptotic
behaviors. Letting the boundary data vary at the same time as scaling A, we find the boundary
data for the curved geometries with small nonzero §, for any A, such that the amplitude A(A3) is
not suppressed, shown in Figure 5(b). The range of d;, for non-suppressed A(As3) is nonvanishing as
far as A is finite. The range of Jj, is enlarged when ~ is small, shown in Figure 5(c). d;, that leads to
non-suppressed e* RelS(Z(M)] gatisfies the bound

[Yon| S A2, (5.2)

The above result provides evidence for the emergence of curved geometries from the spinfoam
amplitude. The bound (5.2) is consistent with the earlier proposal [11] and the result in the effective
spinfoam model [13, 27, 50]. So far, the bound (5.2) has only been confirmed in the regime of small
or finite v as we are going to see in Section 7, in the large-y regime, geometries are violating the
bound (5.2) but still giving a non-suppressed contribution to the spinfoam amplitude.

6 Double-A3; amplitude and effective action

6.1 Some setups

The As complex does not have any internal segment, and the boundary data determines the Regge
geometry completely. A(Ajz) does not give the {;-integral as in (3.10) by M = 0, so the effective
dynamics of Regge geometry is trivial. In this section, we study the spinfoam amplitude on the
“double-A3” complex (see Figure 6(a)), which is denoted by A%. The double-A3 complex contains a
single internal segment, so M = 1, and thus A(A2) gives (3.10) as 1-dimensional integral. So the
double-A3z complex admits non-trivial effective dynamics of the Regge geometry. Note that the
same complex is also considered in the context of the effective spinfoam model [50].

The double-Ag complex glues a pair of Ag complex around the internal segment (1,2). The
complex has seven points P;..., P;. The 4-simplices are given by

{Ulv e avﬁ} = {(L 2a 37476)a (17 2737 5a 6)5 (17 274a 55 6)7 (1a 2a 3747 7)7 (15 2737 57 7)a (17 274a 5a 7)}
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Figure 5. Panel (a) plots e**(%) versus the deficit angle 6, at A = 10** and v = 0.1 in A(A3). The panels
(b) and (c) are the contour plots of e***(5) as functions of (X, 485) at v = 0.1 and of (v, ) at A = 5 x 10'°
in A(As). They demonstrate the (non-blue) regime of curved geometries where the spinfoam amplitude is
not suppressed. These figures first appeared in [12].

The tetrahedra are labelled by {e1,---,e2;}°. There are twelve boundary tetrahedra and nine
internal tetrahedra among them. j, = {ji23, j124, J125, J126, J127} are carried by 5 internal triangles,
whose dual faces are bounded by red loops shown in the dual diagram Figure 6 (b). Since there is
only one internal segment (1,2) and all other segments are on the boundary, the boundary data and
the length ;5 of the internal segment determine the Regge geometry g(r) on AZ. Following the
procedure described in (3.6) and (3.5), we pick up the internal spin jio3 and express the spinfoam
amplitude as

A(A3) = /dj1233(j123;jb,§eb)7

4
Z (j1235 Jbr Eeb) = Z /7

{kh} h=

(6.1)

5
. . (k)
i [T 207 cngmes g Vi) [ ditg,2)
1 h=1

where j; = {j124,J125, j126, j127}- The external data of Z is r; = {j123(l12); jb, &ep } including both
the boundary data and jig3(li2). Identifying vj; to be the area of f (in Planck unit), the Heron’s
formula

) 1 2
Vir23(liz) = Z\/4l%2l%3 — (1B + 135 — 133) (6.2)

relates ji23 to the internal segment length /15 and boundary segment lengths l13,l23. We consider
the Regge boundary data that determines all the boundary segment lengths. We can always make a
local change of the real variable ji23 — l12 within a neighborhood K of a given Regge geometry,
where the correspondence ji23 <> l12 is 1-to-1.

In the following discussion, we only focus on the case with k;, = 0. The Regge geometries under
consideration are of small deficit angles. The following describes the procedure to compute the
complex critical points Z(r;) of Z.

We embed the double-A3z complex in (R?*,7;;) and determines a flat Regge geometry with all

®The tetrahedra are {elz ) 621} = {{17 2, 374}7 {17 2,3, 6}? {17 2,4, 6}7 {1937476}7 {27 37476}7 {1v 2,3, 5}7 {17 2,5, 6}7
1,3,5,6},{2,3,5,6},{1,2,4,5},{1,4,5,6},{2,4,5,6},{1,2,3,7},{1,2,4,7},{1,3,4,7},{2,3,4,7},{1,2,5,7},{1, 3,5, 7},
27 37 57 7}7{1747 57 7}7{2747 57 7}}'

i
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(a) (b)

Figure 6. A complex made of six simplices sharing the bulk edge (1, 2) with length /12 (the red line in panel
(a)). In panel (a), the boundary edges are colored black, blue, violet and cyan. The bulk edge is colored red.
Panel (b) is the dual complex of the triangulation. The internal faces carrying ji2s, j124, J125, j126, J127 are
bounded by red loops, and other faces are boundary faces.

tetrahedra spacelike. We assign the following coordinates to the points,

P, =(0,0,0,0), P, = (—0.0680,—0.220,—0.532,—1.33), P3 = (0,0,0,—3.40),
Py = (—0.240, —0.694, —0.981,—1.70), P5 = (0,0,—2.94,—1.70), Ps = (0,—2.77, —0.981,—1.70)
P; = (—2.47,-3.89, —1.36, —1.91)..

From the coordinates, we can compute the length of the segments of the triangulation by using

lij = \/ﬂ]](Pi — PJ>I(Pz — Pj)‘]. (63)

with nry = Diag({—1,1,1,1}) the Minkowski metric. The segment lengths are shown in Table 1.
The triangles within a 4-simplex are classified into two categories [8]: The triangle corresponds to

Table 1. Each cell of the table is the segment length for vertice P; and P;.

l,” | 2 3 4 5 6 7

1
1 | ~ | 145 | 340 | 2.07 | 3.40 | 3.40 | 3.81
2 | 145 | ~ | 214 ] 0.729 | 2.45 | 2.62 | 2.96
3 | 340 | 214 | ~ | 2.07 | 340 | 3.40 | 3.62
4 | 2070729 | 2.07 | ~ | 2.07 | 2.07 | 2.34
5 | 340 | 245 | 340 | 2.07 | ~ | 3.40 | 3.41
6 | 340 | 262 | 3.40 | 2.07 | 340 | ~— | —
7 | 381 ] 296 | 3.62 | 234 | 341 | — | —

the thin wedge if the inner product between the timelike normals of the two adjacent tetrahedra is
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positive, otherwise the triangle corresponds to the thick wedge. The dihedral angle 0, , ., are given
by:

thin wedge: Nye; * Nye; =coshbye; e,
thick wedge: Nye; + Nye, = —coshy e, e (6.4)

where the inner product is the Minkowski inner product defined by 7. Then we check the deficit
angles 6y, associated to the shared triangles h;

0="0n, =0u,.e1.e0 + Ovyenica + Ovaeriers + Ouse.ers = 0.514 4 0.464 — 0.575 — 0.404,
0 =0, = 0o, e1,e5 + Oug.e5,010 + Ovarer,ers + Ovgeroens ~ 1.08 — 1.02 — 1.30 + 1.24,
0= 0hy = Ouy.cq.er + Ovg.enero + Ous.co.err + Ovg.ero,e1r = —0.360 — 0.481 + 0.414 + 0.426, (6.5)
0 =0n, = Ouy.enes + Ovgen.cr + Ouger.ero = —0.723 — 0.208 + 0.931,
0 =0n, = Ouy.er.ers + Ovsoerserr + Ovgers.ers = —0.903 4+ 1.20 — 0.301,

which implies the Regge geometry is flat. The data of the flat geometry determines the external data
7 for the partial amplitude Z, which has the real critical points (jo';l, Gve, Zvyf) corresponding to this
flat Regge geometry and endowing the consistent 4-orientations to all 4-simplices. The boundary
data of the flat geometry and the real critical point can be found in Appendix C.1, and Mathematica
code can be found in [51] and [52]. In this case, given the boundary data, the flat Regge geometry is
the solution of the classical Regge equation of motion, and it is also the solution (5',;, Gves Zof) tO
the critical equations from the spinfoam amplitude.

