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Abstract 1 

Emerging evidence suggests that intestinal permeability can be potentially enhanced 2 

through cocrystallization. However, a mechanism for this effect remains to be established. In 3 

this study, we first demonstrate the enhancement in intestinal permeability, evaluated by the 4 

Caco-2 cell permeability assay, of acetazolamide (ACZ) in the presence of a conformer, p-5 

aminobenzoic acid (PABA), delivered in the form of a 1:1 cocrystal.   The binding strength of 6 

ACZ and PABA with the Pgp efflux transporter, either alone or as a mixture, was calculated 7 

using molecular dynamics simulation. Results show that PABA weakens the binding of ACZ 8 

with Pgp, which leads to a lower efflux ratio and elevated permeability of ACZ. This work 9 

provides molecular-level insights into a potentially effective strategy to improve the intestinal 10 

permeability of drugs. If the same cocrystal also exhibits higher solubility, oral bioavailability 11 

of BCS IV drugs can likely be improved by forming a cocrystal with a Pgp inhibitor. 12 

Keywords: Cocrystallization, permeability; acetazolamide, Caco-2 cell; P-glycoprotein; 13 

efflux; all-atom molecular dynamics.  14 



3 
 

1. Introduction  15 

The use of different solid forms, such as salts, cocrystals, hydrates, solvates, and 16 

polymorphs, is an effective engineering approach to modulate the physicochemical properties 17 

of drugs. Among these, cocrystallization stands out because of its applicability to non-ionizable 18 

drugs and the ability to access a wide range of chemical space of cocrystal formers for 19 

modifying crystal structure and properties without changing their molecular structures or 20 

pharmacological activities (Kumari and Ghosh, 2020; Roy and Ghosh, 2020a; Sun, 2013).Various 21 

pharmaceutically important drug properties, such as solubility (Kumari et al., 2019; Kundu et 22 

al., 2018; Roy et al., 2022; Roy and Ghosh, 2020b; Sugandha et al., 2014), permeability 23 

(Bommaka et al., 2018; Mannava et al., 2023, 2021; Palanisamy et al., 2021; Sanphui et al., 24 

2015; Shajan et al., 2023), tabletability (Kavanagh et al., 2021; Kumari et al., n.d.; Sun and 25 

Hou, 2008; J. Wang et al., 2021; X. Wang et al., 2021; Zhou et al., 2016), stability (Hao et al., 26 

2022; Vangala et al., 2012), hygroscopicity (Shinozaki et al., 2019; Tanaka et al., 2020), and 27 

oral bioavailability (Chen et al., 2022; Wang et al., 2022), have been extensively studied to 28 

demonstrate the potential of cocrystallization in pharmaceutical formulation and drug delivery.    29 

Orally administered drugs must have adequate oral bioavailability in order to be 30 

therapeutically effective. Both dissolution and permeability of drugs play a key role in attaining 31 

adequate bioavailability (U.S. Department of Health and Human Services et al., 2008). Despite 32 

a large number of publications focusing on the solubility and dissolution enhancement of drugs 33 

through cocrystallization (Ahangar et al., 2023; Kataoka et al., 2023), the exploration of 34 

modulating drug intestinal permeability by cocrystallization has received little attention. With 35 

a few exceptions, papers on the topic of drug permeability modification by cocrystallization 36 

mostly demonstrated an improvement in flux of drug across a membrane, instead of 37 

permeability. For example, a recent study showed a permeability improvement of 9.69-fold by 38 

a salt cocrystal over the parent drug, milrinone (Meng et al., 2023). While there is a growing 39 

body of evidence that suggests the possibility for modulating intestinal permeability through 40 

cocrystallization, a mechanistic explanation is lacking. Since dissolved drug molecules have 41 

no memories of their solid-state predecessor, modifications of drug permeability must involve 42 

the coformer. A mechanistic understanding of any observed intestinal permeability 43 

enhancement by cocrystals will be extremely useful for developing guidelines for designing 44 

cocrystals with improved bioavailability (Bommaka et al., 2018; Mannava et al., 2021; 45 

