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Absitract—Optimization-based safety filters, such as
control barrier function (CBF) based quadratic pro-
grams (QPs), have demonsirated success in controlling
autonomous systems to achieve complex goals. These
CBF-QPs can be shown to be continuous, but are generally
not smooth, let alone continuously differentiable. In this
letter, we present a general characterization of smooth
safety filters — smooth controllers that guarantee safety
in a minimally invasive fashion — based on the Implicit
Function Theorem. This characterization leads to families
of smooth universal formulas for safety-critical controllers
that quantify the conservatism of the resulting safety filter,
the utility of which is demonstrated through illustrative
examples.

Index Terms—Constrained control, Lyapunov methods,
nonlinear systems, safety-critical control.

|. INTRODUCTION

ONTROL barrier functions (CBFs) [1] have proven to be
C a powerful tool for designing controllers enforcing safety
on nonlinear systems. The properties of CBFs naturally lead
to their use as safety filters for nominal controllers that may
not have been designed a priori to ensure safety. Most often,
such safety filters are instantiated via optimization problems —
typically a quadratic program (QP) — to minimize the deviation
from a nominal controller while satisfying Lyapunov-like
conditions that ensure forward invariance of a designated
safe set [2], [3], [4]. Under certain regularity conditions, these
optimization-based safety filters are locally Lipschitz functions
of the system state [5], [6], allowing one to leverage set-
theoretic tools [7] to conclude forward invariance of safe
sets. Although such controllers are pointwise optimal, they are
typically not smooth even if the problem data is.

The lack of smoothness exhibited by optimization-based
safety filters has not been overly detrimental to the
development of safety-critical controllers to date; however,
more recent developments in the literature motivate the
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consideration of smooth safety filters. For example, [8]
recently proposed a barrier-backstepping methodology that
enables the systematic construction of CBFs for systems
in strict-feedback form. As in Lyapunov backstepping [9],
such an approach requires differentiating through virtual CBF
controllers at intermediate layers to construct a composite CBF
for the overall system. Similar ideas are leveraged in [10], [11]
to construct CBFs for robotic systems based on reduced-order
models — an approach successfully used to safely control
complex robotic systems, e.g., walking robots and drones.
Ultimately, smoothness plays a crucial role in applying CBFs
to more complex systems.

Given the similarities between control Lyapunov functions
(CLFs) and CBFs, one may wonder if it is possible to
adapt smooth universal formulas for CLFs [12] to CBFs.
The answer is affirmative — with some slight modifications.
Sontag’s Universal Formula for stabilization [12] can be
applied to safety as noted in [13], [14], [15], [16]. Despite
this, Sontag’s formula is scarcely used as a safety filter since,
in its most common form, such a controller tends to be
overly invasive, overriding inputs from the nominal controller
even when not necessary to ensure safety. Alternative smooth
universal formulas have been proposed in [17] based on
computing weighted centroids of the set of all control values
satisfying CBF and/or CLF conditions using the probability
density function of a Gaussian distribution. In a different
approach, the authors of [18] leverage Sontag’s formula to
combine stabilization and safety objectives. Yet questions
remain around the connections between smoothness and safety
filters.

The main objective of this letter is to provide a general
characterization of smooth safety filters — smooth controllers
that guarantee safety in a minimally invasive fashion. Our
characterization is motivated by the original development of
Sontag’s formula in [12]. Sontag’s formula is derived by
computing the roots of an algebraic equation parameterized
by the Lie derivatives of a CLF/CBF. When certain regu-
larity conditions are met, the smoothness of such roots as
a function of the Lie derivatives follows directly from the
Implicit Function Theorem. In this letter, we seek a deeper
understanding of the properties of this equation. In particular:
What properties should this equation satisfy so that one of its
solutions produces a smooth minimally invasive controller that
guarantees safety? We answer this question by constructing an
ordinary differential equation (ODE) from a given algebraic
one such that the trajectories of this ODE coincide with the
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solutions of the algebraic equation. Leveraging invariance- —(a, b, Ma, b)) £ 0, )

like tools, we introduce sufficient conditions for this ODE ap

so that its trajectories produce a smooth safety filter. This
characterization leads to various smooth universal formulas for
safety-critical control that allow one to assess the conservatism
of the resulting safety filter, the utilities of which we illustrate
through their application to safety-critical control based on
reduced order models [10], [11].

