« IEEE

IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

3615

= CSS

Composing Control Barrier Functions for
Complex Safety Specifications

Tamas G. Molnar™, Member, IEEE, and Aaron D. Ames

Abstract—The increasing complexity of control systems
necessitates control laws that guarantee safety w.r.t. com-
plex combinations of constraints. In this letter, we
propose a framework to describe compositional safety
specifications with control barrier functions (CBFs). The
specifications are formulated as Boolean compositions of
state constraints, and we propose an algorithmic way to
create a single continuously differentiable CBF that cap-
tures these constraints and enables safety-critical control.
We describe the properties of the proposed CBF, and we
demonstrate its efficacy by numerical simulations.

Index Terms—Safety-critical control, control barrier func-
tions, Boolean composition.

[. INTRODUCTION

ONTROL designs with formal safety guarantees have

long been of interest in engineering. Safety is often
captured as constraints on the system’s states that must be
enforced for all time by the controller. To enable the satis-
faction of state constraints with formal guarantees of safety,
control barrier functions (CBFs) [1] have become a popular
tool in nonlinear control design. As the complexity of safety-
critical control systems increases, complex combinations of
multiple safety constraints tend to arise, which creates a need
for controllers incorporating multiple CBFs.

The literature contains an abundance of studies on multiple
safety constraints. Some approaches directly used multiple
CBFs in control design. For example, [2], [3] directly imposed
multiple CBF constraints on the control input in optimization-
based controllers; [4] synthesized controllers by switching
between multiple CBFs whose superlevel set boundaries do
not intersect; [5] investigated the compatibility of CBFs; [6]
ensured feasible controllers with multiple CBFs; and [7], [8]
addressed multi-objective constraints via barrier Lyapunov
functions. These works usually linked safety constraints
with AND logic: they maintained safety w.r.t. constraint 1
AND constraint 2, etc. Other approaches combined multiple
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constraints into a single CBF. These include versatile combina-
tions, such as Boolean logic with both AND, OR and negation
operations, which was established in [9], [10] by nonsmooth
barrier functions. Similarly, [11] used Boolean logic to create
a smooth CBF restricted to a safe set in the state space; [12]
combined CBFs with AND logic via parameter adaptation;
while [13], [14] used signal temporal logic to combine CBFs
in a smooth manner.

In this letter, we propose a framework to capture complex
safety specifications by CBFs. We combine multiple safety
constraints via Boolean logic, and propose an algorithmic way
to establish a single CBF for nontrivial safety specifications.
Our method leverages both the Boolean logic from [9] and the
smooth combination idea from [13], while merging the benefits
of these approaches. We address multiple levels of logical
compositions of safety constraints, i.e., arbitrary combinations
of AND and OR logic, which was not established in [13],
while we create a continuously differentiable CBF to avoid
discontinuous systems like in [9]. Meanwhile, as opposed
to [11], the stability of the safe set is guaranteed.

In Section II, we introduce CBFs and motivate multiple
safety constraints. In Section III, we propose a single CBF
candidate to address the compositions of multiple constraints.
We also characterize its properties, and we use simulations to
demonstrate its ability to address safety-critical control with
nontrivial constraints. Section I'V closes with conclusions.

Il. CONTROL BARRIER FUNCTIONS

We consider affine control systems with state x € R",
control input ¥ € R™, and dynamics:

X=f) +gx)u, (1)

where f: R" — R” and g: R" — R™™ are locally Lipschitz.
Our goal is to design a controller k£ : R — R™, u = k(x) such
that the closed-loop system:

X =f(x) + gx)k(x),

satisfies certain safety specifications.