Palanisamy et al., 2021; Sanphui et al., 2015). 46 

 Recently, three potential factors that can lead to the permeability modulation of a drug 47 

through cocrystallization were proposed: (i) drug-coformer intermolecular interactions and 48 
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structure-permeability correlation, (ii) solubility-dependent concentration gradient, and (iii) 49 

coformer induced lipophilicity and diminished molecular polarity (Pandey and Ghosh, 2022). 50 

These factors pertain to passive diffusion of drugs through membrane and their role in 51 

bioavailability enhancement still need to be experimentally established. Some issues that need 52 

to be addressed when studying the permeability of cocrystals include 1) distinction of flux from 53 

permeability, 2) consideration of the dissociation of drug-coformer complexes in solution 54 

media, and 3) measuring permeability under conditions resembling the real intestinal 55 

membrane where majority of absorption takes place (Diniz et al., 2020; Li et al., 2021; Seo et 56 

al., 2018; Suzuki et al., 2019). The dissociation of drug-coformer complexes upon dissolution 57 

of a cocrystal means the permeability modulation cannot be explained by the drug-coformer 58 

intermolecular interactions observed in cocrystals. Compared to polymeric membranes used 59 

for permeability using the Franz diffusion cell (FDC) (Ng et al., 2010), Caco-2 cell membranes 60 

more accurately simulate in vivo conditions in terms of both active and passive diffusion as 61 

well as the expression of efflux transporters. P-glycoprotein (Pgp), an ATP-dependent efflux 62 

pump, is a transmembrane protein expressed in the intestinal membrane, blood-brain barrier, 63 

liver, and kidneys (Varma et al., 2005). Pgp has the ability to “pump out” drugs from cells, 64 

making it a significant barrier to absorption and, thereby, oral bioavailability, of drugs that are 65 

Pgp substrates (Amin, 2013; El-Awady et al., 2017). Therefore, measuring permeability 66 

through a Caco-2 cell monolayer is more advantageous for understanding the effects of 67 

cocrystallization on intestinal permeability.  68 

 All-atom molecular dynamics (MD) simulations in the apo and halo states can 69 

potentially provide insights into how the presence of coformer molecules affects the 70 

interactions between drug molecules and a receptor, such as Pgp. This is achieved by 71 

comparing relative binding affinity of Pgp-drug complexes with and without the presence of 72 

coformer. Weakening of drug binding to Pgp by coformer molecules, e.g., competitively, non-73 

competitively, or allosterically (Amin, 2013), leads to less effective removal of the drug by Pgp 74 

(Seelig, 2020), which leads to enhanced intestinal permeability. If proven useful, the MD 75 

approach can be used to virtually select coformers capable of enhancing the intestinal 76 

permeability of drugs for more effective therapies through crystal engineering. 77 

In this work, we investigated the effects of cocrystallization on permeability of 78 

acetazolamide (ACZ), using a 1:1 cocrystal with p-aminobenzoic acid (PABA). ACZ is a 79 

Biopharmaceutics Classification System (BCS) class IV drug with low solubility and low 80 

permeability (Ghadi and Dand, 2017). 81 

 82 
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2. Material and Methods 83 

2.1 Materials 84 

Pure ACZ was obtained as a gift from Nakoda Chemicals Ltd. (Hyderabad, India). 85 

PABA was purchased from Sigma-Aldrich (St. Louis, Missouri, United States). All other 86 

inactive ingredients were of pharmaceutical grade. Solvents were purchased from Rankem 87 

(Gurgaon, Haryana). All analytical chemicals and solvents were used as received without 88 

further purification. Scheme 1 illustrates the chemical structures of ACZ and PABA.  89 

