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A B S T R A C T   

Estimation of the rate of change of a system’s states from state measurements is a key step in several system 
analysis and model-building workflows. While numerous interpolating models exist for inferring derivatives of 
time series when data is disturbed by noise or stochasticity, general-purpose methods for estimating derivatives 
from sparse time series datasets are largely lacking. A notable weakness of current methods, which are largely 
local, is their inability to globally fit data arising from non-identical initial conditions (i.e., multiple experiments 
or trajectories). In this contribution, Neural ODEs (NODEs) are demonstrated to close this gap. Through a series 
of benchmarks, we show that because of the differential formulation of NODEs, these data smoothers can infer 
system dynamics of sparse data, even when accurate interpolation by algebraic methods is unlikely or funda
mentally impossible. Through the presented case studies for derivative estimation and model identification, we 
discuss the advantages and limitations of our proposed workflow and identify cases where NODEs lead to sta
tistically significant improvements. In summary, the proposed method is shown to be advantageous when 
inferring derivatives from sparse data stratified across multiple experiments and serves as a foundation for 
further model development and analysis methods (e.g., parameter estimation, model identification, sensitivity 
analysis).   

1. Introduction 

If truly can it be said that “form follows function” in architecture as 
well as the biological and materials sciences, in the statistical and 
mathematical sciences an equally valid paradigm may be that formula
tion follows function. This latter statement is made here to mean that, in 
choosing the formulation of a mathematical model, foremost among 
considerations ought to be its functional role. After all, a model’s 
function will ultimately be constrained by its formulation. This principle 
can be instructive, for example, in surrogate modeling—the task of 
replacing a complex simulation or experiment with an empirical meta- 
model. To build a surrogate model whose function includes maximal 
generalizability, conventional wisdom argues that the surrogate with 
the simplest formulation that still captures the system response ought to 
be used (Forrester et al., 2009). Moreover, if the function of the surro
gate model is model-based optimization, then the formulation of the 
surrogate model should have the property of being first and 
second-order differentiable. As another example, when modeling a 

system response, if the function of the model is to capture a dynamic (i. 
e., transient) response, then a formulation based on differential equa
tions may be more appropriate. In contrast, if the situation called for 
modeling a non-transient response, a formulation of purely algebraic 
equations will often suffice. 

This truism has potential crossover applications for the goal of esti
mating derivatives of dynamic systems. Estimating derivatives, or the 
rate of change of a system’s states, is of interest in many system analysis 
workflows including sensitivity analysis, uncertainty quantification, and 
parameter estimation of dynamic models, spanning problems across 
nearly every scientific and engineering discipline. However, accurate 
estimation of derivatives from data is a challenging task due to the need 
to account for noise, sparsity and nonlinearity in real-world datasets. To 
meet this challenge, numerous methods for interpolating data and 
estimating derivatives have been proposed. An early contribution is the 
work of Varah (1982) who used splines as the means for interpolating 
data for the purpose of derivative estimation and ultimately parameter 
estimation of differential equations. Similar studies have used Support 
Vector Machines (Mehrkanoon et al., 2014), Neural Networks (Dua, 
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2011), and Gaussian Processes (Liu et al., 2009; Swain et al., 2016) to 
regress dynamically-sampled data and estimate derivatives. However, a 
notable link between all these algebraic formulations is their depen
dence on time as an input to the data-interpolating model. The key 
motivation of this contribution is the hypothesis that a differential 
formulation is a better interpolator of a differential response, especially 
in cases of sparse data. 

In a recent publication, we proposed Neural Ordinary Differential 
Equations (NODEs) as the data-driven means for interpolating state data 
for the purpose of derivative estimation (Bradley et al., 2021). A NODE 
can be viewed as the differential form of a standard algebraic Neural 
Network (a-NN) and differs from standard a-NNs primarily in that it 
predicts the instantaneous change in a system state rather than the state 
itself (Chen et al., 2018). To motivate its use over other surrogate 
models, the NODE’s ability to infer state derivatives was compared in 
our work with that of an a-NN, with the former clearly offering superior 
results. However, there exist numerous methods for automated inter
polation of data which could be considered, many of which are more 
frequently used, and potentially more accurate than a-NNs at derivative 
estimation. 

The most commonly used interpolating methods for derivative esti
mation include filter techniques (Butterworth, 1930; Schafer, 2011; 
Savitzky et al., 1964; Aravkin et al., 2017; Kalman, 1960), optimization 
methods (Chartrand, 2017; Rudin et al., 1992), local regression 
(Belytschko et al., 1996; Harrell, 2015) or kernel smoothing (Gardner, 
2006), moving-average methods (Hyndman, 2010), splines (Boor, 
1978), and numerical differentiation. Formulation of some of these 
methods varies based on whether the interpolating model should pass 
through data precisely or regress the data to recover a signal from noisy 
measurements (e.g., standard splines vs. smoothing splines). These 
methods have been reviewed for interpolating dynamic signals (Härdle 
et al., 1997; Alexandrov et al., 2012; Lepot et al., 2017), sometimes as a 
means for short-term forecasting (Rahardja, 2020; Atluri et al., 2018). 
Naturally, these methods may be combined, for example, by using nu
merical differentiation to infer the derivatives of curves fitted from 
filtering techniques as done in (van Breugel et al., 2020). For many of 
these techniques, there already exists highly automated, 
computationally-efficient, user-friendly software that facilitates their 
implementation. 

The goal of this work is to motivate the use of NODEs by making a 
case for their superior accuracy over algebraic interpolating techniques. 

Although comparing to all methods listed above is outside the scope of 
this work, we select two of the most popular and tested methods, namely 
B-splines and Numerical Differentiation as the baseline approaches. 
Based on results obtained in our previous work, we form the hypothesis 
that NODEs will be more accurate than an interpolating method based 
on splines or finite differences (FDs), if the data is sparsely sampled 
across multiple experiments. This hypothesis is motivated by a simple 
fact, namely, that by being formulated as a differential rather than 
algebraic model, a NODE’s inputs are different than other interpolating 
models. To clarify why this may be important, consider the formula for a 
B-spline (Eqs. (1)–(3)), a frequently used interpolating method due to its 
high accuracy (Aguilera et al., 2013; Eilers et al., 2010), flexibility (Sun 
et al., 2017) and ease of implementation (Perperoglou et al., 2019). 

S(t) =
∑n−1

i=0
ciBi;k(t) (1)  

Bi;0(t) =

{
1, ti < t < ti+1
0, otherwise (2)  

Bi;k(t) =
t − ti

ti+k − ti
Bi;k−1(t) +

ti+k − t
ti+k+1 − ti+1

Bi+1;k−1(t) (3) 

A B-spline S(t) of order n is a collection of piecewise polynomial 
functions of degree k=n-1. The polynomials are connected at N knot 
points ti, where i = [1,2, …N], and are defined by the coefficients ci 

multiplied by the basis functions Bi;k(t) defined by Equation (3), also 
known as the Cox-de Boor recursion formula (Boor, 1978). The main 
takeaway from the above equations is that the B-spline (like other 
interpolating methods) is a function of the independent variable t over 
which the states are changing (i.e., usually time). As a consequence of 
this, when interpolating dynamic data the spline offers a local approx
imation only. A different set of spline functions is required not only for 
each state variable but also for each distinct state ‘trajectory’ for which 
data is available. Generally, datasets with multiple distinct trajectories 
arise when the states of a dynamic system evolve from a unique set of 
initial or boundary conditions. These datasets are less common in 
observational studies (e.g., the observed rise in housing prices) but are 
nearly unavoidable in an experimental setting (e.g., tracking effective 
yield of a chemical reaction in response to different reactant feed rates). 
Indeed, datasets with multiple state trajectories are created whenever 
multiple experiments are performed on the same system. 