If k is locally Lipschitz, then for any initial condition
x(0) = xp € R” system (2) has a unique solution x(f), which
we assume to exist for all > 0. We say that the system is safe
if the solution x(f) evolves inside a safe set C. Specifically,
we call (2) safe wrt. Cif xeC = x(f) €C Vi = 0. We
define the safe set as the O-superlevel set of a continuously
differentiable function s : R" — R:

C={xeR":h(x) =0},

2

3
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assuming it is non-empty and has no isolated points. Later we
extend this definition to more complex safety specifications.
The input u affects safety through the derivative of h:

E(x, u) = Vhx)f (x) + Vi(x)g(x) u, @
—
Lrh(x) Lgh(x)

where Lsh and Lgh are the Lie derivatives of h along f
and g. By leveraging this relationship, control barrier functions
(CBFs) [1] provide controllers with formal safety guarantees.

Definition 1 [1]: Function h is a control barrier function
for (1) on R" if there exists « € !Cgol such that for all x ¢ R™:

sup h(x, u) > —a(h(x)). )
ucRk™
Note that the left-hand side of (5) is Lh(x) if Lgh(x) =0
and it is oo otherwise. Thus, (5) is equivalent to’:

Leh(x) =0 => Lh(x) + a(h(x)) > 0. (6)

Given a CBF, [1] established safety-critical control.
Theorem 1 [1], [16]: If h is a CBF for (1) on R", then
any locally Lipschitz controller k that satisfies:

h(x, k(®) > —a(h()) )

for all x € C renders (2) safe w.r.t. C. Furthermore, if (7) holds
for all x € R", then C is asymptotically stable.

Accordingly, if the controller k is synthesized such that (7)
holds for all x € C, then the closed-loop system evolves in the
safe set: xp € C = x(f) € C Vt > 0. Moreover, even if the
initial condition is outside C, i.e., xo ¢ C, the system converges
towards C if (7) is enforced for all x € R" [16].

Condition (7) is often used as constraint in optimization
to synthesize safe controllers. For example, a desired but not
necessarily safe controller kg : R” — R™ can be modified to
a safe controller via the quadratic program (QP):

k(x) = argmin [l — ka ()]
st h(x, u) > —a(h®)), ®)

also known as safety filter, which has explicit solution [17]:

hxT .
i { Ke(3) + max{0, 70} s, if Loh(x) £0,
ka(x), if Lgh(x) =0,
n(x) = —Lgh(x) — Lgh(0)ka(x) — a(h(x)). )

A. Motivation: Multiple CBFs

Controller (9) guarantees safety w.r.t. a single safe set
C. However, there exist more complex safety specifications
in practice that involve compositions of multiple sets. Such
general specifications are discussed in the next section. As
motivation, we first consider the case of enforcing multiple
safety constraints simultaneously, given by the sets:

Ci={xeR" : hi(x) > 0}, (10)
! Function a: (—b,a) - R, a,b > 0 is of extended class-KC (& € K®) if
it is continuous, strictly increasing and «(0) = 0. Function o : R — R is of
extended class-Koo (@ € Kf) if @ € K and limp—s 400 @ (r) = to00.
2n (5)-(6), strict inequality (>) can also be required rather than non-strict
inequality (=) to ensure the continuity of the underlying controllers [15].

and CBF candidates h;, with i e I = {1,2, ..., N}. Our goal
is to maintain x(f) € C; ¥Vt = 0 and Vi € I, that corresponds to
rendering the infersection of sets C; safe.
One may achieve this goal by enforcing multiple constraints
on the input simultaneously, for example, by the QP:
k(x) = argmin  [lu — ks@)|*
ucR™

st hiou) > —ai(hi() Viel. (11)

However, (11) may not be feasible (its solution may not exist)
for arbitrary number of constraints. Even if each h; is CBF
and consequently each individual constraint in (11) could be
satisfied by a control input, the same input may not satisfy all
constraints. For the feasibility of (11) we rather require:

(hitx, w + ai(h))) > 0,

cf. (5), that can also be stated in a form like (6) as follows.
Theorem 2: The QP (11) is feasible if and only if:

Dol =0 = Y ni(Lehi) + ai(hi)) > 0 (13)
il il
holds for all x € R" and A; = 0.
The proof is given in the Appendix.
This highlights that multiple CBFs are more challenging to
use than a single one. With this as motivation, next we propose
to encode all safety specifications into a single CBF.

