

Enabling direct compression tablet formulation of celecoxib by simultaneously eliminating punch sticking, improving manufacturability, and enhancing dissolution through co-processing with a mesoporous carrier

Shubhajit Paul, Yiwang Guo, Chenguang Wang, Jiangnan Dun, Changquan Calvin Sun*

Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455

*Corresponding author

Changquan Calvin Sun, Ph.D.

9-127B Weaver-Densford Hall

308 Harvard Street S.E.

Minneapolis, MN 55455

Email: sunx0053@umn.edu

Tel: 612-624-3722

Fax: 612-626-2125

1 **ABSTRACT**

2 The development of a high quality tablet of Celecoxib (CEL) is challenged by poor dissolution,
3 poor flowability, and high punch sticking propensity of CEL. In this work, we demonstrate a
4 particle engineering approach, by loading a solution of CEL in an organic solvent into a
5 mesoporous carrier to form a coprocessed composite, to enable the development of tablet
6 formulations up to 40% (w/w) of CEL loading with excellent flowability and tablettability,
7 negligible punch sticking propensity, and a 3-fold increase in *in vitro* dissolution compared to
8 a standard formulation of crystalline CEL. CEL is amorphous in the drug-carrier composite
9 and remained physically stable after 6 months under accelerated stability conditions when the
10 CEL loading in the composite was \leq 20% (w/w). However, crystallization of CEL to different
11 extents from the composites was observed under the same stability condition when CEL
12 loading was 30-50% (w/w). The success with CEL encourages broader exploration of this
13 particle engineering approach in enabling direct compression tablet formulations for other
14 challenging active pharmaceutical ingredients.

15

16 **KEYWORDS:** Punch sticking, powder flow, dissolution rate, mesoporous carrier, direct
17 compression.

18

19 **1. INTRODUCTION**

20 The tablet is the most commonly used pharmaceutical dosage form to treat or alleviate
21 a disease condition in humans, because of better stability, higher patient-compliance, and lower
22 manufacturing cost compared to other dosage forms (Arshad et al., 2021). Among the different
23 processes for tablet manufacturing, direct compression (DC) is preferred if possible as the
24 process is devoid of solvent usage and the most economical since it involves fewer steps than
25 other processes. In fact, direct compression is an important route to continuous manufacturing
26 of tablets meeting established quality standards (Lee et al., 2015). A successful DC process
27 requires adequate tabletability and flowability of the formulations to ensure adequate
28 mechanical strength and content uniformity of the finished dosage forms (C. C. Sun, 2010). In
29 addition, formulation components should not stick to punches during compression, in order to
30 meet aesthetic standards of the tablet appearance by avoiding dull appearance or pitted surface
31 (Chattoraj et al., 2018). During large scale commercial manufacturing, such sticking problems
32 must be eliminated in order to avoid stoppage of compression operations needed for cleaning
33 and polishing of punches.

34 Celecoxib (CEL) is a non-steroidal anti-inflammatory drug (NSAID) frequently used
35 in the treatment of osteoarthritis and rheumatoid arthritis. Tablet product development of CEL
36 is challenging due to its poor dissolution performance (a weak acid with $pK_a=11.1$ and intrinsic
37 solubility of 3-7 $\mu\text{g}/\text{mL}$ in water) (Paulson et al., 2001) These problems have been addressed
38 using several solubilizing strategies, such as solid dispersion by spray drying (Fouad et al.,
39 2011), self-emulsifying drug delivery (Song et al., 2013), inclusion complexation (Sinha et al.,
40 2005), **pharmaceutically acceptable solvates (Wang and Sun, 2021)**, spherical crystallization
41 (Paradkar et al., 2002) and nanoparticles (Liu et al., 2010). Despite these efforts, tablet
42 products of CEL are still not yet available. A successful commercial CEL tablet product
43 requires effective resolution to these critical issues on manufacturability and slow dissolution.

44 Mesoporous materials have recently gained attention as a class of drug delivery carriers
45 due to their high specific surface areas, tunable pore size to accommodate diverse active
46 pharmaceutical ingredients (APIs), and excellent thermal stability (Bharti et al., 2015; Florek
47 et al., 2017; Slowing et al., 2008). Additionally, amorphous APIs with acceptable physical
48 stability can be achieved by confining API in the small pores of mesoporous carriers
49 (Baumgartner and Planinšek, 2021; Zolotov et al., 2021), which could enhance API dissolution.
50 Mesoporous carriers with different physico-chemical properties can be used to achieve
51 flexibility in API loading without significantly impacting manufacturability or content
52 uniformity (Sun et al., 2018). Here, we attempted to develop a DC tablet product of CEL by
53 overcoming key manufacturability issues identified above, while simultaneously improving
54 dissolution through using a CEL-carrier composite. We hypothesize that loading CEL inside
55 a porous carrier would significantly reduce the probability of punch sticking by minimizing
56 direct contact between CEL and punch surface during compression.

57

58 **2. MATERIALS AND METHODS**

59 **2.1. Materials**

60 Celecoxib (CEL, Form III, $d_{50} = 11.2 \mu\text{m}$) (Aarti Labs Pvt. Ltd., Karnataka, India) was
61 used as received. The same lot of CEL was also used in previous punch sticking studies (Paul
62 et al., 2017d, 2017b, 2017c). Neusilin[®] (US2, Fuji Chemical Industries PVt. Ltd., Toyama,
63 Japan) was employed as a mesoporous carrier. Microcrystalline cellulose (MCC; Avicel
64 PH102, FMC Biopolymer, Philadelphia, PA) and lactose monohydrate (LM; Fastflo[®],
65 Foremost Farms, Clayton, WI) were used as tablet filler. Croscarmellose sodium (NaCMC;
66 Ac-Di-Sol, /FMC Biopolymer, Philadelphia, PA) was used as a tablet disintegrant. Magnesium
67 stearate (MgSt; HyQualTM, Mallinckrodt, St Louis, MO) was used as a lubricant. Dimethyl

68 formamide (DMF; Sigma Aldrich, Saint Louis, MO) was used as a solvent to prepare CEL
69 solutions for loading into the carrier.

70 **2.2. Methods**

71

72 **2.2.1. Loading CEL in the carrier**

73 A constant ratio of Neusilin to solution 2:1 (w:v) was used so that solution fills most
74 pores in Neusilin. An appropriate amount of CEL was first dissolved in DMF (a class II
75 solvent) to form a solution with a desired concentration, which was then added dropwise into
76 Neusilin while being mixed with a spatula. The concentration of CEL in DMF was varied to
77 obtain 10-30% loading of CEL in Neusilin after drying. The moist powder was dried under
78 house vacuum at 50°C overnight to remove DMF. Higher loadings of 40% and 50% CEL were
79 achieved by repeated loading. The entrapment of CEL in Neusilin **was expected to be**
80 essentially 100% since all of the solution went inside the carrier particles and CEL remained
81 inside during drying. **This was confirmed by extracting CEL from the composite using both**
82 **methanol and ethanol (data not shown).** The amount of residual DMF was not quantified in
83 this work since it unlikely affects the assessed powder properties relevant to tablet
84 manufacturing. However, residual solvents should be carefully monitored per the ICH
85 guideline to make sure it does not exceed allowed safe levels in commercial tablets (ICH
86 Guideline, 2021).

87 **2.2.2. Powder blending, tableting, and sticking assessment**

88 Five DC formulations prepared in this work comprised of two control formulations
89 containing 20% as received crystalline CEL and three composite-based formulations (Table 1).
90 CEL-Neusilin composites containing 10%, 30% and 50% CEL were used to prepare DC
91 formulations containing 5%, 20% and 40% of overall CEL loading, respectively. These
92 formulations contained 4% NaCMC as a disintegrant and 1% MgSt as a lubricant. All the

93 constituents were passed through a mesh #30 standard sieve before being blended in a mixer
94 (Turbula, Glen Mills Inc., Clifton, NJ) for 3 min at 50 rpm. All blends were kept in ambient
95 temperature and 33% relative humidity (RH), over a saturated MgCl₂ solution (O'Brien, 1948),
96 for 2 days prior to compaction.

97 **Table 1.** Compositions of different DC formulations

Formulation	CEL (%)	CEL-Neusilin composite (%)	Neusilin (%)	MCC (%)	Lactose (%)	NaCMC (%)	MgSt (%)
Control 1	20	-	30	45	-	4	1
Control 2	20	-	-	45	30	4	1
Drug-carrier 5F	-	50 ^a	-	45	-	4	1
Drug-carrier 20F	-	66 ^b	-	29	-	4	1
Drug-carrier 40F	-	80 ^c	-	15	-	4	1

98 CEL loading in composite: *a* = 10%, *b* = 30%, and *c* = 50%.

99

100 Tablets were prepared by compressing a powder with a 9.5 mm flat-faced punches over
101 a pressure range of 25-300 MPa on a compaction simulator (Presster; Metropolitan Computing
102 Corp., NJ) at a tableting speed corresponding to 25 ms dwell time (corresponding to 49,300
103 tablets/h) by simulating Korsch XL100 press (10 stations).