Il. PRELIMINARIES AND PROBLEM FORMULATION
Consider the nonlinear control affine system:

x = f(x) + g(x)u, (1)

where x € R” is the system state, u € R™ is the control
input, f : R" — R” is the drift vector field, and g : R” —
R">m captures the control directions. Throughout this letter,
we assume that f and g are smooth! functions of the state.
Applying a smooth feedback controller k : R" — R™ to (1)
produces the smooth closed-loop system:

x =f(x) + g(x)kx), @)

which, for each initial condition xo € R", generates a unique
smooth solution x : I(xg) — R” satisfying (2) on some
maximal interval of existence I(xp) € Rp.

A. CLFs and Sontag’s Universal Formula

Before discussing smooth safety filters, we recount the main
ideas behind CLFs as presented in [12]. Recall that a smooth,
proper, positive definite function V : R" — Rso is a CLF
for (1) if for all x € R\ {0}

inf (VV(®) -f(x) + YV - g(x) u} <0.
LV(x) LgV(x)

The existence of a CLF implies that for each x € R”" there
exists a u € R™ that enforces V to decrease, and allows for
constructing a feedback controller k : R” — R™ that renders
the origin asymptotically stable by ensuring that:

Vx € R"\ {0} : LiV(x) 4 Ly V(X)k(X) < 0.

&)

In this letter, we are concerned with designing smooth feed-
back controllers satisfying a general class of affine inequalities,
such as the one in (3). In [12] Sontag provides one example of
such a controller, now known as Sontag’s Universal Formula
for stabilization, which is given by:

k@) = Aetr (LVE). ILV®IP) LV, @)
b=0

0
AcLr(@, D) =1 _, . /Ziqat)b b0 &)
— 35 b#0

where g : R — R is smooth and satisfies ¢(0) = 0 and g(b) >
0 for all b # 0. In [12], the smoothness of Sontag’s formula (5)
is proven using the Implicit Function Theorem [19, Th. 11.2].
Specifically, the following result [19, Th. 11.1] is useful for

establishing smoothness of (5).
Theorem 1 [19]: Let (a,b,p) — F(a,b,p) be a smooth
function. If a continuous function A : & — R satisfies:
F(a,b, \(a,b)) =0, (6)

lBy smooth, we mean differentiable as many times as necessary.

for all (a, b) € S, then A is smooth for all (a, b) € S and its
derivative is given by:

2. (a,b) 1 $E (@, b, M(a, b))
a T T T b - ®
5. b) 3 (a, b, M(a,b)) | 35 (@. b, M(a, b))

To apply this theorem and show smoothness of the function
AcLF in (5), one considers the smooth function:

F(a, b, p) = bp* + 2ap — q(b), )

noting that Acpr is continuous and satisfies (6) and (7) for
each (a,b) in Scip = {(@.b) e RxR>p:a <0or b > 0}.
In addition to being smooth, one can also verify that the
controller (4) constructed from Acpp satisfies inequality (3).
Indeed, this is a consequence of picking an appropriate
function for F, a point which we will expand on later.

B. CBFs and Safety Filters

The main objective of this letter is to leverage Theorem 1
for constructing smooth controllers that render the resulting
closed-loop system safe, a property that requires system
trajectories to remain within a desirable subset of the state
space. Formally, we say that (2) is safe on a set C C R" if C
is forward invariant [7]. By considering sets of the form:

C={xelR": hx) =0}, (10)

where i : R" — R is a smooth function, the existence of a safe
feedback controller can be characterized using the concept of
a control barrier function (CBF) [1].

