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Abstract

Partially observable Markov decision processes (POMDPs) provide a flexible representation

for real-world decision and control problems. However, POMDPs are notoriously difficult to solve,

especially when the state and observation spaces are continuous or hybrid, which is often the case

for physical systems. While recent online sampling-based POMDP algorithms that plan with ob-

servation likelihood weighting have shown practical effectiveness, a general theory characterizing

the approximation error of the particle filtering techniques that these algorithms use has not pre-

viously been proposed. Our main contribution is bounding the error between any POMDP and

its corresponding finite sample particle belief MDP (PB-MDP) approximation. This fundamental

bridge between PB-MDPs and POMDPs allows us to adapt any sampling-based MDP algorithm to

a POMDP by solving the corresponding particle belief MDP, thereby extending the convergence

guarantees of the MDP algorithm to the POMDP. Practically, this is implemented by using the par-

ticle filter belief transition model as the generative model for the MDP solver. While this requires

access to the observation density model from the POMDP, it only increases the transition sampling

complexity of the MDP solver by a factor ofO(C), where C is the number of particles. Thus, when

combined with sparse sampling MDP algorithms, this approach can yield algorithms for POMDPs

that have no direct theoretical dependence on the size of the state and observation spaces. In addi-

tion to our theoretical contribution, we perform five numerical experiments on benchmark POMDPs

to demonstrate that a simple MDP algorithm adapted using PB-MDP approximation, Sparse-PFT,

achieves performance competitive with other leading continuous observation POMDP solvers.

1. Introduction

Maintaining safety and acting efficiently in the midst of uncertainty is an important aspect in a

diverse set of challenges from transportation (Holland et al., 2013; Sunberg & Kochenderfer, 2022)

to autonomous scientific exploration (Bresina et al., 2002; Frew et al., 2020), to healthcare (Ayer et
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al., 2012) and ecology (Memarzadeh & Boettiger, 2018). The partially observable Markov decision

process (POMDP) is a flexible framework for sequential decision making in uncertain environments.

One common method for solving POMDPs is online tree search, which is attractive for several

reasons. First, the approach scales to very large problems because it uses sampled trajectories,

making it insensitive to the dimensionality of the state and observation spaces (Kearns et al., 2002).

Second, since online computation focuses on the current states and states likely to be encountered in

the future, it can reduce the need for offline computation and end-to-end training (Deglurkar et al.,

2021). Third, tree search is applicable to a wide range of problems, for example hybrid continuous-

discrete and problems with many local optima, because it only depends on a minimal set of problem

structure requirements.

Recently proposed POMDP tree search algorithms (Garg et al., 2019; Hoerger & Kurniawati,

2021; Lim et al., 2020, 2021; Mern et al., 2021; Sunberg & Kochenderfer, 2018; Wu et al., 2021)

have been shown empirically to work on continuous state and observation spaces. Theoretical anal-

ysis, however, has lagged behind. While there are algorithms that have performance guarantees

(Lim et al., 2020, 2021) and algorithms that perform well empirically (Garg et al., 2019; Hoerger

& Kurniawati, 2021; Lim et al., 2021; Mern et al., 2021; Sunberg & Kochenderfer, 2018; Wu et al.,

2021), there has been little progress on a general theory describing why this family of algorithms can

enjoys such good performance. Though there have been some algorithm-specific results (outlined in

Section 2.4), a considerable gap in the connection between POMDPs and practical approximations

using particle methods still remains.

This manuscript formally justifies that optimality guarantees in a finite sample particle belief

MDP (PB-MDP) approximation of a POMDP/belief MDP yield optimality guarantees in the orig-

inal POMDP as well. We accomplish this by showing that the Q-values of the POMDP and PB-

MDP are close with high probability by using an intermediary theoretical algorithm called Sparse

Sampling-ω . Specifically, we prove that the Sparse Sampling-ω Q-value estimates are close to

both optimal Q-values of the POMDP and PB-MDP with high probability. Since there exists an

algorithm that approximates both Q-values accurately with high probability, the optimal Q-values

of the POMDP and PB-MDP themselves must be close to each other with high probability. This

probability scales as 1−O(CD exp(−t ·C)), where C is the number of particles; D is the planning

depth; and t is a number determined by the POMDP reward function and probability distributions,

number of particles, and desired accuracy. Notably, this convergence rate does not directly depend

on the size of the state space nor the observation space, but rather depends on the Rényi divergence

that links the probabilities concerning state and observation trajectories and the planning horizon D.

This fundamental bridge between PB-MDPs and POMDPs allows us to adapt any sampling-

based MDP algorithm of choice to a POMDP by solving the corresponding particle belief MDP

approximation and to preserve the convergence guarantees in the POMDP. Practically, this means

additionally assuming we have an explicit observation model Z and swapping out the state transi-

tion generative model with a particle filtering-based model. This change only increases the com-

putational complexity of transition generation by a factor of O(C), with C the number of particles

in a particle belief state. This allows us to devise algorithms such as Sparse Particle Filter Tree

(Sparse-PFT), which enjoys algorithmic simplicity, theoretical guarantees, and practicality, since

it is equivalent to upper confidence trees (UCT) (Bjarnason et al., 2009; Shah et al., 2022), with

particle belief states.

The remainder of this paper proceeds as follows: First, Section 2 reviews preliminary definitions

and previous related work. Section 3 formalizes the notion of particle belief MDPs (PB-MDPs).
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on the current state s and action a and is denoted T (s′ | s,a). The observation probability is con-

ditioned on the previous action and current state1 and denoted Z(o | a,s′). The reward function,

R(s,a), maps states and actions to an expected reward, and γ ∈ [0,1) is a discount factor. The agent

plans starting from b0, the initial state distribution or the initial belief. Some POMDP algorithms

only require samples from the transition, observation, or reward models rather than explicit knowl-

edge of T , Z , or R. Such samples can be produced using a so-called generative model (Kearns

et al., 2002) denoted with s′,o,r← G(s,a). In some algorithms, only one or two of the outputs of

G are used and the others are discarded, e.g. the notation “o← G(s,a)” indicates that s′ and r are

discarded.

The objective of a POMDP is to find an optimal policy, π∗, that selects actions that maximizes

the discounted sum of future rewards, with an appropriate tie-breaking method:

π∗ = argmax
π

E

[
∞

∑
t=0

γ tR(st ,at)

]

. (1)

In general, the actions may be chosen based on the entire history of actions and observations,

ht ≡ (b0,a0,o1,a1, . . . ,ot−1,at−1,ot). (2)

However, because of the Markov property, it can be shown that optimal decisions can be made based

only on the conditional distribution of the state given the history (Kaelbling et al., 1998), known as

the belief,

bt(s)≡ P(st = s | ht). (3)

This belief can be updated using Bayes’s rule or an efficient approximation such as a Kalman filter

or particle filter, and it is often more straightforward to determine actions based on beliefs rather

than the history. Since the belief and history fulfill the Markov property, a POMDP is a Markov

decision process (MDP) on the belief or history space, commonly referred to as the belief MDP

(Kaelbling et al., 1998).

In order to maximize the objective in Eq. (1), the policy must take into account both the imme-

diate reward from taking the action in the current state and whether that action will lead to states

favorable for attaining rewards in the future. For a history h and a corresponding belief b, the

history-action and belief-action value functions, defined as

Qπ(h,a)≡ Qπ(b,a)≡ E

[
∞

∑
t=0

γ tR(st ,at)

∣
∣
∣
∣
∣
b0 = b, a0 = a, at = π(bt)

]

, (4)

take both of these factors into account. When π is also used for the current step, the expected

accumulated reward from a history or belief is denoted with V π(h) =V π(b) = Qπ(b,π(b)). When

π is an optimal policy, these value functions are denoted with Q∗ and V ∗. If Q∗ can be calculated,

an optimal policy π∗ can simply be extracted with π∗(h) = argmaxa Q∗(h,a). Thus, a common

strategy for solving POMDPs involves iteratively improving estimates of Q∗ denoted simply with

Q for brevity.

Early research (Kaelbling et al., 1998; Shani et al., 2013; Smallwood & Sondik, 1973) sought

to find optimal solutions to POMDPs offline; that is, they attempted to optimize actions for every

1. It is possible to use observation probability distributions additionally conditioned on the previous state, Z(o | s,a,s′),
in all algorithms discussed in this paper, but we use Z(o | a,s′) for brevity.
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possible belief before interacting with the environment. However, since POMDPs are generally

intractable (Papadimitriou & Tsitsiklis, 1987), it is often impossible to find a complete solution for

a POMDP offline. Instead, we seek to compute solutions online only for the part of the problem that

may be reached in the immediate future.

2.2 Importance Sampling and Particle Filtering

In many real-world applications, updating the belief exactly based on a new action and observation

is impractical. Fortunately, Monte Carlo methods provide simple and effective tools for approximate

reasoning about distributions such as beliefs.

We often need to reason about a random variable X ∼ P based only on samples from another

related random variable, Y ∼ Q. Importance sampling allows us to, among other tasks, calculate

the expectation of a function by observing that

EX∼P [ f (X)] =
∫

f (x)P(x)dx =
∫

f (x)
P(x)
Q(x)Q(x)dx≈ 1

N

N

∑
i=1

P(yi)

Q(yi)
f (yi), (5)

where {yi}N
i=1 are samples from distribution Q. The convergence property of this approximation

relevant to the present work is described formally in Section 4.2.1.

The particle filter is an application of Monte Carlo estimation to the task of Bayesian belief

updating (Kochenderfer, 2015; Thrun et al., 2005). The simplest form is an unweighted particle

filter, in which the belief is represented by a collection of N states, known as particles, b̃ = {si}N
i=1.

The density is approximated by b̃(s) ≈ ∑
N
i=1 δ (si = s), where δ (·) is a Dirac or Kronecker delta

function depending on the form of the state space. At each step of the POMDP, after an action a is

taken and an observation o is received, a new state s′i and observation oi is simulated once or more

for each of the particles to create the new belief, b̃′ = {s′i : oi = o}. In most cases, few particles

will match o so it is difficult to maintain a large number of particles in the belief. Various domain-

specific techniques can be used to reduce this problem, but it is difficult to solve completely in the

unweighted particle filter.

The weighted particle filter is usually much more effective. The belief is represented by a col-

lection of state particles and corresponding weights, b̃ = {(si,wi)}N
i=1. The density is approximated

with b̃(s) ≈ ∑
N
i=1 wiδ (si=s)

∑
N
i=1 wi

. A belief update consists of simulating each particle once or more and

then calculating the new weight according to the importance sampling correction: w′i = wi ·Z(o |
s,a,s′i). Typically, the weights of a few particles grow much larger than the others, so a resampling

step creates many particles from those with large weights and eliminates those with very small

weights (Kochenderfer, 2015; Thrun et al., 2005).

2.3 Online POMDP Solvers

Monte Carlo tree search (MCTS) is a common solution technique for Games, MDPs, and POMDPs

(Browne et al., 2012; Silver & Veness, 2010). In an MDP context, MCTS constructs a tree con-

sisting of state and state-action nodes. In a POMDP context, each node corresponds to an action-

or observation-terminated history node, estimating Q(h,a) at each action-terminated history node.

The most common variant is called partially observable upper confidence trees (PO-UCT) or par-
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tially observable Monte Carlo planning (POMCP)2 (Silver & Veness, 2010) and constructs the tree

by using Upper Confidence Bound (UCB), asymmetrically favoring regions of the history and ac-

tion spaces that are likely to be visited when the optimal policy is executed (Bjarnason et al., 2009;

Kocsis & Szepesvári, 2006; Shah et al., 2022).

In addition to the PO-UCT algorithm described above, there are several other approaches to

solve POMDPs through online planning. Early solvers attempted to use exact Bayesian belief

updates on discrete state spaces (Ross et al., 2008), however, these are much less scalable than

PO-UCT. Two other popular solvers with scalability similar to UCT are determinized sparse par-

tially observable trees (DESPOT) (Ye et al., 2017) and adaptive belief trees (ABT) (Kurniawati &

Yadav, 2016). DESPOT uses a small number of determinized scenarios instead of independent ran-

dom simulations to reduce variance and relies on heuristic tree search guided by upper and lower

bounds rather than Monte Carlo tree search. ABT is designed to efficiently adapt to changes in the

environment without discarding previous computation.

Since PO-UCT, DESPOT, and ABT all rely on unweighted particle belief representations, they

will fail to find optimal policies in continuous observation spaces because the probability of gen-

erating the same observation twice, and hence creating beliefs with multiple particles, is zero (Lim

et al., 2020; Sunberg & Kochenderfer, 2018). Partially observable Monte Carlo planning with ob-

servation widening (POMCPOW) approaches the continuous observation challenge by introducing

a weighted particle filter and the continuous action challenge with progressive widening (Sunberg

& Kochenderfer, 2018). DESPOT-α (Garg et al., 2019) incorporates a similar weighting scheme

and uses the α-vector concept to generalize value estimates between sibling nodes. Adaptive on-

line packing-guided search (AdaOPS) (Wu et al., 2021) fuses similar observation branches in the

search tree to improve performance. Lazy Belief Extraction for Continuous Observation POMDPs

(LABECOP) (Hoerger & Kurniawati, 2021) builds the planning tree by re-weighting particles and

extracting belief sequence values efficiently.