104 Sticking assessment was conducted using an upper punch with a removable flat-faced
105 tip (round, 12.7 mm diameter) at a compaction pressure of 150 MPa to compress a total of 50
106 tablets for each formulation. The punch tip was removed and weighed after every 10 tablets to
107 determine the amount of mass adhered on to the punch face. After each removal, the punch tip
108 was weighed three times on a digital balance with precision of 0.01 mg and the average was
109 reported. The cumulative amount of mass adhered after 50 compactions was used to quantify
110 sticking propensity.

111 **2.2.3. Powder flowability**

112 The flow properties of different formulations were accessed in triplicate using a ring
113 shear cell tester under ambient condition (23°C and 20% - 25% RH). A preshear stress of 3
114 kPa was used with normal stress of 500, 1000, 1500, 2000 and 2500 Pa during shear testing to
115 construct a yield locus. Unconfined yield strength (f_c) and major principal stress (σ_n) were
116 obtained from each yield locus by drawing Mohr's circles. The flowability index, ff_c , was
117 calculated using Eq. (1).

$$118 \quad ff_c = \frac{\sigma_n}{f_c} \quad (1)$$

119 **2.2.4. Powder true density determination**

120 As water can be adsorbed by MCC, NaCMC and Neusilin, true density of each powder
121 blend, ρ_t , was determined by nonlinear regression of tablet density (ρ) vs. P data according to
122 Eq. 2 (Sun, 2004). This method was more suitable than helium pycnometry for determining
123 true density of moisture-containing powders (Chang and Sun, 2017; C. (Calvin) Sun, 2005;
124 Sun, 2008).

$$125 \quad P = \frac{1}{C} \left[\left(1 - \varepsilon_c \right) - \frac{\rho}{\rho_t} - \varepsilon_c \ln \left(\frac{1 - \frac{\rho}{\rho_t}}{\varepsilon_c} \right) \right] \quad (2)$$

126 Accurate ρ_t is critical for calculating accurate ε using Eq. 3 for reliable analyses of powder
127 compression performance (Paul et al., 2017a; C. C. Sun, 2005).

$$128 \quad \varepsilon = 1 - \frac{\rho}{\rho_t} \quad (3)$$

129 **2.2.5. Tablet diametrical breaking test**

130 Tablets were broken on a texture analyzer (Texture Technologies Corp., Surrey, UK)
131 at 0.01 mm/s. Using Eq. 4, tablet tensile strength (σ) was calculated from the breaking force
132 (F), tablet diameter (D), and thickness (h) (Fell and Newton, 1970).

133
$$\sigma = \frac{2F}{\pi \cdot D \cdot h} \quad (4)$$

134 **2.2.6. Compressibility analysis**

135 The tablet porosity (ε) - compaction pressure (P) data were analyzed by nonlinear
136 regression using Eq. 5 (Kuentz and Leuenberger, 1999).

137
$$P = \frac{1}{C} \left[\varepsilon - \varepsilon_c - \varepsilon_c \ln \left(\frac{\varepsilon}{\varepsilon_c} \right) \right] \quad (5)$$

138 A total of 12-15 tablets were compressed over 20-300 MPa for each formulation. Two
139 parameters, $1/C$ and ε_c , related to plasticity of the material and the critical porosity were
140 obtained from curve fitting (Paul and Sun, 2017; Sun, 2017).

141 **2.2.7. Compactibility analysis**

142 Compactibility profile (σ vs. ε) of each formulation was analyzed by non-linear
143 regression of data using Eq. 6 (Ryshkewitch, 1953).

144
$$\sigma = \sigma_0 e^{-b \cdot \varepsilon} \quad (6)$$

145 Where σ_0 is the maximum tensile strength of the tablet attained at zero porosity and b is an
146 empirical constant that quantifies sensitivity of σ to changes in ε . σ_0 can be used to quantify the
147 apparent bonding strength.

148 **2.2.8. Expedited friability analysis**

149 A separate set of 12-15 tablets were compressed over 25-300 MPa pressure range and
150 subjected to impact and attrition in a friabilator (Pharma Alliance Group Inc., Model F2, Santa
151 Clarita, CA) for 4 min at 25 rpm. Each tablet was weighed before and after the test and the
152 percent weight loss for each tablet was determined and plotted against pressure to determine
153 the minimum pressure required for obtaining tablets with weight loss of less than 1.0%.

154 **2.2.9. Solid State properties of the composites**

155 **2.2.9.1. PXRD**

156 Samples of Neusilin loaded with different amounts of CEL were scanned over a 2θ
157 range of 5° – 35° on a wide angle X-ray diffraction instrument (X’Pert Pro; PANalytical Inc.,
158 West Borough, MA) using Cu $K\alpha$ radiation (45 kV and 40 mA) at a step size of 0.0167° and a
159 dwell time of 1.15 s. The percent crystallinity of CEL in composites was determined by PXRD
160 from the calibration plot of total area of all peaks over the 2θ range of 5 – 35° as a function of
161 proportion of crystalline CEL (5–60%) in a physical mixture with Neusilin. All the
162 diffractograms were baseline corrected before peak area determination.

163 **2.2.9.2. Thermal analyses**

164 Degradation temperature was determined using a thermogravimetry analyzer (Q50; TA
165 Instruments) by heating each sample at $10\text{ }^\circ\text{C}/\text{min}$ to $350\text{ }^\circ\text{C}$. The maximum temperature in
166 subsequent DSC experiments was kept lower than the degradation temperature to avoid
167 contamination to the DSC cell of a differential scanning calorimeter (DSC; Q2000; TA
168 Instruments, New Castle, DE). Samples were heated to $180\text{ }^\circ\text{C}$ at a heating rate of $10\text{ }^\circ\text{C}/\text{min}$
169 under $50\text{ mL}/\text{min}$ nitrogen gas purge. An empty aluminum pan was used as reference in all
170 cases.

171 **2.2.9.3. Karl Fischer titration (KFT)**

172 KFT was performed using a Metrohm 831 KF coulometer, equipped with a Metrohm
173 703 Ti Stand mixer (Metrohm Inc., Riverview, FL, USA). Briefly, 50 mg of sample was
174 directly added to the thermostatic titration vessel containing reagent solution. The amount of
175 water in a sample is determined voltammetrically by applying Faraday’s law to calculate the
176 amount of water reacted with iodine, which is generated from an iodide containing reagent
177 under constant current. A start and stop drift of $10\text{ }\mu\text{g}/\text{min}$ was used. Each sample was tested
178 in triplicate.

179 **2.2.9.4. IR spectroscopy**

180 IR spectra of CEL, Neusilin, and 30% CEL loaded composite were recorded on a FTIR
181 spectrophotometer (Nicolet iS50; Thermo Scientific, Waltham, MA) with a built-in diamond
182 attenuated total reflection (ATR). Data was collected over the range of 400-4000 cm^{-1} at a
183 resolution of 4 cm^{-1} and 32 scans was processed to obtain an average spectrum using OMNIC
184 9.2 software.

