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Abstract

Emerging evidence suggests that intestinal permeability can be potentially enhanced
through cocrystallization. However, a mechanism for this effect remains to be established. In
this study, we first demonstrate the enhancement in intestinal permeability, evaluated by the
Caco-2 cell permeability assay, of acetazolamide (ACZ) in the presence of a conformer, p-
aminobenzoic acid (PABA), delivered in the form of a 1:1 cocrystal. The binding strength of
ACZ and PABA with the Pgp efflux transporter, either alone or as a mixture, was calculated
using molecular dynamics simulation. Results show that PABA weakens the binding of ACZ
with Pgp, which leads to a lower efflux ratio and elevated permeability of ACZ. This work
provides molecular-level insights into a potentially effective strategy to improve the intestinal
permeability of drugs. If the same cocrystal also exhibits higher solubility, oral bioavailability

of BCS IV drugs can likely be improved by forming a cocrystal with a Pgp inhibitor.

Keywords: Cocrystallization, permeability; acetazolamide, Caco-2 cell; P-glycoprotein;
efflux; all-atom molecular dynamics.
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1. Introduction
The use of different solid forms, such as salts, cocrystals, hydrates, solvates, and
polymorphs, is an effective engineering approach to modulate the physicochemical properties
of drugs. Among these, cocrystallization stands out because of its applicability to non-ionizable
drugs and the ability to access a wide range of chemical space of cocrystal formers for
modifying crystal structure and properties without changing their molecular structures or
pharmacological activities (Kumari and Ghosh, 2020; Roy and Ghosh, 2020a; Sun, 2013).Various
pharmaceutically important drug properties, such as solubility (Kumari et al., 2019; Kundu et
al., 2018; Roy et al., 2022; Roy and Ghosh, 2020b; Sugandha et al., 2014), permeability
(Bommaka et al., 2018; Mannava et al., 2023, 2021; Palanisamy et al., 2021; Sanphui et al.,
2015; Shajan et al., 2023), tabletability (Kavanagh et al., 2021; Kumari et al., n.d.; Sun and
Hou, 2008; J. Wang et al., 2021; X. Wang et al., 2021; Zhou et al., 2016), stability (Hao et al.,
2022; Vangala et al., 2012), hygroscopicity (Shinozaki et al., 2019; Tanaka et al., 2020), and
oral bioavailability (Chen et al., 2022; Wang et al., 2022), have been extensively studied to
demonstrate the potential of cocrystallization in pharmaceutical formulation and drug delivery.
Orally administered drugs must have adequate oral bioavailability in order to be
therapeutically effective. Both dissolution and permeability of drugs play a key role in attaining
adequate bioavailability (U.S. Department of Health and Human Services et al., 2008). Despite
a large number of publications focusing on the solubility and dissolution enhancement of drugs
through cocrystallization (Ahangar et al., 2023; Kataoka et al., 2023), the exploration of
modulating drug intestinal permeability by cocrystallization has received little attention. With
a few exceptions, papers on the topic of drug permeability modification by cocrystallization
mostly demonstrated an improvement in flux of drug across a membrane, instead of
permeability. For example, a recent study showed a permeability improvement of 9.69-fold by
a salt cocrystal over the parent drug, milrinone (Meng et al., 2023). While there is a growing
body of evidence that suggests the possibility for modulating intestinal permeability through
cocrystallization, a mechanistic explanation is lacking. Since dissolved drug molecules have
no memories of their solid-state predecessor, modifications of drug permeability must involve
the coformer. A mechanistic understanding of any observed intestinal permeability
enhancement by cocrystals will be extremely useful for developing guidelines for designing
cocrystals with improved bioavailability (Bommaka et al., 2018; Mannava et al., 2021;
Palanisamy et al., 2021; Sanphui et al., 2015).
Recently, three potential factors that can lead to the permeability modulation of a drug