(12)

[1l. COMPLEX SAFETY SPECIFICATIONS

We propose a framework to construct a single CBF can-
didate that captures complex safety specifications, wherein
safety is given by Boolean logical operations between multiple
constraints. For example, the motivation above involves logical
AND operation: x(f) € C; AND - .. AND x(f) € Cy must hold.
Next, we discuss arbitrary logical compositions (with AND,
OR and negation) of safety constraints.

A. Operations Between Sets

Consider multiple safety constraints, each given by a set C;
in (10). These may be combined via the following Boolean
logical operations to capture complex safety specifications.

1) Identity / Class-K€ Function: The O-superlevel set C; of

h; is the same as that of y; o h; for any y; € K*:
Ci={xeR": yi(hi(®) > 0}. (14)

2) Complement Set/ Negation: The complement® C; of the
O-superlevel set of h; is the O-superlevel set of —h;:

Ci={xcR": —hi(x) = 0}. (15)

3) Union of Sets / Maximum / OR Operation: The union of
multiple 0-superlevel sets:

JCi= xR : Fielst hix) >0}

il

(16)

can be given by a single inequality with the max function [9]:
UC,- = {x eR": malxk,-(x) > 0]. (17)
iel €

3More precisely, a is the closure of the complement of C;, i.e., it includes
the boundary 8C; (where h;(x) = 0).
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The union describes logical OR relation between constraints:
erC,v &= x€Ci0ORxc(C; --- ORxcCy. (18)
iel

4) Intersection of Sets / Minimum / AND Operation: The
intersection of multiple O-superlevel sets:

(Ci={xeR": hi(x) >0 Viel) (19)
il
can be compactly expressed using the min function [9]:
[FlE= {x e R": minh;(x) > 0}. (20)
icl

iel

As in the motivation above, the intersection of sets captures
logical AND relation between multiple safety constraints:

xeﬂc,- e reCipANDxel = ANDxeCis2D

iel

Further operations between sets can be decomposed into
applications of identity, complement, union and intersection,
which are represented equivalently by class-K® functions,
negation, max and min operations, respectively.

Remark 1: Note that h; may have various physical mean-
ings and orders of magnitude for different i. Thus, for
numerical conditioning (especially when we use exponentials
later on), one may scale h; to y;oh; with continuously
differentiable y; € K*. For example, y;(r) = tanh(r) scales to
the interval y;(hi(x)) € [—1, 1] that may help numerics. Next,
we assume that the definitions of h; already include any
necessary scaling and we omit y;. Likewise, we do not discuss
negation further by assuming that h; are defined with proper
sign.

B. Smooth Approximations to Construct a Single CBF

While the union and intersection of sets are described by
a single function in (17) and (20), the resulting expressions,
max;es hi(x) and min;es h;(x), may not be continuously differ-
entiable in x [9], and they are not CBFs. As main result, we
propose a CBF candidate by smooth approximations of max
and min, and describe its properties. This enables us to enforce
complex safety specifications as a single constraint.

1) Union of Sets: To capture the union of sets in (17), we
propose a CBF candidate via a smooth over-approximation of
the max function using a log-sum-exp expression [13]:

w l Kchi(x)
h(x) = - In (Z 5 )

il

(22)

with smoothing parameter k > 0. The Lie derivatives are:
Lih(x) = ) M@Lphi(x), Leh(x) =Y Ai(0)Lghi(x), (23)
iel il
with the coefficients:

Ai(x) = e (hi(x)—h(x)) 1 (24)

that satisfy ) ;;Ai(x) = 1. The proposed CBF candidate
in (22) has the properties below; see proof in the Appendix.

(a) 8 T T T (b) 8 T T T
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Fig. 1. Numerical results for Example 1, where a reach-avoid task
is safely executed. (a) Safe set, (b) 0-superlevel set of the proposed
CBF (26), (c)-{e) simulation of safety-critical control by (9).