 90 

91 
Scheme 1: Chemical structures of (A) Acetazolamide and (B) p-aminobenzoic acid. 92 

 93 

2.2.1. Preparation of cocrystal 94 

 In this study, we prepared an ACZ-PABA cocrystal, equivalent to 500 mg ACZ, using 95 

a slurry technique. Here, 2.2 mmol of ACZ and 2.2 mmol of PABA were added to 2 mL of 96 

ethyl alcohol in a beaker, which was then sealed with parafilm. The slurry was stirred at room 97 

temperature for 24 hours, filtered, and dried at 50°C. We also determined the crystal structure 98 

of ACZ-PABA cocrystal (CCDC NO: 1984314), which is in agreement with that reported by 99 

Manin et.al. (CCDC NO. 1999205) (Manin et al., 2020). The detailed crystallographic 100 

methodology and crystal structural information (Table S1, Figure S1) can be found in the 101 

supporting information.   102 

 103 

2.2.2. Powder X-Ray diffraction (PXRD) 104 

PXRD data was collected using a Rigaku smart lab diffractometer (Model Miniflex 600; 105 

Rigaku, Tokyo, Japan) with Cu Kα radiation (λ = 1.5406 Å) at 40 kV (tube voltage) and 1 mA 106 

(tube current). Samples were placed on a sample holder and slightly compressed with a glass 107 

slide to ensure coplanarity of the sample surface with sample holder surface. X-ray patterns 108 

were recorded over a 2θ range of 3° to 40° with a step size of 0.02° at a rate of 10°/min. The 109 

PXRD of ACZ-PABA cocrystal was also calculated from its crystal structured (CCDC No. 110 

1999205) (Manin et al., 2020). 111 

2.2.3. Thermal analyses 112 

(A) (B) 



6 
 

A differential scanning calorimeter (DSC-4000, PerkinElmer, USA) was used for DSC 113 

analysis. Samples were hermetically sealed in aluminum pans and scanned over a range of 30 114 

to 300 °C at a heating rate of 10 °C/min under a dry nitrogen purge (20 mL/min). For TGA 115 

analysis, samples were kept in ceramic crucibles and scanned on a TGA-4000 (PerkinElmer, 116 

USA) over a range of 30 to 400 °C at 10 °C/min under continuous nitrogen gas purge (20 117 

mL/min). 118 

2.2.4. Dissolution 119 

Dissolution rate is more informative over equilibrium solubility for predicting 120 

bioavailability, especially for materials that undergo dissociation, such as cocrystal (Babu and 121 

Nangia, 2011). Therefore, powder dissolution and intrinsic dissolution studies were carried out 122 

for both the cocrystal and ACZ. As the solubility of ACZ-PABA cocrystal is independent of 123 

pH in the physiologically relevant pH range, both powder and intrinsic dissolution experiments 124 

were performed in 900 mL of 0.01N hydrochloric acid medium at 100 rpm, 37 ± 0.5 ºC, as 125 

prescribed by the U.S. Pharmacopoeia (Arenas-García et al., 2017). 126 

2.2.4.1. High performance liquid chromatography (HPLC) operating conditions 127 

The concentrations of ACZ in the solutions from dissolution studies were measured 128 

using an HPLC system (Thermo Fisher Scientific, UltiMate 3000) equipped with a photodiode 129 

array (PDA) detector. The HPLC system was controlled with workstation software 130 

Chromeleon 7 (version 7.2.10). A Syncronis C18 column (250 mm × 4.6 mm ID, 5µm particle 131 

size, Thermo Scientific, India) was used. The chromatographic separation was achieved using 132 

a gradient method using acetonitrile (solvent A) and 0.1% (v/v) orthophosphoric acid (solvent 133 