185 **2.2.9.5. Raman spectroscopy**

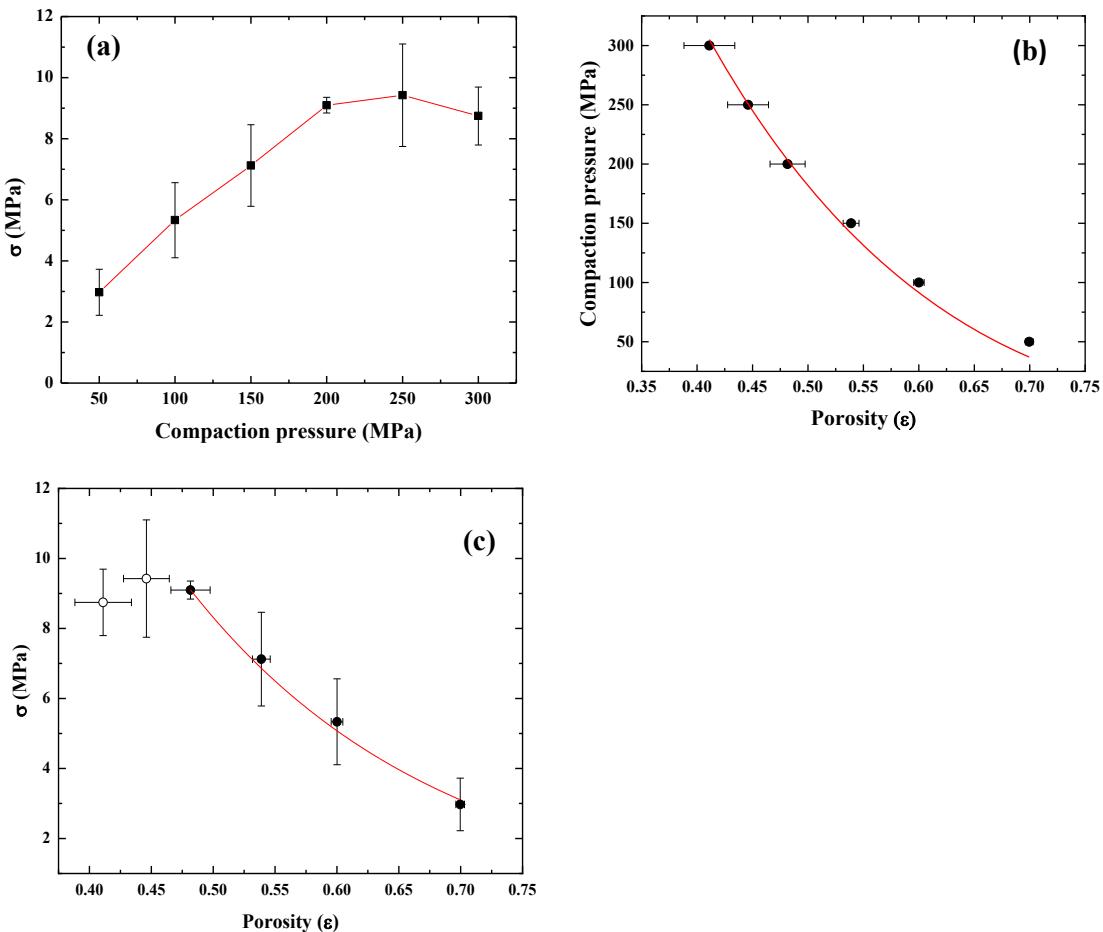
186 Raman spectra of CEL, Neusilin, and 30% CEL loaded composite were recorded on a
187 Raman microscope (Alpha300 R, WITec, Ulm, Germany). A point of interest in the powder
188 was focused with a 100x magnification lens and an average of two spectra was obtained using
189 a source laser (532 nm) at an integration time of either 1s (for CEL and carrier) or 10 s (for the
190 composite).

191 **2.2.9.6. In vitro dissolution**

192 The *in vitro* dissolution of different formulations was evaluated using an artificial
193 stomach and duodenum (ASD) apparatus. It consists of two jacketed beakers with temperature
194 controlled at 37 °C by a water bath. This apparatus simulates stomach and duodenum fluid
195 transfer by regulating the flow using a programmatically controlled peristaltic pump
196 (Masterflex, L/S Easy-Load II, Cole-Parmer, Vernon Hills, IL).

197 To simulate human physiological conditions in the fast state, experiments were
198 conducted with 0.01 N HCl (pH = 2) for the stomach and 0.1 M sodium phosphate buffer (pH
199 = 6.8) for the duodenum. The initial volume of the stomach chamber was 250 mL, which was
200 decreased to 50 mL by first-order emptying with a half-life of 15 min. The duodenum volume
201 was maintained at 30 mL throughout the entire study, achieved by setting a vacuum line in the
202 duodenum chamber at a calibrated height. In addition, the chambers were infused with fresh

203 gastric or duodenal secretion liquid at 2 mL/min to mimic *in vivo* secretion processes. Drug
204 concentration was monitored by a fiber optic UV/Vis probe. Mixing was achieved by an
205 overhead paddle stirrer in the stomach chamber and a magnetic stirrer in the duodenum
206 chamber. Calibration of all pumps and spectrometers were performed before each run. CEL
207 release from the CEL-Neusilin 20F and Control 2 formulations were determined. Dissolution
208 media were degassed to avoid generation of bubbles that might affect the real-time
209 concentration detection with a UV dip probe.


210 **2.2.9.7. Statistical analysis**

211 The statistical mean difference between two set of data of interest was determined by
212 student's t-test method at a statistical significance level of $p = 0.05$ using Origin Pro software
213 (v17; Northampton, MA, USA).

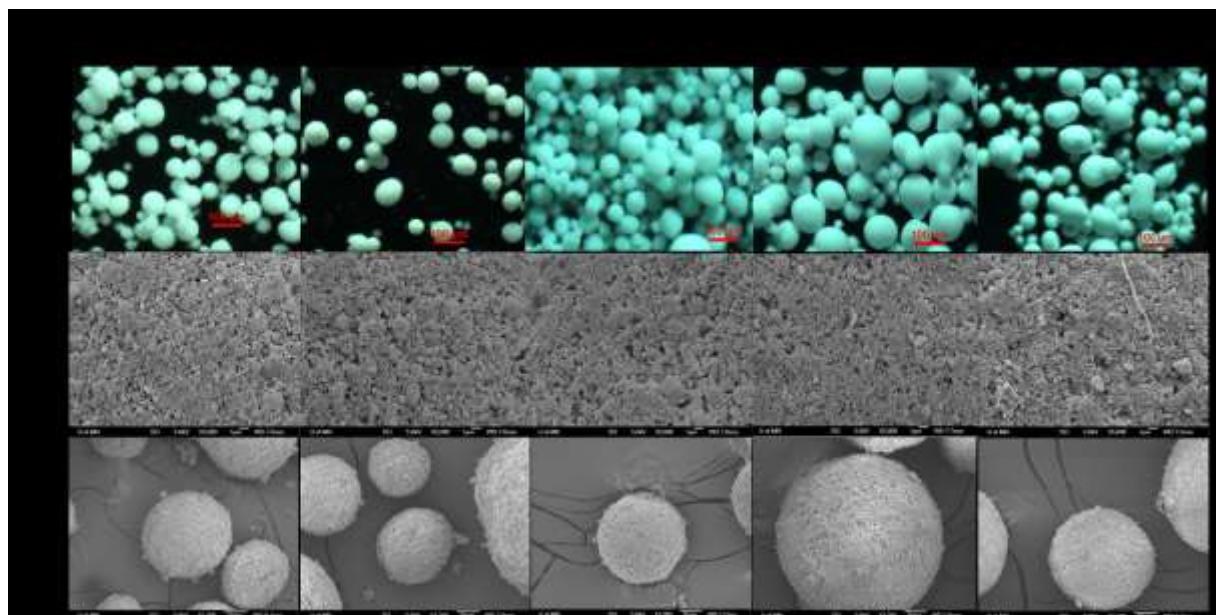
214 **3. RESULTS AND DISCUSSION**

215 **3.1. Baseline characterization of the carrier**

216 Various mesoporous carriers from different manufacturers and different grades from
217 the same manufacturer differ in solvent retention capacity (SRC) and compactibility. A greater
218 SRC would allow a higher drug loading in the carrier while greater compactibility would favor
219 the compression of tablets. We chose Neusilin US2, a magnesium aluminometasilicate, in this
220 work because of its high SRC, neutral slurry pH (Sun et al., 2018), pharmaceutically acceptable
221 safety profile for use in oral solid dosage form (Almotairy et al., 2023; Rowe et al., 2009), and
222 excellent tabletability (Fig. 1a).

223

224 **Figure 1.** Compression properties of Neusilin US2 ($n = 3$), a) Tableability, b) compressibility
 225 and c) compactibility (two points at the lowest porosities were excluded from non-linear
 226 regression because they are overcompressed).