Theorem 3: Consider sets C; in (10) given by functions
h;, and the union | J;;C; in (17). Function h in (22) over-
approximates the max expression in (17) with bounds:

InN
max B (%) < h(x) < maxh(X) + — VxecR", (25)
el el K

such that lim,_, o £(x) = max;es h;(x). The corresponding set
C in (3) encapsulates the union, C 2 | J;;Ci, such that
lim, ;00C = UI-EAJ C;. Moreover, if (13) holds for all x ¢ R"
with A; in (24), then h is a CBF for (1) on R” with any & € K,
that satisfies a(r) > o;(r) Vr € R and Vi € I.

Remark 2: A set C that lies inside the union of the individ-
ual sets can also be built by using a buffer b when defining h:

_1 chi) _ b
k(x)_;ln(Ze ) -

il

(26)

For example, based on the upper bound in (25), b = In N leads
to h(x) < max;er hi(x) and C € | J;;Ci. Alternatively, buffers
from problem-specific bounds that are tighter than (25) can
give better inner-approximation C of | J,; Ci.

Example 1: Consider Fig. 1, where a rectangular agent with
planar position x € R?, velocity u € R?, and dynamics:

X=u (27)
is controlled to reach a desired position x4 € R? while avoiding
a rectangular obstacle.* To reach the goal, we use a propor-

tional controller with gain K, > 0 and saturation:

ka(x) = sat(Kp(xg — X)), (28)

where sat(u) = min{1, upax/||#]2}u with some . > 0. We
modify this desired controller to a safe controller using the
safety filter (9) and the proposed CBF construction.

To avoid the obstacle, the agent’s center must be outside
a rectangle that has the combined size of the obstacle and

4MATLAB codes for each example are available at: https://github.com/
molnartamasg/CBFs-for-complex-safety-specs.
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the agent; see Fig. 1(a). This means N = 4 constraints linked
with OR logic: keep the center left to OR above OR right to
OR below the rectangle. Accordingly, the safe set is given by
the union | J;; C; of four individual sets C; described by four
barriers at location x; € R2 with normal vector n; € R2:

hi(x) = n] (x — x), (29)

iel={1,2,3,4}. We combine the four barriers with (26).
The resulting safe set C is plotted in Fig. 1(b) for x =2
and various buffers b. Set C encapsulates | J;_;C; for b =0,
whereas set C lies inside | J;;C; for b = InN; cf. Remark 2.
For the problem-specific buffer b = In2 (where N is replaced
by 2 since two barriers meet at each corner), the approximation
C gets very close to the comers of | J;, C;.

We executed controller (9) with K, = 0.5, tpax = 1, k =2,
b=1In2 and «(h) =h; see solid lines in Fig. 1(c). The
reach-avoid task is successfully accomplished by keeping
the agent within set C. Fig. 1(d) highlights that safety is
maintained w.r.t. a smooth under-approximation A (red) of
the maximum max;cs h; (black) of the individual barriers h;
(dashed). Fig. 1(e) indicates the underlying control input.
We also demonstrate by dashed lines in Fig. 1(c)-(e) the
case of increasing the smoothing parameter to ¥« — co. The
sharp corner is recovered and the input becomes discontinuous
(#2 jumps). While discontinuous inputs can be addressed by
nontrivial nonsmooth CBF theory [9], they may be difficult to
realize accurately by actuators in engineering systems.

2) Intersection of Sets: To capture the intersection of sets
in (20), we propose to use a smooth under-approximation of
the min function as CBF candidate [13], analogously to (22):

1 :
h(x) = —=1In ( Y, e—'f’*=(x)). (30)
K 3
iel
The Lie derivatives of h are expressed by (23) with:
Ai(x) = e <hi@—h@) 31)

that satisfy ), ;Ai(x) = 1. The proposed CBF candidate
in (30) has the properties below, as proven in the Appendix.
Theorem 4: Consider sets C; in (10) given by functions A;,
and the intersection [ );; C; in (20). Function 4 in (30) under-
approximates the min expression in (20) with bounds:
. InN .
min h;(x) — — < h(x) < mink;(x) VxeR", (32)
iel K iel
such that lim, _, oo #(x) = min;es h;(x). The corresponding set
C in (3) lies inside the intersection, C < ();;C;, such that
lim, o C =i Ci-

C. Single CBF for Arbitrary Safe Set Compositions

Having discussed the union and intersection of sets, we
extend our framework to arbitrary combinations of unions
and intersections. These include, e.g., two-level or three-level
compositions, like |J[);C; or (U, Ci, etc. We propose an
algorithmic way to capture these by a single CBF candidate.