We are going to compare the classical Regge dynamics and the spinfoam effective dynamics
for curved geometries. This comparison is based on the numerical computations. In concrete,
we deform the boundary segment length I35 — I35 + 1073 but keep the other boundary segment
lengths unchanged. The boundary data does not admit any flat geometry on A3 (see Figure 7(b))°.
With this deformation, a classical Regge solution (i.e. the solution to the classical Regge equation
JSRegge = 0) gives the deficit angles

6p, = 0.0118, 8, = 0.0661, &y, = —0.0215, ©6)
On, = —0.0236, d,, = —0.0252, '

which implies that the classical Regge dynamics gives curved geometry. We fix the boundary data
and vary the internal segment length l1o = Lo + dL where Ly = 1.45 is the length 15 in the flat
geometry. The change of I3 is denoted by §L with 6L € [—0.0129,0.00251] 7. The classical Regge
action Sgegge as a function of JL is plotted in Figure 7(a). The above solution leading to (6.6) is
close to the origin §L = 0 and is denoted by 6 L}°88¢. There exists another Regge solution in 6L < 0
and far from 0L = 0 as shown in Figure 7(a). We denote this solution by 5Z§egge.

Likely, the solution 6z£{egge is a discretization artifact because when smoothly deforming the

Regge reduces back to the flat solution.

boundary data I35 back to the one for the flat geometry, L
In contrast, 5ZCRegge still reduces to a curved Regge geometry. Some boundary data also exist such
that the second solution 6Z§egge disappears. Nevertheless, we will take into account both solutions
SLReese and 6Z§egge in discussing the effective dynamics in Section 7.

The boundary data (j,&c¢) and the corresponding pseudo-critical points (39,99, 20 f) for

the curved geometry with the boundary segment length I35 — I35 + 1072 and the internal edge

SIf the boundary data admitted a flat Regge geometry on the complex, the flat geometry would be a solution to
the Regge equation. However, the solution of the Regge equation is a curved geometry with the given boundary data,
contradicting the assumption of admitting the flat geometry.

"The range used here is restricted by the existence of curved Regge geometry with all tetrahedra spacelike.
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lig = Lo + 6 LEe#ee are listed in Appendix C.2.

Notice that the geometrical areas in the boundary data relate to j, by a, = 77j,, and the area a,
relates to the lengths l;; by Heron’s formula. The following discussion involves fixing the geometrical
area a, and performing computations at different Barbero-Immirzi parameter v, so this leads to
different j, at different . Fixing the geometrical area instead of fixing 7, is useful when we compare
with the Regge action Sgegge, since Sregge Only depends on the geometrical boundary data.

<i6§)/5
i=1

S
el 0.25 .
\ 0.128 -. .
0.20
s5L13€99@ - 0000439 0.15
SIR99€ . _ 000834 0.120 ..".0.10
' 0.05f
0.118 .
-0.010 -0.005 oL -0.002 -0.001 0.001 0002 O

(a) (b)

Figure 7. Panel (a) is the Regge action varying with L when we deform the boundary segment length
I35 — I35 + 1073 from the boundary data of the flat geometry. In this case, the Regge solutions are given

by §LE°#5¢ ~ 0.000439 and §LE°#2° ~ —0.00834. Panel (b) is N d7.)/5 versus 0L with the deformed
boundary data. All geometries in the range of L are not flat. The minimum of /(37 o7.)/5 is 0.013.

6.2 Numerical computing the effective action

Given the boundary condition (jp, &) corresponds to the above Regge boundary data with the
deformed I35, and given any l12 and ji23(l12) taking value inside a neighborhood of the value for the
flat geometry, we find the pseudo-critical point (j1, gye, 2y ;) close to the real critical point inside
the real integration domain. The pseudo-critical point only satisfies Re(S) = d;,.S = 0,,,5 = 0
but does not necessarily satisfy 0;..5 = 0. The pseudo-critical point (j}—?, gge7z2 f) is the critical
point of the spinfoam amplitude with fixed jg, jp [9], and endows the Regge geometry g(r) and
consistent 4-simplex orientations to A% complex®. It reduces to the real critical point (3',37 Gves Zuyf)
when 7, = 7, corresponds to the flat geometry on A2. As the deformation of segment length I35 is
small, this curved geometry is close to the flat geometry, so (jg, 0., z?)f) is close to (3E7§Ue, Zyf) in
the integration domain. The data for the pseudo-critical point is listed in Appendix C.2.

In this computation, we still adopt the similar parametrizations of variables as in (4.5), (4.6),
and (4.7), but with the pseudo-critical points as the origin. The parametrizations of the group
element gy, ey, Gusers Guses, Guierss Guserrs Jugerss Juiers Guses, ANA Guge,, are upper-triangular matrices
due to the SU(2) gauge fixing at 9 internal tetrahedra

1 :El 5132 +iy2
Goe = g0 < +Oﬁ -z ) (6.7)
3

8Since the correspondence between j123 and l12 is not 1-to-1 globally, it might be possible to have multiple pseudo-
critical points corresponding to different Regge geometries with the same value of j123. However, in our numerical
analysis, the other l12 from the same j123 does not satisfy the triangle inequality. Therefore all pseudo-critical points
correspond to the same Regge geometry but with different 4-simplex orientations, although we only focus on a fixed
orientation.
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where the entry x is determined by det(g,.) = 1. The internal spin j; is parametrized as
Ji =i +in Jn€R. (6.8)

As a result, for kj, = 0, the spinfoam amplitude A(A2) and Z(ji23) in (6.1) can be written in the
form of

0j123 . .
A(A3) :/dllz i Z(j123(112); Jbs Eeb) s
12 (6.9)
Z(j123(l12); Jbs Eeb) ~ /d2415€ pu(z)ers o), 1 = (J123(l12), Jbs Eeb)
where © = (2, yie, 22, Y20, 230, Y20, Tus, Yus.jr). The parametrizations of (lj2,2) define the
coordinate chart covering the neighborhood K enclosing &y = (ji23,20) = (jg,gge,zgf), and

T = (3123,:"0) = (]O'h,fyve,ivf). This neighbourhood is large enough since the parametrizations are
valid generically. The pseudo-critical point is xg = (0,0, ..., 0), which contains 241 zero components.

“ 2

Here we use “~” instead of “=" because (1) we only consider k;, = 0 but ignore other kj, terms?®, (2)
we only focus on the contribution from the neighborhood K enclosing a single pseudo-critical point'C.
In our discussion, we only consider the effective dynamics within a sector of Regge geometries with
the fixed 4d orientation.

We compute the complex critical point of Z for any given external data r;: Here, both S(r, )
and p(z) are analytic in the neighborhood K of zy. S(r,z) can be analytically continued to a
holomorphic function S(r7,z), and z € C?* is in a complex neighborhood of zg. The analytic
continuation is obtained by simply extending z € R?*! to z € C?*!. The formal discussion of the
analytic continuation of the spinfoam action is given in [14]. We fix the boundary data to be the one
resulting in (6.6) and vary the length /15 = Lo + dL, where Ly = 1.45 (the value of /15 in Table 1)
and the change of 112, 6L € [—0.0129,0.00251]. For any given §L, combining the boundary data, we
repeat the steps above (from the beginning of this subsection) to reconstruct the Regge geometry and
the corresponding pseudo-critical point. Taking the pseudo-critical point as the starting point, we
apply the Newton-Raphson method by repeating the steps in (B.2) - (B.8) to numerically compute
the complex critical point Z(r;) for a sequence of JL. By evaluating S at the complex critical point
and apply the asymptotic formula (3.8), we obtain the following asymptotic behavior of Z and
A(A3) for the dominant contribution from the integral on K

. . 1\ %
Z (]123(112);]b75eb) ~ ()\) c/Vle)\s(”’Z(m)) [1 + 0(1/)‘)] s
(6.10)

N
A(A§)~<A> [ ana

where A = p(Z(r;)) det(—02 ,S(ry, Z(rl))/27r)_1/2. Effectively, A (A3) gives a path integral of
Regge geometry on A3. S (1, Z (r;)) is the effective action for the Regge geometry in the large-\
regime of the spinfoam amplitude. The stationary phase approximation of the l1o-integral in (6.10)
relates to the variation of S (7, Z (7)) with respect to l12. The effective equation of motion

07123

N STLZ) 1 L O(1/N)],
Olya

8l128 (th(rl)) =0 (6.11)

determines the effective dynamics of Regge geometry.