In contrast to splines and all other time-dependent (i.e., algebraic, or 
local) interpolating methods, a NODE’s formulation is not an explicit 
function of time, but rather the states only (Eq. (4)). 

dxk

dt
= NN(xk, w) (4)  

In this work, to be considered a NODE, a Neural Network model 
NN(xk, w), which is a function of parameters w and K states xk, where k 
= [1, 2, …K], predicts the rate of change of the states (i.e., the state 
derivatives). Further details on the NODE’s architecture can be found in 
the Appendix. In theory, Equation (4) could be changed to include time 
as an input. This might be advantageous if the NODE models a ho
mogenous differential equation (DE) system. However, there are 
obvious advantages of preserving the NODE form of Equation (4). This is 
because, unlike other interpolating methods, a single NODE model can 
be used to globally interpolate multi-variate data even if the data is 
spread across multiple experimental runs. This global interpolation re
quires the following two assumptions, namely that the dynamics are 
continuous or can be made continuous (Chen et al., 2021) and are 
properly scaled. The potential advantages of this fact come critically into 
play when experiments sample data only sparsely. Data from one 
experiment can influence the NODE model predictions for a different 
experiment where no data is available. The idea of developing global 
interpolators for multiple sparse experiments has been considered in the 

Abbreviations 

AICc Akaike Information Criterion (Corrected) 
a-NN algebraic Neural Network 
BIC Bayesian Information Criterion 
DE Differential Equation 
FD Finite Difference 
FHN Fitz-Hugh Nagumo (model) 
GP Gaussian Process 
LV Lotka-Volterra (model) 
ML Machine Learning 
NN Neural Network 
MAE Mean Absolute Error 
MSE Mean Squared Error 
MWUT Mann-Whitney U Test 
NODE Neural Ordinary Differential Equation 
ODE Ordinary Differential Equation 
SINDy Sparse Identification of Nonlinear Dynamics 
SIR Susceptible, Infected, Resistant (model) 
SSE Sum of Squared Errors 
VDP Van der Pol (model)  
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past in the form of Bayesian or generalized linear models (Deboeck, 
2020; Boker et al., 2010), however the methods of those studies either 
don’t generalize well to irregularly-sampled, multi-variate systems or 
require too much user intervention to be amenable to automation. 

The meaning of sparsity can vary among disciplines and even be
tween applications. What may be a sparse dataset for one application 
may be excessive for another. Though not considered in this work, when 
data becomes excessive or high-dimensional, it may be desirable to 
create a sparse representation of the dataset to remove correlated vari
ables as done in (Chen et al., 2022; Peng et al., 2022). In this work, 
sparsity is instead used to refer to datasets that have fewer samples than 
would be needed for local approximation methods. Importantly, this 
does not mean that the total number of data samples is few. When data 
from multiple experiments are available, the collated dataset may be 
large, though data from a single experiment may be few. To make the 
discussion more concrete, a visual example of a densely sampled system 
is juxtaposed to datasets representing different modes of sparsity in 
Fig. 1 for an illustrative system with 3 states. 

Reasons for the apparent sparsity depicted in Fig. 1 can vary. For 
example, missing data could be caused by faulty equipment, outlier 
removal, limits of sensing techniques, and more. Lower frequency 
measurements can be due to the sensitivity of the experiment to obser
vation (i.e., sampling changes the experimental conditions or quenches 
the experiment) or a limitation of the analysis instruments to examine 
samples at higher volumes or at shorter temporal frequencies. Unob
served states occur when available equipment is unable to track 
important variables, or the variable does not appear in high enough 
quantities to be observable. Of course, depending on the sampling, the 
dataset may be described by multiple Modes outlined in Fig. 1, and this 
discussion is not intended to define hard boundaries between each 
sparsity scenario. Several causes of sparsity in chemical process data and 
machine learning (ML) algorithms to tackle them have recently been 
reviewed by Thebelt et al. (Thebelt et al., 2022). Among the cases in 
Fig. 1, only Modes 1–3 are considered in this work. For Mode 4, no state 
measures are available for the unobserved state and any interpolating 
method, including the one presented in this work, will fail. 

In the work that follows, NODEs will be tested for inferring 

derivatives under sparse conditions not previously explored in other 
works. Differing modes of sparsity will be explored with the aims being 
to demonstrate that 1) NODEs can outperform local interpolating 
methods at inferring system derivatives and 2) their derivatives are 
sufficiently accurate for inference tasks such as parameter estimation 
and model identification. Achieving this second aim can be powerful 
since it would enable computer-automated model-building for systems 
where previously this task was computationally intractable. Other works 
have examined the interpolating potential of NODEs (Chen et al., 2018), 
but not for inferring derivatives. Moreover, an analysis of a NODE’s 
ability to learn dynamic responses when data is thinly spread across 
multiple experimental runs has not been systematically studied in the 
literature so far. Finally, a comparison of NODEs with popular 
data-driven interpolation methods is lacking. 

The results of this study can be broken into two parts. In the first part, 
NODEs are compared with other data-driven interpolation methods for 
inferring derivatives on a single benchmark system. The qualitative re
sults therein offer heuristics that may guide a modeler’s choice on when 
to apply NODEs for derivative estimation. In the second part, the con
clusions from the first part are tested for their ability to generalize to 
other systems and data sampling scenarios. In addition, statistical tests 
are employed to justify the length of NODE integration during training. 
Finally, the benefits of the superior accuracy of NODE interpolation are 
demonstrated by solving a problem in model identification. 

2. Methods 

2.1. Algebraic interpolators 

For the first set of studies, NODEs are compared with two other 
interpolating methods for inferring derivatives. The competing inter
polating techniques chosen in this work are finite differences and B- 
splines, which are the basis of many other local interpolating methods 
and are thus expected to perform similarly to many state-of-the-art 
methods for interpolation tasks. For finite difference (FD) approxima
tion, the implementation made available through PySINDy is used 
(Kaptanoglu et al., 2022). FD approximations ranging from 2nd to 6th 

Fig. 1. Four Modes of Sparse Data. (a) Densely Sampled: ideal case of sufficient data for all states/outputs, (b) Missing Data: missing consecutive samples due to 
failure or disturbance, (c) Infrequent Sampling: equally-timed samples occurring less frequently than in Densely Sampled case, (d) Unobserved States: measurement 
of one or more states/outputs is entirely missing. 
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order are considered with the best approximations retained. Splines of 
degree 3 (4th order) are trained and simulated via SciPy’s B-spline 
packages splrep and splev, respectively (Virtanen et al., 2020). As part of 
training, the parameters of B-splines are adjusted to reduce the scaled 
sum of squared errors between data and the interpolating function. 
When it is assumed that no noise is present in the measured data, the 
smoothing factor of the spline is fixed at zero (i.e., no smoothing). 
Otherwise, when noise is present, the smoothing factor is fixed at a value 
of n-sqrt(2*n) according to SciPy’s default recommendations, where n is 
the number of datapoints in each time-series run. 