Definition 1: A smooth function h : R” — R defining a
set C C R” as in (10) is said to be a control barrier function
(CBF) for (1) on C if zero is a regular value of & and there
exists a smooth? & € K¢, such that for all x € R"

sup { VA(x) - f(x) + VA(x) - g(®) u} > —ar(h(x)).
R T I Lgh(x)

Similar to CLFs, any feedback controller k : R* — R™
satisfying the inequality Lth(x) + Lh(X)k(x) > —a(h(x))
ensures that & remains positive along closed-loop trajectories,
and therefore renders C forward invariant [1]. Perhaps the
greatest utility of CBFs is their ability to act as a safety
filter for a nominal feedback controller kg : R® — R™. A
safety filter is a controller that modifies kqy — preferably, in a
minimally invasive fashion — so that the resulting closed-loop
system is safe. The most common examples of such safety
filters are instantiated via the QP:

3l — ka)11”

Leh(x) + Lgh(0u = —a(h(x)), (11)

whose solution modifies kq in the Lyh' direction:
k(x) = kq(x) + A(@(x), b(x)Lh(x) ",

with a scalar function A:R x R — R, where:

k(x) = arg min
ucim
subject to

(12)

2A continuous function @ : B — R is an extended class Koo function
(o e !cgo) if @(0) =0, « is increasing, and limy— Lo @(r) = %o00.
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a(x) = Lth(x) + Lgh(x)ka(x) + a(h(x))

b(x) = [|Lgh(x)]|*. (13)

For the QP in (11), A is the Lagrange multiplier associated
with the constraint and is given by:

0 b=0

ReLU(—a/b) b > 0, 2

Ala, b) = Age(a, b) = =
where ReLU(y) = max{0, y}. This QP-based controller has
the advantage of being pointwise optimal, but is not smooth
even if the problem data itself is smooth. Before proceeding,
we make precise the notion of a smooth safety filter.

Definition 2: Given a CBF h : R* — R and nominal
controller kg : R" — R™ for (1), a controller k : R" — R™ of
the form (12) is said to be a smooth safety filter for (1) with
respect to C if k is smooth and for all x € R"

a(x) + b(x)A(a(x), b(x)) = 0. (15)

Leh(x)+Lgh(x)k(x)+a (h(x))

In the following section, we present our characterization of
smooth safety filters.

I1l. TOWARDS SMOOTH SAFETY FILTERS

A Sontag-like safety filter can also be derived using
Theorem 1. Here, we use the same function as in (9), taking
the other root to the quadratic function:

0 b=0
)LS (a, b) = —a+ ""az+q(b)b b 0 (16)
— - RE

One can verify Ag is continuous and satisfies (6) and (7) on

a7

implying Ag is smooth on (17) by Theorem 1 and thus
produces a smooth safety filter via (12) since a+bAs(a, b) > 0
for all (a, b) € S. Nevertheless, the resulting safety filter is
overly conservative as illustrated by the following example.

Example 1: Consider a single integrator X = u equipped
with the nominal controller ky(x) = —x, which stabilizes the
system to the origin. Our task is to additionally avoid a circular
obstacle of radius r, € R.q located at x, € R2, which can
be accomplished by designing a safety filter for kq. This is
achieved using A(x) = ||x — 3::0||2 = rﬁ as a CBF to construct
the QP safety filter in (11) and the Sontag safety filter defined
by (12) where A = Ag as in (16) with g(b) = ob, 0 € R.q.
The trajectory of the single integrator under each safety filter
is provided in Fig. 2(a) for different o'. Decreasing o decreases
the conservatism of the controller, but it is still overly invasive
even for arbitrarily small o.

Motivated by the previous example, we set out to develop
a general class of smooth safety filters that are less invasive
by analyzing how the choice of F impacts the behavior of
the resulting safety filter. Towards this development, we aim
to answer the following: What properties should a function
(a,b,p) — F(a, b, p) satisfy so that one of its roots produces
a smooth safety filter, and how may this function be selected
such that the resulting safety filter is minimally invasive?

S={@ab)eRxRsp:a>00rb=>0}

Implicit Function

F(a,b,A(a,b)) =0 9 9E (a,b, Ma, b))
S (@b, A(@b) £0 )

Smooth Safety Filter

Corresponding ODE

a+bA(a,b) > Oi Safe ODE

solution
<+—— Aa,b)

x = f(x) + g(x)u
u = ka(x) + Aa(x),b(x) ) Leh(x) !
"x

i
Robust ™

\w\ filter

Minimally invasive
smooth safety flter

Fig 1. llustration of methodology for generating smooth safety filters.