2.4 Theoretical Analysis of Particle-based POMDP Algorithms

Several previous studies have analyzed particle-based POMDP algorithms from a theoretical per-

spective. Silver and Veness (2010) claim that POMCP value estimates converge to the optimal

value for discrete POMDPs on the basis that it equivalent to applying UCT to the history MDP cor-

responding to the POMDP. However, as mentioned above, POMCP does not converge in continuous

observation POMDPs (Lim et al., 2020; Sunberg & Kochenderfer, 2018). Ye et al. (2017) analyzed

the approximation of a POMDP with a finite set of scenarios, which essentially correspond to ran-

dom seeds that are fixed across different possible action sequences, and bounded the performance

of the DESPOT algorithm that uses these scenarios. However, these bounds depend on the size

of the observation space, |O|, and thus cannot be applied to continuous observation spaces. This

analysis was expanded by Luo et al. (2019) to cover a case in which scenarios are selected from an

importance distribution.

Bai et al. (2014) also provide convergence guarantees for their Monte Carlo value iteration

(MCVI) algorithm which uses simulations in a manner somewhat akin to particle filtering. Their

analysis extends to continuous observation spaces, but the algorithm is best suited for offline use,

2. Strictly speaking, POMCP also includes a specialized unweighted particle filter update that re-uses simulations from

the planning step, but the term is often used informally as a synonym for PO-UCT.
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unlike the algorithms we focus on. According to Bai et al. (2014), MCVI spends hours computing

a policy graph that can be executed quickly online.

Lim et al. (2020) presented the first theoretical analysis of online POMDP tree search algorithms

that use weighted particle filtering. However, the partially observable weighted sparse sampling

(POWSS) algorithm analyzed in that work is not efficient enough to be practically useful. Wu et

al. (2021) provide analytical performance guarantees for a simplified version of AdaOPS, a recent

particle belief tree search POMDP solver included in our numerical analysis in Section 6. However,

the full AdaOPS algorithm used in the numerical experiments is more complex than the simplified

version used in the theoretical portion of the work.

Du et al. (2021) analyzed the number of particles needed to control partially observable linear

systems. Finally, there is a large body of work on particle filters without consideration of decision

making. Some results from this field are summarized by Crisan and Doucet (2002).

In contrast to these works that provide guarantees for individual algorithms or limited cases, the

analysis in this paper provides a general bound for particle belief approximation of a broad class of

POMDPs, giving justification for MDP algorithms to be adapted to solve POMDPs efficiently.

3. Particle Belief MDPs (PB-MDPs)

In this section, we define the corresponding particle belief MDP (PB-MDP) for a given POMDP.

Deriving the corresponding particle belief MDP of a POMDP is equivalent to approximating the

belief MDP with a finite number of particles.

Definition 1 (Particle Belief MDP). The corresponding particle belief MDP for a given POMDP

problem P = (S,A,O,T ,Z,R,γ) is the MDP MP = (Σ,A,τ,ρ,γ) defined by the following elements:

• Σ: State space over particle beliefs b̄d . An element in this set, b̄d ∈ Σ, is a particle collection,

b̄d = {(sd,i,wd,i)}Ci=1, where sd,i ∈ S, wd,i ∈ R
+. 3 For the sake of brevity in the rest of the

paper, we drop C
i=1 and render a particle belief as {sd,i,wd,i}. The beliefs are not assumed

to be permutation invariant, meaning that particle beliefs with different particle orders are

considered different elements in Σ. This simplifies derivation of the transition distribution

(see Eq. (9)) because each particle transition is independent.

• A: Action space. Remains the same as the original action space.

• τ: Transition density τ(b̄d+1 | b̄d ,a): We define the likelihood weights wd,i of particles sd,i to

be updated through unnormalized Bayes rule:

wd+1,i = wd,i ·Z(o | a,sd+1,i). (6)

Then, the transition probability from b̄d to b̄d+1 by taking the action a can be defined as:

τ(b̄d+1 | b̄d ,a)≡
∫

O
P(b̄d+1 | b̄d ,a,o)P(o | b̄d ,a)do. (7)

The first term in the integrand product P(b̄d+1 | b̄d ,a,o) is the conditional transition density

given some observation o. Since each new state particle is generated independently and the

3. The d subscript, the number of steps, is included for subscript order consistency with the rest of the paper, but is not

meaningful in this context.
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likelihood weight updates are deterministic given sd,i,sd+1,i,a and o, this term can be written

in terms of T and Z:

P(b̄d+1 | b̄d ,a,o) = P({sd+1,i,wd+1,i} | {sd,i,wd,i},a,o) (8)

=
C

∏
i=1

P(sd+1,i,wd+1,i | sd,i,a,o) (9)

=

{

∏
C
i=1T (sd+1,i | sd,i,a) if wd+1,i = wd,i ·Z(o | a,sd+1,i) ∀i

0 otherwise.
(10)

The second term in the integrand product P(o | b̄d ,a) is the observation likelihood given a

particle belief and an action. This is equivalent to weighted sum of observation likelihoods

conditioning on the observation having been generated from the respective i-th particle:

P(o | b̄d ,a) = P(o | {sd,i,wd,i},a) =
∑

C
i=1 wd,i ·P(o | sd,i,a)

∑
C
i=1 wd,i

(11)

=
∑

C
i=1 wd,i · [

∫

SZ(o | a,s′)T (s′ | sd,i,a)ds′]

∑
C
i=1 wd,i

. (12)

Note that this density τ is usually impossible or very difficult to calculate explicitly. However,

it is rather easy to sample from it using generative models.

• ρ: Reward function ρ(b̄d ,a):

ρ(b̄d ,a) =
∑i wd,i ·R(sd,i,a)

∑i wd,i
. (13)

Note that if R is bounded by Rmax, ρ is also bounded with ||ρ||∞ ≤ Rmax, since the normalized

weights sum to 1.

• γ: Discount factor. Remains the same as the original discount factor.

The significance of defining a corresponding particle belief MDP is that we can directly adapt

any sampling-based MDP algorithm to approximately solve a POMDP by only changing the tran-

sition generative model. The transition generative model will now be a sampler based on particle

filtering, as the particle belief MDP deals with particle belief states. Furthermore, this allows Q-

value convergence guarantees of the MDP algorithms to translate nicely into solving the POMDP,

as we will prove later in this paper that the optimal Q-values of the POMDP Q∗P and PB-MDP Q∗MP

are close with high probability.

4. Sparse Sampling-ω

In order to show that the optimal Q-values of the POMDP, Q∗P, and PB-MDP, Q∗MP
, are approxi-

mately equivalent, we first introduce an algorithm called Sparse Sampling-ω (sparse sampling with

weights), which will serve as a theoretical bridge between POMDP and PB-MDP. Sparse Sampling-

ω is a sparse sampling solver that uses particle belief states with particle likelihood weighting to

deal with observation uncertainty. As is evident from the name, Sparse Sampling-ω takes inspi-

ration from sparse sampling (Kearns et al., 2002) for continuous state MDPs, using particle belief
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Algorithm 1 Sparse Sampling-ω

Global Variables: γ,G,C,D.

Procedure: GENPF(b̄,a)

Input: particle belief set b̄ = {(si,wi)}, action a.

Output: New updated particle belief set b̄′ =
{(s′i,w′i)}, mean reward ρ .

1: so← sample si from b̄ w.p. wi

∑i wi

2: o← G(so,a)
3: for i = 1, . . . ,C do

4: s′i,ri← G(si,a)
5: w′i← wi ·Z(o|a,s′i)
6: b̄′←

{
(s′i,w

′
i)
}C

i=1
7: ρ ← ∑i wiri/∑i wi

8: return b̄′,ρ

Procedure: ESTIMATEV(b̄,d)

Input: particle belief set b̄ = {(si,wi)}, depth d.

Output: A scalar V̂ ∗d (b̄) that is an estimate of V ∗(b̄).

1: if d ≥ D then

2: return 0

3: for a ∈ A do

4: Q̂∗d(b̄,a)← ESTIMATEQ(b̄,a,d)

5: return V̂ ∗d (b̄)←maxa∈A Q̂∗d(b̄,a)

Procedure: ESTIMATEQ(b̄,a,d)

Input: particle belief set b̄ = {(si,wi)}, action a,

depth d.

Output: A scalar Q̂∗d(b̄,a) that is an estimate of

Q∗d(b,a).

1: for i = 1, . . . ,C do

2: b̄′i,ρ ← GENPF(b̄,a)
3: V̂ ∗d+1(b̄

′
i)← ESTIMATEV(b̄′i,d +1)

4: return Q̂∗d(b̄,a)← ρ + 1
C ∑

C
i=1 γ ·V̂ ∗d+1(b̄

′
i)

states. Note that Sparse Sampling-ω is purely a theoretical intermediary tool to bridge POMDPs

and PB-MDPs, and fully expanding the state and action nodes is extremely computationally inef-

ficient. Rather, this theoretically well-behaved algorithm is what lets us effectively bridge the gap

between Q∗P and Q∗MP
.

4.1 Algorithm Definition

The Sparse Sampling-ω algorithm is defined with the procedures listed in Algorithm 1. The global

variables are the discount factor γ , the generative model G, the observation width and number of

particles C, and the planning depth D. GENPF is the helper function to generate the next-step

particle belief set, where the particles are evolved according to the transition density T and the

weights are updated through the observation densityZ . In GENPF, the sampled states s′i are inserted

into each next-step particle belief set bao j with the new weights w′i = wi · Z(o j | a,s′i), which are

the adjusted probability of hypothetically sampling observation o j from state s′i. Furthermore, the

reward returned by GENPF is the particle likelihood weighted reward ρ = ∑i wiri/∑i wi of the

current particle belief state, which is a constant output for a fixed pair of b̄,a.

The main planning functions in Sparse Sampling-ω are the ESTIMATEV and ESTIMATEQ pro-

cedures. We use particle belief set b̄ at every step d, which contain pairs (si,wi) that correspond

to the generated sample and its corresponding weight. ESTIMATEV is a subroutine that returns

the value function V , for an estimated state or belief, by calling ESTIMATEQ for each action and

returning the maximum. Similarly, ESTIMATEQ performs sampling and recursively calls ESTI-

MATEV to estimate the Q-function at a given step with a weighted average. In ESTIMATEQ, Sparse

Sampling-ω samples the next particle belief state using GENPF.

Consequently, the Sparse Sampling-ω policy action can be obtained by calling the value estima-

tion function ESTIMATEV(b̄0,0) at the root node and taking an action that maximizes the Q-value.
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The particle belief set is initialized by drawing samples from b0 and setting weights to 1/C, as

the samples were drawn directly from b0. Sparse Sampling-ω is not computationally efficient as it

fully expands the sparsely sampled tree with full particle belief states. It serves only to demonstrate

theoretical convergence and is only practically applicable to very small toy POMDP problems.

Sparse Sampling-ω is identical to the sparse sampling algorithm (Kearns et al., 2002) planning

on a particle belief MDP. It also is a slight modification of the previously-published POWSS al-

gorithm (Lim et al., 2020). Specifically, whereas POWSS generates exactly one observation and

corresponding new belief for each particle in a belief, Sparse Sampling-ω randomly selects a state

to generate the observation each time GENPF is called in Line 2 of Algorithm 1. This means that

Sparse Sampling-ω performs a Monte Carlo sampling estimate of the next step value, while POWSS

performs an importance weighted summation over the estimates.

Most importantly, this duality of being a modification of POWSS algorithm maintaining sim-

ilar convergence guarantees for POMDPs while simultaneously being an adaptation of the sparse

sampling algorithm for particle belief MDP makes it the ideal candidate to bridge POMDPs and

PB-MDPs together. As an added benefit, the definition of Sparse Sampling-ω is much simpler than

the original POWSS algorithm, while still allowing us to use similar analysis techniques used in

both POWSS and sparse sampling.

4.2 Theoretical Analysis

In this section, we will prove that Sparse Sampling-ω algorithm can be made to approximate both

optimal Q-values of the POMDP Q∗P and PB-MDP Q∗MP
arbitrarily closely by increasing the ob-

servation width C. Theorem 2 proves that the Sparse Sampling-ω algorithm approximates these

Q-values with high probability by combining results from self-normalized importance sampling es-

timators and POWSS optimality proofs (Lim et al., 2020) to prove the optimality in Q∗P, and sparse

sampling proof (Kearns et al., 2002) to prove the optimality in Q∗MP
.

4.2.1 IMPORTANCE SAMPLING

We begin the theoretical portion of this work by stating an important property about self-normalized

importance sampling estimators (SN estimators). We have previously published this property (Lim

et al., 2020) but present it again here because of its importance to our analysis. One goal of im-

portance sampling is to estimate an expected value of a function f (x) where x is drawn from a

distribution P while the estimator only has access to another distribution Q along with the impor-

tance weights wP/Q(x) ∝ P(x)/Q(x). This technique is crucial for Sparse Sampling-ω because we

wish to estimate the value for beliefs conditioned on observation sequences while only being able

to sample from the marginal distribution of states for a given action sequence.

We define the following quantities:

w̃P/Q(x)≡
wP/Q(x)

∑
N
i=1 wP/Q(xi)

(SN Importance Weight)

dα(P||Q)≡ Ex∼Q[wP/Q(x)
α ] (Rényi Divergence)

µ̃P/Q ≡
N

∑
i=1

w̃P/Q(xi) f (xi). (SN Estimator)
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Of particular importance is the infinite Rényi Divergence, d∞, which can be rewritten as an

almost sure bound on the ratio of P and Q:

d∞(P||Q) = esssup
x∼Q

wP/Q(x). (14)

Assuming d∞(P||Q) is finite, we prove an estimator concentration bound in the following theorem.