2.2. NODEs 

NODEs are formulated by adapting implementations of prior work 
(Bradley et al., 2021; Chen et al., 2018). Specifically, for examples 
comparing NODEs with FDs, the Neural Network component of the 
NODE has a fixed structure with a single hidden layer, 10 hidden nodes 
and hyperbolic tangent activation function. Euler’s method was used to 
numerically integrate the NODE; the number of Euler steps was manu
ally increased until the integration approximated the dynamics well. 
More automated and accurate methods for numerical integration of 
NODEs are becoming increasingly available (Rackauckas et al., 2020; 
Merkelbach et al., 2022), but these were not required to showcase the 
methods of this work. Some hyperparameters that were important to the 
training included the learning rate of the L-BFGS optimizer (Liu et al., 
1989) and termination criteria for training. Training of the NODE 
terminated when the relative improvement in the loss function was less 
than a fixed tolerance over ten iterations. The chosen learning rate was 
fixed at 0.1 and the relative tolerance for termination was fixed at 1E-6. 
Further information about the NODE’s formulation and training algo
rithm can be found in the Appendix. 

Prior to training the NODE on this dataset, special attention is given 
to the methods by which the NODE is integrated during training. Where 
possible, rather than integrating the NODE across a single time interval 
spanning all data from an initial time to to a final time tf , the NODE is 
instead integrated across shorter, overlapping time intervals as depicted 
in Fig. 2. As discussed in previous work (Bradley et al., 2021), inte
grating over shorter, overlapping intervals has the dual benefit of 
reducing the training time while also minimizing the probability of the 
differential data-driven model “over-smoothing” the data and 
converging to a local minimum. Further discussion on choice of NODE 
integration interval can be found in the Appendix and is further 
analyzed in results Section 4. 

A comment should also be made on how the trained interpolators are 
simulated. As the finite difference and spline methods offer only local 
approximations, the states and derivatives are evaluated by calling the 
function at the time t where system estimates are desired. In contrast, 
the NODE could be simulated from any starting condition. This opens 
the question whether NODEs should use as inputs the states predicted by 

the NODE after being simulated from initial conditions to predict de
rivatives (i.e., their global approximation) or use the training data as 
inputs when predicting derivatives (i.e., their local approximation). In 
this work, the states predicted by the NODE (not the training data) are 
used as inputs to the NODE to globally approximate the derivatives. This 
makes the method more robust to noise or outliers in the training data. 
However, this also makes the NODE susceptible to poor performance 
when simulated over long time intervals. This idea is explored in more 
detail in the examples that follow. 

3. Visualization of interpolation and derivative estimation 
accuracy using NODEs via a motivating toy problem 

To illustrate how the fidelity of interpolating methods varies with 
various modes of sparsity, the Lotka-Volterra (LV) equations will be used 
to simulate the underlying system dynamics. The LV equations used in 
this study are shown in Equations (5) and (6) with the parameter values 
a = 3.0, b = 0.6, c = 4.0, and d = 0.5. 

dx
dt

= ax − bxy (5)  

dy
dt

= −cy + dxy (6) 

These equations offer an ideal test case to investigate the approxi
mation properties of data-driven interpolators due to the highly 
nonlinear, yet stable oscillation profile of the system states. In the 
forthcoming examples, the ability of interpolating methods to infer de
rivatives will be tested for densely sampled, infrequently sampled, and 
incomplete datasets with missing data. 

3.1. Single trajectory, dense sampling 

As a first example, system rates are inferred when state data is dense. 
To generate a dense data-set, the LV equations are simulated with the 
initial conditions xo= 10 and yo= 3 over the time interval t = [0,4]. The 
system states are measured at increments of dt = 0.08, yielding a dataset 
of 50 samples for each state. In this example, only a single state trajec
tory (i.e., one experiment or run) is used. For the densely-sampled data, 
the length of integration during training is equal to the span of 4 training 
samples. Graphical representations of the densely sampled data and its 
estimation via the three interpolating methods is shown in Fig. 3. 

Due to the high quality and quantity of data, all interpolating 
methods perform well at smoothing the data. Moreover, the derivative 
estimates also follow closely the true system trajectory. The mean ab
solute error (MAE) of the derivative estimates of the NODEs, splines, and 
finite differences (FD) were 0.452, 0.385, and 0.369, respectively. Since 
no noise is present in the data, if a local approximation of the NODE 
derivatives is calculated using the training data as inputs, the MAE 

Fig. 2. (Top) Integration from a single timepoint spanning all sampling times or (bottom) integration from multiple timepoints using overlapping intervals spanning 
three sampling times. 
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reduced slightly to 0.217. However, this error would substantially in
crease if the state measurements were less reliable. Regardless which 
approximation is used, clearly, under the conditions of abundant data, 
no interpolating method offers a significant advantage for estimating 
derivatives. However, real systems are rarely so well-sampled. Subse
quent examples of this study will differentiate the methods based on 
their ability to infer derivatives on sparser systems. 

3.2. Multiple trajectories, missing data 

Next to consider is the mode of sparsity incurred when data is absent 
in important dynamic regions. An example of this dataset is depicted in 
the upper graphs of Fig. 4. In this dataset, entire oscillations of the state 
profile are not captured, and local interpolation of the data results in 
large errors. If the NODE were trained on only the datapoints of the 
sparsely sampled experiment, it would likewise fail to capture the dy
namics. However, this can be overcome by combining datasets from 
multiple experiments. To demonstrate this, a second experiment is 
performed that captures more of the oscillatory profile not captured in 
the first experiment. The NODE is trained using all data from both 

experiments and during training the NODE is integrated over shorter 
intervals for the densely-sampled trajectory and over the entire interval 
for the sparely-sampled trajectory. The result of training the NODEs on 
the combined datasets is shown in Fig. 4. Clearly, the dynamics captured 
by the NODE from the second experiment have informed the predictions 
of the NODE on the first dataset. This idea of combining data sources for 
more generalized prediction is analogous to the idea of transfer learning 
in machine learning (Zhuang et al., 2021; Weiss et al., 2016). However, 
unlike some transfer learning applications, the data-driven interpolating 
model is not trained sequentially on the different datasets. Rather, all the 
data is used to train the NODE at once. 

Obtaining the spline and finite-difference approximations is also 
done by fitting all the data simultaneously. However, unlike the NODE, 
no transfer learning occurs. As seen in Fig. 4, the derivatives inferred by 
the algebraic interpolating methods cannot capture the dynamics of the 
first experiment, though they interpolate the second experiment well. 
Imaginably, if the two experiments were the result of the same system 
conditions (i.e., the initial conditions were the same), then the two 
datasets could be trivially combined into a single experiment. However, 
barring this trivial case, any method employing an algebraic data-driven 

Fig. 3. State (left) and derivative (right) estimation from interpolating densely-sampled data. Fitted state data (left) and matching derivatives (right) represented 
by dots. 

Fig. 4. Interpolation of 2 experimental datasets. Experiment 1 (top) sparsely sampled and experiment 2 (bottom) densely sampled. Fitted state data (left) and 
matching derivatives (right) represented by dots. 
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model using time as an input must use multiple models to interpolate 
data from different experiments. When the different experiments 
include orthogonal pieces of information (as a well-designed set of ex
periments should), the NODE is anticipated to outperform the algebraic 
interpolating methods. 