9The integrals in the neighborhood K with kj, # 0 give exponentially suppressed contributions.
10there may exist other pseudo-critical points outside K in Z, e.g. the ones corresponding to different orientations
of 4-simplices. But our discuss only focuses on the critical points inside K.
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Figure 8. The red curves plots the Regge action as a function of §L. In comparison to the Regge action,
the blue curves plots S; of the analytic continued spinfoam action at complex critical points. The green
curve plots the real part Sg of the analytic continued spinfoam action at complex critical points.

6.3 Comparing to Regge action

It is interesting to compare the effective action S (r;, Z (r;)) to the classical Regge action Sgregge
since both actions define the dynamics of Regge geometry. The definition of Regge action Sgregge(l12)
is reviewed in Appendix D. In order to compare, we compute and plot the real and imaginary parts
Sgr and Sy of S (1, Z (r})) respectively,

S(r1, Z (1)) = Sr(7,6L) +iSr (v, L), (6.12)

We view both Sg and S; as functions of two variables v and 6L, and we compute the numerical
values of Sg and S; with samples of v € [1072,105] and §L € [-0.0129,0.00251].

It is known that the spinfoam action contains an overall phase, which needs to be subtracted
to compare to the Regge action. We denote the overall phase by ¢(y). This overall phase can be

computed numerically by inserting the pseudo-critical point ( jg, 90,20 f) in the spinfoam action .S
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Figure 9. Panels (a) and (b) are log-log plots of the distances (7.5) between the spinfoam and Regge
solutions in a neighbourhood of §£ = 0 as a function of 7. The boundary data has the boundary segment
length I35 deformed from the flat geometry by lzs — I35 + 1072 for (a) and I35 — I35 + 107 *° for (b).

and subtracting the Regge action at the corresponding geometry. Generally, we have

6(7) = a/y (6.13)

where the coefficient o depends on the boundary data. In terms of the spinfoam variables, the
overall phase comes from the v-independent terms in .S and is linear to the boundary spins ¢ ~ jp,
but here we fix the boundary area and let  vary, then ¢ ~ a,/v. The numerical value of « is
a = 0.003993 resulting from our setup of the boundary data. In general, the overall phase in the
spinfoam action can be cancelled by the phase choice of boundary £.,. To remove the overall phase
from Sy, we define S} by

S1(7,0L) = =S;(v,6L) + ¢(7). (6.14)

S} as a function of 0L is compared to the classical Regge action for different values of v in Figure 8.
The minus sign in front of S relates to the 4-simplex orientation in the real and pseudo-critical
points. As indicated by Figure 8, §; well-approximates the Regge action for small v with negligible
corrections. When increasing -, S} gives nontrivial corrections to the Regge action.

For any given v, the real part Sg is always negative, and |Sg| is larger for larger |§L|, so e*® is
smaller for larger |§L|. However, if we fix §L and vary v, |Sg| is smaller so e*® is less suppressed for
any A, when ~ is smaller. In other words, the smaller v opens a larger range of § L, in which |Sg| is
small and e*S is not suppressed for a given A. In this range of 6L, the numerical result indicates
that S (r, Z (1)) well-approximates the Regge action. The similar situation has appeared in the
As amplitude, where the amplitude with smaller v admits a wider range of curved geometries (see
Figure 5(c)).

7 Solutions of effective dynamics on double-A;

7.1 Spinfoam complex critical point and the Regge solution §L}eese

The above discussion compares the effective action S(r;, Z(r)) to the classical Regge action. It is
also interesting to compare the solution of the effective equation 9;,,8(r;, Z(r;)) = 0 to the solution
of the Regge equation. By the above computation, the real and imaginary parts of S(r;, Z(r))
are obtained as the numerical function. Numerically solving the effective equation involves finding
the possible complex roots of numerical derivatives of the complex S(r;, Z(r;)), which requires an
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Figure 10. Panels (a) show the real part of the spinfoam solution §LEP2™ v 5 log-scaled v value with

the boundary data deformed from the flat geometry by lss — I35 + 1072, Panels (b) is the log-log plot of

the absolute value of the imaginary parts of the spinfoam solution §LSPi*ea™ a5 o function of ~.
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Figure 11. The log-log plot of the average of the absolute value of the imaginary part of the complex
critical point v.s. 7.

—Re[S(T'/,éL(S:pinfoam,Z)] —Im[S(TI,éLspinfoam, Z)]+¢(7)
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Figure 12. Panels (a) are the log-log plot of the negative real parts of 5(7“', 0L, z) at the complex critical
points z = Z(T’,éﬁ) as a function of 7y with the boundary data deformed from the flat geometry by
Iss — I35 + 1073, Panels (b) show the imaginary parts of S(r’,8L, z) at the complex critical points
z=Z(r',6L) v.s. log-scaled 7. We subtract the overall phase ¢(v) from Im[S(r’, §LEP™ 7] and add

a minus sign in plotting (b). In Panel (b), the overall phase ¢(y) ~ 0.003993y~!, and the maximum and
minimum of the plot range are Max, ~ 0.121606 and Min, ~ 0.121596.
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estimation of S(ry, Z(r;)) on the complex §L plane and may give a relatively large numerical error.
In the following, we introduce an alternative strategy, which computes the solution of the effective
equation more efficiently.

Instead of introducing the partial amplitude Z, we consider the full spinfoam amplitude, which
can be written as the following integral for the same contribution as in (6.10)

A(AZ) ~ /d(SLdMlxu(éL,a:)eAg(T/"sL’"”). (7.1)

Here the external parameter ’ is just the boundary data 1’ = (jy, £ep). S(r’,0L, x) is the spinfoam
action S with j123 = j123(112) and 112 = LO + oL.

Recall that §LR°#8¢ is a solution of the classical Regge equation. The Regge geometry with
§LEes2¢ corresponds to a pseudo-critical point of 5'(7“’, 0L, x). Both S(r’, 0L,x) and p(dL,x) are
analytic in the neighbourhood of this pseudo-critical point. Therefore, S(r/, 8L, z) and p(5L,z) can
be analytic continued to the holomorphic functions S(r/, 6L, z) and (6L, z), where (0L, z) € C?42
is in a complex neighborhood of the pseudo-critical point. We fix the boundary data r’ to be the
same as the one used in Figure 7. Since 7’ is a small deformation from the boundary data of the flat
geometry, the neighbourhood covers the real critical point corresponding to the flat geometry and
the boundary data before the deformation.

For each v, we would like to numerically compute the complex critical points (6L, z) =
(§LSpinfoam 7 (17) a5 the solution to the following equations,

9.8(r', 6L, 2) = 0, (7.2)
D5cS(r,6L,2) = 0.

Since we fix the boundary data r’ and vary ~, the complex critical points give a continuous trajectory
parametrized by « in the complex space of (6L, z). In the numerical computation, we sample a
sequence of y € [107?,10°] and compute the complex critical point for each by the Newton-Raphson
method, following the steps in (B.2) - (B.8). For any <, the recursion of the Newton-Raphson
method can be initialized at the pseudo-critical point and give the convergent result within the
desired tolerance. Moreover, all resulting complex critical points depend smoothly on the boundary
data dl35 and reduces to the real critical point when §l35 — 0 (see Figure 13 for an example).

The solution §£ from (7.2) and (7.3) is the same as the solution of 95.,8(ry, Z(r;)) = 0. Indeed,

38(7"1,2(77))‘ S Or n OS(ri, Z(ry)) | 0Z(r1)
or Z(r) OOL 0Z(r;)) |n  OOL
38(7“1, Z(T[)) 37“1

ory ‘Z(rl) "90L 0525 (r1,2)] . zry) » (7.4)

O = 85L8(rl,Z(rl)) =

where we have used dS(r;, Z(r;))/0Z(r1)|r, = 0. Z(r;) depends on §L. z = Z(r;) is the solution of
(7.2), when analytic continuing 6L — 6£. The result [05.S(r1, 2)],_ 5,y = 0 from (7.4), followed by
analytic continuing L — dL£, is equivalent to (7.3) with the solution of (7.2) inserted.