through cocrystallization were proposed: (i) drug-coformer intermolecular interactions and
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structure-permeability correlation, (i1) solubility-dependent concentration gradient, and (iii)
coformer induced lipophilicity and diminished molecular polarity (Pandey and Ghosh, 2022).
These factors pertain to passive diffusion of drugs through membrane and their role in
bioavailability enhancement still need to be experimentally established. Some issues that need
to be addressed when studying the permeability of cocrystals include 1) distinction of flux from
permeability, 2) consideration of the dissociation of drug-coformer complexes in solution
media, and 3) measuring permeability under conditions resembling the real intestinal
membrane where majority of absorption takes place (Diniz et al., 2020; Li et al., 2021; Seo et
al., 2018; Suzuki et al., 2019). The dissociation of drug-coformer complexes upon dissolution
of a cocrystal means the permeability modulation cannot be explained by the drug-coformer
intermolecular interactions observed in cocrystals. Compared to polymeric membranes used
for permeability using the Franz diffusion cell (FDC) (Ng et al., 2010), Caco-2 cell membranes
more accurately simulate in vivo conditions in terms of both active and passive diffusion as
well as the expression of efflux transporters. P-glycoprotein (Pgp), an ATP-dependent efflux
pump, is a transmembrane protein expressed in the intestinal membrane, blood-brain barrier,
liver, and kidneys (Varma et al., 2005). Pgp has the ability to “pump out” drugs from cells,
making it a significant barrier to absorption and, thereby, oral bioavailability, of drugs that are
Pgp substrates (Amin, 2013; El-Awady et al., 2017). Therefore, measuring permeability
through a Caco-2 cell monolayer is more advantageous for understanding the effects of
cocrystallization on intestinal permeability.

All-atom molecular dynamics (MD) simulations in the apo and halo states can
potentially provide insights into how the presence of coformer molecules affects the
interactions between drug molecules and a receptor, such as Pgp. This is achieved by
comparing relative binding affinity of Pgp-drug complexes with and without the presence of
coformer. Weakening of drug binding to Pgp by coformer molecules, e.g., competitively, non-
competitively, or allosterically (Amin, 2013), leads to less effective removal of the drug by Pgp
(Seelig, 2020), which leads to enhanced intestinal permeability. If proven useful, the MD
approach can be used to virtually select coformers capable of enhancing the intestinal
permeability of drugs for more effective therapies through crystal engineering.

In this work, we investigated the effects of cocrystallization on permeability of
acetazolamide (ACZ), using a 1:1 cocrystal with p-aminobenzoic acid (PABA). ACZ is a
Biopharmaceutics Classification System (BCS) class IV drug with low solubility and low

permeability (Ghadi and Dand, 2017).
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2. Material and Methods
2.1 Materials

Pure ACZ was obtained as a gift from Nakoda Chemicals Ltd. (Hyderabad, India).
PABA was purchased from Sigma-Aldrich (St. Louis, Missouri, United States). All other
inactive ingredients were of pharmaceutical grade. Solvents were purchased from Rankem
(Gurgaon, Haryana). All analytical chemicals and solvents were used as received without

further purification. Scheme 1 illustrates the chemical structures of ACZ and PABA.

NH,
HO

(B)

Scheme 1: Chemical structures of (A) Acetazolamide and (B) p-aminobenzoic acid.

2.2.1. Preparation of cocrystal

In this study, we prepared an ACZ-PABA cocrystal, equivalent to 500 mg ACZ, using
a slurry technique. Here, 2.2 mmol of ACZ and 2.2 mmol of PABA were added to 2 mL of
ethyl alcohol in a beaker, which was then sealed with parafilm. The slurry was stirred at room
temperature for 24 hours, filtered, and dried at 50°C. We also determined the crystal structure
of ACZ-PABA cocrystal (CCDC NO: 1984314), which is in agreement with that reported by
Manin et.al. (CCDC NO. 1999205) (Manin et al., 2020). The detailed crystallographic
methodology and crystal structural information (Table S1, Figure S1) can be found in the

supporting information.