Specifically, consider M levels of safety specifications that
establish a single safe set by composing N individual sets.
The individual sets are C; in (10), i I ={l,...,N}. The
specification levels are indexed by £ e L={1,..., M}. At
each level, the union or intersection of sets is taken, resulting

in Ny new sets, denoted by Cf, iely={1,...,Ng}. This is
repeated until a single safe set, called C., is obtained:

O= bel,

ot _ Ujese G if £ € L,
T NGl if L e L,
C==101

icly,

(33)

where Jf C Iy_ is the indices of sets that combine into Cf,
while I, and L are the indices of levels with union and
intersection (L = Ly U Ln). Unions and intersections imply
the maximum and minimum of the individual barriers h;,
respectively, resulting in the combined CBF candidate h. [9]:

W@ =hie), iel,
max._«hf ) if £ e ;

hi (x) = . e 5—1( )- 0 iel,
min; ¢ kj (x) if £ € L,

he(@) = ' @). (34)
This describes the safe set (that is assumed to be non-empty):
Cc={xeR": h.(x) > 0}. (35)

While the combined function h; is nonsmooth [9], we
propose a continuously differentiable function £, by extending
the smooth approximations (22) and (30) of min and max:

H@) =5, e,
Yjest H @) if £ € Ly,
Hm={_ 1 ifrecl, i€l
jdf H}_I(x}

1 b
h(x) = —InHY (x) — —. (36)
K K
Note that we included a buffer b, according to Remark 2, to
be able to adjust whether the resulting set C encapsulates C.
or lies inside it. The derivative of the CBF candidate h is:

H)(x, u) = kH)®hi(x,u), iel,
Y H ') ifLely,
Hg(x, u) = £ ' H‘-E_l(x,u) . icly,
i Hf(x)? Yest _hj'f:’W if £ € Ln,
. HM(x u)
h(x,u) = 2 —. 37
& i« HY (x) i

The proposed function & approximates /. with the following
properties that are proven in the Appendix.

Theorem 5: Consider sets C; in (10) given by functions
hi, and the composition C. in (33) given by A in (34)-(35).
Function & in (36) approximates s, with the error bound:

bn+b by —
K

< h(x) — he(x) < Vx e R",

(38)

where bn = Y ¢y Inbg, by = Yy, Inby, by = maxiey, |71,
and |J¢| is the number of elements in JE. If b> by, the
corresponding set C in (3) lies inside C,, i.e., C < C., whereas
if b < —bn, set C encapsulates C., i.e., C 2 C.. Furthermore,
we have lim, _, oo £(X) = hc(x) and lim, _, oo C = C,.

The proposed approach in (36) captures complex safety
specifications algorithmically by a single CBF candidate A, via
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Fig. 2. Numerical results for Example 2: a reach-avoid task with multiple
obstacles is executed by controller (9) with the proposed CBF (36).

the recursive use of (22) and (30) such that exponentials and
logarithms are computed only once. Safety is then interpreted
w.r.t. set C, which can be tuned to approximate the specified
set C. as desired. Based on the error bound (38), increasing
x makes the approximation tighter, while b affects whether
CcC. or C2C.. Note that h is a valid CBF only if it
satisfies (5). This is not guaranteed by Theorem 5, and it
would require additional conditions like (13) in Theorem 3.
If h is a CBF, formal safety guarantees can be maintained,
for example, by QP (8) that has a single constraint and the
explicit solution (9). If the constraint is enforced outside set
C, then C is asymptotically stable; cf. Theorem 1. We remark
that, potentially, the log-sum-exp formulas could be replaced
by other smooth approximations of max and min. Furthermore,
note that computing exponentials may cause numerical issues
if k¥ is too large. These may be alleviated by scaling CBF
candidates by class-K® functions; see Remark 1.