Another interesting observation can be made if the datasets are 
reversed. Shown in Fig. 5 is the attempt to infer the states and de
rivatives of the LV system when experiment 1 is well-sampled but 
experiment 2 is not. Although the NODE is trained on data from both 
experiments and interpolates the densely-sampled experimental data 
well, the poorly sampled profile is not simulated accurately by the NODE 
in its most nonlinear region. Indubitably, this discrepancy is the result of 
experiment 2 having a greater variance in the values of its response and 
therefore more information for the NODE to learn on. The profile in 
experiment 1 is an interpolation of the behavior captured in experiment 
2 though the reverse is not true. This highlights the importance of 
capturing the extrema of a system’s response prior to data-smoothing, a 
principle that also bears weight when samples are evenly, but infre
quently measured. 

3.3. Multiple trajectories, Infrequent Sampling 

As a third comparison between NODEs and its competitors, the 
methods are used to interpolate data with infrequently collected sam
ples. For this mode of sparsity, the states are sampled at distant though 
evenly-spaced time intervals. An example dataset consisting of seven 
samples for the LV system is displayed in Fig. 6. The true state and de
rivative profiles are superimposed by the interpolated estimates. The 
interpolating methods are trained as in previous cases, except the length 
of time used for the NODE’s method overlapping intervals spanned 
fewer (3 instead of 4) to avoid convergence to an over-smoothing local 
minimum. Once again, neither the spline nor FD methods could offer an 
excellent approximation of the state profile, resulting in poor derivative 
approximation. 

Somewhat surprising, however, is the excellent interpolation pro
vided by the NODE. Not every extremum is sampled in the training data, 
yet all the extrema are captured by the NODE interpolation. This result is 
believed to be a consequence of the symmetric response of the LV sys
tem. Since the state response of the LV system is cyclic, the oscillating 

pattern captured by the first three data points helps the NODE learn the 
oscillating pattern of the second cycle. Admittedly, this behavior may 
not fully generalize to other systems where the response does not strictly 
follow a cyclic pattern. Nevertheless, this example offers a useful 
contrast between the local approximations offered by the algebraic 
smoothing methods and the benefits of the global approximation pro
vided by a NODE. The NODE is able to transfer learning from one part of 
the system response to infer behavior in a different part, even within a 
single experiment. 

To further test the limits of the NODE’s ability to transfer learning, 
the sample size is further reduced to 5 (initial conditions included). Once 
more, the NODE is trained on data from a single experiment, the dis
tance of integration spanning the length between two points. However, 
this test was found to be far more difficult for the NODE. Fig. 7 juxta
poses the true state and derivative profiles with those estimated by the 
NODE. This time, the NODE finds the complete opposite of the true 
oscillation profile, yielding estimates that are clearly wrong. Attempts to 
improve the approximation by integration over longer intervals or 
modifying the learning rate or other training hyperparameters either 
diverged or converged to same local minimum. In summary, the dataset 
is too sparse to identify the true state profile. 

To improve the approximation of the NODEs, additional experi
mental trajectories were added to the training dataset until the MAE of 
the NODE derivative estimates resemble the mean absolute error of the 
densely sampled data. Each additional dataset includes the same num
ber of equally-spaced datapoints as the first experiment (i.e., five) within 
the same time range, but the initial conditions of the two states x and y 
vary randomly within the range 1 to 14. With each additional dataset, 
the NODE is trained from the same initial parameter values on the en
tirety of the new dataset. The result of successively augmenting the 
number of experiments used to fit the NODE is captured in Fig. 8. The 
MAE of the first column corresponds to the fit of the NODE in Fig. 7, 
wherein only a single experiment was used for training. The critically 
informative number of experiments was found to be 5, consisting in total 
of 25 data points (including initial conditions). Beyond this number, 
additional experiments did not substantially improve the estimation 
accuracy of the NODE. 

At least two noteworthy observations can be made from the trend in 
Fig. 8. First, the interpolation worsened when a fourth experiment was 

Fig. 5. Interpolation of 2 experimental datasets. Experiment 1 (top) densely sampled and experiment 2 (bottom) sparsely sampled. Fitted state data (left) and 
matching derivatives (right) represented by dots. 
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added to the training data. This is unexpected since the four experiments 
include the same data as was present in the three-experiment case plus 
five more data points. Adding a fourth experiment should therefore be 
more informative than the three-experiment case. Upon visualization of 
the trained NODE predictions, it was found that the trained model had 
converged to the opposite oscillation profile than the true system, 
similar to Fig. 7. To remedy this, it was decided to follow a “transfer- 
learning” approach, and to pre-train the NODE with the datasets of the 3 
experiments before training the NODE on all 4 datasets. This pre- 
training brought about a far superior approximation of the true pro
files with a final MAE of 1.358. In summary, this exercise showed the 
importance of NODE initialization when data samples are few. 

Second, the number of samples required to converge to the true 
profile was greater than the 7 data points used in the previous task (see 

Fig. 6). The clarifying explanation for this observation is that the per
formance of the NODE interpolation depends less on the number of 
samples and moreso on how well the samples of any one experiment 
cover the extrema of the dynamic response. As a way to validate this 
conclusion, the number of samples per experiment was further reduced. 
In the case of the LV system, if the number of equidistant samples was 
reduced to less than 5 per experiment, the data of any given experiment 
no longer covered the extrema of the oscillating peaks. Under these 
circumstances, no number of experiments no matter how large could 
induce the NODE to reproduce the LV system’s oscillating profile. A way 
to explain this finding is the breakdown of the method for integration 
during training. When data no longer covers the curvature of the system 
response, integration over shorter overlapping intervals no longer is 
more beneficial than simply integrating across the entire time domain. 

Fig. 6. Interpolation of data available at 7 evenly-spaced times from a single experiment. Fitted state data (left) and matching derivatives (right) represented by dots.  

Fig. 7. NODE predictions after training with 5 datapoints from a single experiment. Fitted state data (left) and matching derivatives (right) represented by dots.  

Fig. 8. Interpolation error of NODEs for a varying number of experiments. Also, improved interpolation of 4 experiments after pre-training.  
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Yet integrating the NODE across an oscillating system response ulti
mately converges to a local “over-smoothed” minimum even for a 
densely sampled experiment (see examples in the Appendix and in 
(Bradley et al., 2021)). Based on these observations, we offer the heu
ristic rule that for a NODE to interpolate a dataset well, regardless of the 
number of experiments, in at least one experiment the local extrema 
must be identifiable. While this may seem like a severe limitation of the 
NODE method, especially if all experiments are sparsely sampled, it’s 
worth noting that not all systems experience the severity of fluctuations 
observed in the LV system and the interval between samples need not be 
fixed. The last example of this study uses such an example for illustrating 
how NODEs can infer not only derivatives but an interpretable mecha
nistic model. 

4. Case studies: NODE interpolation and derivative estimation 
under noisy data scenarios 

In the previous results section, the LV system was used to illustrate 
qualitatively how NODEs can more accurately interpolate data. Under 
certain sparsity conditions, NODEs offered more reliable estimates of 
system dynamics than splines or FDs. However, these examples may not 
be sufficient to demonstrate how well these conclusions extrapolate to 
other dynamic systems or when data is encumbered by noise. Addi
tionally, it remains unclear what role the length of integration of the 
NODE plays in the accuracy of the trained model. To address these 
concerns, the next section offers a more quantitative comparison of 
NODE performance versus splines on 3 cases studies. These include the 
Van der Pol (VDP) oscillator, Susceptible, Infected, Resistant (SIR) 
model, and FitzHugh-Nagumo (FHN) model. These commonly-used 
benchmarks represent dynamic relationships used to model a variety 
of physical and engineering systems from fluid vibrations in a pipe (Xie 
et al., 2019), rate of transmission of a pathogen within a population 
(Word et al., 2012), and electric circuits (Ma et al., 2019), respectively. 
Mathematical formulations of these models can be found in the Ap
pendix of this work. 