2.2.2. Powder X-Ray diffraction (PXRD)

PXRD data was collected using a Rigaku smart lab diffractometer (Model Miniflex 600;
Rigaku, Tokyo, Japan) with Cu Ko radiation (A = 1.5406 A) at 40 kV (tube voltage) and 1 mA
(tube current). Samples were placed on a sample holder and slightly compressed with a glass
slide to ensure coplanarity of the sample surface with sample holder surface. X-ray patterns
were recorded over a 20 range of 3° to 40° with a step size of 0.02° at a rate of 10°/min. The
PXRD of ACZ-PABA cocrystal was also calculated from its crystal structured (CCDC No.
1999205) (Manin et al., 2020).

2.2.3. Thermal analyses
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A differential scanning calorimeter (DSC-4000, PerkinElmer, USA) was used for DSC
analysis. Samples were hermetically sealed in aluminum pans and scanned over a range of 30
to 300 °C at a heating rate of 10 °C/min under a dry nitrogen purge (20 mL/min). For TGA
analysis, samples were kept in ceramic crucibles and scanned on a TGA-4000 (PerkinElmer,
USA) over a range of 30 to 400 °C at 10 °C/min under continuous nitrogen gas purge (20
mL/min).

2.2.4. Dissolution

Dissolution rate is more informative over equilibrium solubility for predicting
bioavailability, especially for materials that undergo dissociation, such as cocrystal (Babu and
Nangia, 2011). Therefore, powder dissolution and intrinsic dissolution studies were carried out
for both the cocrystal and ACZ. As the solubility of ACZ-PABA cocrystal is independent of
pH in the physiologically relevant pH range, both powder and intrinsic dissolution experiments
were performed in 900 mL of 0.01N hydrochloric acid medium at 100 rpm, 37 + 0.5 °C, as
prescribed by the U.S. Pharmacopoeia (Arenas-Garcia et al., 2017).
2.2.4.1. High performance liquid chromatography (HPLC) operating conditions

The concentrations of ACZ in the solutions from dissolution studies were measured
using an HPLC system (Thermo Fisher Scientific, UltiMate 3000) equipped with a photodiode
array (PDA) detector. The HPLC system was controlled with workstation software
Chromeleon 7 (version 7.2.10). A Syncronis Cis column (250 mm X% 4.6 mm ID, Sum particle
size, Thermo Scientific, India) was used. The chromatographic separation was achieved using
a gradient method using acetonitrile (solvent A) and 0.1% (v/v) orthophosphoric acid (solvent
B) in the (v/v) ratio ranging from 80:20 to 85:15. The injection volume was 20 pL and total
run time was 12 min. A calibration curve was prepared in the linearity range of 2-16 pg/mL
and the absorbance of the eluents was monitored at a detection wavelength of 266 nm. Diluent
used for sample preparation was acetonitrile and 0.1% (v/v) orthophosphoric acid in 85:15 (v/v)
ratio.
2.2.4.2. Powder dissolution

During in vitro powder dissolution study, ~ 250 mg equivalent ACZ and ACZ-PABA
cocrystal were placed in 900 mL of 0.01 N HCI. Aliquots of 2 mL volume were withdrawn at
specific time intervals, filtered through a 0.45 pum nylon membrane, and analysed by HPLC
after proper dilution to attain a concentration within that of the predetermined calibration curve.
2.2.4.3. Intrinsic dissolution

For the IDR experiment, ACZ (250 mg) or ACZ-PABA (equivalent to 250 mg of ACZ)

was compressed to a disc using a hydraulic press at a pressure of 2.5 tons per square inch for 5
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min. Aliquots (1 mL) were withdrawn at specified time intervals of 1, 2, 3, 4, 5, 10, 20, 30, 45,
and 60 min, filtered through a 0.45 um nylon membrane, and analyzed by HPLC following the
same approach as that for powder dissolution.
2.2.5. Caco-2 cell line permeability study