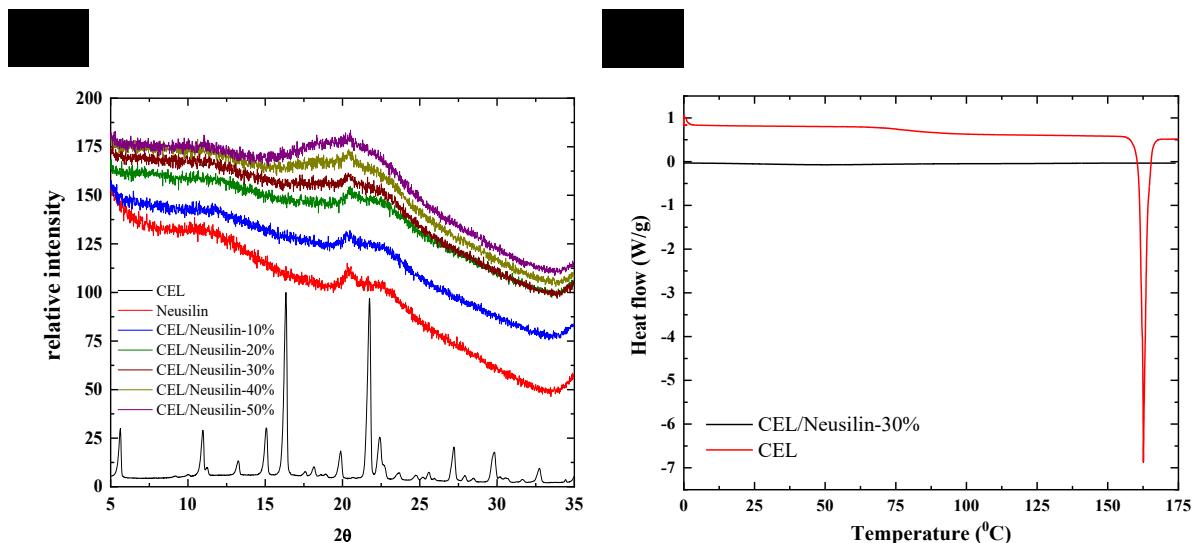

227

228 Tablet porosity of Neusilin gradually decreases with increasing pressure, where a
 229 porosity of 0.41 was attained at 300 MPa (Fig. 1b). The slow pore elimination of Neusilin
 230 corresponds to a high $1/C$ value ($1,409 \pm 153$ MPa). By this measure, Neusilin is significantly
 231 harder than lactose ($1/C = 504 \pm 19$ MPa), significantly softer than anhydrous dicalcium
 232 phosphate ($1/C = 4203 \pm 77$ MPa), but close to a 60% DCPA and 40% mixture with MCC ($1/C$
 233 = 1117 ± 95 MPa) (Paul and Sun, 2017; Vreeman and Sun, 2021). To address the expected
 234 high ejection force during manufacturing of tablets of hard materials (Sun, 2015), 1% MgSt
 235 was incorporated in all formulations in this work. Neusilin also showed high apparent bonding
 236 strength (σ_0) of ~90 MPa (Fig. 1c).

237

238 **3.2. Impact of CEL loading on particle size and morphology**

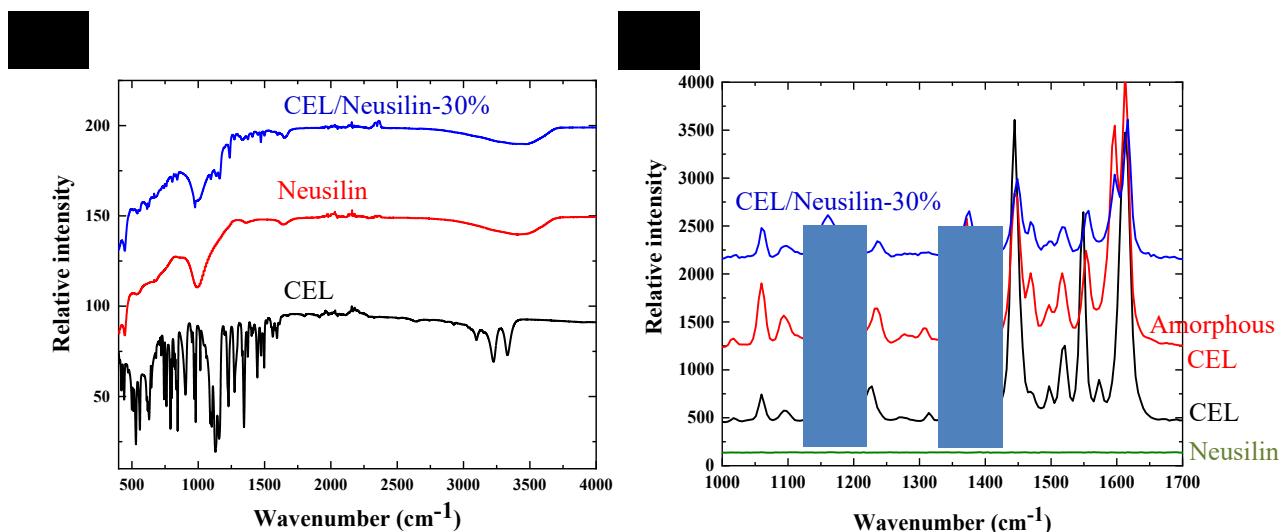
239 Neusilin particles are largely spherical, 50-100 μm in diameter, with many open pores
240 visible under high magnification (Fig. 2a). Loading of CEL up to 30% (w/w) did not cause
241 obvious change in the size and shape of Neusilin (Fig. 2), indicating CEL was loaded inside
242 the pores of Neusilin, instead of coating Neusilin particles. However, slight size enlargement
243 was observed for composites of 40% and 50% CEL loadings prepared by the process of
244 repeated drug loading-drying cycles (Fig. 2). No difference in surface texture was observed in
245 the composites up to 30% loading, with pores clearly visible without extraneous particles.
246 However, some fiber-like CEL particles were observed at 40% and 50% loadings (Fig. 2b,c).


247

248 **Figure 2.** Morphology and surface textures of various CEL-Neusilin composites observed
249 under (a) optical microscope (scale bar – 100 μm), and (b) SEM (scale bar = 1 μm), and (c)
250 SEM (scale bar = 10 μm).

251

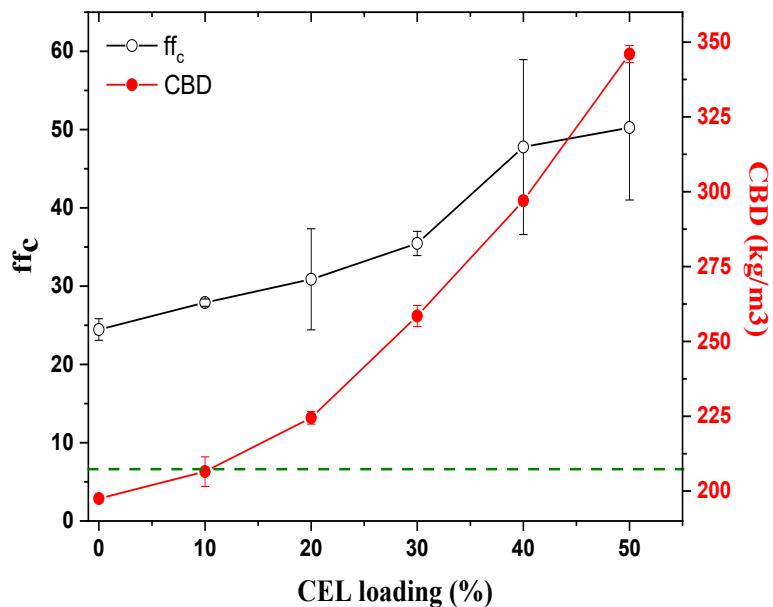
252 **3.3. Solid-state properties of the composite**


253 The absence of diffraction peaks in PXRD patterns suggests no crystalline CEL in
 254 composites, containing up to 50% CEL (Fig. 3a). The DSC thermogram showed no melting
 255 event for 30% CEL loaded composite. Melting of crystalline CEL (form III) at 160.8 °C was
 256 consistent as previously reported (Wang and Sun, 2019). The absence of X-ray diffraction
 257 peaks and melting events in the DSC thermograms of CEL-Neusilin composite also eliminate
 258 the possibility of a crystalline DMF solvate of CEL (Bond and Sun, 2020; Chawla et al., 2003).

259
 260 **Figure 3.** (a) X-ray diffractograms of CEL, Neusilin US2, and CEL-Neusilin composites (10-
 261 50% loading), (b) DSC thermograms of crystalline CEL and CEL-Neusilin composite at 30%
 262 loading.

263 The amount of DMF in the composite was probed by combining two methods, i.e. water
 264 content determination by KFT and weight loss by TGA. The as-received Neusilin had ~16%
 265 water content, which was slightly reduced to ~14% after vacuum drying (Fig. S2a). The CEL-
 266 Neusilin 30% composite had ~8% water content by KFT. The TGA data (Fig. S2b) indicates
 267 the corresponding weight loss of ~8% up to 220 °C, which is well above the boiling point of
 268 DMF (153 °C). These findings suggest that the amount of DMF solvent in the composite was
 269 negligible.

270 The IR spectra showed several signature peaks of the crystalline CEL and Neusilin (Fig.
 271 4a). In CEL, the asymmetric and symmetric stretching frequencies of N-H were observed at
 272 3332 and 3326 cm^{-1} and aromatic stretching of C-H at 3097 cm^{-1} . The S=O (1331 and 1062
 273 cm^{-1}) and C-F stretching (1403 and 1374 cm^{-1}) and N-H bending (1596 and 1562 cm^{-1}) were
 274 also observed in the CEL fingerprint region. Neusilin exhibited broad O-H signature peak at
 275 3415 cm^{-1} , corresponding to the presence of several silanol groups. In addition, a characteristic
 276 peak of Al-O-Si group was observed at 993 cm^{-1} . In contrast, the spectrum of CEL-Neusilin
 277 composite appears to be that of Neusilin overlaid with weak signals of CEL in the fingerprint
 278 region. This could be attributed to only 30% presence of CEL in the composite and limited
 279 penetration depth of the IR light rays into the composite particles, since CEL remains inside
 280 Neusilin particles.

