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Keywords: Estimation of the rate of change of a system’s states from state measurements is a key step in several system
Neural ODEs analysis and model-building workflows. While numerous interpolating models exist for inferring derivatives of

Derivative estimation
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time series when data is disturbed by noise or stochasticity, general-purpose methods for estimating derivatives
from sparse time series datasets are largely lacking. A notable weakness of current methods, which are largely
local, is their inability to globally fit data arising from non-identical initial conditions (i.e., multiple experiments
or trajectories). In this contribution, Neural ODEs (NODEs) are demonstrated to close this gap. Through a series
of benchmarks, we show that because of the differential formulation of NODESs, these data smoothers can infer
system dynamics of sparse data, even when accurate interpolation by algebraic methods is unlikely or funda-
mentally impossible. Through the presented case studies for derivative estimation and model identification, we
discuss the advantages and limitations of our proposed workflow and identify cases where NODEs lead to sta-
tistically significant improvements. In summary, the proposed method is shown to be advantageous when
inferring derivatives from sparse data stratified across multiple experiments and serves as a foundation for
further model development and analysis methods (e.g., parameter estimation, model identification, sensitivity
analysis).

system response, if the function of the model is to capture a dynamic (i.
e., transient) response, then a formulation based on differential equa-
tions may be more appropriate. In contrast, if the situation called for
modeling a non-transient response, a formulation of purely algebraic
equations will often suffice.

This truism has potential crossover applications for the goal of esti-
mating derivatives of dynamic systems. Estimating derivatives, or the
rate of change of a system’s states, is of interest in many system analysis
workflows including sensitivity analysis, uncertainty quantification, and
parameter estimation of dynamic models, spanning problems across
nearly every scientific and engineering discipline. However, accurate
estimation of derivatives from data is a challenging task due to the need
to account for noise, sparsity and nonlinearity in real-world datasets. To
meet this challenge, numerous methods for interpolating data and
estimating derivatives have been proposed. An early contribution is the
work of Varah (1982) who used splines as the means for interpolating
data for the purpose of derivative estimation and ultimately parameter
estimation of differential equations. Similar studies have used Support
Vector Machines (Mehrkanoon et al., 2014), Neural Networks (Dua,

1. Introduction

If truly can it be said that “form follows function” in architecture as
well as the biological and materials sciences, in the statistical and
mathematical sciences an equally valid paradigm may be that formula-
tion follows function. This latter statement is made here to mean that, in
choosing the formulation of a mathematical model, foremost among
considerations ought to be its functional role. After all, a model’s
function will ultimately be constrained by its formulation. This principle
can be instructive, for example, in surrogate modeling—the task of
replacing a complex simulation or experiment with an empirical meta-
model. To build a surrogate model whose function includes maximal
generalizability, conventional wisdom argues that the surrogate with
the simplest formulation that still captures the system response ought to
be used (Forrester et al., 2009). Moreover, if the function of the surro-
gate model is model-based optimization, then the formulation of the
surrogate model should have the property of being first and
second-order differentiable. As another example, when modeling a
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Abbreviations

AlICc Akaike Information Criterion (Corrected)
a-NN algebraic Neural Network

BIC Bayesian Information Criterion
DE Differential Equation

FD Finite Difference

FHN Fitz-Hugh Nagumo (model)

GP Gaussian Process

LV Lotka-Volterra (model)

ML Machine Learning

NN Neural Network

MAE Mean Absolute Error

MSE Mean Squared Error

MWUT Mann-Whitney U Test

NODE  Neural Ordinary Differential Equation
ODE Ordinary Differential Equation

SINDy  Sparse Identification of Nonlinear Dynamics
SIR Susceptible, Infected, Resistant (model)
SSE Sum of Squared Errors

VDP Van der Pol (model)

2011), and Gaussian Processes (Liu et al., 2009; Swain et al., 2016) to
regress dynamically-sampled data and estimate derivatives. However, a
notable link between all these algebraic formulations is their depen-
dence on time as an input to the data-interpolating model. The key
motivation of this contribution is the hypothesis that a differential
formulation is a better interpolator of a differential response, especially
in cases of sparse data.

In a recent publication, we proposed Neural Ordinary Differential
Equations (NODEs) as the data-driven means for interpolating state data
for the purpose of derivative estimation (Bradley et al., 2021). A NODE
can be viewed as the differential form of a standard algebraic Neural
Network (a-NN) and differs from standard a-NNs primarily in that it
predicts the instantaneous change in a system state rather than the state
itself (Chen et al., 2018). To motivate its use over other surrogate
models, the NODE'’s ability to infer state derivatives was compared in
our work with that of an a-NN, with the former clearly offering superior
results. However, there exist numerous methods for automated inter-
polation of data which could be considered, many of which are more
frequently used, and potentially more accurate than a-NNs at derivative
estimation.

The most commonly used interpolating methods for derivative esti-
mation include filter techniques (Butterworth, 1930; Schafer, 2011;
Savitzky et al., 1964; Aravkin et al., 2017; Kalman, 1960), optimization
methods (Chartrand, 2017; Rudin et al., 1992), local regression
(Belytschko et al., 1996; Harrell, 2015) or kernel smoothing (Gardner,
2006), moving-average methods (Hyndman, 2010), splines (Boor,
1978), and numerical differentiation. Formulation of some of these
methods varies based on whether the interpolating model should pass
through data precisely or regress the data to recover a signal from noisy
measurements (e.g., standard splines vs. smoothing splines). These
methods have been reviewed for interpolating dynamic signals (Hardle
et al., 1997; Alexandrov et al., 2012; Lepot et al., 2017), sometimes as a
means for short-term forecasting (Rahardja, 2020; Atluri et al., 2018).
Naturally, these methods may be combined, for example, by using nu-
merical differentiation to infer the derivatives of curves fitted from
filtering techniques as done in (van Breugel et al., 2020). For many of
these techniques, there already exists highly automated,
computationally-efficient, user-friendly software that facilitates their
implementation.

The goal of this work is to motivate the use of NODEs by making a
case for their superior accuracy over algebraic interpolating techniques.
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Although comparing to all methods listed above is outside the scope of
this work, we select two of the most popular and tested methods, namely
B-splines and Numerical Differentiation as the baseline approaches.
Based on results obtained in our previous work, we form the hypothesis
that NODEs will be more accurate than an interpolating method based
on splines or finite differences (FDs), if the data is sparsely sampled
across multiple experiments. This hypothesis is motivated by a simple
fact, namely, that by being formulated as a differential rather than
algebraic model, a NODE’s inputs are different than other interpolating
models. To clarify why this may be important, consider the formula for a
B-spline (Egs. (1)-(3)), a frequently used interpolating method due to its
high accuracy (Aguilera et al., 2013; Eilers et al., 2010), flexibility (Sun
et al., 2017) and ease of implementation (Perperoglou et al., 2019).
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A B-spline S(t) of order n is a collection of piecewise polynomial
functions of degree k=n-1. The polynomials are connected at N knot
points t;, where i = [1,2, ...N], and are defined by the coefficients c;
multiplied by the basis functions By (t) defined by Equation (3), also
known as the Cox-de Boor recursion formula (Boor, 1978). The main
takeaway from the above equations is that the B-spline (like other
interpolating methods) is a function of the independent variable t over
which the states are changing (i.e., usually time). As a consequence of
this, when interpolating dynamic data the spline offers a local approx-
imation only. A different set of spline functions is required not only for
each state variable but also for each distinct state ‘trajectory’ for which
data is available. Generally, datasets with multiple distinct trajectories
arise when the states of a dynamic system evolve from a unique set of
initial or boundary conditions. These datasets are less common in
observational studies (e.g., the observed rise in housing prices) but are
nearly unavoidable in an experimental setting (e.g., tracking effective
yield of a chemical reaction in response to different reactant feed rates).
Indeed, datasets with multiple state trajectories are created whenever
multiple experiments are performed on the same system.