Theorem 1 (SN d∞-Concentration Bound). Let P and Q be two probability measures on the mea-

surable space (X ,F) with P absolutely continuous w.r.t. Q and d∞(P||Q) < +∞. Let x1, . . . ,xN

be N independent identically distributed random variables with distribution Q, and f : X → R

be a bounded function (‖ f‖∞ < +∞). Then, for any λ > 0 and N large enough such that λ >
‖ f‖∞ d∞(P||Q)/

√
N, the following bound holds with probability at least 1−3exp(−N · t2(λ ,N)):

|Ex∼P [ f (x)]− µ̃P/Q| ≤ λ , (15)

t(λ ,N)≡ λ

‖ f‖∞ d∞(P||Q)
− 1√

N
. (16)

Theorem 1 builds upon the derivation in Proposition D.3 of Metelli et al. (2018), which pro-

vides a polynomially decaying bound by assuming d2 is bounded. Here, we compromise by further

assuming that d∞ exists and is bounded to get an exponentially decaying bound. The proof of The-

orem 1 is given in Appendix A, and the intuitive explanation of the d∞ assumption in the POMDP

planning context is given in Section 4.2.2.

This exponential decay is important for the proofs in this section. We need to ensure that all

nodes of the Sparse Sampling-ω tree at all depths d reach convergence. The branching of the tree

induces a factor proportional to CD. Theorem 1 applied with N =C will not only help offset the CD

factor even with increasing depths, but also be consistent with Hoeffding-type bound exponential

error rate that we also use to bound intermediate estimator errors.

4.2.2 ASSUMPTIONS FOR ANALYZING SPARSE SAMPLING-ω .

The following assumptions are needed for the Sparse Sampling-ω coupled convergence proof:

(i) S and O are continuous spaces, and the action space has a finite number of elements, |A|<+∞.

(ii) The densities Z,T ,b0 have the property that, for any observation sequence {on, j}d
n=1, the

Rényi divergence of the target distributionPd and sampling distributionQd (Eqs. (22) and (23))

is bounded above by dmax
∞ for all d = 0, . . . ,D−1:

d∞(Pd ||Qd) = ess supx∼Qd wPd/Qd (x)≤ dmax
∞ (17)

(iii) The reward function R is bounded by a finite constant Rmax, and hence the value function is

bounded by Vmax ≡ Rmax

1−γ .

(iv) We can sample from the generating function G and evaluate the observation density Z .

(v) The POMDP terminates after no more than D < ∞ steps.
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(vi) We restrict our analysis to all the beliefs b ∈ B that are realizable from the initial belief b0

through Bayesian updates with action sequences {an} and observation sequences {on}.

Intuitively, condition (ii) means that the ratio of the observation probability conditioned on the true

state to the marginal observation probability cannot be too high. Additionally, the results still hold

even when either of S or O are discrete, so long as it does not violate condition (ii), by appropriately

switching the integrals to sums.

Although our analysis is restricted to the case when γ < 1 and the problem has a finite horizon,

we believe that similar results can be derived for either when γ = 1 for a finite horizon or for infinite

horizon problems when γ < 1 by using the common argument that eventually future discounted

rewards will be small (Kearns et al., 2002; Silver & Veness, 2010). Furthermore, while the results

from this section repeat steps taken in proving POWSS (Lim et al., 2020), we significantly modify

the details for Sparse Sampling-ω .

4.2.3 PARTICLE LIKELIHOOD WEIGHTING ACCURACY.

As a precursor to Theorem 2, we establish a general result about function estimation using state

particles with likelihood weights. This is useful because the inductive proof for showing Sparse

Sampling-ω convergence in Lemma 2 relies heavily upon an SN estimator concentration inequality

as well as a Hoeffding-type inequality.

Lemma 1 (Particle Likelihood SN Estimator Convergence). Suppose a function f is bounded by

a finite constant ‖ f‖∞ ≤ fmax, and a particle belief state b̄d = {sd,i,wd,i} at depth d represents bd

with particle likelihood weighting that is recursively updated as wd,i = wd−1,i ·Z(od | a,sd). Then,

for all d = 0, . . . ,D− 1, the following weighted average is the SN estimator of f under the belief

bd corresponding to the actions {an}d−1
n=0 and observations {on}d

n=1, for all beliefs bd ∈ B that are

realizable given the initial belief b0:

µ̃b̄d
[ f ] =

∑
C
i=1 wd,i f (sd,i)

∑
C
i=1 wd,i

, (18)

and the following concentration bound holds with probability at least 1−3exp(−C · t2
max(λ ,C)),

|Es∼bd
[ f (s)]− µ̃b̄d

[ f ]| ≤ λ , (19)

tmax(λ ,C)≡ λ

fmaxdmax
∞

− 1√
C
. (20)

Proof. We only outline the important steps here, and defer the detailed proof of this lemma to Ap-

pendix B. The key of this proof lies in the fact that the state particles trajectories {sn,1}, . . . , {sn,C}
are independent identically distributed random variable sequences of depth d, as GENPF indepen-

dently generates each state sequence i according to the transition density T . While GENPF gener-

ates highly correlated observation sequences and histories {on}d
n=1, the dependence on observation

sequence for a given particle belief state is only through the particle likelihood weights.

We abbreviate some terms of interest with the following notation:

T i
1:d ≡

d

∏
n=1

T (sn,i | sn−1,i,an); Z i
1:d ≡

d

∏
n=1

Z(on | an,sn,i), (21)
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where d is the depth, and i is the index of the state sample. Intuitively, T i
1:d is the transition density

of the ith state sequence, {sn,i}d
n=1, and Z i

1:d is the conditional density of observation sequence {on}
given the ith state sequence from the root node to depth d. Additionally, bi

d denotes bd(sd,i) and wd,i

the weight of sd,i.

Then, we apply importance sampling to our system for all depths d = 0, . . . ,D− 1. Here, Pd

is the normalized measure of the state sequence {sn,i}d
n=0 conditioned on the observation sequence

{on}d
n=1 and action sequence {an}d−1

n=0 up to the node at depth d, and Qd is the measure of the state

sequence conditioned only on the action sequence. For simplicity, we useZ1:d to denote the product

of observation likelihoods ∏
d
n=1Z(on | an−1,sn) and T1:d to denote the product of transition densities

∏
d
n=1T (sn | sn−1,an−1). Then, for an arbitrary action sequence {an}, the following describes the

densities necessary to define importance weighting:

Pd = Pd
{an,on}({sn,i}) =

(Z i
1:d)(T i

1:d)b
i
0

∫

Sd+1(Z1:d)(T1:d)b0ds0:d

(22)

Qd =Qd
{an}({sn,i}) = (T i

1:d)b
i
0 (23)

wPd/Qd ({sn,i}) =
(Z i

1:d)
∫

Sd+1(Z1:d)(T1:d)b0ds0:d

. (24)

Here, the integral to calculate the normalizing constant is taken over Sd+1, the Cartesian product

of the state space S over d + 1 steps. Now, we can show that the recursive likelihood updating

scheme in Lemma 1 produces valid likelihood weights up to a normalization by simply expanding

the weight wd,i:

wd,i = wd−1,i ·Z(od | ad−1,sd,i) = wd−2,i

d

∏
n=d−1

Z(on | an−1,sn,i) = . . .= Z i
1:d ∝ wPd/Qd ({sn,i}).

(25)

Consequently, we conclude that the weighted average with particle likelihood weights indeed cor-

responds to the proper SN estimator:

µ̃b̄d
[ f ] =

∑
C
i=1 wd,i · f (sd,i)

∑
C
i=1 wd,i

=
∑

C
i=1 wPd/Qd ({sn,i}) · f (sd,i)

∑
C
i=1 wPd/Qd ({sn,i})

. (26)

We can apply the SN concentration inequality in Theorem 1 to obtain the concentration bound.

Note that proving this lemma allows us to apply the particle likelihood weighting SN inequality

whenever we encounter weighted averages with particle likelihood weights for a realizable particle

belief. Also, this result does not depend on any specific choice of observation sequence {on}.

4.2.4 COUPLED CONVERGENCE OF SPARSE SAMPLING-ω .

The theorem below describes Sparse Sampling-ω’s coupled convergence to both optimal Q-values

of the POMDP Q∗P and PB-MDP Q∗MP
, as C is increased.
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Theorem 2 (Sparse Sampling-ω Coupled Optimality). Suppose conditions (i)-(vi) are satisfied.

Then, for any λ > 0 and 0 < δ ≤ 1, choosing particle count constant C that satisfies:

C = max







(
4Vmaxdmax

∞

λ

)2

,
64V 2

max

λ 2

(

D log
24|A|D+1

D V 2
maxD

λ 2
+ log

1

δ

)





, (27)

the Q-function estimates Q̂∗ω,d(b̄d ,a) obtained for all depths d = 0, . . . ,D− 1, realized beliefs or

histories bd encountered in the Sparse Sampling-ω tree, and actions a are jointly near-optimal with

respect to Q∗P,d and Q∗MP,d
with probability at least 1−δ :

|Q∗P,d(bd ,a)− Q̂∗ω,d(b̄d ,a)| ≤
λ

1− γ
, (28)

|Q∗MP,d
(b̄d ,a)− Q̂∗ω,d(b̄d ,a)| ≤

λ

1− γ
. (29)

To prove Theorem 2, we follow a similar proof strategy from our previous proof for POWSS

(Lim et al., 2020) to show that Eq. (28) holds, and a similar strategy of the original sparse sampling

proof (Kearns et al., 2002) to show that Eq. (29) holds. In essence, this Sparse Sampling-ω conver-

gence guarantee builds on POWSS and sparse sampling convergence guarantees, providing coupled

convergence results to optimal Q-values of the POMDP Q∗P and PB-MDP Q∗MP
.

First, we use induction in Lemma 2 to prove a concentration inequality for the value function

at all nodes in the tree, starting at the leaves and proceeding up to the root. Consequently, prov-

ing Lemma 2 allows us to prove Theorem 2, with some justifications of how the parameter C can

actually be explicitly chosen with the choice of λ ,δ . The detailed proof for Theorem 2 is in Ap-

pendix D.

Lemma 2 (Sparse Sampling-ω Estimator Q-Value Coupled Convergence). For all d = 0, . . . ,D−1

and a, the following bounds hold with probability at least 1−6|A|(4|A|C)D exp(−C · t̃2):

|Q∗P,d(bd ,a)− Q̂∗ω,d(b̄d ,a)| ≤ αd , αd = λ + γαd+1, αD−1 = λ , (30)

|Q∗MP,d
(b̄d ,a)− Q̂∗ω,d(b̄d ,a)| ≤ βd , βd = γ(λ +βd+1), βD−1 = 0, (31)

tmax(λ ,C) =
λ

4Vmaxdmax
∞

− 1√
C
, t̃ = min{tmax,λ/4

√
2Vmax} (32)

Proof. We outline how we use the particle likelihood SN estimator inequality and Hoeffding in-

equality to bound the Q-values, and defer the detailed proof to Appendix C.

The optimal d-step Q-values for the POMDP Q∗P and the corresponding PB-MDP Q∗MP
are

Q∗P,d(bd ,a) = EP[R(sd ,a)+ γV ∗P,d+1(bdao) | bd ] (33)

=
∫

S
R(sd ,a)bd ·dsd + γ

∫

S

∫

S

∫

O
V ∗P,d+1(bdao)(Zd+1)(Td,d+1)bd ·dsd:d+1do, (34)

Q∗MP,d
(b̄d ,a) = ρ(b̄,a)+ γ EMP

[V ∗MP,d+1(b̄d+1) | b̄d ,a] (35)

=
∑i wd,i ·R(sd,i,a)

∑
C
i=1 wd,i

+ γ

∫

Σ
V ∗MP,d+1(b̄d+1)τ(b̄d+1 | b̄d ,a)db̄d+1. (36)
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The Sparse Sampling-ω value estimates are mathematically equal to

V̂ ∗ω,d(b̄d) = max
a∈A

Q̂∗ω,d

(
b̄d ,a

)
(37)

Q̂∗ω,d(b̄d ,a) =
∑

C
i=1 wd,ird,i

∑
C
i=1 wd,i

+
1

C

C

∑
i=1

γ ·V̂ ∗ω,d+1

(

b̄
′[Ii]
d+1

)

, (38)

where {Ii} are C independent identically distributed random variables with finite discrete distri-

bution pw,d with probability mass pw,d(I = j) = (wd, j/∑k wd,k), and particle belief state b̄
′[Ii]
d+1 is

updated by an observation generated from sd,Ii
. This reflects the fact that GENPF randomly selects

a state particle so with probability wd,o/∑k wd,k C times independently to generate a new observation

for the particle belief state after next step.