A. Minimally Invasive Smooth Safely Filters

To answer the question posed in the previous subsection,
let (a, b, p) — F(a, b, p) be a smooth function and suppose
there exists a continuous function A : & — R satisfying the
conditions of Theorem 1, which implies that A is smooth on
S. We are also interested in ensuring that:

a—+ bi(a, b) = 0, (18)
for all (a, b) € S so that A may be used to construct a smooth
safety filter satisfying (15). Note that F in (9) is constructed
such that % = 2(a + bis(a, b)) > 0 directly implies the
satisfaction of (18). However, we demonstrate that this is not
the only path towards certifying that one of F’s roots produces
a smooth safety filter. In what follows, we introduce more
general sufficient conditions on F so that one of its roots
produces a smooth safety filter.

Our starting point is one of the direct consequences of
Theorem 1 — the function A must satisfy:

aF
a)L _(aa b! l(a's b))
7@ b) = —gi—— ., (19)
'33(“7 b! l'(ﬂ's b))
for all (a, b) € S, implying it is a solution to the ODE:
aF
d| a,b,
d __3@5p) (20)

da 3, b,p)’

from an appropriate initial condition.? For a fixed b = b* > 0,
the trajectory a > A(a, b*) defines a curve {(a,b,p) € S x
R : p = A(a,b), b = b*}. As b is varied, this curve defines
an entire surface {(a,b,p) € S x R : p = A(a, b)}, thereby
recovering (a, b) +— A(a, b) as a function of both a and b
(cf. Fig. 1). Although working with an ODE is generally more
challenging than working with an algebraic equation, this new
perspective allows us to reformulate the goal of satisfying

31n (20), one may think of p as the state, a as “time”, and b as a parameter.
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inequality (18) as a set invariance problem. To do this, we
define, for each b = 0, the set-valued map4

Hp(a) ={p R : hp(p,a) =a+ bp > 0}.

Ultimately, we would like to ensure that for each fixed b =
b* > 0, the solution to (19) satisfies A(a, b*) € Hp=(a) for all
(a, b*) € S so that we can conclude that A satisfies (18) for
all (a, b) € S. The following proposition constitutes the first
result of this letter, establishing conditions on F such that the
flow of (20) satisfies inequality (18).

Proposition 1: Let F : R? — R be a smooth function that
defines the dynamics in (20). Suppose that for all b > 0:

oF oF

Bp p=— % da p=— %
Then, for all b > 0, the set H}, is invariant for (20).
Proof: Note that the dynamics (20) may not be well-

defined for a §iven initial condition pp(ap) € Hp(aop) since
we may have £ (ao, b, po) = 0. Nevertheless, there exists no

2D

(22)

3
solution® from ;uch initial conditions, and the empty solution
is contained in . For all other initial conditions in Hp(ap),
the dynamics are well-defined and thus generate a unique
smooth solution A(-, b) : I(po(ap)) — R defined on a maximal
interval of existence I(po(ap)) C R. We now show that when
b > 0, H,, is invariant with respect to each of these solutions
in the sense that A(a, b) € Hj(a) for all a € I(po(ap)). To this
end, our proof leverages Nagumo’s Theorem [7, Ch. 4]. We
first verify that all points along the boundary of the set Hj(a)
are regular points of A in (21), which follows directly from
%ﬁ(p, a) = b # 0. Then, H,, is invariant with respect to each
A(-, b) provided that:

dhy _dhy  Bhydp _ [BF —1aF 0

da da dpda [8p] da
whenever hp(a,p) = 0, or, equivalently, when p = —g. It
follows from (22) that the above holds so long as -33% £ 0,
which must be true for the solution to exist, and, by Nagumo’s
Theorem, implies the invariance of Hp. |

Proposition 1 provides a simple condition (22), for which
one can use to help assess if an implicit function A to a given
smooth function F will satisfy inequality (18). The key idea is
that with Proposition 1, if A satisfies (18) for some (a*, b*) ¢
&, it will satisfy (18) for all a in its interval of existence for
the same b = b*. The following lemma establishes this idea
formally and additional conditions on A so that it satisfies (18)
for all (a,b) € S.

Lemma 1: Let F : R? — R be a smooth function satisfy-
ing (22) for all b > 0, and suppose there exists a continuous
function A : & — R satisfying (6) and (7) for all (a,b) € S
as in (17). Then, if A(0,b) > 0 for all b > 0, A is smooth on
&S and satisfies inequality (18) for all (a, b) € S.