In contrast to splines and all other time-dependent (i.e., algebraic, or
local) interpolating methods, a NODE’s formulation is not an explicit
function of time, but rather the states only (Eq. (4)).

%:NN(X](,W) (4)
In this work, to be considered a NODE, a Neural Network model
NN(xx,w), which is a function of parameters w and K states x;, where k
= [1, 2, ...K], predicts the rate of change of the states (i.e., the state
derivatives). Further details on the NODE’s architecture can be found in
the Appendix. In theory, Equation (4) could be changed to include time
as an input. This might be advantageous if the NODE models a ho-
mogenous differential equation (DE) system. However, there are
obvious advantages of preserving the NODE form of Equation (4). This is
because, unlike other interpolating methods, a single NODE model can
be used to globally interpolate multi-variate data even if the data is
spread across multiple experimental runs. This global interpolation re-
quires the following two assumptions, namely that the dynamics are
continuous or can be made continuous (Chen et al., 2021) and are
properly scaled. The potential advantages of this fact come critically into
play when experiments sample data only sparsely. Data from one
experiment can influence the NODE model predictions for a different
experiment where no data is available. The idea of developing global
interpolators for multiple sparse experiments has been considered in the
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past in the form of Bayesian or generalized linear models (Deboeck,
2020; Boker et al., 2010), however the methods of those studies either
don’t generalize well to irregularly-sampled, multi-variate systems or
require too much user intervention to be amenable to automation.

The meaning of sparsity can vary among disciplines and even be-
tween applications. What may be a sparse dataset for one application
may be excessive for another. Though not considered in this work, when
data becomes excessive or high-dimensional, it may be desirable to
create a sparse representation of the dataset to remove correlated vari-
ables as done in (Chen et al., 2022; Peng et al., 2022). In this work,
sparsity is instead used to refer to datasets that have fewer samples than
would be needed for local approximation methods. Importantly, this
does not mean that the total number of data samples is few. When data
from multiple experiments are available, the collated dataset may be
large, though data from a single experiment may be few. To make the
discussion more concrete, a visual example of a densely sampled system
is juxtaposed to datasets representing different modes of sparsity in
Fig. 1 for an illustrative system with 3 states.

Reasons for the apparent sparsity depicted in Fig. 1 can vary. For
example, missing data could be caused by faulty equipment, outlier
removal, limits of sensing techniques, and more. Lower frequency
measurements can be due to the sensitivity of the experiment to obser-
vation (i.e., sampling changes the experimental conditions or quenches
the experiment) or a limitation of the analysis instruments to examine
samples at higher volumes or at shorter temporal frequencies. Unob-
served states occur when available equipment is unable to track
important variables, or the variable does not appear in high enough
quantities to be observable. Of course, depending on the sampling, the
dataset may be described by multiple Modes outlined in Fig. 1, and this
discussion is not intended to define hard boundaries between each
sparsity scenario. Several causes of sparsity in chemical process data and
machine learning (ML) algorithms to tackle them have recently been
reviewed by Thebelt et al. (Thebelt et al., 2022). Among the cases in
Fig. 1, only Modes 1-3 are considered in this work. For Mode 4, no state
measures are available for the unobserved state and any interpolating
method, including the one presented in this work, will fail.

In the work that follows, NODEs will be tested for inferring
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derivatives under sparse conditions not previously explored in other
works. Differing modes of sparsity will be explored with the aims being
to demonstrate that 1) NODEs can outperform local interpolating
methods at inferring system derivatives and 2) their derivatives are
sufficiently accurate for inference tasks such as parameter estimation
and model identification. Achieving this second aim can be powerful
since it would enable computer-automated model-building for systems
where previously this task was computationally intractable. Other works
have examined the interpolating potential of NODEs (Chen et al., 2018),
but not for inferring derivatives. Moreover, an analysis of a NODE’s
ability to learn dynamic responses when data is thinly spread across
multiple experimental runs has not been systematically studied in the
literature so far. Finally, a comparison of NODEs with popular
data-driven interpolation methods is lacking.

The results of this study can be broken into two parts. In the first part,
NODEs are compared with other data-driven interpolation methods for
inferring derivatives on a single benchmark system. The qualitative re-
sults therein offer heuristics that may guide a modeler’s choice on when
to apply NODE:s for derivative estimation. In the second part, the con-
clusions from the first part are tested for their ability to generalize to
other systems and data sampling scenarios. In addition, statistical tests
are employed to justify the length of NODE integration during training.
Finally, the benefits of the superior accuracy of NODE interpolation are
demonstrated by solving a problem in model identification.

2. Methods
2.1. Algebraic interpolators

For the first set of studies, NODEs are compared with two other
interpolating methods for inferring derivatives. The competing inter-
polating techniques chosen in this work are finite differences and B-
splines, which are the basis of many other local interpolating methods
and are thus expected to perform similarly to many state-of-the-art
methods for interpolation tasks. For finite difference (FD) approxima-
tion, the implementation made available through PySINDy is used
(Kaptanoglu et al., 2022). FD approximations ranging from 2nd to 6th

Densely Sampled Missing data
1.0 wmvmmmmm“'" "‘ — 1.0 vy "“w
¥
¥
0.8 Y F 0.8 % &
v by v ¥
0.6 Yeiw 0.6 Yy
= ';: = ",':
0.4 % 0.4 %
b Ty, ¥ Y ) v L
0.2 w v, 0.2 v v
v T e, . b v, vy
00 T . rrrrrrrer Ty 0.0 . i
0 5 10 15 20 0 5 10 15 20
A) t B) t
Infrequent Sampling Unobserved States
1.0' A\ v ¥ v v v 1.0 mﬂmmm
v v 'v"
0.8 0.8 v
v
¥ A\
0.61 . 0.6 Y
> > "
0.4 ezt 3 v 0.4 — v
v v 5 &
0.24 ' 0.2 "y, ",
! v d & _v" ke ey "v
0.04 » v L3 v v ¥ Ld 0.0 e’ i L -
0 5 10 15 20 0 5 10 15 20
Q) ¢ D) ¢

Fig. 1. Four Modes of Sparse Data. (a) Densely Sampled: ideal case of sufficient data for all states/outputs, (b) Missing Data: missing consecutive samples due to
failure or disturbance, (c) Infrequent Sampling: equally-timed samples occurring less frequently than in Densely Sampled case, (d) Unobserved States: measurement

of one or more states/outputs is entirely missing.
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order are considered with the best approximations retained. Splines of
degree 3 (4th order) are trained and simulated via SciPy’s B-spline
packages splrep and splev, respectively (Virtanen et al., 2020). As part of
training, the parameters of B-splines are adjusted to reduce the scaled
sum of squared errors between data and the interpolating function.
When it is assumed that no noise is present in the measured data, the
smoothing factor of the spline is fixed at zero (i.e., no smoothing).
Otherwise, when noise is present, the smoothing factor is fixed at a value
of n-sqrt(2*n) according to SciPy’s default recommendations, where n is
the number of datapoints in each time-series run.

2.2. NODEs

NODEs are formulated by adapting implementations of prior work
(Bradley et al., 2021; Chen et al., 2018). Specifically, for examples
comparing NODEs with FDs, the Neural Network component of the
NODE has a fixed structure with a single hidden layer, 10 hidden nodes
and hyperbolic tangent activation function. Euler’s method was used to
numerically integrate the NODE; the number of Euler steps was manu-
ally increased until the integration approximated the dynamics well.
More automated and accurate methods for numerical integration of
NODEs are becoming increasingly available (Rackauckas et al., 2020;
Merkelbach et al., 2022), but these were not required to showcase the
methods of this work. Some hyperparameters that were important to the
training included the learning rate of the L-BFGS optimizer (Liu et al.,
1989) and termination criteria for training. Training of the NODE
terminated when the relative improvement in the loss function was less
than a fixed tolerance over ten iterations. The chosen learning rate was
fixed at 0.1 and the relative tolerance for termination was fixed at 1E-6.
Further information about the NODE’s formulation and training algo-
rithm can be found in the Appendix.