The complex critical point gives 6£ = JLEPM () as a trajectory parametrized by 7 in a
complex neighborhood at §£ = 0. This solution is compared to the Regge solution § L}°28¢ ~ 0.000439
(recall Figure 7(a)). This solution § LSP"am () is complex generically, although it is close to the
real axis, especially for small v. Figure 9 (a) demonstrates the distance (in the complex plane)
between the spinfoam solution § LSPifoam (~) and the classical Regge solution § LEegse:

|5L§pinfoam(,y) _ 5L£{egge| . (75)
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Figure 13. The red points are the list-plot of the norm of the complex critical point
(s LSpinfoam 7y v.s. the deformation of the boundary segment length dl3s. For any complex criti-
cal points (§LSPinfeam 7y — (gpSpinfoam . o ... 2zo41), the norm is defined as ||(§LEPIfeam™ 7)| =

\/‘6L§pinfoam

the flat geometry by lss — I35 + dlss at v = 1076, dlss € [0, 1073]. The blue point is the complex critical
point as dlzs = 1073, and the green point is the real critical point at the origin (0,0) corresponding to the flat
geometry. The cyan curve represents the fitted function ||(§LEP™*™ | 7)|| =~ 1.97 x 10° 835 —5.49 x 107 (8l35).

2
+ \21\2 + |22|2 4+ |2241|2. Here, the boundary segment length I35 is deformed from

This distance is small in the small-y regime. So the classical Regge dynamics is reproduced by the
spinfoam effective dynamics for small 7. This result is consistent with comparing the actions in
Figure 8. This result is also consistent with some earlier arguments in [17-20] about the semiclassical
approximation of spinfoams with small ~.

The distance (7.5) becomes larger when increasing . It indicates that the spinfoam amplitude
with larger v gives larger correction to the classical Regge solution. Therefore the effective theory in
the large-y regime has more significant difference from the Regge gravity. Furthermore, the distance
(7.5) stabilizes in the large-y regimes, as shown in Figure 9(a). The distance value where it stablizes
becomes smaller when the boundary data is closer to the one for the flat geometry, by comparing
Figure 9(a) and (b). The small and large v regimes might be viewed as two phases of the spinfoam
amplitude. The effective dynamics is closer to the Regge dynamics for small v but more different
from the Regge dynamics for large ~.

The critical point (§LSPfoam 7 (3/) is generally complex for every + (see Figure 11). Figure
12(a) and (b) plot the analytic continued action S(r’, 8L, z) (with the overall phase ¢(7) removed)
evaluated at the complex critical points for a large number of samples of v. The real part Re(S’) is
close to zero for both the small-y and large-y regimes, so S in the asymptotic formula (3.8) is not
suppressed for large \ for both the small and large 4. The non-suppressed e*S for small v has been
anticipated since it can be predicted by the bound (5.2). But the non-suppressed e*® with large
A in the large-y regime violates the bound (5.2). This result suggests that the bound (5.2) is not
universal but only valid for the small or finite ~.

Figures 9(b) plots |5L§Pi“f°am — 6L§egge| for the different boundary data, which deform the
boundary data of the flat geometry by Ilss — I35 + 10710, This boundary data is closer to the
boundary data for the flat geometry. The results are qualitatively similar to the results from the
previous boundary data, although the maximum of [§L3Pinfeam — 5L Regse| become smaller comparing
to the results from the previous boundary data. Changing the boundary data seems not to shift the
location in the ~y-space, where the small-y phase (where (7.5) is small) transits to the large-y phase
(where (7.5) is stablizes), as suggested by comparing Figures 9 (a) and (b).
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Figure 14. Panel (a) is the log-log plot of the distance between the spinfoam solution and the Regge
solution in a neighborhood of SL = 5LR°#° ag a function of ~. Panel (bl) shows the real of the spinfoam
solution §LSpinfoam y o ~. Panel (b2) is the log-log plot of the imaginary parts of the spinfoam solution
SLSpinfoam y o ~. Panel (c1) is the real parts of 5(1“', 5L, z) at the complex critical points v.s. 7, and the

small figure in (c1) is the log-log plot. Panel (c2) plots the imaginary parts of S(r, 5L, z) at the complex
critical points v.s. .

7.2 Complex critical point and the other Regge solution 5ZCRegge

Recall Figure 7(a) that there is another classical Regge solution 0L = 5Z36gg0 with the boundary
condition under consideration. This solution corresponds to a different pseudo-critical point, which we
use as the starting point of initializing the recursion in the Newton-Raphson method. Following the
same procedure discussed above, we obtain a new trajectory of complex critical points parameterized
by 7. The complex critical point gives 6L = 6E§pinf°am('y), which is generically complex. Figure 14
plots the distance |§LSPinfoam (~) — §LResee| the real and imaginary part of the §LSPmfoam(4) “and
the real and imaginary part of the action S evaluated at the complex critical points. For small v,
5Z§pi"f"am(7) is approximately real and close to the classical Regge solution 555‘%@36. Increasing
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results in that 6Z§pi“f°am(*y) makes larger corrections to 6Z§egge.

Both the complex critical point here, denoted by (§LSPinfoam 7(p/) and (§LSpinfoam 7)(y/)
discussed in the last subsection give contributions to A(A32). When we compare their contributions.
e is suppressed faster at the critical point here than at the one in the last subsection (see Figure
15) for fixed v < 0.1. This relates to the fact that (E?egge gives larger deficit angles. Therefore
the complex critical point here contributes to the amplitude much less than the one in the last
subsection for generic small v and large A. Recall that (i?egge likely relates to the discretization
artifact. The result suggests that the spinfoam amplitude should suppress the contribution from the
discretization artifact, in favor of a good continuum limit.

The complex critical points used in Figure 14 are likely beyond the stationary phase approxima-
tion (for complex action) described above and below (3.7), because these complex critical points
do not analytically relate to the real critical point ( Ths Gves o r) for the flat geometry. It relates to
the existence of complex critical points with Re(S) > 0 in Figure 14(cl) violating (3.9). Indeed,
when we continuously deform the boundary data r’ by the deformation by I35 — I35 + dl35 from the
boundary data of flat geometry to the one that does not admit flat geometry, the solution of (7.2)
and (7.3) deforms analytically from the real critical point to the previous complex critical point
(§ LSpinfoam Z )(r") (see Figure 13, and the similar property holds for the complex critical points in
Section 6), but not to any of the complex critical points used in Figure 14.

The complex critical point used in Figure 14 has to be studied by the fully-fledged Picard-
Lefschetz theory (see, e.g. [22, 53, 54]). Consequently, given that the spinfoam amplitude is defined
on the real integration cycle where Re(S) < 0, the complex critical point with Re(S) > 0 does
not contribute to the asymptotics of the amplitude, because the steepest-ascent flow associated to
this critical point turns out to have no intersection with the real integration cycle. Therefore, the
contributions from the complex critical points in Figure 15 are vanishing or suppressed for finite or
larger «y, where Re(S) > 0 or e Re(9) is suppressed.