4.1. Effect of NODE interval of integration 

Before comparing NODEs with splines on noisy data, we first focus 
on the effect of integration interval length on NODE-based interpolation 
accuracy. Rather than randomly tuning this hyperparameter, we hy
pothesize that there is a relationship between interval length and NODE 
accuracy. To ascertain this, the interval of integration of the NODE was 
varied while being trained on various data scenarios. Specifically, the 
NODE was fit to each of the benchmark systems assuming the avail
ability of either 5 or 10 experiments (i.e., runs) of data with 10 mea
surements each. Noise was added to the data randomly from a normal 
distribution whose variance was equal to 0, 5 or 10% of the range of data 
measurements. Meanwhile, the length of overlapping integration in
tervals during training varied to span either 4, 7, 9 or 10 datapoints. To 
factor in variation from model size, the Neural Network was varied to 
include 1 or 2 hidden layers with 10, 15, or 20 hidden nodes. Due to the 
presence of noise, it was decided to include the initial conditions as 
adjustable parameters during training. The learning rate was fixed at 
10−6 and training was stopped when NODE predictions did not improve 
by more than 10−6 for 10 consecutive iterations. 

After training, the accuracy of the NODEs was calculated by simu
lating the trained NODE once for each experiment starting at t = 0 until 
the end of measurement data. The state predictions at measured times 
were then used as inputs to the NODE to obtain derivative estimates. The 
mean squared error (MSE) between predicted derivatives and true de
rivatives from NODE state estimates was calculated. Visual examples of 
the variation in prediction error are provided in the Appendix. 

A statistical analysis was performed to determine if the improvement 
from increasing the integration interval was indeed significant for 
certain systems or data scenarios. For this analysis, a one-sided Mann- 

Whitney U Test (MWUT) was chosen. The MWUT is the non-parametric 
equivalent of the t-test, preferred for this comparison as the errors 
among fitted NODE models were found not to be normally distributed. A 
separate MWUT is used to compare each of the longer integration in
tervals (7, 9, or 10 data span) with the NODE trained using the shortest 
interval (4 datapoints per interval). Thus, the null hypothesis is that an 
interval spanning 7, 9 or 10 datapoints does not improve NODE deriv
ative estimation accuracy over a short interval of 4 datapoints. 

The p-values from these MWUTs are presented in Fig. 9. For this 
study, a p-value under 0.05 is considered statistically significant and 
these values are highlighted in red. According to Fig. 9, for all 3 case 
studies (VDP, SIR, and FHN), there is a significant improvement in error 
when the NODE is integrated over longer intervals when data is 
encumbered by the highest level of noise. Especially when less data is 
available (5 runs instead of 10), by integrating across the entire span of 
10 measurements during training, the fitted NODE consistently simu
lates more accurate derivatives than when the shortest integration in
tervals are used. Again, the reasoning for this is the tendency for the 
NODE to overfit the noisy data and its failure to learn the longer-range 
dynamics when the NODE is simulated on shorter time intervals during 
training. 

Somewhat less expected is the improved performance of the NODE 
when trained with longer intervals for the SIR system even when noise is 
low. A couple explanations can be offered for this behavior. First, the SIR 
initial conditions vary over larger orders of magnitude, requiring the 
NODE to predict state values more precisely, which may be more diffi
cult when NODEs are not fitted to the long-term trajectories during 
training. In a similar vein, a second unique feature of the SIR system is 
the asymptotic dynamics. Due to the potential for the rate of change to 
approach zero, the NODE must predict derivative values near zero, a 
difficult task for Neural Networks in general. Training over shorter in
tervals results in a failure to learn the asymptotic dynamics and there
fore a failure to capture those dynamics when simulating the NODEs 
over longer-ranges. Further work is needed to establish the capabilities 
of NODEs when trying to capture asymptotic or ‘stiff’ dynamics. 

As a final check on the above conclusions, another MWUT was also 
performed, using as the alternative hypothesis that a shorter interval of 
integration (4 datapoints) offered an improvement in error over longer 
integration intervals. This is merely a reverse of the previous statistical 
test using the same data-fitting scenarios as before. Of all scenarios 
tested only a single case produced a p-value below the 0.05 significance 
threshold (SIR, 10 runs, 5% noise). However, this result is believed to be 
more due to random chance than indicative of a contrasting trend. We 
therefore reject the idea that shorter integration intervals would reduce 
overfitting. 

Put together, the above statistical analyses lead us to conclude that 
NODE overfitting is reduced by training NODEs over longer intervals, in 
particular when data is sparse and noisy. These results are not surprising 
in light of previous work demonstrating superior accuracy when NODEs 
are trained to learn the entire time-trajectory of a system’s response 
(Rico-Martínez et al., 1992). A key difference between the current study 
and previous work is demonstrating this trend remains true even in the 
presence of noise. Especially when data is noisy, integration over longer 
intervals prevents overfitting and enables the NODEs to better learn the 
dynamics. Thus, so long as the integration interval is not so long as to 
over-smooth the data (a scenario described further in the Appendix), the 
modeler should opt for training the NODE over longer intervals to in
crease NODEs’ ability to discover the true dynamics. 

4.2. Effect of noise on NODE interpolation 

Having confirmed the importance of training NODEs with longer 
integration intervals, we now investigate their potential to more accu
rately estimate derivatives versus algebraic interpolation for a broad 
collection of dynamic systems in the presence of noise. For this com
parison, NODEs and splines are used to regress data simulated from the 
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VDP, SIR, and FHN systems and to estimate state derivatives. As FDs 
performed similarly to splines in Section 3, they are omitted from this 
final comparison study. 

To maximize the breadth of this assessment, the conditions of 
training data were varied to include differing amounts of sparsity and 
noise in the data. Specifically, the number of experiments included in 
the training dataset varied between 1 and 10. Each experiment included 
3, 5, or 10 equally spaced measured datapoints. Moreover, normally 
distributed noise equal to 0, 5, or 10% of the range of the measured data 
was added to the data. 

The length of integration of the NODE during training was selected to 
balance overfitting caused by shorter intervals of integration, while 
minimizing the chance of over-smoothing when longer intervals are 
used. Based on our prior analysis, the recommended default setting (or 
heuristic) that balances overfitting vs. over-smoothing is is to fix the 
integration interval to the time spanned by the number of measurements 
minus one. Although this heuristic worked for the current systems, it 
may not be appropriate for other systems, whose length of integration 
may need to be adjusted based on the system’s characteristics (i.e., 
nonlinearity, noise level). The size of the NODE was varied to include 10, 
15 or 20 hidden nodes in either 1 or 2 hidden layers. Each of these NODE 
structures was fitted, and the NODE with the lowest state prediction 
error for a given data scenario was assumed to be the ‘best’ NODE to 
estimate the true dynamics. Other hyperparameters such as learning rate 
and stopping criteria are the same as in the previous section. Same as the 
previous studies, after training, the NODE is simulated forward in time 
starting from the initial conditions of the experiments used for training. 
Thus, a NODE fitted to three experiments estimates only the derivatives 
of the three experiments it was trained on and at measurement times. 