Example 2: Consider the reach-avoid task of Example 1,
with dynamics (27), desired controller (28), safety filter (9),
and multiple obstacles shown in Fig. 2. Like in Example 1,
each of the three obstacles yields four safety constraints,
leading to N = 12 sets C; and functions h;, given by (29). The
four constraints of each obstacle are linked with OR logic, like
in Example 1, while the constraints of different obstacles are
linked with AND: safety is maintained w.r.t. obstacle 1 AND
obstacle 2 AND obstacle 3. Thus, the safe set:

Ce=(CLUC2UCZUCHN(C5UCUCTUCR N(CoUCpUCr UCi2) (39)

is given by a M =2 level specification, combining N = 12
sets to N1 = 3 sets (C]] from sets given by J]] = 152:3:4); Cé
from J} = {5,6,7,8} and C} from J} = {9, 10, 11, 12}), and
then to a single set C. (via sets given by J’f ={1,2,3D.

The behavior of controller (9) with the proposed CBF can-
didate (36) is shown in Fig. 2 for K;, = 0.5, tmax = 1, &« = 10,
b=1In2 and a(h) = h. The reach-avoid task is successfully
accomplished with formal guarantees of safety. Remarkably,
the controller is continuous and explicit, since the control
law (9) and CBF formulas (36)-(37) are in closed form. Such
explicit controllers are easy to implement and fast to execute.
Note that controller (11) could also handle multiple obstacles
if each obstacle was given by a single CBF candidate. Yet, (11)
cannot address multi-level safety specifications like (39), while
the proposed method can.

Example 3: Consider the setup of Fig. 3 where a point
agent is driven to a desired location while staying on a

E,
—
=

=

CBF, h (m)

|
—

—

position, z {m)

s actual

=

unsafe |

start

0 o .

0 2 4 6 8

position, z; (m) ] 5 10 15
{e) time, ¢ (8)

iy

Ay
input, u (m/s)

I‘. +
desired actual
1 1

Fig. 3. Numerical results for Example 3, where an agent is driven safely
along a road network via controller (9) with the proposed CBF (36).

road network, with dynamics (27), desired controller (28) and
safety-critical controller (9). Safety is determined by the road
geometry. Each road boundary is related to a set, which is
given for straight roads by (29) and for ring roads by:

hi(x) = £(|Ix — xill — Ry). (40)

Here plus and minus signs stand for the inner and outer circles,
respectively, R; is their radius, and x; is their center. Safety
must be ensured w.r.t. boundary 1 AND boundary 2 of each
road, while the agent must stay on road 1 OR road 2 OR
road 3 OR road 4. Thus, the combined safe set becomes:

C.=@CiNG)UICINCYHU([CsNC5)U (C7NCg). (41)

That is, we have a M = 2 level specification with N = 8 sets
combined first to Ny = 4 sets (as intersections of sets given
by J] = {1,2}, J} = {3,4}, J} = {5, 6}, J} = {7, 8}), and then
to a single set (as union via Jf ={1,2,3,4}.

The execution of the reach-avoid task with the proposed
CBF candidate (36) and controller (9) is shown in Fig. 3 for
K; =0.5, tmax =1, k =10, b =0 and a(h) = h. The end
result is guaranteed safety (see solid lines). Moreover, the safe
set is attractive: in case of an unsafe, off-road initial condition
the agent returns to the safe set on the road and continues
to be safe (see thick dashed lines). Remarkably, this property
was not provided by earlier works like [11].

IV. CONCLUSION

We established a framework to capture complex safety
specifications by control barrier functions (CBFs). The spec-
ifications are combinations of state constraints by Boolean
logic. We proposed an algorithmic way to create a single CBF
candidate that encodes these constraints and enables efficient
safety-critical controllers. We described the properties of this
CBF candidate, and we used simulations to show its ability to
tackle nontrivial safety-critical control problems.