8 Conclusion and Outlook

Our above analysis demonstrates the importance of complex critical points in understanding the
asymptotic behaviour of the spinfoam amplitude in the large-j regime. In the case of the 4-simplex
amplitude, taking into account the complex critical point generalizes the asymptotics to non-Regge
boundary data and relates to the twisted geometry. In the case of the simplicial complex, the
complex critical point plays an important role in deriving the effective dynamics from the spinfoam
amplitude. The effective dynamics closely relate to the Regge gravity in the small v regime, as
demonstrated by the numerical computation for the amplitude on the double-A3z complex.
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In this paper, we examine the semiclassical behavior of the spinfoam amplitude within the
regime of large-j. The semiclassical limit characterizes a scenario where the spinfoam amplitude
exhibits behavior akin to classical gravity. This limit relates to the region where the values of
Planck’s constant are small, leading to the emergence of classical behavior. On the other hand,
the continuous limit relates to the situation in which a discrete system approaches a continuous or
smooth description. This typically involves taking a large number of discrete elements or degrees of
freedom and allowing them to become infinitely numerous, resulting in a continuous and infinitely
divisible system. It may relate to the situation that the triangulations underlining spinfoams are
refined such that the geometries are made by refined Planckian size cells. Note that it is actually
possible to relate certain refinement and small-j spinfoam amplitudes to some semiclassical behaviors,
as shown in [55]. Generally speaking, while these two limits are related, they are not interchangeable.
For spinfoams, both limits are relevant and may be taken simultaneously. It is indeed possible, as
shown in [37, 56], where the semiclassical gravity on the continuum is recovered in certain regime
with both the large-j and refinement.

Our work provides a general procedure to derive the effective theory in the large-j regime.
From the perspective of semiclassical analysis, our numerical computation should be generalized to
triangulations larger than double-Ag, which has more internal segments. One should check if the
Regge gravity still can be reproduced by the large-j effective dynamics on larger triangulations.

The effective dynamics in LQG has been primarily investigated in the context of symmetry-
reduced models, such as Loop Quantum Cosmology (LQG) and black holes, see, e.g. [57, 58]. The
effective dynamics is useful in deriving the singularity resolution. Our result shows that the spinfoam
amplitude also results in certain effective dynamics. However, this effective dynamics is in terms
of the discrete Regge geometry, in contrast to the effective dynamics in terms of smooth fields in
LQC and black holes. A research in progress is to understand if the effective dynamics from the
spinfoam amplitude can relate to LQC and black holes. If the relation exists, it might provide a new
approach toward embedding LQC and black hole models in the full theory of LQG.

It is also interesting to investigate the behavior of the effective dynamics under the lattice
refinement for spinfoam amplitudes. The Regge geometries approach to the continuum limit under
the refinement, so we expect that the effective dynamics of Regge geometries from spinfoams should
reduce to certain effective dynamics of the smooth geometry.
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A Boundary data for single 4-simplex

In Section 3, we introduce the real critical points of the 4-simplex, which corresponds to the Regge
geometry. We construct the Regge boundary geometry, Table 2, 3 and 4 record areas ay = vj, 3d
normals 7.5 and the corresponding spinors &5 of the single 4-simplex.
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Table 2. Each cell shows the area of the face shared by line number tetrahedra and column number

tetrahedra.

af 6/ / ! ! ! !
€1 | €2 | €3 | €| €E5
e
e1 1| 5 [>~| 5 |~
€2 S 2 || 2
es 5 oI~ |>~| 2 |~
ey S~ 2 [~~~ 2
es 5 >~ 2 |~ |~

Table 3. Each cell shows the 3d normal vectors of the face shared by line number tetrahedra and column

number tetrahedra.

2 !

X ‘i ¢ ¢

€
o ~ (1.00, 0, 0) (-0.333, -0.943, 0) (-0.333, 0.471, -0.816) | (-0.333, 0.471, 0.816)
e (0.938, 0, -0.346) ~ (-0.782, -0.553, 0.289) | (-0.948, 0.276, -0.160) | (-0.616, 0.276, 0.733)
e3 (-0.313, -0.884, -0.346) | (0.782, 0.553, 0.289) ~ (0.0553, 0.986, -0.160) | (-0.0553, 0.673, 0.738)
e (-0.244, 0.345, -0.907) | (0.739, -0.215, 0.639) | (-0.0431, -0.768, 0.639) ~ (-0.0862, 0.122, 0.989)
es (-0.436, 0.617, 0.655) | (0.859, -0.385, -0.338) | (0.0771, -0.938, -0.338) | (0.154, -0.218, -0.964) ~

Table 4. Each cell shows a spinor £,y corresponding to a 3-normal to the face.
e

bes e} €h el €} ek

e
e ~ (0.707, -0.707) (0.707, -0.236 - 0.6671) | (0.953, 0.175 - 0.2471) (0.953,-0.175 + 0.247i)
e (0.820, -0.572) ~ (0.803, -0.487 - 0.344i) | (0.762,0.622 - 0.181i) (0.932,-0.330 + 0.148i)
es (0572, -0.273 - 0.7741) | (0.596, -0.655 - 0.463i) ~ (0.648, 0.043 + 0.7611) (0.362, 0.076 - 0.929i)
es (0.976, 0.125 - 0.177 1) | (0.905, 0.408 - 0.1191) | (0.425, 0.051 + 0.904i) ~ (0.997, -0.0432 + 0.0611i)
es | (0.910,-0.240 + 0.339 1) | (0.818, -0.525 + 0.2361) | (0.576, 0.067 - 0.815 1) | (0.991, -0.0778 + 0.1100) ~

Table 5 and 6 record the values of the real critical point g, and z,s for the 4-simplex with the

boundary data (jf,fef).

Table 5. Each cell of the table is the critical point of gye.

e ey es es ey es

. 0 —i 0 —1.03i 0 —1.031 0 —1.171 0 —0.8741

Jve < -i0 > ( —0.969i —0.358i> ( —0.969i 0.337 + 0.1191> ( —0.8551 —0.149 + 0.10.51) ( ~1.14i —0.199 + 0.1411)

Table 6. Each cell shows the critical points of z,s
2,‘f 6/
ey es es [n es

€
o ~ [§95) ~ {1.00,1.82 + 2.571) —
e ~ ~ (1.00, —0.915 + 0.402) ~ (1.00, —1.41 — 0.313)
es | (1.00,—0.333 + 0.943) ~ ~ (1.00,0.086 — 0.6901) —
€4 ~ (1.00,1.86 + 0.99i) ~ ~ (1.00, 5.72 + 8.08i)
5 (1.00, —1.82 — 2.571) ~ (1.00, 0.071 + 0.4701) ~ ~

All the Regge boundary data 7 = (]O'f, foef) and the data of the real critical point (gye,2.s) for
the 4-simplex amplitude can be found in the Mathematica notebook [59].

B The Newton-Raphson method

The Newton-Raphson method for the single-variable equation f(x) = 0 is initialized with a starting
point xg, and then one iterate

Tn41

[ (xn)’

::L'n—
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to approach the solution with higher accuracy. In single 4-simplex case as an example, the equations
of motion is 44 dimensions, we denote by

21 f1(21,-~-,244)

zZa4 f44(Z1,...,Z44).

The derivative of this system is the 44x44 Jacobian given by:

of1 of1
Oz1 " Ozaa
J(z1, e zaa) = | 11 (B.3)
Ofaa Ofaa
821 o 8244
We define the function G by
G(z)=2z—J(2)"'F(2). (B.4)

The functional Newton-Raphson method for nonlinear systems is the iteration procedure that evolves
from the initial 2(°), which in our case is the real critical point &, and generates

L) — (Z(kq)) _ 1) _ g (Z(k,1)>—1 P (Z(kfl)) : k> (B.5)

We can write this as

ng) Z%k—l) Azik_l)
S : + : ; (B.6)
ST I I vl B - v
where
Az§k—1) 1
: =—J (z(kfl))_ F (z(k71)> . (B.7)
Azﬁfl)

We set the desired tolerance ¢ = 10710, and we stop after n iterations when

\/‘<Az§””)2 o (AU <6 (B.8)

The resulting 2(™ is the approximated solution within the tolerance. We evaluate the analytic
continued 4-simplex action S at z(™ and apply it to the asymptotic formula (3.8).