Prior to training the NODE on this dataset, special attention is given
to the methods by which the NODE is integrated during training. Where
possible, rather than integrating the NODE across a single time interval
spanning all data from an initial time t, to a final time t;, the NODE is
instead integrated across shorter, overlapping time intervals as depicted
in Fig. 2. As discussed in previous work (Bradley et al., 2021), inte-
grating over shorter, overlapping intervals has the dual benefit of
reducing the training time while also minimizing the probability of the
differential data-driven model “over-smoothing” the data and
converging to a local minimum. Further discussion on choice of NODE
integration interval can be found in the Appendix and is further
analyzed in results Section 4.

A comment should also be made on how the trained interpolators are
simulated. As the finite difference and spline methods offer only local
approximations, the states and derivatives are evaluated by calling the
function at the time t where system estimates are desired. In contrast,
the NODE could be simulated from any starting condition. This opens
the question whether NODEs should use as inputs the states predicted by
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the NODE after being simulated from initial conditions to predict de-
rivatives (i.e., their global approximation) or use the training data as
inputs when predicting derivatives (i.e., their local approximation). In
this work, the states predicted by the NODE (not the training data) are
used as inputs to the NODE to globally approximate the derivatives. This
makes the method more robust to noise or outliers in the training data.
However, this also makes the NODE susceptible to poor performance
when simulated over long time intervals. This idea is explored in more
detail in the examples that follow.

3. Visualization of interpolation and derivative estimation
accuracy using NODEs via a motivating toy problem

To illustrate how the fidelity of interpolating methods varies with
various modes of sparsity, the Lotka-Volterra (LV) equations will be used
to simulate the underlying system dynamics. The LV equations used in
this study are shown in Equations (5) and (6) with the parameter values
a=3.0,b=0.6,c=4.0,and d= 0.5.

dx

—=ax—b

7 ax Xy 5)
dy /

dt < Y ©

These equations offer an ideal test case to investigate the approxi-
mation properties of data-driven interpolators due to the highly
nonlinear, yet stable oscillation profile of the system states. In the
forthcoming examples, the ability of interpolating methods to infer de-
rivatives will be tested for densely sampled, infrequently sampled, and
incomplete datasets with missing data.

3.1. Single trajectory, dense sampling

As a first example, system rates are inferred when state data is dense.
To generate a dense data-set, the LV equations are simulated with the
initial conditions x,= 10 and y,= 3 over the time interval t = [0,4]. The
system states are measured at increments of dt = 0.08, yielding a dataset
of 50 samples for each state. In this example, only a single state trajec-
tory (i.e., one experiment or run) is used. For the densely-sampled data,
the length of integration during training is equal to the span of 4 training
samples. Graphical representations of the densely sampled data and its
estimation via the three interpolating methods is shown in Fig. 3.

Due to the high quality and quantity of data, all interpolating
methods perform well at smoothing the data. Moreover, the derivative
estimates also follow closely the true system trajectory. The mean ab-
solute error (MAE) of the derivative estimates of the NODEs, splines, and
finite differences (FD) were 0.452, 0.385, and 0.369, respectively. Since
no noise is present in the data, if a local approximation of the NODE
derivatives is calculated using the training data as inputs, the MAE
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Fig. 2. (Top) Integration from a single timepoint spanning all sampling times or (bottom) integration from multiple timepoints using overlapping intervals spanning

three sampling times.
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Fig. 3. State (left) and derivative (right) estimation from interpolating densely-sampled data. Fitted state data (left) and matching derivatives (right) represented

by dots.

reduced slightly to 0.217. However, this error would substantially in-
crease if the state measurements were less reliable. Regardless which
approximation is used, clearly, under the conditions of abundant data,
no interpolating method offers a significant advantage for estimating
derivatives. However, real systems are rarely so well-sampled. Subse-
quent examples of this study will differentiate the methods based on
their ability to infer derivatives on sparser systems.

3.2. Multiple trajectories, missing data

Next to consider is the mode of sparsity incurred when data is absent
in important dynamic regions. An example of this dataset is depicted in
the upper graphs of Fig. 4. In this dataset, entire oscillations of the state
profile are not captured, and local interpolation of the data results in
large errors. If the NODE were trained on only the datapoints of the
sparsely sampled experiment, it would likewise fail to capture the dy-
namics. However, this can be overcome by combining datasets from
multiple experiments. To demonstrate this, a second experiment is
performed that captures more of the oscillatory profile not captured in
the first experiment. The NODE is trained using all data from both

experiments and during training the NODE is integrated over shorter
intervals for the densely-sampled trajectory and over the entire interval
for the sparely-sampled trajectory. The result of training the NODEs on
the combined datasets is shown in Fig. 4. Clearly, the dynamics captured
by the NODE from the second experiment have informed the predictions
of the NODE on the first dataset. This idea of combining data sources for
more generalized prediction is analogous to the idea of transfer learning
in machine learning (Zhuang et al., 2021; Weiss et al., 2016). However,
unlike some transfer learning applications, the data-driven interpolating
model is not trained sequentially on the different datasets. Rather, all the
data is used to train the NODE at once.

Obtaining the spline and finite-difference approximations is also
done by fitting all the data simultaneously. However, unlike the NODE,
no transfer learning occurs. As seen in Fig. 4, the derivatives inferred by
the algebraic interpolating methods cannot capture the dynamics of the
first experiment, though they interpolate the second experiment well.
Imaginably, if the two experiments were the result of the same system
conditions (i.e., the initial conditions were the same), then the two
datasets could be trivially combined into a single experiment. However,
barring this trivial case, any method employing an algebraic data-driven
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Fig. 4. Interpolation of 2 experimental datasets. Experiment 1 (top) sparsely sampled and experiment 2 (bottom) densely sampled. Fitted state data (left) and
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model using time as an input must use multiple models to interpolate
data from different experiments. When the different experiments
include orthogonal pieces of information (as a well-designed set of ex-
periments should), the NODE is anticipated to outperform the algebraic
interpolating methods.

Another interesting observation can be made if the datasets are
reversed. Shown in Fig. 5 is the attempt to infer the states and de-
rivatives of the LV system when experiment 1 is well-sampled but
experiment 2 is not. Although the NODE is trained on data from both
experiments and interpolates the densely-sampled experimental data
well, the poorly sampled profile is not simulated accurately by the NODE
in its most nonlinear region. Indubitably, this discrepancy is the result of
experiment 2 having a greater variance in the values of its response and
therefore more information for the NODE to learn on. The profile in
experiment 1 is an interpolation of the behavior captured in experiment
2 though the reverse is not true. This highlights the importance of
capturing the extrema of a system’s response prior to data-smoothing, a
principle that also bears weight when samples are evenly, but infre-
quently measured.

3.3. Multiple trajectories, Infrequent Sampling

As a third comparison between NODEs and its competitors, the
methods are used to interpolate data with infrequently collected sam-
ples. For this mode of sparsity, the states are sampled at distant though
evenly-spaced time intervals. An example dataset consisting of seven
samples for the LV system is displayed in Fig. 6. The true state and de-
rivative profiles are superimposed by the interpolated estimates. The
interpolating methods are trained as in previous cases, except the length
of time used for the NODE’s method overlapping intervals spanned
fewer (3 instead of 4) to avoid convergence to an over-smoothing local
minimum. Once again, neither the spline nor FD methods could offer an
excellent approximation of the state profile, resulting in poor derivative
approximation.