Proof: The proof is divided into two cases: i) b > 0 and ii)
b = 0. For each b > 0, consider an initial condition of (20),
with ap = 0, satisfying pg = A(0,b) = 0. Since F and A
satisfy (6) and (7), the conditions of Theorem 1 hold, which
implies A is smooth on &. Moreover, A(a, b) is the unique

40ne may think of (21) as a collection of “time-varying™ safe sets (recall

that @ is our “time™ variable) for the dynamics in (19).
SWe consider solutions in the classical sense.

solution to the ODE (20) by definition since, by Theorem 1, it
must satisfy (8) for all (a, b) € S. Thus, the maximal interval
of existence of this solution must be the domain of A, which
is equal to R when b > 0. Moreover, since p{b) € Hp(0) by
definition and F satisfies (22), the conditions of Proposition 1
hold, which implies A(a, b) € Hp(a) for all a € R for each
b > 0. When b = 0 any value of A(a, b) satisfies A(a,b) €
Hp(a) for all a > 0. Thus, A(a, b) € Hyp(a) for all (a, b) € S,
which implies A satisfies (18), as desired. |

Lemma 1 suggests that with condition (22) from
Proposition 1, F only needs to be constructed so that A is
positive when a = 0 for it to generate a smooth safety filter.
Note that the above result does not guarantee the existence of
a continuous A : § — R satisfying (6) and (7), but states that,
if such a function exists, then it is smooth on & and satisfies
inequality (19). We will provide examples of F satisfying
these conditions shortly. First, we combine Proposition 1 and
Lemma 1 to establish the main result of this letter, which
formalizes the construction of smooth safety filters.

Theorem 2: Consider system (1) with a smooth nominal
controller kg : R" — R™ and let h : R" — R be a CBF
for (1) on a set C C R” as in (10). Let & : & — R satisfy the
conditions of Lemma 1 for some smooth function F : R? — R.
Then, the controller:

ke(x) = ka(x) + A(@(x), b(x))Lh(x) ",

where a : R" — R and b : R" — R are as in (13), is a smooth
safety filter for (1).
Proof: The proof follows directly from Lemma 1 since A is
smooth and satisfies (18), implying (23) satisfies (15). |
Example 2: We use our results to construct the functions:

Fi(a,b,p) = bp* + ap — $q(b), (24a)
Fa(a,b,p) = €% — e~ 35 — 1, (24b)

(23)

where ¢ is as in (9) and o € R.¢. These functions satisfy (22)
and the conditions of Lemma 1 where:

Fi(0,b,p) = bp* — }q(b) =0 == A(0,b) = £,/ 22,
F2(0,b,p) = €6 —2=0 = A(0,b)=0 log(2).
Hence, for each F there exists a continuous A satisfying
A(0,b) > 0 for all b > 0 (recall that g(b) > 0 for all b > 0).

After verifying these conditions, we proceed to compute the
implicit functions satisfying (6):

0 b=0
M@ b) = 3As@.b) =1 _.\ /7T (25a)
—5——b=>0
0 b=0
Maa,b) =1 log(l +ﬂ%) b0, (25b)

which are continuous on &, and therefore smooth on S as one
can verify that %%(a, b, A(a, b)) # 0 for all (a, b) € S. These
functions are plotted in Fig. 2(b) for a fixed b. As guaranteed
by Lemma 1, each A satisfies inequality (18). Moreover, when
q(b) = ob both (25a) and (25b) approach Agp in (14) in the
limit as & — 0. Indeed, when b > 0 both (25a) and (25b) are
smooth approximations of the ReLU function, corresponding
to the Squareplus approximation (yielding a “Half-Sontag”
formula) and the Softplus approximation, respectively [20].

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on February 04,2024 at 00:18:04 UTC from IEEE Xplore. Restrictions apply.



IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

4 I I
& N QP
(x;\ Sontag
= 3 M " Half-50
- ‘3«-2 S5 Softplus
= '
] (b
oFD) :

Fig. 2.