B) in the (v/v) ratio ranging from 80:20 to 85:15. The injection volume was 20 µL and total 134 

run time was 12 min. A calibration curve was prepared in the linearity range of 2-16 µg/mL 135 

and the absorbance of the eluents was monitored at a detection wavelength of 266 nm. Diluent 136 

used for sample preparation was acetonitrile and 0.1% (v/v) orthophosphoric acid in 85:15 (v/v) 137 

ratio.  138 

2.2.4.2. Powder dissolution 139 

During in vitro powder dissolution study, ~ 250 mg equivalent ACZ and ACZ-PABA 140 

cocrystal were placed in 900 mL of 0.01 N HCl.  Aliquots of 2 mL volume were withdrawn at 141 

specific time intervals, filtered through a 0.45 µm nylon membrane, and analysed by HPLC 142 

after proper dilution to attain a concentration within that of the predetermined calibration curve. 143 

2.2.4.3. Intrinsic dissolution 144 

 For the IDR experiment, ACZ (250 mg) or ACZ-PABA (equivalent to 250 mg of ACZ) 145 

was compressed to a disc using a hydraulic press at a pressure of 2.5 tons per square inch for 5 146 
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min. Aliquots (1 mL) were withdrawn at specified time intervals of 1, 2, 3, 4, 5, 10, 20, 30, 45, 147 

and 60 min, filtered through a 0.45 µm nylon membrane, and analyzed by HPLC following the 148 

same approach as that for powder dissolution. 149 

2.2.5. Caco-2 cell line permeability study  150 

The Caco-2 cell monolayer model was selected in the present investigation to assess 151 

the intestinal permeability of ACZ at pH 7.4. Following the standard procedure, Caco-2 cells 152 

were cultured in Dulbecco's Modified Eagle Medium (DMEM), containing 10% fetal bovine 153 

serum and antibiotics. All cells used in this study were between passages 38 and 50. Cells were 154 

plated in 96-well inserts (Corning, Sigma Aldrich, USA) and cultured for 21 days to reach 155 

confluence and cell differentiation. Initially, each insert containing the differentiated 156 

monolayers was carefully washed and filled with Hank's Balanced Salt Solution (HBSS with 157 

10 mM HEPES, pH 7.4). The integrity of the monolayer was examined using Lucifer Yellow 158 

(LY) rejection assay. Wells with less than 1% fluorescence intensity in relation to the Lucifer 159 

yellow dosing solution were deemed satisfactory for conducting permeability experiment, 160 

which was carried out in both the apical to basolateral (A→B) and basolateral to apical (B→A) 161 

directions. A sample corresponding to 5 µM of ACZ was introduced to the donor side and the 162 

system was maintained at 37 °C for 2.5 h without shaking under 5% CO2 and 95% relative 163 

humanity. Samples were collected from both the receiver and the donor compartments, diluted 164 

properly, and analyzed using LC-MS/MS (ABSciex API4000 triple quadrupole mass 165 

spectrometer, integrated to Prominense LC-20AD series (Shimadzu) LC system & CTC-PAL 166 

autosampler, USA). 167 

2.2.6. Molecular docking 168 

Molecular docking is one of the widely adopted methods to predict the binding pose of 169 

small molecules (ACZ and PABA here). In this study the 3D structures of ACZ and PABA, 170 

acting as ligands, were imported into AutodockTools (Morris et al., 2009), along with the target 171 

protein Pgp (PDB ID: 3G5U) (Aller et al., 2009) for molecular docking. According to the 172 

established protocol, pre-processing steps, such as adding polar hydrogens, calculating charges, 173 

and determining torsions, were taken (Morris et al., 2008; Thakur et al., 2022). The Kollman 174 

charges were calculated, and the atomic radii and AutoDock4 atom types were assigned. An 175 

exhaustiveness value of 20 was used. The grid size was selected to encompass the complete 176 

active site, with a spacing of 1.00 Å. For reference, all docked structures are provided in the 177 

supporting information (Figure S2). 178 

 179 

2.2.7. Molecular dynamics simulation 180 
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The complexes of Pgp protein with ACZ, PABA, and (ACZ + PABA) were subjected 181 

to molecular dynamics (MD) simulations. The enzyme complexes were solvated explicitly 182 

using an orthorhombic water box (TIP3P), extending 10 Å from the protein (Jorgensen et al., 183 