POMDP Value Convergence: First, we show that Eq. (30) is satisfied, which is an adapted

and substantially modified proof of POWSS convergence (Lim et al., 2020). Using the triangle

inequality for a given step d of the inductive proof, we split the difference into two terms, the

reward estimation error (A) and the next-step value estimation error (B):

|Q∗P,d(bd ,a)− Q̂∗ω,d(b̄d ,a)| ≤
∣
∣
∣
∣
∣
EP[R(sd ,a) | bd ]−

∑
C
i=1 wd,ird,i

∑
C
i=1 wd,i

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(A)

(39)

+ γ

∣
∣
∣
∣
∣
EP[V

∗
P,d+1(bdao) | bd ]−

1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(B)

The reward estimation error (A) is exactly the particle likelihood importance sampling error

for estimating the reward function R(·,a), which can be bounded by applying Lemma 1. This also

proves the base case.
To bound the next-step value estimation error (B), we introduce particle likelihood SN estima-

tors and Monte Carlo average estimators to bridge the following quantities (detailed definitions and
bounds of each terms are in Appendix D):

∣
∣
∣
∣
∣
EP[V

∗
P,d+1(bdao) | bd ]−

1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(B)

(40)

≤

∣
∣
∣
∣
∣
∣

EP[V
∗
P,d+1(bdao) | bd ]−

∑
C
i=1 wd,iV

∗
P,d+1(bd ,a)

[i]

∑
C
i=1 wd,i

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

(1) Importance sampling error

+

∣
∣
∣
∣
∣
∣

∑
C
i=1 wd,iV

∗
P,d+1(bd ,a)

[i]

∑
C
i=1 wd,i

− 1

C

C

∑
i=1

V∗P,d+1(bd ,a)
[Ii]

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

(2) MC weighted sum approximation error

+

∣
∣
∣
∣
∣

1

C

C

∑
i=1

V∗P,d+1(bd ,a)
[Ii]− 1

C

C

∑
i=1

V ∗P,d+1(bdao[Ii])

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(3) MC next-step integral approximation error

+

∣
∣
∣
∣
∣

1

C

C

∑
i=1

V ∗P,d+1(bdao[Ii])− 1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(4) Inductive function estimation error

.

PB-MDP Value Convergence: Second, we show that Eq. (31) is satisfied, which is an adapted

and substantially modified proof of sparse sampling convergence (Kearns et al., 2002). Once again,
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we split the difference between the SN estimator and the Q∗MP
function into two terms, the reward

estimation error (A) and the next-step value estimation error (B):

|Q∗MP,d
(b̄d ,a)− Q̂∗ω,d(b̄d ,a)| ≤

∣
∣ρ(b̄d ,a)−ρ(b̄d ,a)

∣
∣

︸ ︷︷ ︸

(A) = 0

(41)

+ γ

∣
∣
∣
∣
∣
EMP

[V ∗MP,d+1(b̄d+1) | b̄d ,a]−
1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(B)

Since our particle belief MDP induces no reward estimation error, the term (A) is always 0
and proving the base case d = D− 1 is trivial as (A) and (B) are both 0. Then, we show that the
difference (B) is bounded for all d = 0, . . . ,D− 1. We use the triangle inequality repeatedly to
separate it into two terms; (1) the MC transition approximation error, and (2) the inductive function
estimation error (detailed definitions and bounds of each terms are in Appendix D):

∣
∣
∣
∣
∣
EMP

[V ∗MP,d+1(b̄d+1) | b̄d ,a]−
1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(B)

(42)

≤
∣
∣
∣
∣
∣
EMP

[V ∗MP,d+1(b̄d+1) | b̄d ,a]−
1

C

C

∑
i=1

V ∗MP,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(1) MC transition approximation error

+

∣
∣
∣
∣
∣

1

C

C

∑
i=1

V ∗MP,d+1(b̄
′[Ii]
d+1)−

1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(2) Inductive function estimation error

.

Combining the probability bounds used in both of these procedures results in a worst case

O(exp(−t ·C)) probability factor, where t is some constant, as both the SN concentration bound

and the Hoeffding bound are exponentially decaying. Since this upper bound on the estimation er-

ror needs to hold for all steps d = 0, . . . ,D− 1, we must apply the worst case union bound on the

probability to ensure that every node in the tree achieves the desired concentration bound. This re-

sults in a worst case probability factor that isO(CD). Therefore, we can obtain the Q-value estimator

concentration inequality, with convergence rate O(CD exp(−t ·C)).

5. Particle Belief MDP Approximation Guarantees

In this section, we establish the theoretical guarantees for using any approximately optimal MDP

planning algorithm to solve the POMDP problem P by planning in the particle belief MDP MP.

Theorem 3 shows that the Q-values Q∗P and Q∗MP
are close to each other with high probability, and

Theorem 4 shows that using any approximately optimal MDP planning algorithm A in the particle

belief MDP MP as a policy yields near-optimal value in the original POMDP if applied repeatedly

in a closed loop with the environment and an exact belief updater.

5.1 Particle Belief MDP Q-Value Approximation Optimality

We introduce Theorem 3, which probabilistically bridges the POMDP P and its corresponding par-

ticle belief MDP MP. In essence, this theorem claims that the two optimal Q-values Q∗P and Q∗MP
are

close with high probability, because creating a very accurate Q-value estimator via Sparse Sampling-

ω that is close to both Q∗P and Q∗MP
happens with high probability.
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Theorem 3 (Particle Belief MDP Q-Value Approximation Optimality). Given a finite horizon

POMDP P and its corresponding particle belief MDP MP, there exists a number of particles C

for which the optimal Q-value of the POMDP problem Q∗P(b,a) can be approximated by the opti-

mal Q-value of the particle belief MDP problem Q∗MP
(b̄,a) with arbitrary precision. Namely, under

the regularity conditions (i)-(vi), the following bound holds for a given realizable belief b, corre-

sponding sampled particle belief b̄, and all available actions a with probability at least 1−δMP
for

a desired accuracy εMP
:

|Q∗P(b,a)−Q∗MP
(b̄,a)| ≤ εMP

. (43)

Proof. The main idea of the proof is that we bridge the two Q-values, Q∗P and Q∗MP
, via approx-

imation through Sparse Sampling-ω with C particles. From Theorem 2, we have established that

there exists an algorithm, Sparse Sampling-ω , which is jointly optimal in both senses of POMDP P

and its corresponding particle belief MDP MP. Then, if we were to hypothetically perform Sparse

Sampling-ω of depth D, the sum of the errors between the three types of Q-values at the root node,

Q∗P, Q∗MP
and Q̂∗ω , are jointly bounded with probability at least 1− δMP

through Theorem 2, where

δMP
= δ for notational clarity in this context. We use the fact that Q∗P and Q∗MP

are the optimal

Q-values at d = 0 for the POMDP and PB-MDP, respectively:

|Q∗P(b,a)−Q∗MP
(b̄,a)| ≤ |Q∗P(b,a)− Q̂∗ω(b̄,a)|+ |Q̂∗ω(b̄,a)−Q∗MP

(b̄,a)| (44)

≡ |Q∗P,0(b0,a)− Q̂∗ω,0(b̄0,a)|+ |Q∗MP,0(b̄0,a)− Q̂∗ω,0(b̄0,a)| (45)

≤ 2λ

1− γ
≡ εMP

. (46)

Since this bound holds with high probability for creating any hypothetical Sparse Sampling-ω tree,

this must mean that |Q∗P(b,a)−Q∗MP
(b̄,a)| ≤ εMP

in general with high probability.

The convergence rate of δMP
is O(CD exp(−t̃ ·C)). This means that as we increase the number

of particles, we can expect better performance by approximately solving a POMDP via particle

belief approximation.

5.2 Particle Belief MDP Planning Optimality

Corollary 1 (Particle Belief MDP Planning Optimality). Under regularity conditions necessary for

both the particle belief MDP and an MDP planning algorithm A, if the optimal planner can ap-

proximate Q-values with arbitrary precision εA with probability at least 1−δA in the corresponding

particle belief MDP of a given POMDP, then the planning algorithm can approximate the POMDP

Q-values within εMP
+ εA with probability at least 1−δMP

−δA:

|Q∗P(b,a)− Q̂A
MP

(b̄,a)| ≤ εMP
+ εA. (47)

Proof. This is a straightforward application of triangle inequality for the Q-value estimation accu-

racy and worst case union bound for the probability.

Note that it would also be possible to devise an expected value version of the bounds by con-

verting the probability statement into an expected value statement.

Essentially, Corollary 1 means that we can use any approximately optimal MDP planning algo-

rithm to solve the POMDP problem by planning in the particle belief MDP instead, and still retain
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Figure 2: Illustration of promoting an MDP algorithm (UCT) into a POMDP algorithm (Sparse-

PFT). This practically only involves changing the transition generative model into a par-

ticle filtering-based transition generative model that deals with particle belief states.

similar optimality guarantees. The most remarkable thing about this result is that it does not di-

rectly depend on the size of the state space nor the observation space. However, the dependence

may indirectly come through the observation density and thus the Rényi divergence factor, and in

practice, the generative model sampling complexity often depends on the dimensionality of the state

space. Moreover, even though this approach is insensitive to the state and observation space size,

the guarantees and practical algorithms are highly sensitive to the planning horizon D.

In most practical cases, this method would usually incur an additionalO(C) compute time factor

in a given transition sampling step as single particle belief state generation now needs to propagate

C particles forward instead of a single particle/state. Moreover, if the algorithm requires storing

the beliefs, the memory requirements are increased by an O(C) factor compared with the MDP

algorithm. Fortunately, as demonstrated in Section 6, a modest number of particles often gives

adequate performance in practice.

Proving Corollary 1 allows us to prove Theorem 4 with additional results from Kearns et al.

(2002) and Singh and Yee (1994). Through the near-optimality of the Q-functions, we conclude that

the value obtained by employing a near-optimal MDP policy in the PB-MDP is also near-optimal in

the original POMDP with further assumptions on the closed-loop POMDP system. In this context,

we mean a near-optimal MDP planning algorithm A to be an algorithm with small values of εA,δA
that would satisfy the conditions required in the proof of the theorem. Examples of such algorithms

include sparse sampling (Kearns et al., 2002) and others (Bjarnason et al., 2009; Couëtoux et al.,

2011). The detailed proof for Theorem 4 is in Appendix E.

Theorem 4 (Particle Belief MDP Approximate Policy Convergence). Suppose a near-optimal MDP

planning algorithm A is used to plan with particle belief MDP MP repeatedly in a closed loop with

POMDP environment P and an exact Bayesian belief updater to process observations from the

environment. Further assume that regularity conditions (i)-(vi) are met for MP and that A can

approximate the Q-values of MP with arbitrary precision εA with probability at least 1−δA. Then,

for any ε > 0, we can choose C such that the value obtained by planning with A in MP is within ε

of the optimal POMDP value function at b0:

V ∗P (b0)−VA
MP

(b0)≤ ε. (48)
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Algorithm 2 Sparse-PFT Algorithm

Global Variables: γ,n,cUCB,βUCB,G,D.

Procedure: PLAN(b)

Input: Belief b.

Output: An action a.

1: for i = 1, . . . ,C do

2: s← sample from b

3: b̄← b̄∪{(s,1/C)}
4: for i = 1, . . . ,n do

5: SIMULATE(b̄,0)

6: return a← argmaxa∈C(b) Q(b,a)

Procedure: SIMULATE(b̄,d)

Input: particle belief set b̄ = {(si,wi)}, depth d.

Output: A scalar q that is the total discounted reward

of one simulated trajectory sample.

1: if d = D then

2: return 0

3: a← argmaxa∈C(b̄) Q(b̄,a)+ cUCB
N(b̄)βUCB√

N(b̄,a)

4: if |C(b̄,a)|=C then

5: b̄′,ρ ← sample from C(b̄,a)
6: else

7: b̄′,ρ ← GENPF(b̄,a)
8: C(b̄,a)←C(b̄,a)∪{(b̄′,ρ)}
9: if N(b̄) = 0 then

10: q← ρ + γ ·ROLLOUT(b̄′,d−1)
11: else

12: q← ρ + γ ·SIMULATE(b̄′,d−1)

13: N(b̄)← N(b̄)+1

14: N(b̄,a)← N(b̄,a)+1

15: Q(b̄,a)← Q(b̄,a)+ q−Q(b̄,a)

N(b̄,a)
16: return q

5.3 Sparse Particle Filter Tree (Sparse-PFT)

By utilizing the results in Theorem 3 and Theorem 4, we can promote a variant of sampling-based

MDP planning algorithm Upper Confidence Tree (UCT), Sparse UCT (Bjarnason et al., 2009), into

Sparse Particle Filter Tree (Sparse-PFT) and retain similar convergence guarantees for the POMDP

(Bjarnason et al., 2009; Kocsis & Szepesvári, 2006; Shah et al., 2022). This results in an algorithm

that is simple to implement, and enjoys both theoretical guarantees and high performance in practice.

The entry point of Sparse-PFT is the PLAN procedure which repeatedly calls the the SIMULATE

procedure to construct the tree and choose an action. Both of these procedures are defined in Al-

gorithm 2. The set of global variables for Sparse-PFT includes the same global variables used for

Sparse Sampling-ω with the addition of n, the number of tree search queries, and cUCB and βUCB,

the polynomial Upper Confidence Bound parameters that determine the amount of exploration in

Line 3 (Shah et al., 2022). The SIMULATE function is analogous to the function of the same name

from UCT (Bjarnason et al., 2009; Kocsis & Szepesvári, 2006), with the only difference being that

Sparse-PFT manages particle belief sets through GENPF (defined in Algorithm 1) rather than states

directly.

In the above algorithm definition, C(·) represents the list of children nodes, N(·) the number of

visits to the node, Q(·) the estimated Q-value at the node, and cUCB the Upper Confidence Bound

exploration parameter. These lists are all implicitly initialized to 0 or /0. The ROLLOUT procedure

is an optional heuristic that runs a simulation with a heuristic rollout policy for d steps to estimate

the value, while avoiding building a large computation tree at each step of simulation.