I 4 I I

(a) Comparison between the trajectory of a single integrator generated by the QP controller (blue) in (11) and Sontag safety filter (red)

from (16) for Example 1. Each safety filter is implemented from the initial condition xg = ( —4, 3.9) with « = 2. The values of o are varied from 0.2 to
0.001. (b) lNustration of the sets H, (dotted black line) and H$ (dashed black line) from (21) and (26), respectively, for a fixed b. (c-d) Trajectories
of the single integrator under the influence of the smooth safetfy filters from (25a) (c) and (25b) (d). The trajectories are generated with ¢ varying
from 1 to 0.01 for (¢) and from 0.7 to 0.01 for (d). In each plot, more transparent curves correspond to smaller values of .

The functions in (25) are used to construct smooth safety
filters via Theorem 2, and are applied to the scenario from
Example 1, cf. Fig. 2(c-d).

B. Robust Smooth Safety Filters

The results in the previous subsection provide sufficient
conditions under which the solution (a, b) — A(a, b) of (20)
satisfies inequality (18) for all (a,b) € S. Such conditions
require ‘Hp to be invariant for (20), which precludes the
consideration of safety filters that remain in a strict subset
of Hp. For example, even though Sontag’s formula in (16)
satisfies inequality (18) for all (a, b) € S, one can verify that
the F producing this formula (9) does not satisfy (22). This is
because the formula is contained within the set:

Hi@) ={peR:a+1lbp>0}, (26)

for & = 2, cf. Fig. 2(b). The above set satisfies Hj(a) <
Hp(a) for all a < 0 and ¢ > 1. When a > 0, Hy(a) &
Hp(a) for any £ > 1. In this situation, the fact that Sontag’s
formula satisfies inequality (18) relies on the fact that it is
always positive, A(a, b) > 0. Motivated by this observation, in
this subsection we study the invariance of Hj N R>o, noting
that:

e>1 = Hj@ NRso C Hi(a),

for all (a,b) € &. Taking this intersection imposes the
additional requirement that A(a,b) > 0 for all (a,b) € S,
which is not restrictive since negative values of A imply
the resulting controller is pushing in the wrong direction
(i.e., toward the constraint boundary) and is attempting to
violate (18). As illustrated in Fig. 1 and Fig. 2(b), increasing
¢ lifts the boundary of H; off that of H; leading to a more
restricted set of values that A(a,b) may achieve. Although
increasing & imposes a more conservative condition on A, it
adds an additional robustness margin to the resulting safety
filter, which, as demonstrated in Section IV, may be useful in
practice. The following result establishes conditions on F' so
that the flow of (19) satisfies the tightened condition in (26).

Proposition 2: Let F : R? — R be a smooth function that
defines the dynamics in (20). Suppose that for all b > 0:

aF aF aF
e— =b— — =0.
op lp=-% da lp=0

Then, for each b > 0, the set Hj N R is invariant for (20).

Proof: Showing the invariance of H; follows the same
steps as that of Proposition 1 by replacing h; from (21) with

; 27
= - @7

hy(p,a) = a—l—%bp, which defines Hj (a) as its zero superlevel
set. To show that R>¢o = {p € R : p = 0} is invariant, we
define h,(p) := p, which defines R as its zero superlevel
set and satisfies %{} # 0, implying zero is a regular value of
hy. Hence, R is invariant provided that:

aF
% _ d_ — _E(aabyp)
da  da &L, b,p)
evaluates to zero when p = 0, which follows from (27)

provided %% # 0 when p = 0. Using a similar argument to that
in the proof of Proposition 1, we may exclude points satisfying
% = 0 in the above, since such points cannot lie along
any trajectory produced by the dynamics in (20). Thus, since
both Hj and R are invariant for (20) and the intersection
of invariant sets is invariant [7, Prop. 4.13], it follows that
H; N R is invariant for (20), as desired. [ |

Similar to Proposition 1, the above result provides a simple
condition, (27), that one may use to help determine if an
implicit function A satisfying (6) and (7) will satisfy inequal-
ity (18). Note that results similar to Lemma 1 and Theorem 2
can be stated for Proposition 2, the formal statements of which
we omit here in the interest of space. As noted earlier, Sontag’s
F in (9) satisfies the conditions of Proposition 2, with £ = 2.
The following example introduces a safety filter that satisfies
such conditions for any ¢ > 1.