Depicted in Fig. 10 is a summary of the mean squared derivative 
errors of the two methods on three benchmark systems for data 
encumbered by increasing noise and number of runs. Highlighted in 
each table are the data scenarios where the NODE or spline estimates are 

more accurate (lower error) than the alternative interpolating model. 
Several key conclusions can be readily made from Fig. 10. First, 
increasing the number of runs (i.e., experiments) does not necessarily 
translate to a lower average error for either data-driven interpolation 
method. This may seem counterintuitive as increasing runs means more 
data is being fed to the interpolation method. However, it should be kept 
in mind that each run differs in its initial conditions and the complexity 
of the true dynamics. Increasing the number of runs therefore introduces 
the possibility of adding a dynamic trajectory that differs significantly 
from previous experiments or may be more difficult to capture, which 
would lead to a higher average error. However, equally important, as the 
number of runs increases, Fig. 10 shows a clear trend of NODEs more 
frequently offering better estimates than splines of the system de
rivatives across all systems. This trend holds even when there is a sig
nificant amount of noise in the data. In direct contrast, when only a 
single run of data is available for fitting, in less than half of the data 
scenarios do NODEs offer a better estimate of the dynamics. In other 
words, the likelihood of improvement by NODEs over splines in these 
low-run, sparse scenarios is worse than random chance. Thus, it can be 
concluded that the greater accuracy of the NODE is strongly tied to the 
presence of multiple time-series for it to learn from. 

In addition to highlighting trends across systems, some comments 
should be made about the individual benchmarks. Noticeably, the 
NODEs generally do not offer better results than splines for the VDP 
benchmark when only 3 measurements are made, regardless of the 
number of runs. As with the LV system investigated in Section 3, the 
extreme sparsity of measurements when only 3 measurement per run are 
available means no single experiment captures the oscillatory dynamics 
of the data, and the NODE cannot identify the true dynamics. Another 
anomaly noticeable in the VDP results is the extraordinarily high MSE 
for one of the cases with a single run of fitting data. For this particular 
case (5% noise, 1 run, 5 measurements), all six of the fitted NODEs 
diverged during training, making even the best NODE’s estimates 

Fig. 9. List of p-values from calculated using MWUT based on likelihood of a using an interval spanning 7, 9, or 10 datapoints to improve NODE accuracy vs an 
interval spanning 4 datapoints for VDP (top), SIR (middle), and FHN (bottom) systems and data scenarios. p-values less than 0.05 highlighted in red. 
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especially poor. Selecting different hyperparameters could lead to fitting 
a NODE model that doesn’t diverge during training for this data sce
nario, but the accuracy of the NODE would still be expected to be poor 
due to the limited training samples. 

Highlighting yet another trend, although it is generally the case that 
both interpolation methods improve as the number of measurements per 
run increases, this is not universally true. Taking the FHN system for 
example, at peak levels of noise, more measurements per run sometimes 
leads to worse estimates on average. Visual inspection of the fitted 
model’s predictions in these cases found a tendency for increased 
overfitting of the noisy data. Though not explored here, tuning of the 
NODE’s hyperparameters such as the regularization penalty or stopping 
criteria could help mitigate some of these overfitting issues. 

Finally, it is interesting to observe that the NODEs performed better 
than splines least frequently for the SIR system. A few factors are 
considered to cause this behavior. For starters, the average errors for this 
system are orders of magnitude smaller than the other two systems, 

making it difficult to get a substantial improvement by either method. 
Second, as previously mentioned, the SIR system is unique due to it 
having asymptotic and stiff dynamics, which are difficult for NODEs to 
capture. Only when the training data includes 5 or more runs do the 
NODEs generally offer an improvement over splines. 

5. Enabling model identification via NODEs 

Although Fig. 10 in Section 4 demonstrates that NODEs consistently 
offer better accuracy than algebraic interpolating splines when data is 
sparse and an increasing number of experiments are available, it is not 
immediately obvious whether that improvement in accuracy is sub
stantial. In general, inferring derivatives is not the end goal of data 
interpolation. Even more impactful is when the estimated derivatives 
are used for parameter estimation, sensitivity analysis or model dis
covery. In our previous work (Bradley et al., 2021), derivatives esti
mated via NODEs were used to estimate parameters of nonlinear ODEs 

Fig. 10. Mean squared error of derivative predictions from ‘best’ NODE and spline trained on various data scenarios from 3 dynamic systems. Highlighted in red are 
data scenarios where an interpolating model is more accurate than its competitor. 

W. Bradley et al.                                                                                                                                                                                                                                



Engineering Applications of Artificial Intelligence 130 (2024) 107611

11

with speed and accuracy that surpassed direct estimation methods. In 
this work, as a final and more challenging case study, we will illustrate 
the impact of the proposed method on model identification (i.e., model 
discovery). In brief, model identification can be viewed as a parameter 
estimation problem wherein not only the parameters but also the 
mechanistic terms of the model are unknown. 

Efforts to develop optimal model identification algorithms are 
numerous and ongoing. However, among the frameworks for discov
ering DEs for dynamic systems, Sparse Identification of Nonlinear Dy
namics (SINDy) has received extensive attention in recent years for its 
ability to identify the correctly formulated differential equation from 
among a combinatorially large number of candidate models (Brunton 
Steven et al., 2016). SINDy ‘discovers’ the true model through a 
two-stage algorithm. The first step is to estimate the time derivatives of 
measured data (i.e., by interpolation) and the second is to solve the 
model identification problem by solving a regularized least-squares 
problem that penalizes models with an excessive number of terms. 
Notably, the term ‘Sparse’ in the SINDy framework refers to the goal of 
generating an accurate model with the fewest number of terms, which 
differs from the usage of ‘sparse’ in this work to refer to datasets with 
limited samples. Readers interested in further details of the SINDy 
approach should consult the original publication (Brunton Steven et al., 
2016) as well as its numerous extensions (Kaptanoglu et al., 2022; 
Kaheman et al., 2020, 2022; Mangan et al., 2019; Kaiser et al., 2018). 

In the original version of the SINDy algorithm, the derivatives used 
to solve the model identification problem were acquired through finite 
difference or spline interpolation methods. This was appropriate when 
data was densely sampled around a single time trajectory. In contrast, 
the global interpolation properties of NODEs should allow them to 
supply more accurate derivatives to the SINDy algorithm when trained 
on multi-experiment data, increasing the likelihood of SINDy identifying 
the true model when data is sparse. To prove this point, the derivatives 
estimated in one of the case studies of the previous section were used to 
identify the true model using the SINDy algorithm, assuming of course 
the true model is unknown. To our knowledge, no previous work has 
applied NODEs as the derivative estimation component of SINDy algo
rithm when data is stratified across multiple experiments and thus their 
potential advantage for model identification is an open question. 