C Boundary data for the A2 complex

C.1 Boundary data and the real critical point for the flat A2 complex

We construct the flat geometry with the segment lengths in Table 1. The corresponding boundary
data for flat geometry is shown in Table 7, 8, 9, 10, 11 and 12. Here, the area ay and the spins j

satisfy ay = vjy.
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Table 7. Boundary data (&b,éeb) for the 4-simplex vy = {1,2,3,4,6}

€\ , , , , , N T Talo | w

el s [ A €5 el | ey | ey | ey | e5

€ e
B ~ ~ ~ ~ (-0.41 4 0.73i, -0.15 - 0.52i) € ~ |~ |~ |~ ]075
ey ~ ~ ~ (-0.61 + 0.22i, -0.761) ~ e ~ |~ [~ 5 | —
e3 ~ ~ ~ ~ (-0.078 - 0.033i, 0.04 - 1.0i) ez | >~ >~ |>~[>~1]055
es | (0.60, -0.66 - 0.461) ~ (0.76, -0.04 - 0.651) ~ ~ e | 2]~ 2|~ ]| <
es ~ (0.43, -0.18 - 0.881) ~ (0.95, -0.03 + 0.31i) ~ es |~ 28| ~]20] —

Table 8. Boundary data (@s,&es) for the 4-simplex vo = {1,2,3,5,6}
¢ ap\e

Seb e eg eh ek €f " eh | ey | eh | ek | e

€ €
€ ~ ~ ~ ~ (-0.72 4+ 0.13 i, 0.02 - 0.68 i) [ ~ |~ |~ |~]28
€6 ~ ~ ~ (0.81 1, -0.591) ~ €6 ~|~ | ~|5 |~
e7 ~ ~ ~ (-0.27 - 0.19i, -0.94i) ~ er I~ >~ [ >~]5 [~
eg (0.71, -0.24 - 0.67 i) ~ ~ ~ (0.95, -0.17 + 0.25 i) eg 5 |~ |~ |~| 5
€9 ~ (0.74, -0.67 + 0.051) | (1.0, 0.048 - 0.068i) ~ ~ ey ~ |26 |32 |~ | ~

Table 9. Boundary data (s, &ep) for the 4-simplex vz = {1,2,4,5,6}
b \€’ a\e’

f"b e e € (S [P eb N EA R
€3 ~ ~ ~ (-0.22 - 0.03 i, 0.07 - 0.97 i) ~. e3 ~ |~~~ 2 | -~
er ~ ~ ~ ~ (-0.10 - 0.073i, -0.99i) er ~ [~~~ 32
€1 ~ ~ ~ ~ (0.18 + 0.98 1, 0.065 - 0.11 i) €10 ~ |~ | ~ | ~ | 0.69
€11 ~ (0.98, 0.12 - 0.181) | (0.43, -0.87 + 0.251) ~ ~ en |~ 5] 2 |~ <
ez | (0.99,-0.01 - 0.171) ~ ~ (1.0, -0.018 + 0.025 i) ~ ern | 055 [~ | ] 2 | —

Table 10. Boundary data (@, &es) for the 4-simplex va = {1,2,3,4,7}

Sen \¢ / / / / / Ny

> €1 €13 €14 €15 €16 > €1 €13 | €14 | €15 | €16
e ~ ~ ~ (-0.33 4 0.75 1, -0.11 - 0.56 i) ~ er ~ |~ ~] 2 |~
ei3 ~ ~ ~ ~ (-0.52 4+ 0.71 1, -0.35 - 0.32 i) €13 ~ |~ |~ ~]32
€1y ~ ~ ~ (-0.59 + 0.71 i, -0.18 - 0.35 i) ~ €14 ~ |~ | 21| ~ | —~
e1s ~ (0.90, -0.14 - 0.41 i) ~ ~ (0.63, 0.33 + 0.71 i) e ~ |56 | ~ |~ ]23
€16 (0.94, -0.25 - 0.22 1) ~ (0.94, 0.28 - 0.18i) ~ ~ €16 0.75 | >~ | 0.5 | ~ | >~

Table 12. Boundary data (@s,&e) for the 4-simplex v = {1,2,4,5,7}

Eb \¢ o o o o e N e} ey | €7 | ey | €

o 10 “14 17 ©20 21 o 10 14 17 20 21
€10 ~ ~ ~ (0.20 + 0.91 1, 0.07 - 0.35 i) ~ €10 ~ |~ ~] 2 |~
el ~ ~ ~ ~ (-0.55 + 0.68 i, -0.16 - 0.46 i) el ~ |~ ~[~1]05
e ~ ~ ~ ~ ~ err ~ |~~~ -

20 ~ (0.76, 0.22 - 0.61 i) | (0.74, 0.57 - 0.36 i) ~ (0.85,0.52- 0.1 i) e0 | ~ | 21|54~ |24
€91 (0.95, -0.31 + 0.07 i) ~ (0.39, 0.89 - 0.23 i) ~ ~ €21 069 | ~ 35 | ~ | ~

Once the flat geometry is constructed, the real critical points (]o'h, Jves Loy f) can be obtained by

solving the critical equations Eq.(3.1) and (3.2). The solution of the critical point equations relates
to the Lorentzian Regge geometry, as described in [8, 9]. gy, relates to the Lorentzian transformation
acting on each tetrahedron and glueing them together to form the A3 complex. In this model, we fix
gve to be constant SL(2, C) matrices for v;es, vaeg, v3e12, V4€16, Vs€19, Use21. The group elements g,e
for the bulk tetrahedra viey, vies, vaeg, vae7, vV3€3, V€10, Va€13, V517, Vs€1a are fixed to be the upper
triangular matrix. For the A2 triangulation, there are five internal faces h(12k) with k = 3,4,5,6,7.
The areas of these internal faces are shown in Table C.1. The numerical results of the real critical
point (gye, Zvs) corresponding to the flat geometry are listed in Table 14, 15, 16, 17, 18 and 19.

Table 18. The real critical point (Gve, Zvy) for the 4-simplex vs = (1,2, 3,5,7).

€6
0.98 0.32
0 1

€13
(0.8.1 0.8240.19¢

[Z0s1) \€ ’

€7
(().8’1 0.73 — 0.057‘)

Yuse 0 1.2 ) 0 1.2
e €18 €19

o 0 —1.17 0 —1.2d

Juse —0.88i —0.72i —0.86i 0.03 —0.72i

€ €lg €7 €ls €lo
e
o ~ ~ (1,-0.86 - 0.071) ~ (1,-1.09 - 0.051)
c13 (1,0.87 - 0.49i) ~ ~ (1,-0.83 + 0.561) ~
e1r ~ (1,-0.92 + 0.751) ~ ~ (1,1,-3.2 + 0.61)
€15 (1-1) ~ (1-1.9 + 2.2i) ~ ~
e1g ~ (1,-0.73 + 0.54i) ~ (1-1.8-0.81) ~

~ 32—




Table 11. Boundary data (a, &es) for the 4-simplex vs = {1,2,3,5, 7}

> °6 €13 €17 €18 €19 > € | €13 | €17 | €18 | €19
eg ~ ~ ~ ~ (0.04 + 0.77 i, 0.01 - 0.63 i) eg ~ |~ |~ |~ ]26
€3 ~ ~ ~ | (-0.48 + 0.71 1, -0.31 - 0.41 i) ~ €13 ~ | ~ | ~ 56| —
err ~ ~ ~ | (-0.19 + 0.17 1, -0.18 - 0.95 i) | (-0.05 + 0.25 i, -0.06 - 0.97 i) e1r ~ | >~ | ~ 5435
e1s (0.90, -0.43) ~ ~ ~ ~ e1g 5|~ |~ |~ |~
10 ~ (0.71,-0.26 - 0.65 1) | ~ (0.95, 0.19 + 0.25 1) ~ e10 | ~] 32| ~ | 52| —

Table 14. The real critical point

Table 13. Areas of internal faces h in A3 complex.