Somewhat surprising, however, is the excellent interpolation pro-
vided by the NODE. Not every extremum is sampled in the training data,
yet all the extrema are captured by the NODE interpolation. This result is
believed to be a consequence of the symmetric response of the LV sys-
tem. Since the state response of the LV system is cyclic, the oscillating
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pattern captured by the first three data points helps the NODE learn the
oscillating pattern of the second cycle. Admittedly, this behavior may
not fully generalize to other systems where the response does not strictly
follow a cyclic pattern. Nevertheless, this example offers a useful
contrast between the local approximations offered by the algebraic
smoothing methods and the benefits of the global approximation pro-
vided by a NODE. The NODE is able to transfer learning from one part of
the system response to infer behavior in a different part, even within a
single experiment.

To further test the limits of the NODE’s ability to transfer learning,
the sample size is further reduced to 5 (initial conditions included). Once
more, the NODE is trained on data from a single experiment, the dis-
tance of integration spanning the length between two points. However,
this test was found to be far more difficult for the NODE. Fig. 7 juxta-
poses the true state and derivative profiles with those estimated by the
NODE. This time, the NODE finds the complete opposite of the true
oscillation profile, yielding estimates that are clearly wrong. Attempts to
improve the approximation by integration over longer intervals or
modifying the learning rate or other training hyperparameters either
diverged or converged to same local minimum. In summary, the dataset
is too sparse to identify the true state profile.

To improve the approximation of the NODEs, additional experi-
mental trajectories were added to the training dataset until the MAE of
the NODE derivative estimates resemble the mean absolute error of the
densely sampled data. Each additional dataset includes the same num-
ber of equally-spaced datapoints as the first experiment (i.e., five) within
the same time range, but the initial conditions of the two states x and y
vary randomly within the range 1 to 14. With each additional dataset,
the NODE is trained from the same initial parameter values on the en-
tirety of the new dataset. The result of successively augmenting the
number of experiments used to fit the NODE is captured in Fig. 8. The
MAE of the first column corresponds to the fit of the NODE in Fig. 7,
wherein only a single experiment was used for training. The critically
informative number of experiments was found to be 5, consisting in total
of 25 data points (including initial conditions). Beyond this number,
additional experiments did not substantially improve the estimation
accuracy of the NODE.

At least two noteworthy observations can be made from the trend in
Fig. 8. First, the interpolation worsened when a fourth experiment was
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Fig. 5. Interpolation of 2 experimental datasets. Experiment 1 (top) densely sampled and experiment 2 (bottom) sparsely sampled. Fitted state data (left) and

matching derivatives (right) represented by dots.
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Fig. 7. NODE predictions after training with 5 datapoints from a single experiment. Fitted state data (left) and matching derivatives (right) represented by dots.
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Fig. 8. Interpolation error of NODEs for a varying number of experiments. Also, improved interpolation of 4 experiments after pre-training.

added to the training data. This is unexpected since the four experiments
include the same data as was present in the three-experiment case plus
five more data points. Adding a fourth experiment should therefore be
more informative than the three-experiment case. Upon visualization of
the trained NODE predictions, it was found that the trained model had
converged to the opposite oscillation profile than the true system,
similar to Fig. 7. To remedy this, it was decided to follow a “transfer-
learning” approach, and to pre-train the NODE with the datasets of the 3
experiments before training the NODE on all 4 datasets. This pre-
training brought about a far superior approximation of the true pro-
files with a final MAE of 1.358. In summary, this exercise showed the
importance of NODE initialization when data samples are few.

Second, the number of samples required to converge to the true
profile was greater than the 7 data points used in the previous task (see

Fig. 6). The clarifying explanation for this observation is that the per-
formance of the NODE interpolation depends less on the number of
samples and moreso on how well the samples of any one experiment
cover the extrema of the dynamic response. As a way to validate this
conclusion, the number of samples per experiment was further reduced.
In the case of the LV system, if the number of equidistant samples was
reduced to less than 5 per experiment, the data of any given experiment
no longer covered the extrema of the oscillating peaks. Under these
circumstances, no number of experiments no matter how large could
induce the NODE to reproduce the LV system’s oscillating profile. A way
to explain this finding is the breakdown of the method for integration
during training. When data no longer covers the curvature of the system
response, integration over shorter overlapping intervals no longer is
more beneficial than simply integrating across the entire time domain.
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Yet integrating the NODE across an oscillating system response ulti-
mately converges to a local “over-smoothed” minimum even for a
densely sampled experiment (see examples in the Appendix and in
(Bradley et al., 2021)). Based on these observations, we offer the heu-
ristic rule that for a NODE to interpolate a dataset well, regardless of the
number of experiments, in at least one experiment the local extrema
must be identifiable. While this may seem like a severe limitation of the
NODE method, especially if all experiments are sparsely sampled, it’s
worth noting that not all systems experience the severity of fluctuations
observed in the LV system and the interval between samples need not be
fixed. The last example of this study uses such an example for illustrating
how NODE:s can infer not only derivatives but an interpretable mecha-
nistic model.

4. Case studies: NODE interpolation and derivative estimation
under noisy data scenarios

In the previous results section, the LV system was used to illustrate
qualitatively how NODEs can more accurately interpolate data. Under
certain sparsity conditions, NODEs offered more reliable estimates of
system dynamics than splines or FDs. However, these examples may not
be sufficient to demonstrate how well these conclusions extrapolate to
other dynamic systems or when data is encumbered by noise. Addi-
tionally, it remains unclear what role the length of integration of the
NODE plays in the accuracy of the trained model. To address these
concerns, the next section offers a more quantitative comparison of
NODE performance versus splines on 3 cases studies. These include the
Van der Pol (VDP) oscillator, Susceptible, Infected, Resistant (SIR)
model, and FitzHugh-Nagumo (FHN) model. These commonly-used
benchmarks represent dynamic relationships used to model a variety
of physical and engineering systems from fluid vibrations in a pipe (Xie
et al., 2019), rate of transmission of a pathogen within a population
(Word et al., 2012), and electric circuits (Ma et al., 2019), respectively.
Mathematical formulations of these models can be found in the Ap-
pendix of this work.

4.1. Effect of NODE interval of integration

Before comparing NODEs with splines on noisy data, we first focus
on the effect of integration interval length on NODE-based interpolation
accuracy. Rather than randomly tuning this hyperparameter, we hy-
pothesize that there is a relationship between interval length and NODE
accuracy. To ascertain this, the interval of integration of the NODE was
varied while being trained on various data scenarios. Specifically, the
NODE was fit to each of the benchmark systems assuming the avail-
ability of either 5 or 10 experiments (i.e., runs) of data with 10 mea-
surements each. Noise was added to the data randomly from a normal
distribution whose variance was equal to 0, 5 or 10% of the range of data
measurements. Meanwhile, the length of overlapping integration in-
tervals during training varied to span either 4, 7, 9 or 10 datapoints. To
factor in variation from model size, the Neural Network was varied to
include 1 or 2 hidden layers with 10, 15, or 20 hidden nodes. Due to the
presence of noise, it was decided to include the initial conditions as
adjustable parameters during training. The learning rate was fixed at
1079 and training was stopped when NODE predictions did not improve
by more than 107° for 10 consecutive iterations.

After training, the accuracy of the NODEs was calculated by simu-
lating the trained NODE once for each experiment starting at t = 0 until
the end of measurement data. The state predictions at measured times
were then used as inputs to the NODE to obtain derivative estimates. The
mean squared error (MSE) between predicted derivatives and true de-
rivatives from NODE state estimates was calculated. Visual examples of
the variation in prediction error are provided in the Appendix.

A statistical analysis was performed to determine if the improvement
from increasing the integration interval was indeed significant for
certain systems or data scenarios. For this analysis, a one-sided Mann-
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Whitney U Test (MWUT) was chosen. The MWUT is the non-parametric
equivalent of the t-test, preferred for this comparison as the errors
among fitted NODE models were found not to be normally distributed. A
separate MWUT is used to compare each of the longer integration in-
tervals (7, 9, or 10 data span) with the NODE trained using the shortest
interval (4 datapoints per interval). Thus, the null hypothesis is that an
interval spanning 7, 9 or 10 datapoints does not improve NODE deriv-
ative estimation accuracy over a short interval of 4 datapoints.