The VDP system was chosen as the focus for the model identification 
comparison as the frequency of improvement from NODEs over splines 
for this system fell in between that seen in the other two benchmark 
studies. The first step in the SINDy framework requires predefining a 
library of candidate terms from which SINDy selects which terms to 
include in the identified differential equation model. To ensure a fair 
comparison, the same set of candidate terms were selected for consid
eration for every data collection scenario, which included polynomial 
terms up to third order. The objective function used to identify the true 
model is a regularized regression function of the form (7), and is mini
mized via a sequentially-thresholded least squares regression algorithm 
available through SINDy’s implementation. 

min
∑ 1

2

(

Ẋ − Θ(X)Ξ)
2

+ λR(Ξ) (7)  

In Eq. (7), Ẋ and X represent the derivatives and states estimated via 
interpolation, respectively, Θ is a vector of candidate model terms, and Ξ 
the parameters of those terms. To penalize non-parsimonious models, a 
regularization penalty R() multiplied by the hyperparameter λ is added. 
In this work, R() is the l-2 norm and the optimal value of λ was found by 
sweeping through a range of lambda values, performing the 
sequentially-thresholded least squares regression each time. Specif
ically, for each of 10 lambda values in the range 0.1–1.0, Equation (7) 
was minimized using the derivatives and states predicted via either 
splines or a NODE. Next, the model selected via Eq. (7) was integrated on 
the interval t = [0,10], and the sum of squared errors (SSE) between the 
candidate model predictions and training data was calculated. Using the 

SSE, the corrected Akaike Information Criteria (AICC) was evaluated to 
rank the models found by the different lambda values. 

AICc = n ln
(

SSE
n

)

+2k+
2k2+2k
n − k−1

(8)  

In Equation (8) n is the number of training samples and k is the number 
of terms in the discovered model. 

To provide a rich dataset for SINDy to fit to, the fitted interpolating 
model simulated derivatives for all runs used for training at both 
measured and unmeasured times. Specifically, states and derivatives 
used in SINDy are those estimated by the interpolating model at 100 
equidistant points within the time interval of training data, t = [0,10]. In 
addition, there is concern that data-driven interpolation may perform 
poorly at estimating derivatives at initial conditions. This was noticeable 
source of error in our previous work for NODEs and has been described 
for splines at the edges of interpolation (Gauthier et al., 2020). To 
combat this, model identification with SINDy was also attempted using 
90 equidistant predictions, eliminating the initial 10 estimates of each 
experiment (i.e., using the interval spanning t = 1 and t = 10). Thus, all 
in all, for every data scenario, SINDy algorithm is called twenty times 
(10 lambdas times 2 sets of training data) and will produce twenty 
models. The model with the lowest AICc score is selected as the ‘true’ 
model, finishing off the model selection workflow. 

An example of the relative AICC scores are plotted in Fig. 11 for 
SINDy models found from 10 different lambda values for the VDP sys
tem, for the case where interpolating models were fit to data with 5% 
noise, 5 runs and 10 measurements per run. Also plotted in Fig. 11 are 
the number of false positive and false negative terms in the SINDy- 
identified models using each lambda value and fitting dataset. A 
model is reported to have a false positive term if a term is present in the 
SINDy-selected model that is not present in the true model and a model 
is reported to have a false negative term if a term present in the true 
model is not present in the discovered model. Notable in Fig. 11 are 
some cases where no AICc value is reported, which occurs whenever the 
SINDy-selected model diverges when simulated. Under these circum
stances, no AICc value can be calculated. 

For the case presented in Fig. 11, the AICc criterion assigns the 
lowest score when λ = 0.5 and 100 NODE estimates per run are used, 
which corresponds to the true model with no false positive or negative 
terms. In contrast to the selection from the NODE estimates, the best 
model obtained by the SINDy algorithm using the spline estimates is 
when a lambda threshold of 0.1 is used. However, this model contains 
incorrect terms not a part of the true model (false positives) and is 
missing terms that should be present in the true model (false negatives). 
Further increasing the regularization simply leads to elimination of 
terms that should be included while decreasing the regularization results 
in a model with additional terms not present in the true model. The 
derivatives estimated by the splines are simply not accurate enough to 
extract the true simulating model from the sparse data. 

To verify how well these conclusions generalize, the same analysis 
depicted in Fig. 11 was performed for other data scenarios and case 
studies. These results are summarized in Fig. 12. In Fig. 12, for each data 
scenario for the VDP system, the number of false positives and false 
negatives in the ‘best’ model found through the SINDy algorithm are 
reported. For example, highlighted in red are the cases where a “0/0” is 
reported, which indicates the selected model has zero false positives and 
zero false negatives. 

Overall, the small number of data cases where the true model is 
selected attests to the difficulty of solving the model selection problem 
when data is especially sparse. To select the true model, SINDy must 
select the correct 4 terms from the simulating VDP model from a library 
of 22 candidate terms. Data provided to SINDy’s regression algorithm 
from a single run is insufficient to differentiate the true model, regard
less which data-driven model is used. This does not contradict results of 
other studies, wherein a single time-series dataset was sufficient to 
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capture all system dynamics. However, whereas those studies assumed 
data was densely sampled, due to the sparsity imposed by the current 
study, not enough measurements are available to capture the complete 
dynamics in a single run. 

Only for two data scenarios does the model selection algorithm select 
the true model when spline-fitted estimates are used. For these cases, 
even though spline estimates are not as accurate as NODE predictions, 
they are accurate enough to select the true model. Nevertheless, these 
successes occur only when each experiment contains the maximum 
amount of data coverage for each run of 10 datapoints/experiment. In 
direct contrast, the estimates from the NODE can identify the true model 
for several cases where the spline estimates cannot, most especially 
when multiple experiments of data are available to train the NODE. The 
NODE captures the true dynamics by transferring knowledge of the 
system response learned across multiple experiments, even when mea
surements are highly encumbered by noise. For these data scenarios, not 
only are the NODE estimates more accurate than splines, but their ac
curacy is sufficiently superior to discover the true underlying model 
when splines cannot. This offers a palpable example of the benefits of 
having more accurate derivative estimation that comes from multi- 
experiment interpolation with a single interpolating model. 

6. Discussion 

The examples in this work have illustrated the benefits of using a 
global interpolator such as NODEs when inferring derivatives from data 
which is sparsely sampled across multiple experiments. However, like 
any tool, NODEs are not a panacea for all problems and some discussion 

of their shortcomings and potential for improvement is merited. 
The choice in this work to approximate the right-hand side of an 

ordinary differential equation with a Neural Network is motivated by a 
Neural Network’s high interpolating potential, scalable to high di
mensions, but there is no rule requiring that the data-driven approx
imator of a DE be a Neural Network. The differential form of the NODE 
enables it to be trained on data from multiple experimental datasets, a 
situation for which there is no straightforward way to train a single 
algebraic model if derivative estimation is the goal. However, this 
conclusion is not meant to exclude the possibility that other data-driven 
models may approximate a differential equation equally well. Especially 
interesting would be a differential data-driven approach that better 
approximates derivatives that vary over several orders of magnitude, 
which may more precisely capture system dynamics than NODEs. 

Interestingly, if data cannot be sampled or combined so that the 
extrema are present in a single experiment, it may still be possible to 
capture the extrema by leveraging domain knowledge. One way to 
encode knowledge would be to manipulate the structure of the Neural 
Network such as its activation function or layer connections. A related 
method is to include known mechanistic terms in the DE when training 
the NODEs as done in (Psichogios et al., 1992) and more recently in 
(Rackauckas et al., 2020; Sorourifar et al., 2023). A third avenue for 
influencing the NODE interpolation is to impose constraints on the 
predicted profile (for example, see (Wilson et al., 2017)). None of these 
methods were pursued in this work in part to demonstrate the gener
alizability of NODE interpolation even when no such knowledge is 
available. Whether any of these methods become generalizable will 
depend on how suitable they are to automation. 