The Caco-2 cell monolayer model was selected in the present investigation to assess
the intestinal permeability of ACZ at pH 7.4. Following the standard procedure, Caco-2 cells
were cultured in Dulbecco's Modified Eagle Medium (DMEM), containing 10% fetal bovine
serum and antibiotics. All cells used in this study were between passages 38 and 50. Cells were
plated in 96-well inserts (Corning, Sigma Aldrich, USA) and cultured for 21 days to reach
confluence and cell differentiation. Initially, each insert containing the differentiated
monolayers was carefully washed and filled with Hank's Balanced Salt Solution (HBSS with
10 mM HEPES, pH 7.4). The integrity of the monolayer was examined using Lucifer Yellow
(LY) rejection assay. Wells with less than 1% fluorescence intensity in relation to the Lucifer
yellow dosing solution were deemed satisfactory for conducting permeability experiment,
which was carried out in both the apical to basolateral (A—B) and basolateral to apical (B—A)
directions. A sample corresponding to 5 uM of ACZ was introduced to the donor side and the
system was maintained at 37 °C for 2.5 h without shaking under 5% CO:z and 95% relative
humanity. Samples were collected from both the receiver and the donor compartments, diluted
properly, and analyzed using LC-MS/MS (ABSciex API4000 triple quadrupole mass
spectrometer, integrated to Prominense LC-20AD series (Shimadzu) LC system & CTC-PAL
autosampler, USA).
2.2.6. Molecular docking

Molecular docking is one of the widely adopted methods to predict the binding pose of
small molecules (ACZ and PABA here). In this study the 3D structures of ACZ and PABA,
acting as ligands, were imported into AutodockTools (Motris et al., 2009), along with the target
protein Pgp (PDB ID: 3G5U) (Aller et al., 2009) for molecular docking. According to the
established protocol, pre-processing steps, such as adding polar hydrogens, calculating charges,
and determining torsions, were taken (Morris et al., 2008; Thakur et al., 2022). The Kollman
charges were calculated, and the atomic radii and AutoDock4 atom types were assigned. An
exhaustiveness value of 20 was used. The grid size was selected to encompass the complete
active site, with a spacing of 1.00 A. For reference, all docked structures are provided in the

supporting information (Figure S2).

2.2.7. Molecular dynamics simulation
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The complexes of Pgp protein with ACZ, PABA, and (ACZ + PABA) were subjected
to molecular dynamics (MD) simulations. The enzyme complexes were solvated explicitly
using an orthorhombic water box (TIP3P), extending 10 A from the protein (Jorgensen et al.,
1983). The system's overall charge was neutralized by adding counter ions as required. The
inhibitor was parameterized using the generalized Amber force field (GAFF2) (Vassetti et al.,
2019), while the protein topology file was generated using the ff14SB force field (Maier et al.,
2015). The MD simulations were performed using the GPU-enabled Amber18 pmemd engine.

The simulation protocol included the initial minimization of water molecules and Na*
ions through the conjugate gradient (CG) method for 3,000 followed by 10,000 steps of
minimization of the entire complex (protein, ligand, water, and ions), respectively, to achieve
system stability. Subsequently, the system was gradually heated from 0 to 300 K over 50 ps
using a constant NVT ensemble with a Berendsen thermostat and a temperature coupling value
of 2.8 ps. To ensure the desired density, a 500 ps NPT ensemble simulation at 300 K and 1 atm,
with temperature and pressure coupling values set to 2.0 ps, was performed. The system was
then switched back to the NVT ensemble and equilibrated for an additional 500 ps. Following
the minimization and equilibration phase, a 300 ns NVT production run was conducted
(Badavath et al., 2022). Long-range electrostatics were accounted for using the particle mesh
Ewald method, covalent bonds involving hydrogen atoms were constrained using the SHAKE
algorithm, periodic boundary conditions were applied with a non-bonded cutoff distance of 12
A, and a time step of 1.0 fs was utilized. Analysis of the simulations was performed using
cpptraj and ptraj programs from the AmberTools18 suite (Price et al., 2021; Roe and Cheatham,
2018).