The p-values from these MWUTs are presented in Fig. 9. For this
study, a p-value under 0.05 is considered statistically significant and
these values are highlighted in red. According to Fig. 9, for all 3 case
studies (VDP, SIR, and FHN), there is a significant improvement in error
when the NODE is integrated over longer intervals when data is
encumbered by the highest level of noise. Especially when less data is
available (5 runs instead of 10), by integrating across the entire span of
10 measurements during training, the fitted NODE consistently simu-
lates more accurate derivatives than when the shortest integration in-
tervals are used. Again, the reasoning for this is the tendency for the
NODE to overfit the noisy data and its failure to learn the longer-range
dynamics when the NODE is simulated on shorter time intervals during
training.

Somewhat less expected is the improved performance of the NODE
when trained with longer intervals for the SIR system even when noise is
low. A couple explanations can be offered for this behavior. First, the SIR
initial conditions vary over larger orders of magnitude, requiring the
NODE to predict state values more precisely, which may be more diffi-
cult when NODEs are not fitted to the long-term trajectories during
training. In a similar vein, a second unique feature of the SIR system is
the asymptotic dynamics. Due to the potential for the rate of change to
approach zero, the NODE must predict derivative values near zero, a
difficult task for Neural Networks in general. Training over shorter in-
tervals results in a failure to learn the asymptotic dynamics and there-
fore a failure to capture those dynamics when simulating the NODEs
over longer-ranges. Further work is needed to establish the capabilities
of NODEs when trying to capture asymptotic or ‘stiff” dynamics.

As a final check on the above conclusions, another MWUT was also
performed, using as the alternative hypothesis that a shorter interval of
integration (4 datapoints) offered an improvement in error over longer
integration intervals. This is merely a reverse of the previous statistical
test using the same data-fitting scenarios as before. Of all scenarios
tested only a single case produced a p-value below the 0.05 significance
threshold (SIR, 10 runs, 5% noise). However, this result is believed to be
more due to random chance than indicative of a contrasting trend. We
therefore reject the idea that shorter integration intervals would reduce
overfitting.

Put together, the above statistical analyses lead us to conclude that
NODE overfitting is reduced by training NODEs over longer intervals, in
particular when data is sparse and noisy. These results are not surprising
in light of previous work demonstrating superior accuracy when NODEs
are trained to learn the entire time-trajectory of a system’s response
(Rico-Martinez et al., 1992). A key difference between the current study
and previous work is demonstrating this trend remains true even in the
presence of noise. Especially when data is noisy, integration over longer
intervals prevents overfitting and enables the NODE:s to better learn the
dynamics. Thus, so long as the integration interval is not so long as to
over-smooth the data (a scenario described further in the Appendix), the
modeler should opt for training the NODE over longer intervals to in-
crease NODEs’ ability to discover the true dynamics.

4.2. Effect of noise on NODE interpolation

Having confirmed the importance of training NODEs with longer
integration intervals, we now investigate their potential to more accu-
rately estimate derivatives versus algebraic interpolation for a broad
collection of dynamic systems in the presence of noise. For this com-
parison, NODEs and splines are used to regress data simulated from the
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VDP
5 runs 10 runs
0% Noise |5% Noisel 10% Noise | 0% Noise ‘5% Noise‘ 10% Noise
g% 7 0.757 0.196 0.0075 0.242 0.242 0.154
; f_,z 9 0.650 0.154 0.331 0.089 0.705 0.294
A= 10| 0.879 0.534 0.046 0.268 0.531 0.089
SIR
5 runs 10 runs
0% Noise |5% Noisel 10% Noise | 0% Noise ‘5% Noise‘ 10% Noise
:u_”f-,‘ = 7 0.590 0.879 0.066 0.020 0.803 0.409
;;' jl_,a-l S 0.154 0.012 0.062 0.025 0.979 0.242
8= 10| 0.757 0.0010 0.020 0.0205 0.468 0.004
FHN
5 runs 10 runs
0% Noise |S% Noisel 10% Noise | 0% Noise ‘5% Noise‘ 10% Noise
aw 7 0.705 0.531 0.032 0.757 0.590 0.046
; E 9 0.953 0.066 0.007 0.910 0.242 0.032
&= 10| 0.590 0.089 0.004 0.590 0.196 0.020

Fig. 9. List of p-values from calculated using MWUT based on likelihood of a using an interval spanning 7, 9, or 10 datapoints to improve NODE accuracy vs an
interval spanning 4 datapoints for VDP (top), SIR (middle), and FHN (bottom) systems and data scenarios. p-values less than 0.05 highlighted in red.

VDP, SIR, and FHN systems and to estimate state derivatives. As FDs
performed similarly to splines in Section 3, they are omitted from this
final comparison study.

To maximize the breadth of this assessment, the conditions of
training data were varied to include differing amounts of sparsity and
noise in the data. Specifically, the number of experiments included in
the training dataset varied between 1 and 10. Each experiment included
3, 5, or 10 equally spaced measured datapoints. Moreover, normally
distributed noise equal to 0, 5, or 10% of the range of the measured data
was added to the data.

The length of integration of the NODE during training was selected to
balance overfitting caused by shorter intervals of integration, while
minimizing the chance of over-smoothing when longer intervals are
used. Based on our prior analysis, the recommended default setting (or
heuristic) that balances overfitting vs. over-smoothing is is to fix the
integration interval to the time spanned by the number of measurements
minus one. Although this heuristic worked for the current systems, it
may not be appropriate for other systems, whose length of integration
may need to be adjusted based on the system’s characteristics (i.e.,
nonlinearity, noise level). The size of the NODE was varied to include 10,
15 or 20 hidden nodes in either 1 or 2 hidden layers. Each of these NODE
structures was fitted, and the NODE with the lowest state prediction
error for a given data scenario was assumed to be the ‘best” NODE to
estimate the true dynamics. Other hyperparameters such as learning rate
and stopping criteria are the same as in the previous section. Same as the
previous studies, after training, the NODE is simulated forward in time
starting from the initial conditions of the experiments used for training.
Thus, a NODE fitted to three experiments estimates only the derivatives
of the three experiments it was trained on and at measurement times.

Depicted in Fig. 10 is a summary of the mean squared derivative
errors of the two methods on three benchmark systems for data
encumbered by increasing noise and number of runs. Highlighted in
each table are the data scenarios where the NODE or spline estimates are

more accurate (lower error) than the alternative interpolating model.
Several key conclusions can be readily made from Fig. 10. First,
increasing the number of runs (i.e., experiments) does not necessarily
translate to a lower average error for either data-driven interpolation
method. This may seem counterintuitive as increasing runs means more
data is being fed to the interpolation method. However, it should be kept
in mind that each run differs in its initial conditions and the complexity
of the true dynamics. Increasing the number of runs therefore introduces
the possibility of adding a dynamic trajectory that differs significantly
from previous experiments or may be more difficult to capture, which
would lead to a higher average error. However, equally important, as the
number of runs increases, Fig. 10 shows a clear trend of NODEs more
frequently offering better estimates than splines of the system de-
rivatives across all systems. This trend holds even when there is a sig-
nificant amount of noise in the data. In direct contrast, when only a
single run of data is available for fitting, in less than half of the data
scenarios do NODEs offer a better estimate of the dynamics. In other
words, the likelihood of improvement by NODEs over splines in these
low-run, sparse scenarios is worse than random chance. Thus, it can be
concluded that the greater accuracy of the NODE is strongly tied to the
presence of multiple time-series for it to learn from.