A (123)

n(124) | %h(125)

An(126) | Bh(127)

0.971

0.333 1.55

1.78 1.93

(Gve, Zoyf) for the 4-simplex v1 = (1,2, 3,4,6)

120, /) \¢’

e €1 €2 €3 g € € € €5
‘ 0.96 0.42 % 0.047 000 —0.05 — 0.157\ | (0.7 —0.13 —0.727\ | |- _ i
Gure 0 | o ) 0 L o = < (1-0.94 + 0.690) < (1,-0.82 + 0.457)
. - — e (1,057 - 0.199) - ~ (1-0.33 + 0.940) —
5 T 5 ENT s ~ (101 + 151 ~ ~ (1,25 + 6.0
Gure (—o.w 0.34 +U.127) (70_9” 046 +U.127) s (1,-0.92 + 0.400) ~ 03121 ~ <
e = (1,-0.14 + 0.751) = 1,02 140 =
" . . . .
Table 15. The real critical point (uve, Zv ) for the 4-simplex v2 = (1,2,3,5,6).
. o “ o AN ¢ A o A é
; 0.99 —0.05 - 0.15 0.98 0.32 1.0 —0.031 + 0.044 < _ _
Guse <0‘99 005 — 01;1) < 0 1 ) < 0 0.96 l) o ~ S (1015151 ~ (1014 + 0.751)
- - = e (1087 - 019 = = {1, 0.87 - 0.49]) =
) 0 —1.0i 126 0.09 — 0.137 e ~ (1,0.86 - 0.07i) ~ (1,18 + 2.61) ~
Gose <71.m o ) (0_”9 Toaz 0.2 ) es (1-0.33 1 0.941) < < < (1-18-261)
eo < (1-1.09 - 0.051) | (1LA9 + 7.01) < <

All the boundary data 7 = (jo'b, foeb) and the data of the real critical point (jo'h, Gves Zyf) can be
found in the Mathematica notebook in [59].

C.2 Boundary data and the pseudo critical points for the curved A2 complex

The boundary data in Appendix C.1 admits a flat geometry. To construct a curved geometry, we
deform the segment length I35 — I35+ 1072 and keep the other boundary segment lengths unchanged.
We list the boundary data for this curved geometry in Table 20, 21, 22, 23, 24 and 25 as the internal
segment length is 1o = Lo + 6L§egge.

Table 24. Boundary data (as,&e) of the curved geometry for the 4-simplex vs = {1,2,3,5,7}
e ap\¢’

o DN b | et [ e | ehe | o
e < < — — (0.04 + 0771, 0.01 - 0.641) o |~ |~ | — |~ [26
e13 ~ ~ ~ | (-0.48 +0.711,-0.31 - 0.41 1) ~ €13 S~ |~ | ~ 56|~
eir — — <~ [ (019 + 0175, 0.18 - 0.951) | (:0.05 + 0.251, 0.05- 0971 || err |~ | < | < | 54 | 35
€18 (0.90, -0.43) ~ ~ ~ ~ e1g 5~~~ ~
ero < (071, 0.26 - 0.66 1) | — (0.95,0.19 + 0.24 1) — e |32 < 52| <

The curved geometry does not have real critical point. However, we can find the pseudo-critical

point ( jP“ a9, zg f)7 which is close to the real critical point inside the real integration domain. The
pseudo-critical point satisfies the critical equation (3.1) but violates critical equation (3.2). The
data for the pseudo-critical point is listed in Table 26, 27, 28, 29, 30 and 31.
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Table 16. The real critical point (Gue, Zvy) for the 4-simplex vz = (1, 2,4, 5, 6).

e €3 er €10 ‘;m/> N c 2 €l €l €l

Gore (0.57 0.131-30.721) (1(.]0 0.03(1);60.0447,) (0.30 U.fs) o = = 091 706y | (03 7200 =
- o o er (0.1 1 150 < ~ < (1,49 + 7.00)
5 — 5 T 2N - (1,-0.86 - 0.070) < < (1,045 - 0.081)

Guae <—0‘86i —0.15+ 0.1li> (4).551‘ —0.16+ n.m) an ~ (1,18 +2.6() | (1.-0.68 - 0.150) ~ ~

e1a (1,2.5 + 6.0) ~ ~ (1,5.7 +811) ~

Table 17. The real critical point (ve, Zv¢) for the 4-simplex v4 = (1,2,3,4,7).

2o ) \e " , ,

e [ €13 €14 P €1 €l €14 €ls €16
Guse (0'[‘?6 042+ 0041) (0'54 082 i20'191> (038 1.3 fSO'gl) €1 ~ (1,0.87 - 0.49i) ~ (1-0.92 + 0.40 1) ~
- — — e1s = — (1092 + 0.751) ~ (1, 0.73 + 0.54)
o "71_37: o T 11 (1,-0.94 + 0.691) ~ ~ (1,-0.94 + 0.77) ~
Guse (41.75)1 —0.34 7(1.921') (4).77«, —0.49 — 1.111«,) €15 ~ | (1-0:83 + 0.560) ~ ~ (1.1 - 1.20)
ere | (1-0.82 + 0.450) < (1-1.0 + 0.811) < <
Table 19. The real critical point (uve, Zvy) for the 4-simplex ve = (1,2,4,5,7).
Zue e
e €10 €14 e L /) €lo €l el eho €
Guge (0 96(]0 58 1) (U[?g 3 1+_50 gl) (U(?'l 078 1_20 U”) 10 ~ (1,-0.94 + 0.69) ~ (1-0.68 - 0.151) -
— = = e ~ ~ (1,-0.92 + 0.751) ~ (1140811
- E——T IR er (1,-0.86 - 0.071) ~ ~ (1-1.942.2) ~
Gooe <7()A93i 017 — [).961’) (—().842 04— 2.3i> e20 ~ | (1-094 +0.77) ~ ~ (1-2.7 - 0.4i)
e (1,045 - 0.081) < (1,-3.210.61) < <
Table 20. Boundary data (as,&es) of the curved geometry for the 4-simplex vy = {1,2,3,4,6}
e ap\e’
fP” e ¢ ¢ ¢ e - N N A
ey ~ ~ ~ ~ (-0.40 + 0.731, -0.15 - 0.531) ey ~ |~ |~ |~ 107
e ~ ~ ~ (-0.61 + 0.22i, - 0.761) ~ e ~ |~ [|~] 5 ~
es ~ ~ ~ ~ (-0.079 - 0.0331, 0.04 - 1.01) es ~ | >~ | >~ >~ 1055
ey (0.60, -0.66 - 0.461) ~ (0.76, -0.04 - 0.651) ~ ~ ey 2 |~ 2 |~ | ~
es ~ (0.43, -0.18 - 0.88i) ~ (0.95, -0.03 + 0.31i) ~ es ~ |28 |~ |20 | ~
Table 30. The pseudo-critical point (g, z?,f) for the 4-simplex vs = (1,2,3,5,7).
20, PN , / , / /
e e €13 err — € €13 ey €18 €19
; 095 032 [} 082+ 0,197\ | (081 0.73 — 0.057) |- _ i
Juse 0.011 + 0.006i 1.03 —0.0012 4+ 0.011i 119 0 12 ‘6 ~ ~ (1,086 - 0.07i) ~ | (1,1.09-0.06)
- . " 65 | (1087 0500 < < (10,83 + 0.561) <
" 00066 T 0.00089 117 5 T ir < (1,-0.93 + 0.751) ~ < (1,132 + 0.61)
Fuse 0.88i 0.72i 0.86i 0.03 — 0.72i €18 a-1) ~ | (-2+22) ~ ~
e S (10,73 + 0.58) = [118-08D =

The boundary data for the curved geometry and the corresponding pseudo-critical point can be
found in Mathematica notebook [59].

D Regge Action

Let’s first recall the volume of the simplex. The volume formula for the Lorentzian 4-simplex o is
given by [60, 61]

Y S det(C,) (D.1)

o= i s de o .
24(41)2

where V, is the volume square and det(C,) is the Cayley-Menger determinant. The Cayley—Menger

matrix C, is the 6 x 6 matrix with entries l?j fori,5 = 0,---,4, where /;; is the segment length.