With the introduction of Sparse-PFT, we can view the recent POMDP algorithms as practical

extensions of Sparse-PFT. For instance, PFT-DPW (Sunberg & Kochenderfer, 2018) is a simple
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(a) Laser Tag POMDP (b) Light Dark POMDP

(c) Sub Hunt POMDP (d) VDP Tag POMDP

Figure 3: Illustration of the four environments we test our algorithms on: (a) Laser Tag, (b) Light

Dark, (c) Sub Hunt, and (d) VDP Tag (discrete and continuous versions).

modification of Sparse-PFT by utilizing the double progressive widening (DPW) technique to ad-

ditionally handle continuous action spaces, and POMCPOW (Sunberg & Kochenderfer, 2018) is

a further extension that plans based on particle trajectory that allows for flexible particle number

representations of a given belief node. However, further theoretical analyses of these algorithms

would most likely require more sophisticated techniques and further assumptions.

6. Numerical Experiments

Numerical simulation experiments were conducted in order to evaluate and compare the perfor-

mances of our new simple algorithm, Sparse-PFT, along with other solvers. In particular, we also

ran experiments for Adaptive online packing-guided search (AdaOPS) (Wu et al., 2021), a recent

solver with practical performance and partial theoretical guarantees. We also show performances of

other hallmark algorithms like QMDP and POMCP along with random policy to demonstrate the

need for continuous observation POMDP solvers that can handle more general assumptions.

The following sections contain descriptions of the evaluation problems along with discussion of

solver performance. In all five of the numerical experiments shown in Fig. 3, the POMDP solvers
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Figure 8: Example Sparse-PFT policy behavior for VDP Tag, which shows a successful localization

of the target following the Van Der Pol dynamics, then a successful capture.

discretized VDP Tag, the available movement directions are 20 evenly spaced angles from 0◦ to

360◦.

−4 −2 0 2 4
−4

−2

0

2

4

Figure 9: An example Van Der Pol vector field

(µ = 0.5) which defines the target dy-

namics. Unlike the agent, the target is

not blocked by the barriers.

The continuous VDP Tag domain is the

first in which there exists a noticeable perfor-

mance gap between Sparse-PFT and PFT-DPW,

indicating that action progressive widening of-

fers some utility over fixed widening in con-

tinuous action space problems. Furthermore,

PFT-DPW and POMCPOW have similar per-

formances across different planning times, sug-

gesting that the main challenge of VDP Tag

is being able to handle continuity of state, ac-

tion, and observation spaces, while the particle

belief approximation resolution does not affect

the performance as much.

For discrete VDP Tag, we come across two

new peculiarities: AdaOPS performance de-

creases with increased planning time, and PFT

methods perform orders of magnitude worse

than other planners at very low allotted plan-

ning times. This is likely attributable to a large

action space (|A|= 20) and a relatively expensive simulation function (RK4 integration). Because

PFT methods propagate a collection of particles upon tree expansion, belief value estimates tend to

be more accurate at the cost of added computation scaling linearly with the number of particles rep-

resenting each belief. Thus, expanding all possible actions while using a computationally expensive

simulator on all particles takes a long time, leading to very shallow trees.

6.5 Experimental Validation of Particle Belief Approximation Convergence

In order to test the effect of particle belief approximation resolution, or the number of belief parti-

cles C, on planner performance, we vary C while fixing the number of SIMULATE calls and using

optimal hyperparameters found in Appendix F for Sparse-PFT planner. By increasing the the num-
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7. Conclusion

In this work, we formally show that optimality guarantees in a finite sample particle belief MDP

(PB-MDP) approximation of a POMDP yields optimality guarantees in the original POMDP as well,

which allows for simple yet powerful adaptations of MDP algorithms to solve POMDPs. By prov-

ing that the Sparse Sampling-ω Q-value estimates are close to both optimal Q-values of the POMDP

and PB-MDP with high probability, we conclude that the optimal Q-values of the POMDP and PB-

MDP themselves are close with high probability. This fundamental bridge between PB-MDPs and

POMDPs allows us to adapt any sampling-based MDP algorithm of choice to a POMDP by solving

the corresponding particle belief MDP approximation and to preserve the convergence guarantees

in the POMDP. The transformation only increases the computational complexity of transition gen-

eration by a factor of O(C) by using particle filtering-based generative models. Our convergence

result is not directly dependent on the size of the state space nor the observation space, but rather

dependent on the Rényi divergence that links the probabilities concerning state and observation tra-

jectories. This motivates particle belief-based POMDP algorithms such as Sparse Particle Filter

Tree (Sparse-PFT), which enjoys algorithmic simplicity, theoretical guarantees, and practicality.

There are many interesting avenues for future research. First, the broader theoretical justification

of more complex algorithms, such as POMCPOW and DESPOT-α , still do not exist. Showing the-

oretical validity of these algorithms would help to close the gap between theory and practice even

further. In addition, as seen in our numerical experiments, the best performing algorithm varies

across different types of benchmarks. Further theoretical and empirical characterization of which

algorithms are most effective for which problems could greatly aid practitioners. Also, the particle

number sweep suggests a method to characterize the difficulty of a POMDP problem, which may

be of interest for both practitioners and researchers alike. Lastly, while the algorithms presented

here perform well in low dimensional continuous observation spaces, tree search for more difficult

POMDPs, such as those with high dimensional observations (Deglurkar et al., 2021) and continu-

ous/hybrid action spaces (Lim et al., 2021; Mern et al., 2021; Seiler et al., 2015) is more difficult,

and further analytical and empirical research is warranted.
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Appendix A. Proof of Theorem 1 - SN d∞-Concentration Bound

Theorem 1 (SN d∞-Concentration Bound). Let P and Q be two probability measures on the mea-

surable space (X ,F) with P absolutely continuous w.r.t. Q and d∞(P||Q) < +∞. Let x1, . . . ,xN

be N independent identically distributed random variables with distribution Q, and f : X → R

be a bounded function (‖ f‖∞ < +∞). Then, for any λ > 0 and N large enough such that λ >
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‖ f‖∞ d∞(P||Q)/
√

N, the following bound holds with probability at least 1−3exp(−N · t2(λ ,N)):

|Ex∼P [ f (x)]− µ̃P/Q| ≤ λ , (1)

t(λ ,N)≡ λ

‖ f‖∞ d∞(P||Q)
− 1√

N
. (2)

Proof. This proof follows similar proof steps as in Metelli et al. (Metelli et al., 2018). Since we have

upper bounds on the infinite Rényi divergence d∞(P||Q), we can start from Hoeffding’s inequality

for bounded random variables applied to the regular IS estimator µ̂P/Q = 1
N ∑

N
i=1 wP/Q(xi) f (xi),

which is unbiased. While applying Hoeffding’s inequality, we can view importance sampling on

f (x) weighted by wP/Q(x) as Monte Carlo sampling on g(x) = wP/Q(x) f (x), which is a function

bounded by‖g‖∞ = d∞(P||Q)‖ f‖∞:

P

(

µ̂P/Q−Ex∼P[ f (x)]≥ λ
)

= P

(

µ̂P/Q−Ex∼Q[µ̂P/Q(x) f (x)]≥ λ
)

(3)

≤ exp

(

− 2N2λ 2

∑
N
i=1 2(d∞(P||Q)‖ f‖∞)

2

)

(4)

≤ exp

(

− Nλ 2

d2
∞(P||Q)‖ f‖2

∞

)

≡ δ (5)

P

(

|µ̂P/Q−Ex∼P[ f (x)]| ≥ λ
)

≤ 2exp

(

− Nλ 2

d2
∞(P||Q)‖ f‖2

∞

)

= 2δ (6)

We prove a similar bound for the SN estimator µ̃P/Q = ∑
N
i=1 w̃P/Q(xi) f (xi), which is a biased

estimator. However, we need to take a step further and analyze the absolute difference, requiring us

to split the difference up into two terms:

P(|Ex∼P [ f (x)]− µ̃P/Q| ≥ λ ) (7)

≤ P(µ̃P/Q−Ex∼P [ f (x)]≥ λ )+P(Ex∼P [ f (x)]− µ̃P/Q ≥ λ ) (8)

≤ P(µ̃P/Q−Ex∼Q[µ̃P/Q]≥ λ̃ )+P(Ex∼Q[µ̃P/Q]− µ̃P/Q ≥ λ̃ ) (9)

≤ δ̃ +P(Ex∼P [ f (x)]− µ̃P/Q ≥ λ ) (10)

The first term is bounded by δ̃ from the above bound and recasting λ to λ̃ to account for the bias of

the SN estimator:

λ̃ = λ −
∣
∣
∣Ex∼P [ f (x)]−Ex∼Q[µ̃P/Q]

∣
∣
∣ (11)

δ̃ = exp

(

− Nλ̃ 2

d2
∞(P||Q)‖ f‖2

∞

)

(12)
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Note that the bias term in the SN estimator is bounded by following through Cauchy-Schwarz

inequality, closely following steps from Metelli et al. (2018):

|Ex∼P [ f (x)]−Ex∼Q[µ̃P/Q]|=
∣
∣
∣Ex∼Q[µ̂P/Q− µ̃P/Q]

∣
∣
∣≤ Ex∼Q[|µ̂P/Q− µ̃P/Q|] (13)

≤ Ex∼Q

∣
∣
∣
∣
∣

∑
N
i=1 wP/Q(xi) f (xi)

∑
N
i=1 wP/Q(xi)

− 1

N

N

∑
i=1

wP/Q(xi) f (xi)

∣
∣
∣
∣
∣

(14)

= Ex∼Q





∣
∣
∣
∣
∣

∑
N
i=1 wP/Q(xi) f (xi)

∑
N
i=1 wP/Q(xi)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
1− ∑

N
i=1 wP/Q(xi)

N

∣
∣
∣
∣
∣



 (15)

≤ Ex∼Q





(

∑
N
i=1 wP/Q(xi) f (xi)

∑
N
i=1 wP/Q(xi)

)2




1/2

Ex∼Q





(

1− ∑
N
i=1 wP/Q(xi)

N

)2




1/2

(16)

≤‖ f‖∞

√

d2(P||Q)−1

N
≤‖ f‖∞

d∞(P||Q)√
N

(17)

In the last step, the first term is bounded by ‖ f‖∞ as the function is bounded, and the second term

is bounded by the fact that we can bound the square root of variance with the supremum squared,

where we square it for the convenience of the definition of t(λ ,N) later on such that the 1/
√

N

factor is nicely separated. We use the assumption in the theorem that N is chosen large enough that

λ >‖ f‖∞ d∞(P||Q)/
√

N to bound the δ̃ term:

δ̃ ≤ exp

(

−N(λ −‖ f‖∞ d∞(P||Q)/
√

N)2

d2
∞(P||Q)‖ f‖2

∞

)

(18)

= exp



−N

(

λ −‖ f‖∞ d∞(P||Q)/
√

N

‖ f‖∞ d∞(P||Q)

)2


 (19)

≡ exp
(

−N · t2(λ ,N)
)

(20)

Here, we define t(λ ,N)≡ λ
‖ f‖∞d∞(P ||Q)−

1√
N

, which satisfies 0 < t(λ ,N)≤ λ
‖ f‖∞d∞(P ||Q) . The second

term can be bounded similarly by rebounding the bias term with λ̃ , using symmetry and Hoeffding’s

inequality:

P(Ex∼P [ f (x)]− µ̃P/Q ≥ λ )≤ P(Ex∼Q[µ̃P/Q]− µ̃P/Q ≥ λ̃ ) (21)

≤ P(|Ex∼Q[µ̃P/Q]− µ̃P/Q| ≥ λ̃ )≤ 2δ̃ (22)

Thus, we obtain the following bound:

P(|Ex∼P [ f (x)]− µ̃P/Q| ≥ λ )≤ 3exp(−N · t2(λ ,N)) (23)

Appendix B. Proof of Lemma 1 (Continued) - Particle Likelihood SN Estimator

Convergence

In the main paper, we show that µ̃b̄d
[ f ] is an SN estimator of Es∼bd

[ f (s)]. We apply the concentration

inequality proven in Theorem 1 to finish the proof of Lemma 1.
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Lemma 1 (Particle Likelihood SN Estimator Convergence). Suppose a function f is bounded by a

finite constant‖ f‖∞ ≤ fmax, and a particle belief state b̄d = {(sd,i,wd,i)}Ci=1 at depth d represents bd

with particle likelihood weighting that is recursively updated as wd,i = wd−1,i ·Z(od | a,sd). Then,

for all d = 0, . . . ,D− 1, the following weighted average is the SN estimator of f under the belief

bd corresponding to the actions {an}d−1
n=0 and observations {on}d

n=1, for all beliefs bd ∈ B that are

realizable given the initial belief b0:

µ̃b̄d
[ f ] =

∑
C
i=1 wd,i f (sd,i)

∑
C
i=1 wd,i

, (24)

and the following concentration bound holds with probability at least 1−3exp(−C · t2
max(λ ,C)),

|Es∼bd
[ f (s)]− µ̃b̄d

[ f ]| ≤ λ , (25)

tmax(λ ,C)≡ λ

fmaxdmax
∞

− 1√
C
. (26)

Proof. In this proof, we will take advantage of the fact that the state particles trajectories {sn}1, . . .
{sn}C of depth d are independent of each other, as GENPF independently generates each state

sequence i according to the transition density T .

In the subsequent analysis, we abbreviate some terms of interest with the following notation:

T i
1:d ≡

d

∏
n=1

T (sn,i | sn−1,i,an); Z i
1:d ≡

d

∏
n=1

Z(on | an,sn,i). (27)

Here d denotes the depth, i denotes the index of the state sample. Intuitively, T i
1:d is the transition

density of state sequence i from the root node to depth d, and Z i
1:d is the conditional density of

observation sequence state sequence i from the root node to depth d. Additionally, bi
d denotes

bd(sd,i) and wd,i the weight of sd,i.