In addition to highlighting trends across systems, some comments
should be made about the individual benchmarks. Noticeably, the
NODEs generally do not offer better results than splines for the VDP
benchmark when only 3 measurements are made, regardless of the
number of runs. As with the LV system investigated in Section 3, the
extreme sparsity of measurements when only 3 measurement per run are
available means no single experiment captures the oscillatory dynamics
of the data, and the NODE cannot identify the true dynamics. Another
anomaly noticeable in the VDP results is the extraordinarily high MSE
for one of the cases with a single run of fitting data. For this particular
case (5% noise, 1 run, 5 measurements), all six of the fitted NODEs
diverged during training, making even the best NODE’s estimates
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VDP - spline
Noise %
Runs 0 5 10 Dps/Run
1 4.89 6.22 7.13 3
st s T 5
3.72 0.99 1.03 10
3 9.90 10.05 12.66 3
6.71 3.00 2.27 5
3.15 2.98 3.07 10
5 11.03 9.86 12.67 3
7.92 7.53 7.30 5
4.88 2.88  2.88 10
10 10.09 1155 16.99 3
7.14 8.78 7.86 5
4.36 3.80 3.32 10
SIR - spline
Noise %
Runs 0 5 10 Dps/Run
1 0.0064 0.0057 0.0063 3
0.0133  0.0027 0.0020 5
0.0047 0.0038 0.0038 10
3 0.0081 0.0064 0.0066 3
0.0129 0.0032 0.0035 5
0.0091 0.0043 0.0038 10
5 0.0061 0.0065 0.0094 3
0.0082 0.0026 0.0039 5
0.0055 0.0029 0.0029 10
10 0.0045 0.0053 0.0085 3
0.0051 0.0022 0.0039 5
0.0028 0.0022 0.0029 10
FHN- spline
Noise %
Runs 0 5 10 | Dps/Run
1 14.00 12.41 1238 3
7.99 6.68 6.05 5
3.17 2.10 2.80 10
3 14.44 16.09 21.05 3
7.97 8.43 14.86 5
2.31 10.78 18.54 10
5 12.53 1296 ' 15.37 3
5.96 7.39 11.32
1.77 9.29 15.11 10
10 8.51 9.44 13.03
3.70 6.23 8.60 5
1.40 7.09 10.15 10
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VDP - NODE
Noise %
Runs 0 5 10 | Dps/Run
1 4.67 6.32 7.54 3
9.41 8.73E+05 4.59 5
2.64 1.22 83.15 10
3 13.71 11.48 22.22 3
2.45 8.05 8.49 5
0.78 0.97 219 10
5 7.35 15.06 18.56 3
152 2.24 10.75 5
0.68 1.06 2.09 10
10 14.68 1288  20.61 3
3.32 2.28 3.54 5
1.03 2.58 162 10
SIR - NODE
Noise %
Runs 0 S 10 Dps/Run
1 0.2312 0.0440 0.0107 3
0.0128 0.0627 0.0571 5
0.0051 0.0109 0.9566 10
3 0.0235 0.0062 0.0088 3
0.0012 0.0050 0.0123 5
0.0004 0.0010 0.0020 10
5 0.0057  0.0496 0.0202 3
0.0035 0.0095 0.0217 5
0.0001 0.0007 0.0019 10
10 0.0090 0.0042 0.0157 3
0.0006 0.0026 0.0134 5
0.0008 0.0008 0.0009 10
FHN - NODE
Noise %
Runs 0 5 10 | Dps/Run
1 13.74 11.95" 12.45 3
7.83 9.19 9.68 5
3.70 4.28 29.30 10
3 3.78 17.58 14.75 3
4.85 7.88 10.34 5
1= 2.46 31.78 10
5 5.16 4.81 19.85 3
el 4.75 7.84 5
0.82 1.68 29.80 10
10 3.18 5.06 22.10 3
1.19 2.48 6.18 5
0.74 0.93 4.73 10

Fig. 10. Mean squared error of derivative predictions from ‘best’ NODE and spline trained on various data scenarios from 3 dynamic systems. Highlighted in red are
data scenarios where an interpolating model is more accurate than its competitor.

especially poor. Selecting different hyperparameters could lead to fitting
a NODE model that doesn’t diverge during training for this data sce-
nario, but the accuracy of the NODE would still be expected to be poor
due to the limited training samples.

Highlighting yet another trend, although it is generally the case that
both interpolation methods improve as the number of measurements per
run increases, this is not universally true. Taking the FHN system for
example, at peak levels of noise, more measurements per run sometimes
leads to worse estimates on average. Visual inspection of the fitted
model’s predictions in these cases found a tendency for increased
overfitting of the noisy data. Though not explored here, tuning of the
NODE'’s hyperparameters such as the regularization penalty or stopping
criteria could help mitigate some of these overfitting issues.

Finally, it is interesting to observe that the NODEs performed better
than splines least frequently for the SIR system. A few factors are
considered to cause this behavior. For starters, the average errors for this
system are orders of magnitude smaller than the other two systems,
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making it difficult to get a substantial improvement by either method.
Second, as previously mentioned, the SIR system is unique due to it
having asymptotic and stiff dynamics, which are difficult for NODEs to
capture. Only when the training data includes 5 or more runs do the
NODEs generally offer an improvement over splines.

5. Enabling model identification via NODEs

Although Fig. 10 in Section 4 demonstrates that NODEs consistently
offer better accuracy than algebraic interpolating splines when data is
sparse and an increasing number of experiments are available, it is not
immediately obvious whether that improvement in accuracy is sub-
stantial. In general, inferring derivatives is not the end goal of data
interpolation. Even more impactful is when the estimated derivatives
are used for parameter estimation, sensitivity analysis or model dis-
covery. In our previous work (Bradley et al., 2021), derivatives esti-
mated via NODEs were used to estimate parameters of nonlinear ODEs
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with speed and accuracy that surpassed direct estimation methods. In
this work, as a final and more challenging case study, we will illustrate
the impact of the proposed method on model identification (i.e., model
discovery). In brief, model identification can be viewed as a parameter
estimation problem wherein not only the parameters but also the
mechanistic terms of the model are unknown.

Efforts to develop optimal model identification algorithms are
numerous and ongoing. However, among the frameworks for discov-
ering DEs for dynamic systems, Sparse Identification of Nonlinear Dy-
namics (SINDy) has received extensive attention in recent years for its
ability to identify the correctly formulated differential equation from
among a combinatorially large number of candidate models (Brunton
Steven et al., 2016). SINDy ‘discovers’ the true model through a
two-stage algorithm. The first step is to estimate the time derivatives of
measured data (i.e., by interpolation) and the second is to solve the
model identification problem by solving a regularized least-squares
problem that penalizes models with an excessive number of terms.
Notably, the term ‘Sparse’ in the SINDy framework refers to the goal of
generating an accurate model with the fewest number of terms, which
differs from the usage of ‘sparse’ in this work to refer to datasets with
limited samples. Readers interested in further details of the SINDy
approach should consult the original publication (Brunton Steven et al.,
2016) as well as its numerous extensions (Kaptanoglu et al., 2022;
Kaheman et al., 2020, 2022; Mangan et al., 2019; Kaiser et al., 2018).

In the original version of the SINDy algorithm, the derivatives used
to solve the model identification problem were acquired through finite
difference or spline interpolation methods. This was appropriate when
data was densely sampled around a single time trajectory. In contrast,
the global interpolation properties of NODEs should allow them to
supply more accurate derivatives to the SINDy algorithm when trained
on multi-experiment data, increasing the likelihood of SINDy identifying
the true model when data is sparse. To prove this point, the derivatives
estimated in one of the case studies of the previous section were used to
identify the true model using the SINDy algorithm, assuming of course
the true model is unknown. To our knowledge, no previous work has
applied NODEs as the derivative estimation component of SINDy algo-
rithm when data is stratified across multiple experiments and thus their
potential advantage for model identification is an open question.