Fig. 11. Number of incorrect terms and information criterion score for SINDy-selected models using either 100 (top) or 90 (bottom) estimates per run from a fitted 
NODE (left) or spline (right) model. 

Fig. 12. Models found by the SINDy algorithm using fitted NODE (left) or spline (right) estimates for a variety of data scenarios.  
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As mentioned earlier, when a state is entirely unobserved any 
interpolating method will fail. Overcoming this limitation will likely 
require incorporating domain knowledge, possibly through similar 
strategies as proposed for detecting unsampled extrema. Although this 
work attempts to illustrate the types of datasets amenable to training 
NODEs under sparse conditions, admittedly the examples primarily offer 
heuristics. More rigorous metrics that assess the amount of data required 
to accurately interpolate across experiments would certainly be 
welcome as these could lead to more efficient designs of dynamic ex
periments (Georgakis, 2013). Assessing the accuracy of a NODE can be 
done more quantitatively than done in this work by applying 
cross-validation metrics to select hyperparameters. However, it should 
be kept in mind that such cross-validation can be less straightforward for 
dynamic data than the non-dynamic, algebraic datasets Neural Net
works are more typically trained for. 

This study presented an approach to automated model selection 
using NODEs, which successfully reproduced the true model despite the 
limited data samples. However, the presented approach is encumbered 
by several limitations, many of which are due to the inherent assump
tions of the SINDy framework. For example, SINDy assumes that the true 
DE is linear with respect to its parameters, the true model terms are 
included in the candidate library, and that each term contributes to the 
model dynamics to a similar degree. The lattermost assumption makes 
the framework inappropriate for identifying models whose parameters 
vary over large orders of magnitude, common to stiff DE models. Of 
course, the SINDy framework was used here merely to showcase how 
increased accuracy of derivative estimates could lead to solving an 
increasing number of real-world problems, and the accuracy of the 
NODE and spline interpolations are not dependent on the limitations of 
the SINDy framework. 

In addition, it is important to note that we have not performed a 
comparison between the proposed “indirect” NODE method of fitting 
ODEs from estimated derivatives and the traditional “direct” methods 
used in ODE literature for parameter estimation of ODEs. A “direct” 
approach is one that considers the functional form of the ODE to be 
known, or at least fixed, so that the ODE model can inform numerical 
integration, collocation schemes or basis functions while fitting the ODE 
parameters. These direct approaches include nonlinear least squares 
(NLS) (Hemker, 1972; Bard, 1970; Benson, 1979; Li et al., 2005), prin
ciple differential analysis (Ramsay et al., 2007), and direct Bayesian 
(Huang et al., 2006) and Gaussian Process-based methods (Wenk et al., 
2020; Lorenzi et al., 2018; Wang et al., 2014). Physics-informed ap
proaches (Raissi et al., 2017; Sun et al., 2021), which have attracted 
much interest in recent years, may also be considered direct approaches 
whenever the PDE/ODE to be fitted is fixed during parameter 
estimation. 

It is well known that these “direct” methods will be more accurate 
than the “indirect” 2-step approach employed in our work, wherein the 
latter first estimates derivatives by a data-driven model and then uses 
those derivatives in the second step to estimate ODE parameters without 
numerically discretizing the ODE (Varah, 1982). Thus, when computa
tionally tractable, a direct ODE fitting is generally preferred over indi
rect methods. However, it is also well-known that the 2-step approach 
can be far more computationally tractable (Varah, 1982). Specifically, 
these computational gains are most evident when the ODEs to be fit are 
highly nonlinear with respect to their parameters or when numerous 
ODEs need to be fit (i.e., a model identification problem). Our previous 
work explored the former case whereas we highlight the latter case in 
the current submission. To see a concise comparison between direct and 
indirect approaches when the latter is better suited, readers may refer to 
our previous work (Bradley et al., 2021). Because of the opposite ad
vantages of the direct and indirect approaches, they are generally 
appropriate for different classes of problems and comparing the two 
would only prove what is already known in the literature—that one 
method is more accurate and the other more computationally efficient. 
Thus, in this work, we focus exclusively on comparing our method only 

with other indirect approaches. 
Indeed, the choice to compare NODEs with splines was strategic, as 

several leading algorithms adopt splines as their basis including kernels 
smoothing (Dai et al., 2022) and physics informed (Sun et al., 2021) 
methods, and are thus expected to perform similarly relative to NODEs 
as splines did in this work. Gaussian Processes (GPs) are also a leading 
method for interpolation and derivative estimation of data. However, 
since time-dependent GPs share many similarities to time-dependent, 
algebraic Neural Networks, which we have previously showed were 
inferior derivative estimators to NODEs (Bradley et al., 2021), a com
parison with GPs we hypothesize will yield similar conclusions. In short, 
a comparison will all these methods is beyond the scope of this work. 
However, based on the results in this study one can hypothesize that so 
far as these indirect methods rely on splines or some other 
time-dependent model as the basis for interpolation without fixing the 
ODE structure, the NODE will offer superior results for two-step indirect 
ODE fitting if data is thinly measured across multiple experiments. 

Finally, this work focuses on proving the superior accuracy of 
NODEs, acknowledging that in other categories, such as interpretability 
and computational efficiency, NODEs are not expected to offer an 
advantage over alternative data-driven techniques. Due to the need to 
integrate the NODE during training, fitting the NODE will require many 
more function calls during training than most interpolating models. 
Moreover, during training, the NODE has the potential to converge to a 
local minimum or diverge on account of poor parameter updating. These 
issues can be remedied either by breaking up the integration interval in 
the former case, and in the latter case through testing several hyper
parameters of the optimizer and NODE structure. This hyperparameter 
tuning would invariably increase training time. Nevertheless, the addi
tional computation required to train NODEs can be worthwhile if it leads 
to more accurate predictions and enables the modeler to solve problems 
not solvable with faster, but less accurate interpolating methods. Soft
ware that automates numerical integration of NODEs are becoming 
increasingly available (Rackauckas et al., 2020; Merkelbach et al., 
2022). As NODE architectures evolve (Rubanova et al., 2019; Kidger 
et al., 2020), so too are evolving methods to accelerate their training 
(Cai et al., 2023; Bonnaffé et al., 2023). Future software that enables 
integrating NODEs over multiple trajectories in parallel would be of 
great value in accelerating training of NODEs. 

7. Conclusions 

In conclusion, Neural Differential Equations have successfully been 
demonstrated to infer system derivatives when data is sparse, noisy, and 
spread across multiple experiments, including cases when algebraic 
interpolating methods failed. To communicate the generalizability of 
the approach, several modes of sparsity were explored, and NODEs were 
shown to interpolate well the system response provided the extrema 
were represented in one of the system experiments. In addition, it was 
shown that the interval of NODE integration becomes an important 
hyperparameter when being trained on data that is noisy, nonlinear, and 
sparse. Finally, the method was shown to be sufficiently accurate to 
discover the mechanistic model generating the system dynamics, espe
cially when multiple experiments of data were available for training. It is 
anticipated that the methods described in this work will help automate 
difficult tasks in data analysis and inference of sparse dynamic systems 
that are beyond the reach of traditional inference methods. 
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