First, we show that µ̃b̄d
[ f ] is an SN estimator of Es∼bd

[ f (s)]. By following the recursive belief

update, the belief term can be fully expanded:

bD−1(sD−1) =

∫

SD−1(Z1:D−1)(T1:D−1)b0ds0:D−2
∫

SD(Z1:D−1)(T1:D−1)b0ds0:D−1

(28)

Then, Es∼bd
[ f (s)] is equal to the following:

Es∼bd
[ f (s)] =

∫

S
f (sD−1)bD−1dsD−1 =

∫

SD f (sD−1)(Z1:D−1)(T1:D−1)b0ds0:D−1
∫

SD(Z1:D−1)(T1:D−1)b0ds0:D−1

(29)

We approximate the Es∼bd
[ f (s)] function with importance sampling by using problem requirement

(iv), where the target density is bD−1. First, we sample the sequences {sn,i} according to the joint

probability (T1:D−1)b0. Afterwards, we weight the sequences by the corresponding observation

density Z1:D−1, obtained from the generated observation sequences {on}. Normally, these gener-

ated observation sequences through GENPF will be correlated. For now, we treat the observation

sequences {on} as fixed.

Applying the importance sampling formalism to our system for all depths d = 0, . . . ,D−1, Pd

is the normalized measure incorporating the probability of the observation sequence conditioned on
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the state sequence i and action sequence until the node at depth d, andQd is the measure of the state

sequence. We can think of Pd corresponding to the observation sequence {on}.

Pd = Pd
{an,on}({sn,i}) =

(Z i
1:d)(T i

1:d)b
i
0

∫

Sd+1(Z1:d)(T1:d)b0ds0:d

(30)

Qd =Qd
{an}({sn,i}) = (T i

1:d)b
i
0 (31)

wPd/Qd ({sn,i}) =
(Z i

1:d)
∫

Sd+1(Z1:d)(T1:d)b0ds0:d

(32)

Here, the integral to calculate the normalizing constant is taken over Sd+1, the Cartesian product of

the state space S over d +1 steps.

The weighing step is done by updating the self-normalized weights given in GENPF algorithm.

We define wd,i and rd,i as the weights and rewards obtained at step d for state sequence i from

GENPF simulation. With our recursive definition of the empirical weights, we obtain the full weight

of each state sequence i for a fixed observation sequence:

wd,i = wd−1,i ·Z(od | ad ,sd,i) ∝ Z i
1:d . (33)

Realizing that the marginal observation probability is independent of indexing by i, we show

that µ̃b̄d
[ f ] is an SN estimator of Es∼bd

[ f (s)]:

µ̃b̄d
[ f ] =

∑
C
i=1(Z i

1:d) f (sd,i)

∑
C
i=1(Z i

1:d)
=

∑
C
i=1

(Z i
1:d)∫

SD (Z1:d)(T1:d)b0ds0:d
f (sd,i)

∑
C
i=1

(Z i
1:d)∫

SD (Z1:d)(T1:d)b0ds0:d

(34)

=
∑

C
i=1 wPd/Qd ({sn,i}) f (sd,i)

∑
C
i=1 wPd/Qd ({sn,i})

=
C

∑
i=1

w̃Pd/Qd ({sn,i}) f (sd,i) (35)

Since {sn}1, . . . ,{sn}C are independent identically distributed random variable sequences of depth

d, and f is a bounded function, we can apply the SN concentration bound in Theorem 1 to obtain

the concentration inequality. Since d∞(Pd ||Qd) is bounded by dmax
∞ a.s., we can bound the resulting

td(λ ,C) by tmax(λ ,C) a.s.:

td(λ ,C) =
λ

fmaxd∞(Pd ||Qd)
− 1√

C
≥ λ

fmaxdmax
∞

− 1√
C
≡ tmax(λ ,C) (36)

This means that for all d, we can bound td(λ ,C) ≥ tmax(λ ,C). Thus, bounding the concentration

inequality probability with tmax(λ ,C) for any step d is justified when we prove Lemma 2 later.

This probabilistic bound holds for any choice of {on}, where {on} could be a sequence of random

variables correlated with any elements of {sn,i}. Thus, for any {on},

|Es∼bd
[ f (s)]− µ̃b̄d

[ f ]| ≤ λ (37)

holds with probability at least 1−3exp(−C · t2
max(λ ,C)).
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Appendix C. Proof of Lemma 2 (Continued) - Sparse Sampling-ω Q-Value Coupled

Convergence

Lemma 2 (Sparse Sampling-ω Estimator Q-Value Coupled Convergence). For all d = 0, . . . ,D−1

and a, the following bounds hold with probability at least 1−6|A|(4|A|C)D exp(−C · t̃2):

|Q∗P,d(bd ,a)− Q̂∗ω,d(b̄d ,a)| ≤ αd , αd = λ + γαd+1, αD−1 = λ , (38)

|Q∗MP,d
(b̄d ,a)− Q̂∗ω,d(b̄d ,a)| ≤ βd , βd = γ(λ +βd+1), βD−1 = 0, (39)

tmax(λ ,C) =
λ

4Vmaxdmax
∞

− 1√
C
, t̃ = min{tmax,λ/4

√
2Vmax} (40)

Before we proceed with the proof, note that in our definition of tmax, we set the maximum of

the fmax to be equal to 4Vmax. While this may seem very conservative to bound most reasonable

functions resulting from reward and value estimation with 4 times the Vmax, it serves to uniformly

bound the probability for each of the SN estimator terms with convenient coefficients. Further-

more, individual concentration bounds may be adjusted to account for this generous upper bound

by multiplying a factor in front of λ .

POMDP Value Convergence: We split the difference between the SN estimator and Q∗P into

two terms, the reward estimation error (A) and the next-step value estimation error (B):

|Q∗P,d(bd ,a)− Q̂∗ω,d(b̄d ,a)| ≤
∣
∣
∣
∣
∣
EP[R(sd ,a) | bd ]−

∑
C
i=1 wd,ird,i

∑
C
i=1 wd,i

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(A)

(41)

+ γ

∣
∣
∣
∣
∣
EP[V

∗
P,d+1(bdao) | bd ]−

1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(B)

Here, the Ii notation represents that random variables Ii are sampled C times from the finite

discrete distribution pw,d with probability mass pw,d(I = i) = (wd,i/∑ j wd, j), and particle belief

state b̄
′[Ii]
d+1 is updated by an observation generated from sd,Ii

. This reflects the fact that GENPF

randomly selects a state particle so with probability wd,o/∑ j wd, j C times independently to generate

a new observation for the next step particle belief state. Similarly, a particle belief state b̄
′[i]
d+1 is

updated by an observation generated from sd,i, which is a notation we will use to represent beliefs

that are generated through iterating upon each state particle sd,i.

To prove the base case d = D− 1, we note that we only need to bound the first term (A) since

d = D− 1 corresponds to the leaf node of Sparse Sampling-ω tree and no further next step value

estimation is performed:

|Q∗P,D−1(bD−1,a)− Q̂∗ω,D−1(b̄D−1,a)| ≤
∣
∣
∣
∣
∣
EP[R(sD−1,a) | bD−1]−

∑
C
i=1 wD−1,irD−1,i

∑
C
i=1 wD−1,i

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(A)

. (42)

This term is simply a particle likelihood weighted average estimation term where the function is

R(·,a), and does not need any inductive step. Below, we will show how to bound both terms (A)

and (B), so the base case proof naturally follows from the proof of concentration bound for (A).
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For (A), we use the particle likelihood SN concentration bound in Lemma 1 to obtain the bound
Rmax

4Vmax
λ ; rather than bounding R with 4Vmax in this step, we instead bound R with Rmax and then

augment λ to Rmax

4Vmax
λ in order to obtain the same uniform tmax factor as the other steps. This choice

of bound is made to effectively combine the λ terms when we add (A) and (B). This also covers the

base case since αD−1 = λ ≥ Rmax

4Vmax
λ .

For (B), we use the triangle inequality repeatedly to separate it into four terms; (1) the im-
portance sampling error bounded by λ/4, (2) the Monte Carlo weighted sum approximation error
bounded by λ/4, (3) the Monte Carlo next-step integral approximation error bounded by λ/2, and
(4) the inductive function estimation error bounded by αd+1:
∣
∣
∣
∣
∣
EP[V

∗
P,d+1(bdao) | bd ]−

1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(B)

(43)

≤

∣
∣
∣
∣
∣
∣

EP[V
∗
P,d+1(bdao) | bd ]−

∑
C
i=1 wd,iV

∗
P,d+1(bd ,a)

[i]

∑
C
i=1 wd,i

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

(1) Importance sampling error

+

∣
∣
∣
∣
∣
∣

∑
C
i=1 wd,iV

∗
P,d+1(bd ,a)

[i]

∑
C
i=1 wd,i

− 1

C

C

∑
i=1

V∗P,d+1(bd ,a)
[Ii]

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

(2) MC weighted sum approximation error

+

∣
∣
∣
∣
∣

1

C

C

∑
i=1

V∗P,d+1(bd ,a)
[Ii]− 1

C

C

∑
i=1

V ∗P,d+1(bdao[Ii])

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(3) MC next-step integral approximation error

+

∣
∣
∣
∣
∣

1

C

C

∑
i=1

V ∗P,d+1(bdao[Ii])− 1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(4) Inductive function estimation error

.

≤ 1

4
λ

︸︷︷︸

(1)

+
1

4
λ

︸︷︷︸

(2)

+
1

2
λ

︸︷︷︸

(3)

+αd+1
︸︷︷︸

(4)

. (44)

The following subsections justify how each error term is bounded.

(1) Importance Sampling Error: Before we analyze the first term, note that the conditional

expectation of the optimal value function at step d+1 given bd ,a is calculated by the follow-

ing, where we introduce V∗P,d+1(bd ,a,sd,i)≡ V∗P,d+1(bd ,a)
[i] as a shorthand for the next-step

integration over (sd+1,o) conditioned on (bd ,a,sd,i). Once again, we denote [i] to indicate

that sd,i was the particle chosen to generate the observation o, and if we are conditioning on a

generic particle sd , then we simply denote all the variables V∗P,d+1(bd ,a,sd):

V∗P,d+1(bd ,a)
[i] ≡

∫

S

∫

O
V ∗P,d+1(bdao)Z(o | a,sd+1)T (sd+1 | sd,i,a)dsd+1do (45)

EP[V
∗
P,d+1(bdao) | bd ] =

∫

S

∫

S

∫

O
V ∗P,d+1(bdao)(Zd+1)(Td,d+1)bd ·dsd:d+1do (46)

=
∫

S
V∗P,d+1(bd ,a,sd)bd ·dsd (47)

=

∫

Sd+1 V∗P,d+1(bd ,a,sd)(Z1:d)(T1:d)b0ds0:d
∫

Sd+1(Z1:d)(T1:d)b0ds0:d

. (48)

Noting that the term (1) is then the difference between the SN estimator and the conditional

expectation, and that

∥
∥
∥V∗P,d+1

∥
∥
∥

∞
≤Vmax, we can apply the SN inequality for the second time

in Lemma 2 to bound it by the augmented λ/4. Thus, with our definition of tmax, the bound

holds with probability at least 1−3exp(−C · t2
max(λ ,C)).
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(2) Monte Carlo Weighted Sum Approximation Error: The second term is the error resulting

from estimating the sum with a Monte Carlo sum, which can be bounded by a Hoeffding-type

bound. First, we assume that all the variables except I are given, which are {sd,i,wd,i},bd ,a.

Then, we note that V∗P,d+1(bd ,a, ·) is a function bounded by Vmax. For convenience of no-

tation and conceptual clarity, we will denote V∗P,d+1(bd ,a)
[i] ≡ V(i), which means the value

estimate realization for the i-th state index. Noting that the probability mass is pw,d(I = i) =
(wd,i/∑ j wd, j), the Monte Carlo summation error can be simplified as the following:

∣
∣
∣
∣
∣

∑
C
i=1 wd,iV

∗
P,d+1(bd ,a)

[i]

∑
C
i=1 wd,i

− 1

C

C

∑
i=1

V∗P,d+1(bd ,a)
[Ii]

∣
∣
∣
∣
∣
=⇒

∣
∣
∣
∣
∣

C

∑
i=1

pw,d(I = i) ·V(i)− 1

C

C

∑
i=1

V(Ii)

∣
∣
∣
∣
∣
.