The VDP system was chosen as the focus for the model identification
comparison as the frequency of improvement from NODEs over splines
for this system fell in between that seen in the other two benchmark
studies. The first step in the SINDy framework requires predefining a
library of candidate terms from which SINDy selects which terms to
include in the identified differential equation model. To ensure a fair
comparison, the same set of candidate terms were selected for consid-
eration for every data collection scenario, which included polynomial
terms up to third order. The objective function used to identify the true
model is a regularized regression function of the form (7), and is mini-
mized via a sequentially-thresholded least squares regression algorithm
available through SINDy’s implementation.

. 1/, =2 -
man§<X — O(X)5)’ +AR(E) )
In Eq. (7), X and X represent the derivatives and states estimated via
interpolation, respectively, @ is a vector of candidate model terms, and =
the parameters of those terms. To penalize non-parsimonious models, a
regularization penalty R() multiplied by the hyperparameter 1 is added.
In this work, R() is the [-2 norm and the optimal value of 1 was found by
sweeping through a range of lambda values, performing the
sequentially-thresholded least squares regression each time. Specif-
ically, for each of 10 lambda values in the range 0.1-1.0, Equation (7)
was minimized using the derivatives and states predicted via either
splines or a NODE. Next, the model selected via Eq. (7) was integrated on
the interval t = [0,10], and the sum of squared errors (SSE) between the
candidate model predictions and training data was calculated. Using the
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SSE, the corrected Akaike Information Criteria (AICc) was evaluated to
rank the models found by the different lambda values.

SSE

n

2k*+-2k
n—k—1

AlCc=nln ( ) +2k+ ®

In Equation (8) n is the number of training samples and k is the number
of terms in the discovered model.

To provide a rich dataset for SINDy to fit to, the fitted interpolating
model simulated derivatives for all runs used for training at both
measured and unmeasured times. Specifically, states and derivatives
used in SINDy are those estimated by the interpolating model at 100
equidistant points within the time interval of training data, t = [0,10]. In
addition, there is concern that data-driven interpolation may perform
poorly at estimating derivatives at initial conditions. This was noticeable
source of error in our previous work for NODEs and has been described
for splines at the edges of interpolation (Gauthier et al., 2020). To
combat this, model identification with SINDy was also attempted using
90 equidistant predictions, eliminating the initial 10 estimates of each
experiment (i.e., using the interval spanning t = 1 and t = 10). Thus, all
in all, for every data scenario, SINDy algorithm is called twenty times
(10 lambdas times 2 sets of training data) and will produce twenty
models. The model with the lowest AICc score is selected as the ‘true’
model, finishing off the model selection workflow.

An example of the relative AIC: scores are plotted in Fig. 11 for
SINDy models found from 10 different lambda values for the VDP sys-
tem, for the case where interpolating models were fit to data with 5%
noise, 5 runs and 10 measurements per run. Also plotted in Fig. 11 are
the number of false positive and false negative terms in the SINDy-
identified models using each lambda value and fitting dataset. A
model is reported to have a false positive term if a term is present in the
SINDy-selected model that is not present in the true model and a model
is reported to have a false negative term if a term present in the true
model is not present in the discovered model. Notable in Fig. 11 are
some cases where no AICc value is reported, which occurs whenever the
SINDy-selected model diverges when simulated. Under these circum-
stances, no AICc value can be calculated.

For the case presented in Fig. 11, the AICc criterion assigns the
lowest score when 4 = 0.5 and 100 NODE estimates per run are used,
which corresponds to the true model with no false positive or negative
terms. In contrast to the selection from the NODE estimates, the best
model obtained by the SINDy algorithm using the spline estimates is
when a lambda threshold of 0.1 is used. However, this model contains
incorrect terms not a part of the true model (false positives) and is
missing terms that should be present in the true model (false negatives).
Further increasing the regularization simply leads to elimination of
terms that should be included while decreasing the regularization results
in a model with additional terms not present in the true model. The
derivatives estimated by the splines are simply not accurate enough to
extract the true simulating model from the sparse data.

To verify how well these conclusions generalize, the same analysis
depicted in Fig. 11 was performed for other data scenarios and case
studies. These results are summarized in Fig. 12. In Fig. 12, for each data
scenario for the VDP system, the number of false positives and false
negatives in the ‘best’ model found through the SINDy algorithm are
reported. For example, highlighted in red are the cases where a “0/0” is
reported, which indicates the selected model has zero false positives and
zero false negatives.

Overall, the small number of data cases where the true model is
selected attests to the difficulty of solving the model selection problem
when data is especially sparse. To select the true model, SINDy must
select the correct 4 terms from the simulating VDP model from a library
of 22 candidate terms. Data provided to SINDy’s regression algorithm
from a single run is insufficient to differentiate the true model, regard-
less which data-driven model is used. This does not contradict results of
other studies, wherein a single time-series dataset was sufficient to
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Fig. 11. Number of incorrect terms and information criterion score for SINDy-selected models using either 100 (top) or 90 (bottom) estimates per run from a fitted
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SINDy-Selected Model from Neural ODE Estimates

Noise %

Runs 0 5 10 Dps/Run
1 0/2 0/2 2/2 3
1 0/4  Diverged 0/2 5
1 0/3 0/3 0/3 10
3 1/1 0/1 0/1 3
3 0/0 31 1/2 5
3 0/4 0/2 0/0 10
5 0/2 0/4 1/2 3
5 0/0 0/2 5/0 =)
5 0/0 0/0 0/1 10

10 0/1 1/1 1/2 3
10 0/0 0/0 0/2 5
10 0/0 0/0 0/0 10

SINDy-Selected Model from Spline Estimates

Noise %

Runs 0 5 10 Dps/Run
1 0/4 0/4 0/4 3
1 0/4 3/2 0/2 5
1 1/0 1/1 1/1 10
3 0/4 0/1 0/1 3
3 0/4 0/4 0/4 5
3 0/0 1/0 4/0 10
5 0/4 0/4 0/4 3
5 0/4 2/2 1/2 5
5 0/1 3/1 0/1 10

10 0/4 0/4 0/4 3
10 0/2 1/2 0/2 5
10 0/1 0/0 0/1 10

Fig. 12. Models found by the SINDy algorithm using fitted NODE (left) or spline (right) estimates for a variety of data scenarios.

capture all system dynamics. However, whereas those studies assumed
data was densely sampled, due to the sparsity imposed by the current
study, not enough measurements are available to capture the complete
dynamics in a single run.

Only for two data scenarios does the model selection algorithm select
the true model when spline-fitted estimates are used. For these cases,
even though spline estimates are not as accurate as NODE predictions,
they are accurate enough to select the true model. Nevertheless, these
successes occur only when each experiment contains the maximum
amount of data coverage for each run of 10 datapoints/experiment. In
direct contrast, the estimates from the NODE can identify the true model
for several cases where the spline estimates cannot, most especially
when multiple experiments of data are available to train the NODE. The
NODE captures the true dynamics by transferring knowledge of the
system response learned across multiple experiments, even when mea-
surements are highly encumbered by noise. For these data scenarios, not
only are the NODE estimates more accurate than splines, but their ac-
curacy is sufficiently superior to discover the true underlying model
when splines cannot. This offers a palpable example of the benefits of
having more accurate derivative estimation that comes from multi-
experiment interpolation with a single interpolating model.

6. Discussion

The examples in this work have illustrated the benefits of using a
global interpolator such as NODEs when inferring derivatives from data
which is sparsely sampled across multiple experiments. However, like
any tool, NODEs are not a panacea for all problems and some discussion
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of their shortcomings and potential for improvement is merited.