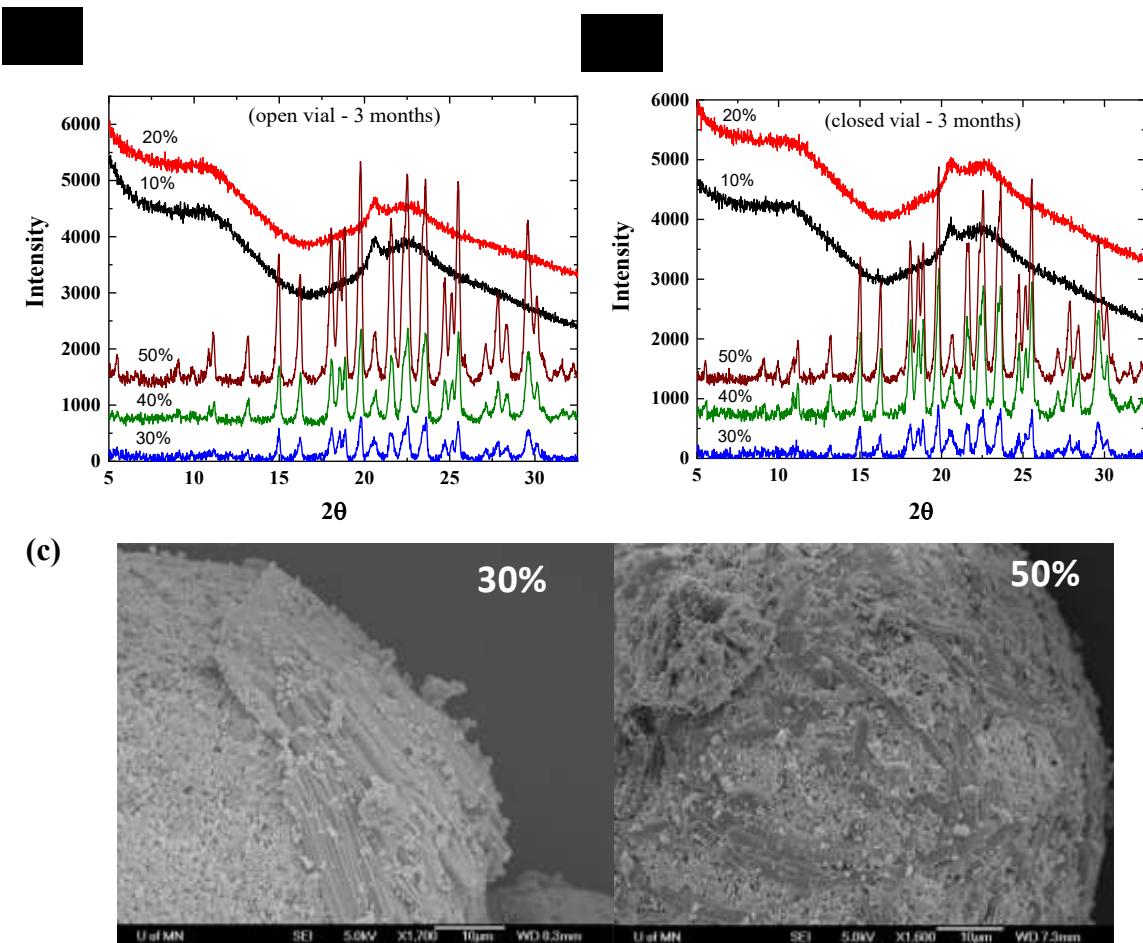

281
 282 **Figure 4.** (a) IR and (b) Raman spectra for crystalline CEL, Neusilin, and CEL-Neusilin
 283 composite. Raman spectrum of amorphous CEL is shown for comparison, where regions of
 284 spectroscopic difference are shaded.

285
 286 Raman spectra of various powders were also collected to further gain insights into the
 287 nature of CEL in the composites (Fig. 4b). Neusilin did not show any Raman signal. The

288 symmetric S=O stretching of crystalline CEL was observed at 1160-1200 cm^{-1} where
289 broadened peaks with low intensity were observed for CEL-Neusilin composite, matching with
290 that of amorphous CEL obtained by cryomilling. This is consistent with the amorphous nature
291 of CEL in the composite, suggested by PXRD and DSC. Similar observation was noted for C-
292 F stretching at 1230 cm^{-1} and N-H bending vibrations at 1560 cm^{-1} (Andrews et al., 2010). The
293 blue shift of N-H bending for both the composite and amorphous CEL to a higher frequency
294 suggests N-H groups are involved in stronger interactions than those in the crystalline CEL.
295 CEL in the composite and the amorphous form both exhibited a doublet around 1620 cm^{-1}
296 (Andrews et al., 2010), which could be ascribed to combined vibration of C-C with amino
297 stretching (Tammer, 2004). Overall, the spectroscopic data support that CEL inside Neusilin
298 particles is in amorphous state.

299 **3.4. Flowability of composite powders**

300 The flowability indices, ff_c , of all the composites were significantly higher than that of
301 Avicel PH102 (Fig. 5), implying excellent flowability (Sun CC, 2010). The ff_c values increased
302 with increasing CEL loading, which is in part due to increased particle density with increasing
303 CEL loading in Neusilin. This is confirmed by the increase in consolidated bulk density (CBD)
304 with increasing CEL loading (Fig. 5).


305

306 **Figure 5.** Flowability index and consolidated bulk density (CBD) of various Neusilin and
 307 CEL-Neusilin composites ($n = 3$). The horizontal dashed line indicates the ff_c of Avicel
 308 PH102.

309

310 **3.5. Physical stability of composites**

311 The physical stability of composites with different CEL loadings was studied under
 312 accelerated stability conditions at 40 °C/75% RH per the ICH guideline. Both open and closed
 313 vials were used to allow the separation of the influence of heat and moisture on physical
 314 stability of composites. After 3 months of exposure to the stressed stability conditions in both
 315 open and closed vials, 10% and 20% CEL loaded composites did not show any crystalline
 316 peaks in their X-ray diffractograms, indicating excellent physical stability (Fig. 6a,b).
 317 However, crystalline CEL peaks appeared for composites containing 30% or more CEL in both
 318 open and closed vials, where peak intensity increased with increasing CEL loading (Fig. 6a,b).

319

320 **Figure 6.** Different CEL-Neusilin after 3 months of exposure to stressed stability conditions
 321 (a) PXRD of samples under open conditions; (b) PXRD of samples under closed conditions
 322 and (c) SEM of samples under open conditions.

323

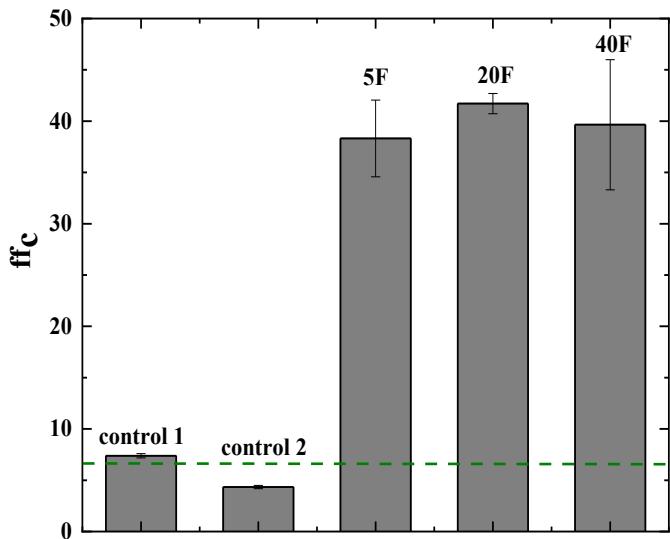
324 Using the calibration curve constructed with a set of physical mixtures of crystalline
 325 CEL and Neusilin in different proportions (Fig. S1a), the percent crystallinity of samples after
 326 storage under different stability conditions was estimated. Under open condition, the percent
 327 crystallized CEL at the end of a 3 months period, was essentially the same as that after 6 months
 328 (Table 2). Thus, crystallization of CEL had mostly completed after 3 months under this
 329 condition.

330 **Table 2.** Percent crystallinity of CEL-Neusilin composites under different stressed stability
 331 conditions.