1983). The system's overall charge was neutralized by adding counter ions as required. The 184 

inhibitor was parameterized using the generalized Amber force field (GAFF2) (Vassetti et al., 185 

2019), while the protein topology file was generated using the ff14SB force field (Maier et al., 186 

2015). The MD simulations were performed using the GPU-enabled Amber18 pmemd engine.  187 

The simulation protocol included the initial minimization of water molecules and Na+ 188 

ions through the conjugate gradient (CG) method for 3,000 followed by 10,000 steps of 189 

minimization of the entire complex (protein, ligand, water, and ions), respectively, to achieve 190 

system stability. Subsequently, the system was gradually heated from 0 to 300 K over 50 ps 191 

using a constant NVT ensemble with a Berendsen thermostat and a temperature coupling value 192 

of 2.8 ps. To ensure the desired density, a 500 ps NPT ensemble simulation at 300 K and 1 atm, 193 

with temperature and pressure coupling values set to 2.0 ps, was performed. The system was 194 

then switched back to the NVT ensemble and equilibrated for an additional 500 ps. Following 195 

the minimization and equilibration phase, a 300 ns NVT production run was conducted 196 

(Badavath et al., 2022). Long-range electrostatics were accounted for using the particle mesh 197 

Ewald method, covalent bonds involving hydrogen atoms were constrained using the SHAKE 198 

algorithm, periodic boundary conditions were applied with a non-bonded cutoff distance of 12 199 

Å, and a time step of 1.0 fs was utilized. Analysis of the simulations was performed using 200 

cpptraj and ptraj programs from the AmberTools18 suite (Price et al., 2021; Roe and Cheatham, 201 

2018). 202 

The MM/PBSA (Molecular Mechanics/Poisson–Boltzmann Surface Area) methodology 203 

was originally developed Kollman and coworkers (Genheden and Ryde, 2015). Subsequent 204 

developmental efforts significantly enhanced this approach, making it a crucial tool for 205 

investigating ligand binding in diverse biological systems (Shaikh et al., 2015; Wang et al., 206 

2019). It is recognized as a reliable method in estimating the binding free energy of small 207 

molecules (Mohd Siddique et al., 2021), or peptides (Cáceres et al., 2018), identifying chirality 208 

(Nath et al., 2018), and even guiding target identification (Gangireddy et al., 2022). In this 209 

work, the binding affinity of ACZ and PABA was calculated using the MM/PBSA approach 210 

available within the Amber package. 211 

 212 

3. Results and Discussion  213 
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The powder X-ray diffraction (PXRD) pattern of the solid obtained from the ethyl alcohol 214 

slurry after 24 hours showed a good agreement with the PXRD pattern simulated from the 215 

single-crystal of the ACZ-PABA cocrystal (Figure 1A) (Manin et al., 2020). The formation of 216 

a 1:1 ACZ-PABA cocrystal is also supported by thermal analysis. The DSC curves (Figure 1B) 217 

showed a distinctive endotherm (217 °C) for the new solid, which lies in between those of ACZ 218 

(268 °C) and PABA (190 °C), supporting the formation of a new crystalline phase. The melting 219 

temperatures of ACZ and PABA in this study are in good agreement with those reported in the 220 

literature (Manin et al., 2020). Further, the TGA curves (Figure 1C) of ACZ, PABA, and the 221 

new solid ACZ-PABA cocrystal show no weight loss until melting, indicating thermal stability 222 

of these compounds before their respective melting temperatures.   223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

Figure 1. Solid-state characterization of Acetazolamide (ACZ), p-aminobenzoic acid (PABA), 233 
and ACZ-PABA. A) experimental PXRD patterns along with the pattern calculated from the 234 
ACZ-PABA crystal structure, B) DSC thermograms, and C) TGA thermograms. 235 