The Cayley—Menger matrix is augmented by an additional row and column with entries given by
(00)575 =0 and (00)175 = (00)5,j = 1. That is
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Table 21. Boundary data (as,&e) of the curved geometry for the 4-simplex vo = {1,2,3,5,6}

S \e el e el el ) N eh | e | € | ek | e
e [
ey ~ ~ ~ ~ (-0.71 + 0.13i, 0.02 - 0.69i) e ~ |~ 1128
e ~ ~ ~ (0.81 i, -0.59i) ~ e |~~~ |5 [~
er ~. ~. ~. (-0.27 - 0.19i, -0.94i) ~ er ~ |~ ~]5 |~
es | (0.71,-0.24- 0.671) ~ ~ ~ (0.95, -0.17 + 0.25 1) s 15 |~ —|—|5
eo ~ {0.74, 0.67 + 0.051) | (1.0, 0.049 - 0.0651) ~ ~ e | ~]26[32 | — | —
Table 22. Boundary data (as,&es) of curved geometry for the 4-simplex vs = {1,2,4,5,6}
b€ ap\e
“X N EEIE AR
c >
o — — — (:0.22 - 0.03 1, 0.07 - 0.97 1) ~ e |~ |~ — 20 —
er ~ ~ ~ ~ (-0.105 - 0.0721, -0.991) e |~ | —| — | — |32
el ~ ~ ~ ~ (0.18 + 0.98 1, 0.065 - 0.106 i) e ~ [~~~ 1] ~1069
=N ~ (0.98, 0.12 - 0.181) | (0.3, -0.87 + 0.251) ~ ~ en |~ (5] 2 |~ <
12| (0.99, -0.01 - 0.173) ~ ~ (1.0, -0.018 + 0.025 1) = e 065 [~ |~ 2 | w
Table 23. Boundary data (as,&es) of curved geometry for the 4-simplex vy = {1,2,3,4,7}
eb \¢ ap\¢
f ' X € €h3 €l €15 €16 Sl X € | e | el | €5 | €l
o ~ ~ ~ (033 + 0.75 1, -0.12 - 0.57 1) = a0~~~z <
e13 ~ ~ ~ ~ (-0.52 + 0.71 1, -0.35 - 0.32 i) €13 ~ |~~~ ~1]32
€14 ~ ~ ~ (-0.58 + 0.71 1, -0.19 - 0.35 i) ~ €14 ~ |~ ]21] ]~
s — (0.90, 0.1 - 0.41 1) — ~ (0.63, 0.33  0.71 1) o5 |~ [ 56 | — |23
1| (0.94, 0.2 - 0.221) — (0.94, 0.28 - 0.181) — = e | 075 |~ |05 | — | —
Table 25. Boundary data (as,&e) of the curved geometry for the 4-simplex vs = {1,2,4,5,7}
Eeb \& o o o o o a\¢ o ol e | e
o 10 “14 “17 “20 21 ° 10 14 17 “20 “21
€10 ~ ~ ~ (0.20 + 0.91 i, 0.07 - 0.35 i) ~ €19 ~ |~ |~ 2 |~
€14 ~ ~ ~ ~ (-0.55 + 0.68 i, -0.16 - 0.47 i) €14 ~ |~ |~ | ~105
€17 ~ ~ ~ ~ ~ e1r ~ S~ >~ ~ | >~
e S (0.76, 0.22 - 0.61 1) | (0.74, 0.57 - 0.36 1) S (085, 052 - 0.11) e |~ | 21|54 — [24
a1 | (0.95,-0.31 + 0.07 1) ~ (039, 0.89 - 0.23 1) ~ — e 069 | ~ |35 ] — | —
Similarly, the volume formula of the Euclidean tetrahedron is given by
(_ 1)3+1
V= =~ det(C;) (D.3)
T T
23(31)2

here, C, is the Cayley—-Menger matrix for the tetrahedron, which is a 5 x 5 matrix defined similarly
as the above.

Given @ and b as timelike normal vector of two tetrahedra Ta, Tp Of the 4-simplex o, the Lorentzian
dihedral angles are [62, 63]

(@-b) @by (D.4)
= |, sgn(@-b) =-——5—. .
@b G-b

0:(0) = sgn(a@- b) cosh ™ | sgn(a - b) a-b

In the 4-dimentional triangulation, the hinge of the angle is a triangle denoted by ¢. Given a triangle

t, it is shared by 7, and 75, and sz is the length square of the segment opposite to the triangle ¢ in o.

For example, in the 4-simplex o = (12345), the tetrahedra 7, = (1234) and 7, = (1235) share the
triangle ¢ = (123). Then ¢ is the segment (45). The dihedral angles w.r.t ¢ are given by [64]

2 2
1 9Vs 1 9V, 32.42 gV
Vi Osg 1 V: Osg 7, 85?
ot(O') = W cosh (D5)

1 9V, 7
V, Bsz V; Os; ,/32VV—:“ 32 v

Here, V are volume square (V; = a? is the area square) and s is length square. As we only consider
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Table 26. The pseudo-critical point (g2, z?,f) for the 4-simplex v1 = (1,2, 3,4, 6)

N
e 1 ) o ot ) e A e A
5 0.06 0.10 + 0.027 0.99 —0.06 —0.167 07 00 | _ S
9, 0 | o . YT YAy 129 o ~ < (1095 + 0.701) < (1.-0.82 + 0.450)
. o - o (1, 0.87 - 0.500) S ~ (1-0.31 1 0.951) ~
5 —0.0016 - 000017 —1.0i 0 BT €3 ~ [ (001415 [~ ~ (1,25 + 6.01)
e —0.97i 0.34 4+ 0.12i _0.91i 0.46 4 0.12 e (1-0.92 + 0.401) = (1,03 + 2.11) ~ =
es < (1014 + 0.751) < (102-14) ~
Table 27. The pseudo-critical point (g5, zgf) for the 4-simplex v2 = (1,2,3,5,6).
120, TN , , . . /
e € e er > A e A e A
5 0.99 ~0.05—0.151 0.98 030 1.0 —0.029 + 0.0487) |- _ _
P 0.0024 00112 1ot 0 o .97 ) — — 1015150 — (1-0.14 & 0.751)
- P P ¢ (1,0.87 - 0.481) < < (T, -1) <
70008 T 0.00055% — 5 o er ~ (08009 < (1,18 + 2.6) ~
ue ( —1.0i —0.0054 — 00011/’) (71.02 —0.029 + 0016:) ] (1,-0.33 + 0.941) ~ ~ ~ (1,18-261)
) — (11,09 - 0.05) | (LA7 + 6.90) — —
e . 0 0 .
Table 28. The real critical point (gy., 2, ;) for the 4-simplex vz = (1,2,4,5,6).
NG ; , , , /
e €3 er €10 €3 €7 €10 €n €12
) 0.78 —0.13 — 0720 10 0,030 + 0.0467 | (0.96 0.38) |- i _
Juae 0 1.29 —0.0010+0.0018 096 0 1 e ~ ~ (1-0.94 + 0.69) | (1.0.3 + 2.1i) ~
- o o er [ (0.0 + 150 — ~ ~ {1, 19 + 7.0)
5 0.00013 — 0.00017 T2 0 8 €10 ~ (1,-0.86 - 0.07) ~ ~ (1,045 - 0.081)
oz ( —0.85i —0.15 + 0.11:) (70.55; ~0.16 + 0. 127:) en ~ (LL8 +2.6) | (1-0.68-0.15) ~ ~
e | (125 T 600 ~ ~ 57 510 =
e . 0 0 .
Table 29. The pseudo-critical point (gye, Z, ) for the 4-simplex v4 = (1,2,3,4,7).
127 N ’ ’ ’ / /
€ €1 €13 €14 €1 €13 €14 €15 €16
5 096 0.02  0.007 081 0.82 7 0.07 0,68 T37007Y || i
Gune 0.02-002 105 0 12 —0.0023 + 0.0038i 1.5+ 0.01 o1 ~ (1,088 - 0.460) ~ (1091 + 0401) ~
- e P €13 ~ ~ (1,-0.92 + 0.751) ~ (1, -0.73 + 0.54i)
5 0.0032 — 0.0015i  —L.3i 0 13 €1 (1,-0.94 + 0.681) ~ ~ (1-0.94 + 0.771) ~
Juae ( —0.79i  —0.34— mm) (—0771 —0.49 — 1.011) €15 ~ [ (1083 +0.56) ~ ~ (1-1.1-1.21)
16 (1082 + 0.451) N (110 + 0.81) N —
the space-like triangles and tetrahedra, so all the volume square are positive. The above formula

can be simplified as

(D.6)

Here, the volume of 4-simplex, tetrahedra and areas of triangles can be computed by following
Eq.(D.1) and Eq.(D.3). Given any simplicial complex KC, Regge action can be defined as

Schgc = Z Z atgt(o—)a (D7)

ocCK tCo

where a; are the areas of the triangles ¢t and 6; is the dihedral angle of triangle ¢.
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