(49)

The first term in the difference is the expectation of V(·) under the probability measure pw,d :

∣
∣
∣
∣
∣

C

∑
i=1

pw,d(I = i) ·V(i)− 1

C

C

∑
i=1

V(Ii)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
Epw,d

[V(I)]− 1

C

C

∑
i=1

V(Ii)

∣
∣
∣
∣
∣
. (50)

This is precisely the form of the double-sided Hoeffding-type bound on the function values

V(I), where a Monte Carlo summation, or the Monte Carlo average in this case, attempts to

approximate the expected value. Therefore, we can choose λ such that the absolute difference

is bounded by λ with probability at least 1−2exp(−Cλ 2/2V 2
max) for an arbitrary fixed set of

{sd,i,wd,i},bd ,a:

∣
∣
∣
∣
∣

∑
C
i=1 wd,iV

∗
P,d+1(bd ,a)

[i]

∑
C
i=1 wd,i

− 1

C

C

∑
i=1

V∗P,d+1(bd ,a)
[Ii]

∣
∣
∣
∣
∣
≤ λ . (51)

The previous calculation was done by conditioning on {sd,i,wd,i},bd ,a. However, this bound

does not depend on the specific values of these weights nor the particle belief sets, since

Hoeffding bound only takes advantage of the fact that the random variables Ii are sampled

i.i.d. and the corresponding V(Ii) are bounded. Thus, we can revert this back into a general

statement by applying the Tower property, and noting that the expectation of an indicator

random variable is the probability of the associated event. By denoting the difference as

∆({sd,i,wd,i},bd ,a,{Ii}), we obtain the unconditional Hoeffding-type bound:

P
{

∆({sd,i,wd,i},bd ,a,{Ii})≤ λ
}
= E[1{∆({sd,i,wd,i},bd ,a,{Ii})≤λ}] (52)

= E

[

E

[

1{∆({sd,i,wd,i},bd ,a,{Ii})≤λ} | {sd,i,wd,i},bd ,a
]]

(53)

= E

[

P
{

∆({sd,i,wd,i},bd ,a,{Ii})≤ λ | {sd,i,wd,i},bd ,a
}]

(54)

≥ E[1−2exp(−Cλ 2/2V 2
max)] (55)

= 1−2exp(−Cλ 2/2V 2
max). (56)
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Here, we use the factor augmentation once again to choose λ/4 such that the absolute differ-

ence is bounded by λ/4 with probability at least 1−2exp(−Cλ 2/32V 2
max), which gets us our

desired result:
∣
∣
∣
∣
∣

∑
C
i=1 wd,iV

∗
P,d+1(bd ,a)

[i]

∑
C
i=1 wd,i

− 1

C

C

∑
i=1

V∗P,d+1(bd ,a)
[Ii]

∣
∣
∣
∣
∣
≤ λ

4
. (57)

(3) Monte Carlo Next-Step Integral Approximation Error: The third term can be thought of

as Monte Carlo next-step integral approximation error. To estimate V∗P,d+1(bd ,a)
[Ii], we can

simply use the quantity V ∗P,d+1(bdao[Ii]), as the random vector (sd+1,Ii
,oIi

) is jointly gener-

ated using G according to the correct probability Z(o | a,sd+1)T (sd+1 | sd,Ii
,a) given sd,Ii

in

the simulation realized in the tree. Consequently, the quantity V ∗P,d+1(bdao[Ii]) for a given

(sd,Ii
,bd ,a) is an unbiased 1-sample MC estimate of V∗P,d+1(bd ,a)

[Ii]. We define the differ-

ence between these two quantities as ∆d+1, which is implicitly a function of random variables

(sd+1,Ii
,oIi

):

∆d+1(bd ,a)
[Ii] ≡ V∗P,d+1(bd ,a)

[Ii]−V ∗P,d+1(bdao[Ii]). (58)

Then, we note that ‖∆d+1‖∞ ≤ 2Vmax and E∆d+1 = 0 by the Tower property conditioning

on (sd,Ii
,bd ,a) (which is implicitly conditioning on Ii, but this does not matter greatly as

everything cancels out) and integrating over (sd+1,Ii
,oIi

) first, which holds for any choice of

well-behaved sampling distributions on {s0:d}i. Using this fact, we can then consider this term

as a Monte Carlo estimator for the bias E∆d+1 = 0, and use another Hoeffding bound. Since

‖∆d+1‖∞ ≤ 2Vmax, our λ factor is then augmented by 1/2 to once again obtain probability at

least 1−2exp(−Cλ 2/32V 2
max):

∣
∣
∣
∣
∣

1

C

C

∑
i=1

V∗P,d+1(bd ,a)
[Ii]− 1

C

C

∑
i=1

V ∗P,d+1(bdao[Ii])

∣
∣
∣
∣
∣

(59)

=

∣
∣
∣
∣
∣

1

C

C

∑
i=1

(V∗P,d+1(bd ,a)
[Ii]−V ∗P,d+1(bdao[Ii]))−0

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1

C

C

∑
i=1

∆d+1(bd ,a)
[Ii]−E∆d+1

∣
∣
∣
∣
∣
≤ λ

2
. (60)

(4) Inductive Function Estimation Error: The fourth term is bounded by the inductive hypoth-

esis, since each i-th absolute difference of the Q-function and its estimate at step d + 1, and

furthermore the value function and its estimate at step d +1, are all bounded by αd+1.

Thus, each of the error terms are bound by (A)≤ Rmax

4Vmax
λ and (B)≤ 1

4
λ + 1

4
λ + 1

2
λ +αd+1, which

uses the SN concentration bound 2 times and Hoeffding bound 2 times. Combining (A) and (B), we

can obtain the desired bound:

|Q∗P,d(bd ,a)− Q̂∗d(b̄d ,a)| ≤
Rmax

4Vmax

λ + γ

[
1

4
λ +

1

4
λ +

1

2
λ +αd+1

]

(61)

≤ 1− γ

4
λ + γ

[
1

4
λ +

3

4γ
λ +αd+1

]

(62)

= λ + γαd+1 = αd . (63)
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Now, we derive the worst case union bound probability. First, we want to ensure that the SN

concentration inequality holds with probability 1−3exp(−C · t2
max(λ ,C)) whenever it is used at any

given step d and action a. Similarly, we also want to ensure that the Hoeffding-type inequality holds

with probability at least 1−2exp(−Cλ 2/32V 2
max) whenever it is used at any given step d and action

a. This means we can bound the worst case probability of using either bound by

max(3exp(−C · t2
max(λ ,C)),2exp(−Cλ 2/32V 2

max)) (64)

≤ 3exp(−C · t2
max(λ ,C))+2exp(−Cλ 2/32V 2

max) (65)

≤ 5exp(−C · t̃2). (66)

Furthermore, we multiply the worst-case union bound factor (4|A|C)D, since we want the function

estimates to be within their respective concentration bounds for all the actions |A| and child nodes

C at each step d = 0, . . . ,D− 1, for the 2 times we use SN concentration bound and 2 times we

use the double-sided Hoeffding-type bound in the induction step. We once again multiply the final

probability by |A| to account for the root node Q-value estimates also satisfying their respective

concentration bounds for all actions. Thus, the worst case union bound probability of all bad events

is bounded by probability 5|A|(4|A|C)D exp(−C · t̃2). Therefore, we have shown that the concentra-

tion bounds for both the particle likelihood SN estimator and Monte Carlo estimator components

converge with probability at least 1−5|A|(4|A|C)D exp(−C · t̃2) for all levels d:

|Q∗P,d(bd ,a)− Q̃∗d(b̄d ,a)| ≤ α̃d . (67)

PB-MDP Value Convergence: Once again, we split the difference between the SN estima-
tor and the Q∗MP

function into two terms, the reward estimation error (A) and the next-step value
estimation error (B):

|Q∗MP,d
(b̄d ,a)− Q̂∗ω,d(b̄d ,a)| ≤

∣
∣ρ(b̄d ,a)−ρ(b̄d ,a)

∣
∣

︸ ︷︷ ︸

(A) = 0

+γ

∣
∣
∣
∣
∣
EMP

[V ∗MP,d+1(b̄d+1) | b̄d ,a]−
1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(B)

.

(68)

Since our particle belief MDP induces no reward estimation error, the term (A) is always 0 and

proving the base case d = D−1 is trivial as (A) and (B) are both 0.

We now prove that the difference (B) is bounded for all d = 0, . . . ,D−1. We use the triangle in-

equality repeatedly to separate it into two terms; (1) the MC transition approximation error bounded

by λ , and (2) the inductive function estimation error bounded by βd+1:
∣
∣
∣
∣
∣
EMP

[V ∗MP,d+1(b̄d+1) | b̄d ,a]−
1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(B)

(69)

≤
∣
∣
∣
∣
∣
EMP

[V ∗MP,d+1(b̄d+1) | b̄d ,a]−
1

C

C

∑
i=1

V ∗MP,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(1) MC transition approximation error

+

∣
∣
∣
∣
∣

1

C

C

∑
i=1

V ∗MP,d+1(b̄
′[Ii]
d+1)−

1

C

C

∑
i=1

V̂ ∗ω,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(2) Inductive function estimation error

≤ λ
︸︷︷︸

(1)

+βd+1
︸︷︷︸

(2)

. (70)

We justify how each error term is bounded.
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(1) MC Transition Approximation Error: The Monte Carlo summation over the next step

particle belief state samples {b̄′[Ii]
d+1} given (b̄d ,a) is essentially approximating the integration

over the transition density τ(b̄d+1 | b̄d ,a). Since the value function and its estimate are both

bounded by Vmax, we can invoke Hoeffding bound here to obtain the following exponential

probabilistic bound on the difference:

P







∣
∣
∣
∣
∣
EMP

[V ∗MP,d+1(b̄d+1) | b̄d ,a]−
1

C

C

∑
i=1

V ∗MP,d+1(b̄
′[Ii]
d+1)

∣
∣
∣
∣
∣
≤ λ






≥ 1−2exp(−Cλ 2/2V 2

max).

(71)

(2) Inductive Function Estimation Error: The second term is bounded by the inductive hy-

pothesis, since each i-th absolute difference of the Q-function and its estimate at step d + 1,

and furthermore the value function and its estimate at step d +1, are all bounded by βd+1.

By applying similar logic of ensuring that every particle belief state node and action pairs can

satisfy the concentration inequality, we note that the particle belief MDP approximation concentra-

tion bound is satisfied with probability at least 1−|A|(|A|C)D exp(−Cλ 2/2V 2
max). Thus, since (A)

is 0 and (B) is bounded by λ +βd+1, the Q-value estimation error with respect to MP is bounded as

desired:

|Q∗MP,d
(b̄d ,a)− Q̂∗ω,d(b̄d ,a)| ≤ γ(λ +βd+1) = βd . (72)

Combining both concentration bounds: In order to enable simultaneous satisfaction of the

two concentration inequalities, we bound the worst case union probability by using the definition of

t̃ and combining the upper bounding terms together:

5|A|(4|A|C)D exp(−C · t̃2)+|A|(|A|C)D exp(−Cλ 2/2V 2
max) (73)

≤ 5|A|(4|A|C)D exp(−C · t̃2)+ |A|(|A|C)D exp(−C · t̃2) (74)

≤ 5|A|(4|A|C)D exp(−C · t̃2)+ |A|(4|A|C)D exp(−C · t̃2) (75)

= 6|A|(4|A|C)D exp(−C · t̃2). (76)

Therefore, we conclude that the Q-value concentration inequalities for both POMDP approximation

error and particle belief approximation error are bounded by αd ,βd at every node, respectively, with

probability at least 1−6|A|(4|A|C)D exp(−C · t̃2).

Appendix D. Proof of Theorem 2 - Sparse Sampling-ω Coupled Optimality

We reiterate the conditions and Theorem 2 below:

(i) S and O are continuous spaces, and the action space has a finite number of elements, |A|<+∞.

(ii) The densitiesZ,T ,b0 have the property that, for any observation sequence {on}d
n=1, the Rényi

divergence of the target distribution Pd and sampling distribution Qd (Eqs. (22) and (23)) is

bounded above by dmax
∞ for all d = 0, . . . ,D−1:

d∞(Pd ||Qd) = ess supx∼Qd wPd/Qd (x)≤ dmax
∞ (77)
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(iii) The reward function R is bounded by a finite constant Rmax, and hence the value function is

bounded by Vmax ≡ Rmax

1−γ .

(iv) We can sample from the generating function G and evaluate the observation density Z .

(v) The POMDP terminates after no more than D < ∞ steps.

(vi) We restrict our analysis to all the beliefs b ∈ B that are realizable from the initial belief b0

through Bayesian updates with action sequences {an} and observation sequences {on}.
Theorem 2 (Sparse Sampling-ω Coupled Optimality). Suppose conditions (i)-(vi) are satisfied.

Then, for any λ > 0 and 0 < δ ≤ 1, choosing particle count constant C that satisfies:

C = max







(
4Vmaxdmax

∞

λ

)2

,
64V 2

max

λ 2

(

D log
24|A|D+1

D V 2
maxD

λ 2
+ log

1

δ

)





, (78)

the Q-function estimates Q̂∗ω,d(b̄d ,a) obtained for all depths d = 0, . . . ,D− 1, realized beliefs or

histories bd encountered in the Sparse Sampling-ω tree, and actions a are jointly near-optimal with

respect to Q∗P,d and Q∗MP,d
with probability at least 1−δ :

|Q∗P,d(bd ,a)− Q̂∗ω,d(b̄d ,a)| ≤
λ

1− γ
, (79)

|Q∗MP,d
(b̄d ,a)− Q̂∗ω,d(b̄d ,a)| ≤

λ

1− γ
. (80)

Proof. This proof has two parts. First, we show that the choice of C is valid given the assumptions

in Lemma 2. Then, we use Lemmas 2 and 3A to prove the Q-value estimate claim.

The conditions necessary for C from Lemma 2 are the following:

tmax(λ ,C) =
λ

4Vmaxdmax
∞

− 1√
C

> 0 (81)

δ ≥ 6|A|(4|A|C)D exp(−C · t̃2) (82)

t̃max(λ ,C)≡max
{

tmax(λ ,C),λ/4
√

2Vmax

}

(83)

Note that the constraint on tmax implies that the following must be true:

λ

4Vmaxdmax
∞

− 1√
C

> 0 =⇒C >

(
4Vmaxdmax

∞

λ

)2

, (84)

which gives us the first option of C in the maximum.