 236 
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The time taken to release half of the total drug dose (t0.5) from ACZ-PABA cocrystal (~ 5 237 

min) during powder dissolution (Figure 2A) is approximately one-third of pure ACZ (~ 15 238 

min). The improved dissolution profile of ACZ-PABA cocrystal over ACZ corroborates with 239 

the higher aqueous solubility of ACZ-PABA than ACZ. There was no measurable change in 240 

solution pH at the end of the powder dissolution experiments. 241 

The IDR of ACZ from ACZ-PABA (0.38 mg cm−2 min−1) is approximately 1.7 times that 242 

of pure ACZ (0.22 mg cm−2 min−1) (Figure 2B). The IDR ratio is comparable to that of the ratio 243 

in apparent solubility (Kumari et al., 2019). Thus, the higher solubility of the ACZ-PABA 244 

cocrystal leads to faster dissolution, as expected. This should favor passive diffusion of ACZ 245 

through cell membrane, driven by a higher concentration gradient.  246 

Figure 2. Dissolution profiles of ACZ (square, blue) and ACZ-PABA cocrystal (red, circle) 247 

(A) Powder dissolution; (B) Intrinsic dissolution. 248 

 249 

The Caco-2 cell lines apparent permeability coefficient (Papp) of both apical to 250 

basolateral transport (A  B) and basolateral to apical transport (B  A) and efflux ratios (R) 251 

of ACZ, PABA, and ACZ-PABA cocrystal are summarized in Table 1 and graphically shown 252 

in Figure 3. 253 

 254 

Table 1. Caco-2 cell permeability of ACZ, PABA, and ACZ-PABA cocrystal. 255 

System 

 

Papp (×10-6 cm‧s-1) 
Rc 

ABa BAb 

ACZ 0.85 ± 0.05 7.30 ± 1.00 8.59 ± 1.69 

PABA 0.35 ± 0.05 1.00 ± 0.00 2.86 ± 0.42 

ACZ-PABA  1.35 ± 0.05 6.75 ± 0.15 5.00 ± 0.29 

a Apical to basolateral transport, b Basolateral to apical transport, c efflux ratio = Papp (B→A)/Papp (A→B) 256 
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257 
Figure 1. Caco-2 cell permeability ACZ, PABA, and ACZ-PABA cocrystal. 258 

 259 

The comparison of the permeability values of ACZ, PABA, and ACZ-PABA showed 260 

that Papp(A→B) of ACZ-PABA was approximately 59% higher than ACZ (Table 1 and Figure 261 

3). The Papp(B→A) of ACZ-PABA is 11 % less than the pure ACZ. Consequently, the efflux 262 

ratio of ACZ-PABA cocrystal is lower than ACZ. The lower Papp(B→A) of ACZ-PABA 263 

excludes the possibility that a higher concentration gradient of the cocrystal is the dominating 264 

driving factor for ACZ to cross the cell membrane. Thus, the higher Papp(A→B) of ACZ-PABA 265 

should not be attributed to the higher solubility and dissolution rate of the cocrystal (Figure 2).   266 

However, the different Papp can be explained if 1) ACZ is a substrate of the Pgp efflux pump 267 

and 2) PABA inhibits the Pgp. This mechanism of competitive binding of ACZ and PABA to 268 

Pgp is further explored by MD simulation. 269 

 270 

The MM/PBSA method, which combines molecular mechanics energies with Poisson-271 

Boltzmann surface area continuum solvation, was employed to calculate the binding free 272 

energy of ACZ and PABA when they are bound to the Pgp receptor. This estimation was 273 

carried out over 300 ns MD trajectory, for ACZ and PABA individually, as well as in the 274 

presence of each other. The results of the study show that the binding of ACZ to the receptor 275 