APPENDIX

Proof of Theorem 2: Consider the Lagrangian of the
feasibility problem [18] corresponding to the QP (11):

L, u,2) = — Y A (h,-(x, ") + a;(k(x))),

il

(42)

with the Lagrange multipliers A = [Aj A ... )LN]T, Ai>0
Vi e I. The QP (11) is feasible if and only if Ju € R™ such
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that L(x,u,A) <0 VA; > 0. With the Lagrange dual func-
tion, gr(x,A) = infycpm L(x, u, 1), this means gp(x,A) <0
Vi > 0. Since gr(x,A) = —2 iy illrhi(x) + ai(hi(x))) if
Zid AiLghi(x) =0 and gr(x,A) = —oc otherwise, (13) is
equivalent to gr(x, A) < 0 and provides feasibility. |

Proof of Theorem 3: Since the exponential function is
monotonous and gives positive value, we have:

@k maXie/ hi(x) < Z exh,‘(x) . Nek maxiel h,'(x),
il
that yields (25) via (22) and the monotonicity of In. The
limit on both sides of (25) yields lim,_, oo £(x) = max;cs hi(x),
and consequently lim,_.ooC = Uief C; holds. Due
to 25), max;er hi(x) =0 = h(x) = 0, therefore
x € J;gsCi = x€C, and C 2 |J;; C; follows.

We prove that h is a CBF by showing that (6) holds.
We achieve this by relating Lgh(x) and Leh(x) + a(h(x)) to
Lgh;(x) and Lgh;(x) + a;(h;(x)). The Lie derivatives are related
by (23), while the following bound holds for all i € I:

a(h(x) > a(hi(®) > a;(hix)),

where we used (25) and a(r) = o;(r). Consequently, since
> icrAi(x) = 1 and A;(x) > 0 hold via (24), we have:

43)

(44)

Leh() + a(h®) > 3 10 (Lhit) + ai(hi) ). (45)

il

If Lgh(x) =0, we get D, ; Ai(x)Lghi(x) = 0 based on (23),
and since (13) is assumed to hold, (45) finally yields
L¢h(x) + a(h(x)) > 0. Thus, (6) holds and / is a CBE. [ |
Proof of Theorem 4: The proof follows that of Theorem 3,
with the following modifications. We replace (43) by:
e~k minjef hi(x) < Ze—xh«'(x) < Ne™* mirh'e.'h«'(x), (46)

iel

that gives the bound (32) via (30). The remaining proper-
ties follow from the limit on both sides of (32) and from
h(x) > 0 = min;e; hi(x) > 0 according to (32). [ |
Proof of Theorem 5: By leveraging that the exponential
function is monotonous, we write (34) equivalently as:

HY;0) = R0, el
max;ye He; ' (¥) if £ € L,

I
g HG\ W ifteln, 'S0

H () =

1
he(x) = = In HY, (x). 47
We compare this with the definition (36) of h. First, by using
the middle row of (36), we establish that for all x € R":

H'(x) < Hf () < IJflmfgiH[f_‘(x) if £ € Ly,
Jed;

1
il 'E? Hf—l(x) <Hf(x) < }{f_](x) if £ € Ly (48)
| et

I i

Vj € J¥ and Vi € I;. Then, we relate Hf,;‘ to Hf by induction.
For £ > 1 we assume that there exist ¢, _;,T¢_1 > 0 such that:

6y sH G <H (@ =t 49)

Vx € R" and Vi € I;_;. This is true for £ = 1 with ¢;,To =1
since H?(x) = Hf ;(x). By substituting (49) into (48), using
the middle row of (47) and |J¢| < max;ey, |JF|, we get:

coHE ;(x) < Hf (x) <TeHE ;(x) (50)
with b, = max;cy, |J¢| and:
C if £ €Ly, Tr_1 i
Co1 Ly | beTer if £ € Ly, 51)

=%t ifteln, “T | iftela

By induction, (50) holds for £ = M with ¢y = [/, ;,1; and
M = ]_[gelU by. Taking the logarithm of (50) with £ = M and
using the last rows of (36) and (47) result in (38). |
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