CEL in composite (%)	% CEL crystallized			
	3 months		6 months	
	closed vial	open vial	closed vial	open vial
10	0	0	0	0
20	0	0	0	0
30	2.3 ± 0.02	2.6 ± 0.4	2.4 ± 0.01	2.6 ± 0.01
40	5.3 ± 0.8	7.9 ± 0.7	6.5 ± 0.3	7.6 ± 0.4
50	12.4 ± 1.8	14.8 ± 0.7	12.8 ± 1.3	13.5 ± 0.5

332

333 SEM revealed the appearance of elongated features on the surface of the carrier in the
 334 composites containing 30% and 50% CEL (Fig. 6c), which encompassed a greater area for 50%
 335 CEL composite. In combination with the X-ray data, these new features are attributed to
 336 crystalline CEL formed during stability storage. The crystallized CEL content increased with
 337 increasing CEL loading in the composites (Table 2). The extent of crystallization was only
 338 slightly lower in closed vials than that in open vials, implying that 75% RH only minimally
 339 impacted crystallization of amorphous CEL after a prolonged period. It is possible that
 340 crystallization at earlier time points could be faster under the open conditions. However, this
 341 requires a separate stability study to establish. It is useful to point out that the PXRD data
 342 suggested incomplete crystallization of amorphous CEL in 30%, 40%, and 50% CEL-loaded
 343 composites. For example, in 30% CEL-loaded composite after storage for 6 months, 2.4%
 344 (under closed conditions) and 2.6% (under open conditions) crystalline CEL was detected i.e.
 345 27.6% and 27.4% of CEL remained amorphous. For the 40% CEL-loaded composite, 33.5%
 346 (closed vial) and 32.4% (open vial) CEL remained amorphous. Similarly, for the 50% CEL-
 347 loaded composite, 37.2% (closed vial) and 36.5% (open vial) CEL remained amorphous.
 348 These results are consistent with the observation that no crystalline CEL was detected in
 349 composites containing 10% and 20% CEL because they affirm that up to 27% amorphous CEL
 350 in composites remain physically stable even under stressed stability conditions.


351 **3.6. Evaluation of the suitability of composites for DC formulations**

352 Characterization results of the CEL-Neusilin composites suggest good physical
353 stability and excellent powder properties, which make them suitable for developing a DC tablet
354 formulation. To this end, the five DC formulations in Table 1 were prepared and systematically
355 evaluated based on tablet manufacturability and key performance of tablets.

356

357 **3.6.1. Flowability of formulations**

358 For both control formulations, 20% CEL loading drastically reduces the flowability,
359 despite only DC grade excipients with good flowability were used. The flowability of the
360 control 1 formulation was comparable to that of Avicel PH102 (Fig. 7), indicating its marginal
361 flowability for a high speed tableting process (Sun CC, 2010). When Neusilin was replaced
362 by LM in the control 2 formulation, the flowability was significantly lower than that of Avicel
363 PH102, indicating inadequate flowability to sustain a high speed tablet manufacturing process.
364 In contrast, all three CEL-Neusilin composite based formulations had similar and excellent
365 flow, as shown by very high ff_c values (Fig. 7). The flowability of these formulations are
366 expected to be excellent for a high speed tablet manufacturing process. The insensitivity of
367 flowability to CEL loading in composite is consistent with the fact that CEL remained in the
368 pores of the carrier particles. Thus, its impact on the size and morphology of composite
369 particles is small (Fig. 2).

370
371 **Figure 7.** Flowability index of control and composite based CEL formulations (n = 3). The
372 horizontal dashed line indicates the *ffc* of Avicel PH102.

373

374 **3.6.2. Tableting performance of formulations**

375 The tableting performance of the five formulations followed the ascending order of control 2 <
376 control 1 < CEL-Neusilin-40F < CEL-Neusilin -20F \approx CEL-Neusilin-5F (Fig. 8a). The
377 apparent bonding strength of the formulations, assessed by σ_0 , also followed a similar order,
378 control 2 < control 1 < CEL-Neusilin-40F < CEL-Neusilin-5F < CEL-Neusilin-20F (Fig. S3c
379 and Table 3). The significantly better tableting performance of control 1 formulation than control 2
380 formulation (Fig. 8a) is attributed to the excellent tableting performance of Neusilin than lactose. Among
381 the three composite based formulations, the tableting performance of 5F and 20F formulation was similar
382 in the entire pressure range (Fig. 8a). Tablet tensile strength of 40F formulation is similar to
383 5F and 20F formulations when compaction pressure is < 100 MPa, but significantly lower when
384 pressure is > 150 MPa (Fig. 8a). It is useful to note that tablet porosity of the 40F formulation
385 is always lower than that of 5F formulation, which means higher bonding area of the 40F
386 formulation than the 5F formulation. Hence, the lower tableting performance of the 40F formulation at

387 high pressures is attributed to its lower apparent bonding strength (Table 2), according to the
388 bonding area-bonding strength interplay model (Osei-Yeboah et al., 2016; Paul et al., 2020).

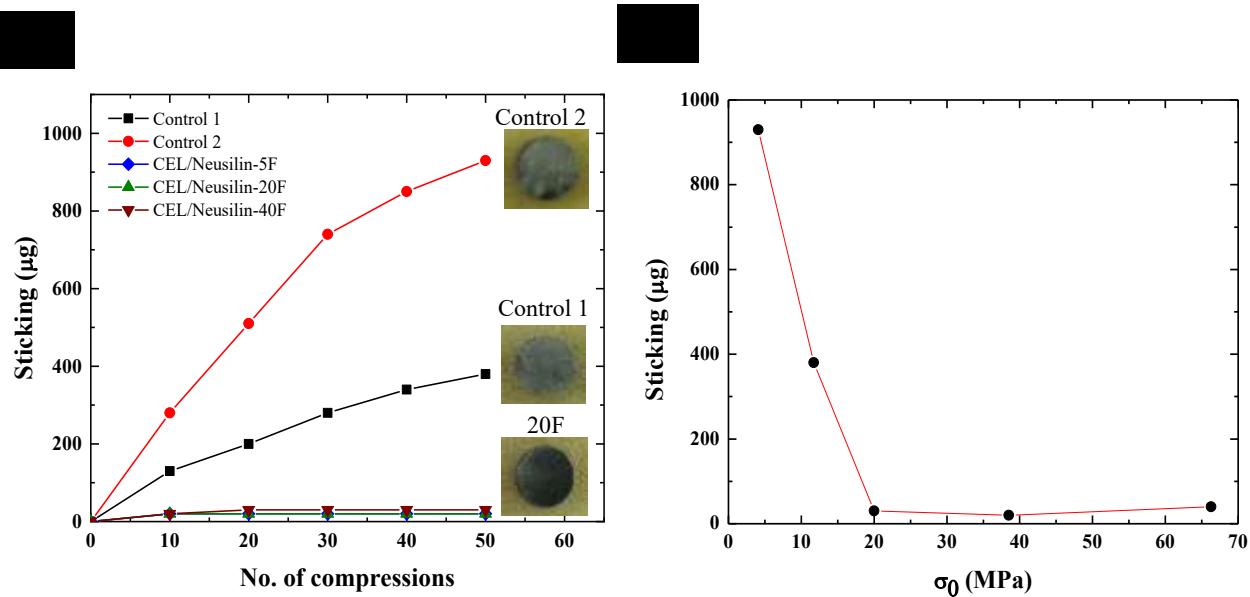
389 **Table 3.** Compressibility and compactibility analysis of different formulations of CEL.
390 Standard errors of fitting are shown in parentheses.

Formulations	KL fitting			Ryshkewitch fitting	
	1/C (MPa)	ϵ_c	R^2	σ_0 (MPa)	R^2
Control 1	292.0 (14.6)	0.82 (0.02)	0.997	11.7 (0.6)	0.97
Control 2	298.8 (16.2)	0.84 (0.02)	0.996	4.1 (0.06)	0.995
CEL-Neusilin-5F	199.9 (4.9)	0.88 (0.01)	0.999	38.5 (4.3)	0.968
CEL-Neusilin-20F	138.0 (13.9)	0.7 (0.04)	0.992	66.3 (10.7)	0.975
CEL-Neusilin-40F	379.4 (8.1)	0.89 (0.008)	0.999	20 (2.0)	0.961

391
392 As expected, friability is lower when tableability is higher, owing to their stronger
393 resistance to particle dislodging during impact (Fig. 8b). Only control 2 formulation showed
394 more than 1.0% friability below 100 MPa pressure, while all other formulations could produce
395 tablets that pass the USP friability criterion (< 1.0%) even when compressed at pressures as
396 low as 25 MPa. The ability to make sufficiently strong tablets at relatively low pressures is
397 beneficial for APIs that are sensitive to mechanical stress, such as solid form change (Fabbiani
398 and Pulham, 2006) and loss of biological activities of therapeutic microbial or fragile proteins
399 (Klukkert et al., 2015).

400

401


402 **Figure 8.** Tableting (a) and friability (b) profiles of different formulations. Each point
403 represents result from a single tablet.