The MM/PBSA (Molecular Mechanics/Poisson—Boltzmann Surface Area) methodology
was originally developed Kollman and coworkers (Genheden and Ryde, 2015). Subsequent
developmental efforts significantly enhanced this approach, making it a crucial tool for
investigating ligand binding in diverse biological systems (Shaikh et al., 2015; Wang et al.,
2019). It 1s recognized as a reliable method in estimating the binding free energy of small
molecules (Mohd Siddique et al., 2021), or peptides (Caceres et al., 2018), identifying chirality
(Nath et al., 2018), and even guiding target identification (Gangireddy et al., 2022). In this
work, the binding affinity of ACZ and PABA was calculated using the MM/PBSA approach

available within the Amber package.

3. Results and Discussion
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233 Figure 1. Solid-state characterization of Acetazolamide (ACZ), p-aminobenzoic acid (PABA),
234 and ACZ-PABA. A) experimental PXRD patterns along with the pattern calculated from the
235  ACZ-PABA crystal structure, B) DSC thermograms, and C) TGA thermograms.
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The time taken to release half of the total drug dose (#.5) from ACZ-PABA cocrystal (~ 5
min) during powder dissolution (Figure 2A) is approximately one-third of pure ACZ (~ 15
min). The improved dissolution profile of ACZ-PABA cocrystal over ACZ corroborates with
the higher aqueous solubility of ACZ-PABA than ACZ. There was no measurable change in
solution pH at the end of the powder dissolution experiments.

The IDR of ACZ from ACZ-PABA (0.38 mg cm 2 min') is approximately 1.7 times that
of pure ACZ (0.22 mg cm 2 min ") (Figure 2B). The IDR ratio is comparable to that of the ratio
in apparent solubility (Kumari et al., 2019). Thus, the higher solubility of the ACZ-PABA
cocrystal leads to faster dissolution, as expected. This should favor passive diffusion of ACZ
through cell membrane, driven by a higher concentration gradient.
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Figure 2. Dissolution profiles of ACZ (square, blue) and ACZ-PABA cocrystal (red, circle)
(A) Powder dissolution; (B) Intrinsic dissolution.

The Caco-2 cell lines apparent permeability coefficient (Papp) of both apical to
basolateral transport (A = B) and basolateral to apical transport (B = A) and efflux ratios (R)
of ACZ, PABA, and ACZ-PABA cocrystal are summarized in Table 1 and graphically shown

in Figure 3.

Table 1. Caco-2 cell permeability of ACZ, PABA, and ACZ-PABA cocrystal.

System Papp (x10° cms™) Re
A>B? B>AP
ACZ 0.85+0.05 7.30£1.00 8.59+1.69
PABA 0.35+0.05 1.00 = 0.00 2.86 +0.42
ACZ-PABA 1.35+0.05 6.75+£0.15 5.00+0.29

@ Apical to basolateral transport, ® Basolateral to apical transport, © efflux ratio = Py, (B—A)/Papp (A—B)

10
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Figure 1. Caco-2 cell permeability ACZ, PABA, and ACZ-PABA cocrystal.

The comparison of the permeability values of ACZ, PABA, and ACZ-PABA showed
that Papp(A—B) of ACZ-PABA was approximately 59% higher than ACZ (Table 1 and Figure
3). The Papp(B—A) of ACZ-PABA is 11 % less than the pure ACZ. Consequently, the efflux
ratio of ACZ-PABA cocrystal is lower than ACZ. The lower Papp(B—A) of ACZ-PABA
excludes the possibility that a higher concentration gradient of the cocrystal is the dominating
driving factor for ACZ to cross the cell membrane. Thus, the higher Papp(A—B) of ACZ-PABA
should not be attributed to the higher solubility and dissolution rate of the cocrystal (Figure 2).
However, the different Papp can be explained if 1) ACZ is a substrate of the Pgp efflux pump
and 2) PABA inhibits the Pgp. This mechanism of competitive binding of ACZ and PABA to
Pgp 1s further explored by MD simulation.