For the next option of C, we show that substituting the formula yields condition Eq. (82). We

note that due to the definition of t̃max, the following is true:

t̃max(λ ,C)≥ λ/4
√

2Vmax. (85)

Let us denote T ≡ (λ/4
√

2Vmax)
2 for convenience. Then, since T is upper-bounded by t̃max,

6|A|(4|A|C)D exp(−C · t̃2)≤ 6|A|(4|A|C)D exp(−C ·T ) (86)

≤ (24|A|D+1
D C)D exp(−C ·T ) (87)
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Consequently, if we show that Eq. (87) is bounded by δ , then we automatically show that the original

quantity is bounded by δ as well. By defining X ≡ 24|A|D+1
D , we want to show that this simplified

formula is bounded above by δ :

δ ≥ (X ·C)D exp(−C ·T ). (88)

We will show that our second option of C satisfies the following, where the simplified formula

equals:

64V 2
max

λ 2

(

D log
24|A|D+1

D V 2
maxD

λ 2
+ log

1

δ

)

=⇒ 2

T

(

D log
XD

T
+ log

1

δ

)

(89)

Substituting in the second option of C:

(X ·C)D exp(−C ·T ) = δ 2

(
2XD

T
log XD

T
+ 2X

T
log 1

δ

)D

(
XD
T

)2D
(90)

= δ 2

(

XD
T

log
(

XD
T

)2

+ XD
T

log
(

1
δ

)2/D
)D

(
XD
T

)2D
(91)

= δ 2

(

log
(

XD

T δ 1/D

)2
)D

(
XD
T

)D
= δ







log
(

XD

T δ 1/D

)2

(
XD

T δ 1/D

)







D

(92)

Note that the function f (x) = logx2/x is less than 1 for x > 0 (in fact, the maximum value of f (x)
is exactly 2/e, attained by setting x = e). This means that the quantity inside the parentheses is less

than 1, which lets us obtain our desired result

(X ·C)D exp(−C ·T )≤ δ . (93)

Therefore, each of our option of C satisfies the respective conditions, and taking the maximum of

the options will yield valid results for both inequality constraints:

C = max







(
4Vmaxdmax

∞

λ

)2

,
64V 2

max

λ 2

(

D log
24|A|D+1

D V 2
maxD

λ 2
+ log

1

δ

)





. (94)

This concludes the first part of the proof; we have shown that C is a valid choice. Next, we prove

the value bounds.

With our choice of C, from Lemma 2, the error in estimating Q∗ with our Sparse Sampling-ω

policy is bounded by αd for all d,a with probability at least 1− δ . Since αd ≤ α0, the following

holds for all d = 0, . . . ,D−1 with probability at least 1−δ through Lemmas 1 and 2:

|Q∗P,d(bd ,a)− Q̂∗d(b̄d ,a)| ≤ α0 ≤
D−1

∑
d=0

γdλ ≤ λ

1− γ
, (95)

|Q∗MP,d
(b̄d ,a)− Q̂∗d(b̄d ,a)| ≤ β0 ≤

D

∑
d=1

γdλ ≤ λ

1− γ
. (96)
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Appendix E. Proof of Theorem 4 - Particle Belief MDP Approximate Policy

Convergence

Before we prove Theorem 4, we first prove the following lemma, which is an adaptation of Kearns

et al. (2002) and Singh and Yee (1994) for belief states b.

Lemma 3A. Consider a POMDP with a finite horizon of D steps and policy π(b)= argmaxa Q̂(b,a)
where Q̂ is a stochastic value function approximator with errors bounded by a positive constant ξ :

|Q∗(b,a)− Q̂(b,a)| ≤ ξ . Let V π(b0) denote the value of executing π starting at belief b0 with an

exact Bayesian belief update, bt+1 = btao, between each call to the policy. Then

V ∗(b0)−V π(b0)≤
2ξ

1− γ
. (97)

Proof. First, note that if an action is chosen by π , it must appear better than π∗ according to Q̂, i.e.

Q̂(b,π(b))≥ Q̂(b,π∗(b)). The worst case is when Q̂(b,π(b)) = Q∗(b,π(b))+ξ and Q̂(b,π∗(b)) =
Q∗(b,π∗(b))−ξ . Thus, for any t, we have the bound

Q∗
(
bt ,π

∗(bt)
)
−E[Q∗

(
bt ,π(bt)

)
]≤ 2ξ . (98)

Next, we prove that V ∗(bt)−V π(bt) ≤ ∑
D−1
d=t γd−t2ξ using induction from t = D− 1 to t = 0. We

verify the base case, t = D−1, by observing that both Qπ(bD−1,π(bD−1)) and Q∗(bD−1,π(bD−1))
are equal to R(bD−1,π(bD−1)) since no further reward can be accumulated and using Eq. (98):

V ∗(bD−1)−V π(bD−1) = Q∗(bD−1,π
∗(bD−1))−E[Qπ(bD−1,π(bD−1))] (99)

= Q∗(bD−1,π
∗(bD−1))−E[Q∗(bD−1,π(bD−1))] (100)

≤ 2ξ . (101)

The inductive step is verified by subtracting and adding E[Q∗
(
b,π(b)

)
], using the bound in Eq. (98),

and applying the inductive hypothesis:

V ∗(bt)−V π(bt) = Q∗
(
b,π∗(b)

)
−E[Qπ(b,π(b))] (102)

= Q∗
(
b,π∗(b)

)
−E[Q∗

(
b,π(b)

)
]

︸ ︷︷ ︸

Bounded by Eq. (98)

+E[Q∗
(
b,π(b)

)
]−E[Qπ(b,π(b))] (103)

≤ 2ξ +E[Q∗
(
b,π(b)

)
]−E[Qπ(b,π(b))] (104)

= 2ξ +E[R
(
b,π(b)

)
]+ γ E[V ∗(bt+1))]−E[R(b,π(b))]− γ E[V π(bt+1))] (105)

= 2ξ + γ E[V ∗(bt+1))−V π(bt+1))] (106)

= 2ξ + γ
D−1

∑
d=t+1

γd−t2ξ =
D−1

∑
d=t

γd−t2ξ . (107)

Now, by applying the result above to t = 0, we prove the lemma:

V ∗(b0)−V π(b0)≤
D−1

∑
d=0

γd2ξ ≤ 2ξ

1− γ
.
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Theorem 4 (Particle Belief MDP Approximate Policy Convergence). Suppose a near-optimal MDP

planning algorithm A is used to plan with particle belief MDP MP repeatedly in a closed loop with

POMDP environment P and an exact Bayesian belief updater to process observations from the

environment. Further assume that regularity conditions (i)-(vi) are met for MP and that A can

approximate the Q-values of MP with arbitrary precision εA with probability at least 1−δA. Then,

for any ε > 0, we can choose C such that the value obtained by planning with A in MP is within ε

of the optimal POMDP value function at b0:

V ∗P (b0)−VA
MP

(b0)≤ ε. (108)

Proof. First, we choose λ and δMP
for the particle belief MDP approximation to be the following,

with εMP
= 2λ

1−γ as per the definition in the proof of Theorem 3:

λ =
(1− γ)2

8
ε− 1− γ

2
εA =⇒ εMP

=
1− γ

4
ε− εA, (109)

δMP
=

εMP
+ εA

VmaxD(1− γ)
−δA. (110)

In this context, we mathematically mean a near-optimal MDP planning algorithm A to be one that

can obtain arbitrarily small values of εA,δA that would satisfy λ > 0 and 0 < δMP
≤ 1. Then, we

can choose C through Theorem 3 such that we can invoke Corollary 1 to obtain Q-value estimation

accuracy ξ = εMP
+ εA with worst case probability δ ′ = δMP

+δA. Consequently, with our choice

of λ and δMP
above, ξ and δ ′ are equal to the following:

ξ =
1− γ

4
ε, (111)

δ ′ =
ξ

VmaxD(1− γ)
. (112)

During policy execution, we create a new independent tree and choose an action based on the

estimated Q-values. This means with algorithm A equipped with particle belief states, there is at

most δ ′ probability that |Q∗P,0(b0,a)− Q̂A
MP,0

(b̄0,a)|> ξ at each of the D steps of the POMDP.

Thus, with probability at least 1−Dδ ′, we execute a policy that meets the assumptions of

Lemma 3A with ξ , and hence by Lemma 3A, the difference between the optimal value and the

average accumulated reward for this case is at most
2ξ

1−γ . In the other case, which occurs with at

most probability Dδ ′, an arbitrarily bad policy can be executed, resulting in an accumulated reward

difference of up to 2Vmax from the optimal policy. Combining these two cases, we have

V ∗P (b0)−VA
MP

(b0)≤ (1−Dδ ′)
2ξ

1− γ
+Dδ ′(2Vmax) (113)

≤ 2ξ

1− γ
+Dδ ′(2Vmax) (114)

=
2ξ

1− γ
+

2ξ

1− γ
(115)

= ε . (116)
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Appendix F. Experiment Details

cUCB βUCB ka αa ko αo mmin δ C Depth

Laser Tag (D, D, D)

Sparse-PFT 15 0.22 - - 15 - - - 96 37

PFT-DPW 25 0.09 - - 5 0.33 - - 25 48

POMCPOW 26 - - - 4 0.03 - - - 50

AdaOPS - - - - - - 30 0.1 - 90

POMCP 26 - - - - - - - - 50

QMDP - - - - - - - - - -

Light Dark (D, D, C)

Sparse-PFT 95 0.39 - - 24 - - - 134 28

PFT-DPW 93 0.30 - - 13 0.08 - - 33 20

POMCPOW 90 - - - 5 0.07 - - - 20

AdaOPS - - - - - - 30 0.1 - 90

POMCP 83 - - - - - - - - 20

QMDP - - - - - - - - - -

Sub Hunt (D, D, C)

Sparse-PFT 20 0.25 - - 27 - - - 23 20

PFT-DPW 85 0.08 - - 10 0.08 - - 79 20

POMCPOW 17 - - - 6 0.01 - - - 50

AdaOPS - - - - - - 30 0.1 - 90

POMCP 17 - - - - - - - - 84

QMDP - - - - - - - - - -

VDP Tag (C, C, C)

Sparse-PFT 16 0.12 28 - 28 - - - 385 33

PFT-DPW 23 0.25 22 0.32 21 0.04 - - 132 44

POMCPOW 110 - 30 0.03 5 0.01 - - - 10

VDP TagD (C, D, C)

Sparse-PFT 76 0.08 - - 25 - - - 444 46

PFT-DPW 10 0.18 - - 9 0.11 - - 330 22

POMCPOW 31 - - - 5 0.05 - - - 10

AdaOPS - - - - - - 40 0.25 - 90

Table 2: Summary of hyperparameters used in experiments.

For UCT methods, we vary cUCB, the UCB exploration parameter, and βUCB, the polynomial UCB

factor. ka and αa are action progressive widening parameters, where new actions are added if widen-

ing criterion |C(h)| ≤ kaN(h)αa is met. Similarly, ko and αo are observation progressive widening

parameters, where new actions are added if widening criterion |C(ha)| ≤ koN(ha)αo is met. Sparse-

PFT uses αa = αo = 0. C is the number of particles constituting internal tree beliefs for PFT

1632



OPTIMALITY GUARANTEES FOR PARTICLE BELIEF APPROXIMATION OF POMDPS

methods. mmin is the minimum number of particles required to approximate a belief for AdaOPS.

Finally, δ is the maximum distance distance between beliefs resulting from observation branches

required to merge the branches for AdaOPS.

V̂ L0 U0

Laser Tag (D, D, D)

Sparse-PFT QMDP PO-Rollout - -

PFT-DPW QMDP PO-Rollout - -

POMCPOW FO-Value - -

AdaOPS - Random Rollout QMDP

POMCP Random Rollout - -

QMDP - - -

Light Dark (D, D, C)

Sparse-PFT QMDP PO-Rollout - -

PFT-DPW QMDP PO-Rollout - -

POMCPOW FO-Value - -

AdaOPS - Random Rollout QMDP

POMCP Random Rollout - -

QMDP - - -

Sub Hunt (D, D, C)

Sparse-PFT QMDP PO-Rollout - -

PFT-DPW QMDP PO-Rollout - -

POMCPOW FO-Value - -

AdaOPS - Random Rollout QMDP

POMCP Random Rollout - -

QMDP - - -

VDP Tag (C, C, C)

Sparse-PFT Random Rollout - -

PFT-DPW Random Rollout - -

POMCPOW Random Rollout - -

VDP TagD (C, D, C)

Sparse-PFT Random Rollout - -

PFT-DPW Random Rollout - -

POMCPOW Random Rollout - -

AdaOPS - Random Rollout 106

POMCP Random Rollout - -

Table 3: Summary of leaf node value estimators used in experiments.

QMDP PO-Rollout corresponds to sampling a “true state” from a leaf node particle belief and

simulating the state/belief dynamics with a particle filter as a belief updater and QMDP as a policy.
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The returns following the trajectory of the sampled “true state” are taken as a value estimate for the

leaf node. FO-Value (”Fully Observable Value”) corresponds to using the MDP value for the state

representation of a particle. QMDP corresponds to using the belief value estimate given by a QMDP

policy. Random Rollout corresponds to sampling a state from a particle belief and simulating it

forward using a random policy. The returns of this simulation are used as the initial leaf node value

estimate. A constant number (e.g. 106) indicates a belief-independent static initial value estimate.

UCT solvers only require a single value estimate (V̂ ), whereas AdaOPS requires lower and upper

bounds on belief value, L0 and U0 respectively.
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