Pgp is ~2 kcal/mol more favorable than the PABA (Table 2). An analysis of the individual 276 

energy contributions to the overall binding affinity shows that the van der Waals energy 277 

contribution (EvdW) and the non-polar solvation-free energy contribution (Gnp) approximately 278 

cancel each other (Table 2). However, the electrostatic energy contribution (Eel) for ACZ 279 

binding (-37.3 kcal/mol) surpasses that of PABA (-12.1 kcal/mol) by more than 3-fold, 280 

suggesting that the stronger electrostatic interaction is a primary factor favoring the binding of 281 
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ACZ to Pgp. In the presence of PABA, the binding affinity of ACZ to Pgp was reduced by ~ 2 282 

kcal/mol. This effect is expected to slow the efflux process of ACZ by Pgp, which leads to a 283 

lower Papp(B→A) and higher Papp(A→B). This is consistent with the experimental results 284 

summarized in Table 1.   285 

   286 

Table 2. Calculated binding free energy (in kcal/mol) for ACZ and PABA bound to Pgp 287 
receptor over 300 ns of trajectory obtained from MD simulations over four complexes (ACZ-288 
Pgp, PABA-Pgp, ACZ-PABA bound Pgp and PABA-ACZ bound Pgp). 289 
 290 

System *EvdW *Eel *Gpol *Gnp *ΔGbind 

ACZ -23.7 ± 2.1 -37.3 ± 8.6 52.6 ± 6.9 -2.7 ± 0.06 -11.1 ± 3.4 

PABA -21.7 ± 2.3 -12.1 ± 4.2 26.5 ± 4.3 -2.0 ± 0.08 -9.3 ± 2.9 

ACZ in presence of 

PABA 

-16.3 ± 3.2 -31.4 ± 10.4 40.4 ± 9.7 -1.8 ± 0.2 -9.2 ± 4.5 

PABA in presence 

of ACZ 

-18.9± 2.1 -9.71 ± 6.8 21.4 ± 4.6 -2.1 ± 0.1 -9.3 ± 2.9 

* EvdW = van der Waals energy, Eel = electrostatic energy, Gpol and Gnp = polar and nonpolar contributions to 291 
the solvation free energies, respectively.  292 

 293 

 To further elucidate the favorable binding of ACZ to Pgp than PABA, Root-mean-294 

square deviations (RMSDs) and root-mean-square fluctuations (RMSFs) of the backbone 295 

protein atoms were computed over the 300 ns trajectory for the various Pgp complexes. The 296 

analysis of RMSD enables us to understand the timescale required for the stabilization of the 297 

protein structure following the binding of ACZ or PABA. The results show that the Pgp protein 298 

quickly stabilizes (~20 ns) upon binding with ACZ, whereas both PABA and the (ACZ + 299 

PABA) complex take more than 150 ns to reach equilibrium (Figure 4). This faster stabilization 300 

of the ACZ-Pgp complex is consistent with its stronger binding affinity. 301 
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 302 

Figure 4. Root-mean-square deviation (RMSD) of the protein backbone atoms (N, Cα and C) 303 
for the Apo (brown) and holo states of Pgp protein bound to ACZ (green), PABA (red) and 304 
(ACZ + PABA) (blue) simulations relative to the first frame. 305 

 306 

The impact of ligand binding on protein dynamics can be investigated by analyzing the 307 

RMSF of positional changes over time compared to a reference structure. RMSF analysis of 308 

the Pgp protein does not show a significant difference in the pattern of fluctuation in response 309 

to ligand binding. However, smaller deviations from the reference structure have been observed 310 

on average for the Pgp + ACZ complex (Figure 5). We have computed the % change in the 311 

RMSF between different substrates bound to the Pgp receptor with respect to the Apo system, 312 

where binding of ACZ, PABA, or (ACZ + PABA) complex can cause residues to become more 313 

localized (positive change in the % change RMSF) or more flexible (negative change in the % 314 

change RMSF). Interestingly, the binding of ligands has shown to have a strong localized effect 315 

on protein. However, the binding of ACZ shows the highest % change in RMSF or is more 316 

localized in comparison to the binding of PABA, specifically in two regions (residues: 333-317 