The MM/PBSA method, which combines molecular mechanics energies with Poisson-
Boltzmann surface area continuum solvation, was employed to calculate the binding free
energy of ACZ and PABA when they are bound to the Pgp receptor. This estimation was
carried out over 300 ns MD trajectory, for ACZ and PABA individually, as well as in the
presence of each other. The results of the study show that the binding of ACZ to the receptor
Pgp is ~2 kcal/mol more favorable than the PABA (Table 2). An analysis of the individual
energy contributions to the overall binding affinity shows that the van der Waals energy
contribution (Evaw) and the non-polar solvation-free energy contribution (Gnp) approximately
cancel each other (Table 2). However, the electrostatic energy contribution (Ee) for ACZ
binding (-37.3 kcal/mol) surpasses that of PABA (-12.1 kcal/mol) by more than 3-fold,

suggesting that the stronger electrostatic interaction is a primary factor favoring the binding of

11
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ACZ to Pgp. In the presence of PABA, the binding affinity of ACZ to Pgp was reduced by ~ 2
kcal/mol. This effect is expected to slow the efflux process of ACZ by Pgp, which leads to a
lower Papp(B—A) and higher Papp(A—B). This is consistent with the experimental results

summarized in Table 1.

Table 2. Calculated binding free energy (in kcal/mol) for ACZ and PABA bound to Pgp
receptor over 300 ns of trajectory obtained from MD simulations over four complexes (ACZ-
Pgp, PABA-Pgp, ACZ-PABA bound Pgp and PABA-ACZ bound Pgp).

System *Evaw *Eel *Grpol *Gp *AGbind
ACZ -23.7+£2.1 -373+8.6 52.6+£6.9 -27+0.06 -11.1+34
PABA 21.7+£23  -12.1+4.2 26.5+4.3 -20+0.08 -93+29
ACZin presenceof -163+32 -314+104 404 +9.7 -1.8+0.2 -92+45
PABA
PABA in presence -189+2.1 -9.71+6.8 214+4.6 -2.1+0.1 93+29
of ACZ

* Evaw = van der Waals energy, E. = electrostatic energy, Gy and G,y = polar and nonpolar contributions to
the solvation free energies, respectively.

To further elucidate the favorable binding of ACZ to Pgp than PABA, Root-mean-
square deviations (RMSDs) and root-mean-square fluctuations (RMSFs) of the backbone
protein atoms were computed over the 300 ns trajectory for the various Pgp complexes. The
analysis of RMSD enables us to understand the timescale required for the stabilization of the
protein structure following the binding of ACZ or PABA. The results show that the Pgp protein
quickly stabilizes (~20 ns) upon binding with ACZ, whereas both PABA and the (ACZ +
PABA) complex take more than 150 ns to reach equilibrium (Figure 4). This faster stabilization

of the ACZ-Pgp complex is consistent with its stronger binding affinity.

12
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Figure 4. Root-mean-square deviation (RMSD) of the protein backbone atoms (N, Ca and C)
for the Apo (brown) and holo states of Pgp protein bound to ACZ (green), PABA (red) and
(ACZ + PABA) (blue) simulations relative to the first frame.