The choice in this work to approximate the right-hand side of an
ordinary differential equation with a Neural Network is motivated by a
Neural Network’s high interpolating potential, scalable to high di-
mensions, but there is no rule requiring that the data-driven approx-
imator of a DE be a Neural Network. The differential form of the NODE
enables it to be trained on data from multiple experimental datasets, a
situation for which there is no straightforward way to train a single
algebraic model if derivative estimation is the goal. However, this
conclusion is not meant to exclude the possibility that other data-driven
models may approximate a differential equation equally well. Especially
interesting would be a differential data-driven approach that better
approximates derivatives that vary over several orders of magnitude,
which may more precisely capture system dynamics than NODEs.

Interestingly, if data cannot be sampled or combined so that the
extrema are present in a single experiment, it may still be possible to
capture the extrema by leveraging domain knowledge. One way to
encode knowledge would be to manipulate the structure of the Neural
Network such as its activation function or layer connections. A related
method is to include known mechanistic terms in the DE when training
the NODEs as done in (Psichogios et al., 1992) and more recently in
(Rackauckas et al., 2020; Sorourifar et al., 2023). A third avenue for
influencing the NODE interpolation is to impose constraints on the
predicted profile (for example, see (Wilson et al., 2017)). None of these
methods were pursued in this work in part to demonstrate the gener-
alizability of NODE interpolation even when no such knowledge is
available. Whether any of these methods become generalizable will
depend on how suitable they are to automation.
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As mentioned earlier, when a state is entirely unobserved any
interpolating method will fail. Overcoming this limitation will likely
require incorporating domain knowledge, possibly through similar
strategies as proposed for detecting unsampled extrema. Although this
work attempts to illustrate the types of datasets amenable to training
NODEs under sparse conditions, admittedly the examples primarily offer
heuristics. More rigorous metrics that assess the amount of data required
to accurately interpolate across experiments would certainly be
welcome as these could lead to more efficient designs of dynamic ex-
periments (Georgakis, 2013). Assessing the accuracy of a NODE can be
done more quantitatively than done in this work by applying
cross-validation metrics to select hyperparameters. However, it should
be kept in mind that such cross-validation can be less straightforward for
dynamic data than the non-dynamic, algebraic datasets Neural Net-
works are more typically trained for.

This study presented an approach to automated model selection
using NODEs, which successfully reproduced the true model despite the
limited data samples. However, the presented approach is encumbered
by several limitations, many of which are due to the inherent assump-
tions of the SINDy framework. For example, SINDy assumes that the true
DE is linear with respect to its parameters, the true model terms are
included in the candidate library, and that each term contributes to the
model dynamics to a similar degree. The lattermost assumption makes
the framework inappropriate for identifying models whose parameters
vary over large orders of magnitude, common to stiff DE models. Of
course, the SINDy framework was used here merely to showcase how
increased accuracy of derivative estimates could lead to solving an
increasing number of real-world problems, and the accuracy of the
NODE and spline interpolations are not dependent on the limitations of
the SINDy framework.

In addition, it is important to note that we have not performed a
comparison between the proposed “indirect” NODE method of fitting
ODEs from estimated derivatives and the traditional “direct” methods
used in ODE literature for parameter estimation of ODEs. A “direct”
approach is one that considers the functional form of the ODE to be
known, or at least fixed, so that the ODE model can inform numerical
integration, collocation schemes or basis functions while fitting the ODE
parameters. These direct approaches include nonlinear least squares
(NLS) (Hemker, 1972; Bard, 1970; Benson, 1979; Li et al., 2005), prin-
ciple differential analysis (Ramsay et al., 2007), and direct Bayesian
(Huang et al., 2006) and Gaussian Process-based methods (Wenk et al.,
2020; Lorenzi et al., 2018; Wang et al., 2014). Physics-informed ap-
proaches (Raissi et al., 2017; Sun et al., 2021), which have attracted
much interest in recent years, may also be considered direct approaches
whenever the PDE/ODE to be fitted is fixed during parameter
estimation.

It is well known that these “direct” methods will be more accurate
than the “indirect” 2-step approach employed in our work, wherein the
latter first estimates derivatives by a data-driven model and then uses
those derivatives in the second step to estimate ODE parameters without
numerically discretizing the ODE (Varah, 1982). Thus, when computa-
tionally tractable, a direct ODE fitting is generally preferred over indi-
rect methods. However, it is also well-known that the 2-step approach
can be far more computationally tractable (Varah, 1982). Specifically,
these computational gains are most evident when the ODEs to be fit are
highly nonlinear with respect to their parameters or when numerous
ODEs need to be fit (i.e., a model identification problem). Our previous
work explored the former case whereas we highlight the latter case in
the current submission. To see a concise comparison between direct and
indirect approaches when the latter is better suited, readers may refer to
our previous work (Bradley et al., 2021). Because of the opposite ad-
vantages of the direct and indirect approaches, they are generally
appropriate for different classes of problems and comparing the two
would only prove what is already known in the literature—that one
method is more accurate and the other more computationally efficient.
Thus, in this work, we focus exclusively on comparing our method only
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with other indirect approaches.

Indeed, the choice to compare NODEs with splines was strategic, as
several leading algorithms adopt splines as their basis including kernels
smoothing (Dai et al., 2022) and physics informed (Sun et al., 2021)
methods, and are thus expected to perform similarly relative to NODEs
as splines did in this work. Gaussian Processes (GPs) are also a leading
method for interpolation and derivative estimation of data. However,
since time-dependent GPs share many similarities to time-dependent,
algebraic Neural Networks, which we have previously showed were
inferior derivative estimators to NODEs (Bradley et al., 2021), a com-
parison with GPs we hypothesize will yield similar conclusions. In short,
a comparison will all these methods is beyond the scope of this work.
However, based on the results in this study one can hypothesize that so
far as these indirect methods rely on splines or some other
time-dependent model as the basis for interpolation without fixing the
ODE structure, the NODE will offer superior results for two-step indirect
ODE fitting if data is thinly measured across multiple experiments.

Finally, this work focuses on proving the superior accuracy of
NODEs, acknowledging that in other categories, such as interpretability
and computational efficiency, NODEs are not expected to offer an
advantage over alternative data-driven techniques. Due to the need to
integrate the NODE during training, fitting the NODE will require many
more function calls during training than most interpolating models.
Moreover, during training, the NODE has the potential to converge to a
local minimum or diverge on account of poor parameter updating. These
issues can be remedied either by breaking up the integration interval in
the former case, and in the latter case through testing several hyper-
parameters of the optimizer and NODE structure. This hyperparameter
tuning would invariably increase training time. Nevertheless, the addi-
tional computation required to train NODEs can be worthwhile if it leads
to more accurate predictions and enables the modeler to solve problems
not solvable with faster, but less accurate interpolating methods. Soft-
ware that automates numerical integration of NODEs are becoming
increasingly available (Rackauckas et al., 2020; Merkelbach et al.,
2022). As NODE architectures evolve (Rubanova et al., 2019; Kidger
et al., 2020), so too are evolving methods to accelerate their training
(Cai et al., 2023; Bonnaffé et al., 2023). Future software that enables
integrating NODEs over multiple trajectories in parallel would be of
great value in accelerating training of NODEs.

7. Conclusions

In conclusion, Neural Differential Equations have successfully been
demonstrated to infer system derivatives when data is sparse, noisy, and
spread across multiple experiments, including cases when algebraic
interpolating methods failed. To communicate the generalizability of
the approach, several modes of sparsity were explored, and NODEs were
shown to interpolate well the system response provided the extrema
were represented in one of the system experiments. In addition, it was
shown that the interval of NODE integration becomes an important
hyperparameter when being trained on data that is noisy, nonlinear, and
sparse. Finally, the method was shown to be sufficiently accurate to
discover the mechanistic model generating the system dynamics, espe-
cially when multiple experiments of data were available for training. It is
anticipated that the methods described in this work will help automate
difficult tasks in data analysis and inference of sparse dynamic systems
that are beyond the reach of traditional inference methods.
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