Example 3: The smooth safety filters from Example 2 can
approximate the QP-based safety filter (12) arbitrarily closely.
Generally, this is desirable; however, in certain situations, such
as when handling uncertainty, one may wish to modulate how
conservative the resulting safety filter is by tuning the value
of ¢ (cf. Fig. 1). For this, we introduce:

F(a,b,p) = bp? +eap — 5q(b), (28)
which generalizes both (9) and (24a) so that F satisfies
Proposition 2 for any £ > 1 and produces a robust version of
Sontag’s formula A(a, b) = £Ag(a, b) for any ¢ > 1.

Remark 1: Our approach allows for characterizing safety
filters via £. Although various choices of F may contain tuning
parameters, the behavior of such a safety filter is limited by the
value of £. When ¢ = 1, A(a, b) may approach the boundary
a + bi(a,b) = 0 of constraint (18), whereas when ¢ > 1,
A(a,b) may only approach the boundary of the tightened
constraint a + %bl(a, b) = 0, resulting in a more conservative
but also more robust safety filter (cf. Fig. 2(b)).
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Fig. 3. Ineach plot, the green/purple curves correspond to the trajectory
obtained by tracking the smooth safe velocity generated by the robust
Sontag safety filter for different ¢ with g(b) = 0.1b. Visualizations of
trajectories from (c) are provided in (d) and (e), where the reduced-order
trajectory corresponds to that of a single integrator x = u with u = kp(x)
that the full-order model seeks to track.

V. NUMERICAL EXAMPLES

This section illustrates the practical benefits of smooth
safety filters by applying them to the model-free safety-critical
control paradigm introduced in [10]. Here, we design a safety
filter for a reduced-order model, the safe trajectory of which
is tracked by the full-order dynamics in a model-free fashion.
We consider the same setting as in [10, Ex. 2], which involves
designing a controller for a planar Segway with configuration
(x,p) € R2, where x is the position and ¢ the pitch angle,
with the objective of driving forward at a desired velocity X4
and stopping before colliding with a wall located at xpax. This
leads to the safety constraint /(x) = Xmax — X, Which is used
as a CBF for a one-dimensional single integrator to construct
a safety filter kg : R — R that produces a safe velocity for the
Segway. On the full-order dynamics, this velocity is tracked
by the PD controller:

k(x) = Kp(x — ko(x)) + Ko + K0,

that also attempts to keep the Segway upright, where x =
(x, @, &, ¢) € R* is the state and Kp, Ky, K; € R are gains.
Implementation of this controller does not require knowledge
of the full-order dynamics, which may be uncertain or difficult
to compute, and allows for enforcing input-to-state safety [13]
of the closed-loop system [10, Prop. 1].

We now compare the response of the Segway when the
safe velocity is generated nonsmoothly by a QP-based safety
filter, used in [10], and smoothly by the robust Sontag safety
filter from (28) for different values of £. We begin by using
the same parameters for the controller as in [10, Ex. 2], the
results of which are shown in Fig. 3(a). Here, both controllers
safely track the reference velocity, and the response of the
smooth controller approaches that of the QP controller as
e — 1. Although this approach does not directly rely on
model knowledge, it relies on tuning the gains of the tracking
controller to achieve safety. In general, safety can be achieved
by increasing the proportional gain K to track the reference
velocity more aggressively. When increasing K, too much,
however, we observe that the controller attempting to track
a non-differentiable reference signal causes instabilities and
safety violation.® In contrast, the same controller attempting

6Note that the results in [10] rely on differentiability of ko.

to track a smooth reference velocity is more oscillatory, but
maintains safety. On the other extreme, taking K, too low (see
Fig. 3(c)) results in safety violation for the QP controller and
smooth controller with £ = 1, whereas controllers with ¢ > 1
maintain safety due to their increased robustness.

V. CONCLUSION

We presented a general characterization of smooth safety
filters based on the Implicit Function Theorem, leading to
smooth universal formulas for safety-critical control that
enable quantifying the conservatism of the resulting safety
filter. The practical benefits of such smooth safety filters
were showcased through their application to safety-critical
control with reduced-order models [10]. Future efforts will
focus on extending our approach to multiple safety constraints
and showcasing the benefits of smooth safety filters on
hardware.
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