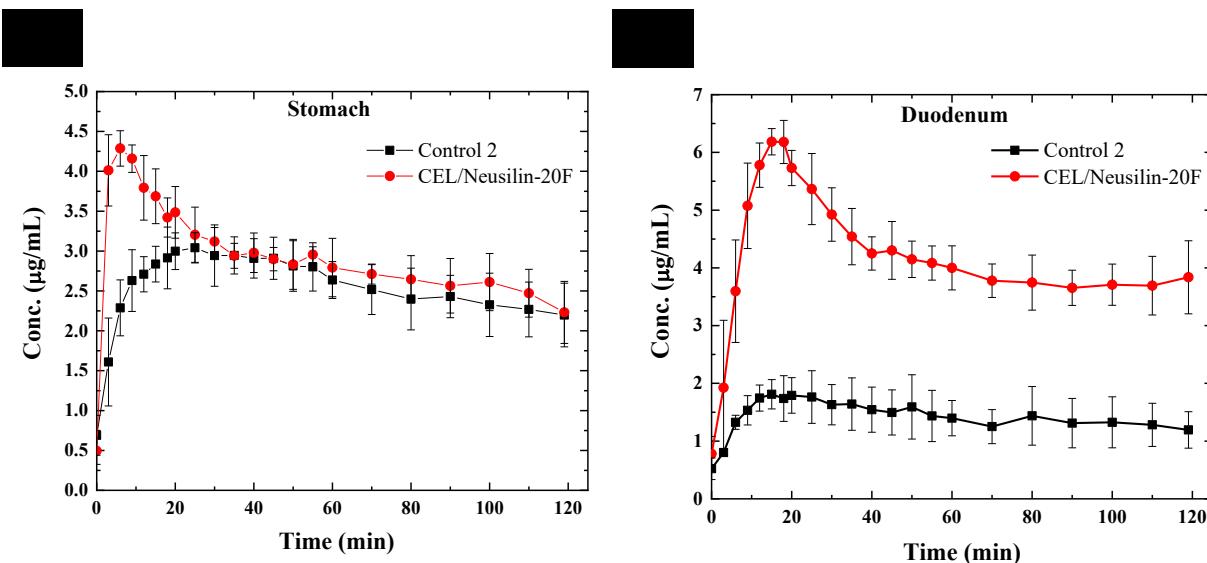
404

405 The consolidation behaviors of the five formulations differed as indicated by the
406 parameter $1/C$ (Table 3 and Fig. S3), which quantifies plasticity of a powder (Kuentz and
407 Leuenberger, 1999; Paul and Sun, 2017). By this measure, replacing LM with Neusilin did not
408 affect the deformability of Control 1 and 2 formulations because of their similar $1/C$ values
409 (Table 3). The plasticity of the three CEL-Neusilin composite based formulations follows the
410 order of 20F > 5F > 40F (Table 3). With a lower proportion of plastic MCC in the formulation,
411 the plasticity of CEL-Neusilin-20F formulation was surprisingly higher than 5F formulation.
412 A possible explanation is that a composite containing more CEL may be more plastic so that it
413 compensates the impact by the lower amount of MCC. However, the $1/C$ of CEL Neusilin-
414 40F (containing 80% of composite of 50% CEL loading) was higher than those of 5F and 20F
415 formulations. Thus, the overall plasticity of these formulations is a complex of interplay
416 between the impact of CEL loading on plasticity of the composite and weight fraction of the
417 composite in formulation. A dedicated study would be required to fully understand the
418 underlying mechanisms.

419 **3.6.3. Punch sticking propensity of formulations**

420 CEL exhibits a high punch sticking propensity, where severe punch sticking was
421 observed in DC formulations at $\leq 20\%$ CEL loading (Paul and Sun, 2018). Hence, punch
422 sticking is a key manufacturing problem that must be addressed in order to develop a DC tablet
423 formulation of CEL. The high sticking propensity of CEL was confirmed in this work using
424 control formulations 1 and 2. The lower sticking propensity of control 1 is consistent with its
425 higher tabletability (Fig. 8a). For the same API, a formulation having a stronger bonding among
426 particles in tablet tends to exhibit lower punch sticking (Paul and Sun, 2018). However, punch
427 sticking is still severe even for Control 1 formulation. In contrast, formulations of CEL-
428 Neusilin composite exhibited no sticking to punch (clean punch tip after 50 tablets), even for
429 the formulation containing 40% CEL (Fig. 9a). When all five formulations are considered, the
430 severity of punch sticking followed a nonlinear negative dependence with σ_0 (Fig. 9b).
431 Although the stronger bonding strength of the three composite based formulations does favor
432 lower punch sticking propensity of CEL, a more important reason is the fact that CEL residing
433 inside the pores of Neusilin does not come in contact with punch tip, unless extensive fracture
434 of the composite particle occurred. Even in that case, the probability of CEL directly interacts
435 with punch tip is still low. The assessment results clearly show that co-processing CEL with
436 Neusilin is effective in mitigating, if not eliminating, punch sticking of CEL. The strategy
437 should be universally applicable for reducing punch sticking problem of other APIs.

438


439 **Figure 9.** Dependence of sticking on (a) number of compressions (each point represents result
440 from a single tablet.) and (b) bonding strength of five different DC formulations of CEL.

441

442 3.6.4. Dissolution performance of formulations

443 The dissolution performance of a representative composite based CEL tablet, CEL-
444 Neusilin-20F, was evaluated using an artificial stomach and duodenum apparatus (ASD). The
445 ASD more closely mimics the physiological conditions in human guts than the USP dissolution
446 apparatus because it simulates the pH in stomach and duodenum and transfer both liquid and
447 particles from stomach to duodenum. The drug concentration – time profile in the duodenum
448 chamber was shown to be proportional to bioavailability of BCS class II APIs (Carino et al.,
449 2010, 2006). Thus, it is a reliable *in vitro* dissolution method for rank ordering *in vivo*
450 bioavailability of different formulations of the same BCS II API. At 20% loading, the
451 dissolution profile of the CEL-Neusilin-20F composite formulation in the stomach chamber is
452 higher than that of the control 2 formulation (Fig. 10a). The maximum CEL concentration at
453 ~10 min is 4.3 μg/mL, which is 40% higher than the peak concentration at ~ 23 min for the
454 control 2 formulation. The higher dissolution rate of the CEL-Neusilin formulation is
455 attributed to the amorphous nature of CEL (Fig. 3). After 10 min, the CEL concentration

456 decreased quickly to become approximately the same as that from the control formulation at
457 30 min, indicating crystallization of CEL from the supersaturated solution.

458
459 **Figure 10.** Dissolution profiles of tablets ($n = 3$) containing a total of 20% CEL (either CEL-
460 Neusilin or as-received) in (a) stomach chamber and (b) duodenum chamber.

461
462 The concentration-time profile of CEL in the duodenum chamber showed a marked
463 difference between the two formulations, where the composite based formulation showed
464 significantly higher concentration profile and the area under the time-concentration profiles
465 (AUC) (Fig. 10b). It reached a peak concentration of $6.5 \mu\text{g/mL}$ at ~ 20 min, which is more
466 than 3 times that of the control 2 formulation ($2 \mu\text{g/mL}$). The AUC of the CEL-Neusilin
467 composite based formulation (20F) is also approximately 3 times that of the control 2
468 formulation. Even without further formulation optimization, the composite based formulation
469 already exhibits much improved dissolution performance than the control formulation. If
470 desired, a higher CEL concentration of the composite based formulation could be achieved
471 through the general strategy of incorporating a sufficient amount of an effective precipitation

472 inhibitor in the formulation (Bi et al., 2011; Budiman et al., 2022; Guo and Sun, 2022; Ozaki
473 et al., 2013; Yamashita and Sun, 2019).

474

475 **4. Conclusion**

476 This study shows the high potential of particle engineering to enable direct compression
477 formulation of a challenging API, CEL, by forming composites with a mesoporous carrier. Up
478 to 50% CEL could be loaded into Neusilin US2 by repeated loading, which remained
479 amorphous after loading. Amorphous CEL undergoes partial crystallization under stressed
480 conditions when the CEL loading was $\geq 30\%$ (w/w), but remained physically stable at $\leq 20\%$
481 CEL loading even under stressed stability conditions. When the composite was used in a
482 formulation, flowability, tablettability, and punch sticking performance were all excellent,
483 indicating a high possibility to developing a DC formulation amenable for high speed tablet
484 manufacturing. By the measure of AUC in the duodenum, the bioavailability of the composite
485 based tablet formulation (20% drug loading) is more than 3 times that of the formulation
486 containing the same amount of crystalline CEL. Further property enhancement of the
487 composite is possible, if needed. Thus, this approach may find broad applications in
488 developing robust DC tablet formulations with excellent manufacturability and dissolution
489 performance.