The impact of ligand binding on protein dynamics can be investigated by analyzing the
RMSF of positional changes over time compared to a reference structure. RMSF analysis of
the Pgp protein does not show a significant difference in the pattern of fluctuation in response
to ligand binding. However, smaller deviations from the reference structure have been observed
on average for the Pgp + ACZ complex (Figure 5). We have computed the % change in the
RMSF between different substrates bound to the Pgp receptor with respect to the Apo system,
where binding of ACZ, PABA, or (ACZ + PABA) complex can cause residues to become more
localized (positive change in the % change RMSF) or more flexible (negative change in the %
change RMSF). Interestingly, the binding of ligands has shown to have a strong localized effect
on protein. However, the binding of ACZ shows the highest % change in RMSF or is more
localized in comparison to the binding of PABA, specifically in two regions (residues: 333-
350 and 800-880) that encompass the ligand binding site (Figure 6). The RMSD and RMSF
analysis results collectively suggest an induced-fit mechanism for both ACZ and PABA.
However, overall binding for ACZ is more stable and localized than PABA.

13
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Figure 5. Root-mean-square fluctuations (RMSFs) by residue relative to the average energy
structure for the Pgp protein backbone atoms (C, Ca, and N) in Apo (brown) state and holo
state bound with ACZ (green), PABA (red) and (ACZ + PABA) (blue).
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Figure 2. Illustrating the average percent change in root-mean-square fluctuations (RMSF)
Pgp receptor backbone atoms (N, Ca and C) upon binding with ACZ (green), PABA (red), and
(ACZ + PABA) (blue). A positive change in RMSF shows that residues have become more
localized and a negative change is indicative of enhanced fluctuations upon aptamer binding.

In order to understand the strong electrostatic energy (Eel) contribution of ACZ binding
to Pgp receptor, hydrogen bond analysis was carried out. Favorable electrostatic interaction

between ACZ or PABA with Pgp was monitored over an entire trajectory and compared with
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(ACZ+PABA) complex bound with Pgp. A very strong hydrogen bond between ACZ and
(G342 was observed, with a population of ~57%. However, this hydrogen bond was completely
lost in the (ACZ+PABA) complex. Additionally, a weak hydrogen bond between ACZ and
Q343 was reduced from ~21% to 4% in the (ACZ+PABA) complex (Table 3). These results
suggest that the presence of PABA disrupts the favorable electrostatic interactions between
ACZ and Pgp. Hence, an inhibitory effect by PABA on the efflux process of ACZ is observed.

Table 3. Hydrogen bonds formed between ACZ or PABA and the Pgp receptor over 300 ns of
trajectory in three scenarios.

Substrates  Acceptor Donor %Occupancy Length Angle
ACZ- E180@OE(1+2) ACZ@NI1H1 254 2.7 158.6
PABA ACZ@OH D993@NH 6.7 2.9 155.5
ACZ@O3 F990@NH 5.8 2.9 160
ACZ@O3 S876@OGH 5.5 2.8 161.9
ACZ@O1 Q878@NEH 5.1 2.9 161
N347@O0OD1 ACZN4H 5.0 2.8 161.9
Q343@OE1 ACZ@NIH 4.1 2.8 158.5
D184@OD(1+2) ACZ@NIH 6.6 2.8 155.2
N717@OD(1+2) PABA@O2H 15.9 2.7 160.3
Q721@O PABA@O2H 11.0 2.7 155.1
ACZ G342@O ACZ@NIH 569 2.8 163.2
Q343@OE1 ACZ@N4H  20.8 2.8 159.3
PABA S989@OG PABA@NIH 20.9 2.9 154.2
Q1910E1 PABA@O2H 9.8 2.7 161.9
S988@O PABA@NIH 9.3 2.8 157

4. Conclusion

Molecular insights into the enhancing intestinal permeability of ACZ by
cocrystallization with PABA were attained in this work by molecular dynamics simulations.
Our results show that, for the first time, the presence of PABA weakens the ACZ-Pgp complex
stability and, hence, the effectiveness of the efflux process. Consequently, co-delivery of
PABA in the form of an ACZ-PABA cocrystal leads to a lower Papp(B—A), a higher

Papp(A—B), and a lower efflux ratio. This work suggests a mechanism for permeability
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enhancement of drugs by cocrystallizing with a coformer capable of inhibiting their efflux

process regulated by the Pgp transporter.
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