350 and 800-880) that encompass the ligand binding site (Figure 6). The RMSD and RMSF 318 

analysis results collectively suggest an induced-fit mechanism for both ACZ and PABA. 319 

However, overall binding for ACZ is more stable and localized than PABA.   320 
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 321 

Figure 5. Root-mean-square fluctuations (RMSFs) by residue relative to the average energy 322 
structure for the Pgp protein backbone atoms (C, Cα, and N) in Apo (brown) state and holo 323 
state bound with ACZ (green), PABA (red) and (ACZ + PABA) (blue). 324 

 325 

 326 

Figure 2. Illustrating the average percent change in root-mean-square fluctuations (RMSF) 327 

Pgp receptor backbone atoms (N, Cα and C) upon binding with ACZ (green), PABA (red), and 328 
(ACZ + PABA) (blue). A positive change in RMSF shows that residues have become more 329 
localized and a negative change is indicative of enhanced fluctuations upon aptamer binding. 330 

 331 

In order to understand the strong electrostatic energy (Eel) contribution of ACZ binding 332 

to Pgp receptor, hydrogen bond analysis was carried out. Favorable electrostatic interaction 333 

between ACZ or PABA with Pgp was monitored over an entire trajectory and compared with 334 
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(ACZ+PABA) complex bound with Pgp. A very strong hydrogen bond between ACZ and 335 

G342 was observed, with a population of ~57%. However, this hydrogen bond was completely 336 

lost in the (ACZ+PABA) complex. Additionally, a weak hydrogen bond between ACZ and 337 

Q343 was reduced from ~21% to 4% in the (ACZ+PABA) complex (Table 3). These results 338 

suggest that the presence of PABA disrupts the favorable electrostatic interactions between 339 

ACZ and Pgp.  Hence, an inhibitory effect by PABA on the efflux process of ACZ is observed. 340 

Table 3. Hydrogen bonds formed between ACZ or PABA and the Pgp receptor over 300 ns of 341 
trajectory in three scenarios. 342 
 343 

Substrates Acceptor Donor %Occupancy Length Angle 

ACZ-

PABA 

E180@OE(1+2) ACZ@N1H1 25.4 2.7 158.6 

ACZ@OH D993@NH 6.7 2.9 155.5 

ACZ@O3 F990@NH 5.8 2.9 160 

ACZ@O3 S876@OGH 5.5 2.8 161.9 

ACZ@O1 Q878@NEH 5.1 2.9 161 

N347@OD1 ACZN4H 5.0 2.8 161.9 

Q343@OE1 ACZ@N1H 4.1 2.8 158.5 

D184@OD(1+2) ACZ@N1H 6.6 2.8 155.2 

N717@OD(1+2) PABA@O2H 15.9 2.7 160.3 

Q721@O PABA@O2H 11.0 2.7 155.1 

ACZ G342@O ACZ@N1H 56.9 2.8 163.2 

Q343@OE1 ACZ@N4H 20.8 2.8 159.3 

PABA S989@OG PABA@N1H 20.9 2.9 154.2 

Q191OE1 PABA@O2H 9.8 2.7 161.9 

S988@O PABA@N1H 9.3 2.8 157 

 344 

4. Conclusion 345 

Molecular insights into the enhancing intestinal permeability of ACZ by 346 

cocrystallization with PABA were attained in this work by molecular dynamics simulations. 347 

Our results show that, for the first time, the presence of PABA weakens the ACZ-Pgp complex 348 

stability and, hence, the effectiveness of the efflux process. Consequently, co-delivery of 349 

PABA in the form of an ACZ-PABA cocrystal leads to a lower Papp(B→A), a higher 350 

Papp(A→B), and a lower efflux ratio. This work suggests a mechanism for permeability 351 
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enhancement of drugs by cocrystallizing with a coformer capable of inhibiting their efflux 352 

process regulated by the Pgp transporter.  353 
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