490 **Acknowledgement**

491 We thank Kunlin Wang for providing the Raman data of amorphous celecoxib.

REFERENCE

Almotairy, A., Almutairi, M., Althobaiti, A., Alyahya, M., Sarabu, S., Zhang, F., Bandari, S., Ashour, E., Repka, M.A., 2023. Investigation of hot melt extrusion process parameters on solubility and tablettability of atorvastatin calcium in presence of Neusilin® US2 79, 104075.
<https://doi.org/10.1016/j.jddst.2022.104075>

Andrews, G.P., Abu-Diak, O., Kusmanto, F., Hornsby, P., Hui, Z., Jones, D.S., 2010. Physicochemical characterization and drug-release properties of celecoxib hot-melt extruded glass solutions. *J Pharm Pharmacol* 62, 1580–1590. <https://doi.org/10.1111/j.2042-7158.2010.01177.x>

Arshad, M.S., Zafar, S., Yousef, B., Alyassin, Y., Ali, R., AlAsiri, A., Chang, M.-W., Ahmad, Z., Elkordy, A.A., Faheem, A., Pitt, K., 2021. A review of emerging technologies enabling improved solid oral dosage form manufacturing and processing. *Adv Drug Del Rev* 178, 113840. <https://doi.org/10.1016/j.addr.2021.113840>

Baumgartner, A., Planinšek, O., 2021. Application of commercially available mesoporous silica for drug dissolution enhancement in oral drug delivery. *Eur J Pharm Sci* 167, 106015. <https://doi.org/10.1016/j.ejps.2021.106015>

Bharti, C., Nagaich, U., Pal, A.K., Gulati, N., 2015. Mesoporous silica nanoparticles in target drug delivery system: A review. *Int J Pharm Investigation* 5, 124–133. <https://doi.org/10.4103/2230-973x.160844>

Bi, M., Kyad, A., Kiang, Y.-H., Alvarez-Nunez, F., Alvarez, F., 2011. Enhancing and Sustaining AMG 009 Dissolution from a Matrix Tablet Via Microenvironmental pH Modulation and Supersaturation 12, 1157–1162. <https://doi.org/10.1208/s12249-011-9679-x>

Bond, A.D., Sun, C.C., 2020. Intermolecular interactions and disorder in six isostructural celecoxib solvates. *Acta Crystallographica Section C* 632–638. https://doi.org/https://scripts.iucr.org/cgi-bin/biblio_page?sk3751

Budiman, A., Citraloka, Z.G., Muchtaridi, M., Sriwidodo, S., Aulifa, D.L., Rusdin, A., 2022. Inhibition of Crystal Nucleation and Growth in Aqueous Drug Solutions: Impact of Different Polymers on the Supersaturation Profiles of Amorphous Drugs—The Case of Alpha-Mangostin. *Pharmaceutics* 14. <https://doi.org/10.3390/pharmaceutics14112386>

Carino, S.R., Sperry, D.C., Hawley, M., 2010. Relative bioavailability of three different solid forms of PNU-141659 as determined with the artificial stomach-duodenum model. *J. Pharm. Sci.* 99, 3923–3930. <https://doi.org/10.1002/jps.22236>

Carino, S.R., Sperry, D.C., Hawley, M., 2006. Relative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum model. *J. Pharm. Sci.* 95, 116–125. <https://doi.org/10.1002/jps.20495>

Chang, S.-Y., Sun, C.C., 2017. Superior Plasticity and Tabletability of Theophylline Monohydrate. *Mol Pharm*, *Mol Pharm* 14, 2047–2055. <https://doi.org/10.1021/acs.molpharmaceut.7b00124>

Chattoraj, S., Daugherty, P., McDermott, T., Olsofsky, A., Roth, W.J., Tobyn, M., 2018. Sticking and Picking in Pharmaceutical Tablet Compression: An IQ Consortium Review. *J. Pharm. Sci.*, *Journal of Pharmaceutical Sciences* 107, 2267–2282. <https://doi.org/10.1016/j.xphs.2018.04.029>

Chawla, G., Gupta, P., Thilagavathi, R., Chakraborti, A.K., Bansal, A.K., 2003. Characterization of solid-state forms of celecoxib. *Eur J Pharm Sci* 20, 305–317. [https://doi.org/10.1016/s0928-0987\(03\)00201-x](https://doi.org/10.1016/s0928-0987(03)00201-x)

Fabbiani, F.P.A., Pulham, C.R., 2006. High-pressure studies of pharmaceutical compounds and energetic materials. *Chem Soc Rev* 35, 932–942. <https://doi.org/10.1039/b517780b>

Fell, J.T., Newton, J.M., 1970. Determination of tablet strength by the diametral-compression test. *J. Pharm. Sci.* 59, 688–691. <https://doi.org/10.1002/jps.2600590523>

Florek, J., Caillard, R., Kleitz, F., 2017. Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. *Nanoscale* 9, 15252–15277. <https://doi.org/10.1039/c7nr05762h>

Fouad, E.A., EL-Badry, M., Mahrous, G.M., Alanazi, F.K., Neau, S.H., Alsarra, I.A., 2011. The use of spray-drying to enhance celecoxib solubility. *Drug Dev Ind Pharm* 37, 1463–1472. <https://doi.org/10.3109/03639045.2011.587428>

Guideline, ICH., 2021. IMPURITIES: GUIDELINE FOR RESIDUAL SOLVENTS Q3C(R8).

Guo, Y., Sun, C.C., 2022. Formulation strategies for mitigating dissolution reduction of p-aminobenzoic acid by sodium lauryl sulfate through diffusion layer modulation. *Int J Pharm* 611, 121310. <https://doi.org/10.1016/j.ijpharm.2021.121310>

Klukkert, M., Weert, M. van de, Fanø, M., Rades, T., Leopold, C.S., 2015. Influence of Tableting on the Conformation and Thermal Stability of Trypsin as a Model Protein 104, 4314–4321. <https://doi.org/10.1002/jps.24672>

Kuentz, M., Leuenberger, H., 1999. Pressure susceptibility of polymer tablets as a critical property: A modified heckel equation. *J. Pharm. Sci.* 88, 174–179. <https://doi.org/10.1021/js980369a>

Lee, S.L., O'Connor, T.F., Yang, X., Cruz, C.N., Chatterjee, S., Madurawe, R.D., Moore, C.M.V., Yu, L.X., Woodcock, J., 2015. Modernizing Pharmaceutical Manufacturing: from Batch to Continuous Production 10, 191–199. <https://doi.org/10.1007/s12247-015-9215-8>

Liu, Y., Sun, C., Hao, Y., Jiang, T., Zheng, L., Wang, S., 2010. Mechanism of dissolution enhancement and bioavailability of poorly water soluble celecoxib by preparing stable amorphous nanoparticles. *J Pharm Pharm Sci* 13, 589–606. <https://doi.org/10.18433/j3530j>

O'Brien, F E M, 1948. The Control of Humidity by Saturated Salt Solutions. *Journal of Scientific Instruments* 25, 73. <https://doi.org/10.1088/0950-7671/25/3/305>

Osei-Yeboah, F., Chang, S.Y., Sun, C.C., 2016. A critical examination of the phenomenon of bonding Area - bonding strength Interplay in powder tableting. *Pharm. Res., Pharm Res* 33, 1126–32. <https://doi.org/10.1007/s11095-016-1858-8>

Ozaki, S., Kushida, I., Yamashita, T., Hasebe, T., Shirai, O., Kano, K., 2013. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs. *Journal of Pharmaceutical Sciences* 102, 2273–2281. <https://doi.org/10.1002/jps.23588>

Paradkar, A.R., Pawar, A.P., Chordiya, J.K., Patil, V.B., Ketkar, A.R., 2002. Spherical Crystallization of Celecoxib. *Drug Dev Ind Pharm* 28, 1213–1220. <https://doi.org/10.1081/ddc-120015354>

Paul, S., Chang, S.-Y., Sun, C.C., 2017a. The phenomenon of tablet flashing — Its impact on tabletting data analysis and a method to eliminate it. *Powder Technol, Powder Technology* 305, 117–124. <https://doi.org/10.1016/j.powtec.2016.09.054>

Paul, S., Sun, C.C., 2018. Modulating Sticking Propensity of Pharmaceuticals Through Excipient Selection in a Direct Compression Tablet Formulation. *Pharm Res, Pharm Res* 35, 113. <https://doi.org/10.1007/s11095-018-2396-3>

Paul, S., Sun, C.C., 2017. The suitability of common compressibility equations for characterizing plasticity of diverse powders. *Int J Pharm* 532, 124–130. <https://doi.org/10.1016/j.ijpharm.2017.08.096>

Paul, S., Taylor, L.J., Murphy, B., Krzyzaniak, J., Dawson, N., Mullarney, M.P., Meenan, P., Sun, C.C., 2017b. Mechanism and Kinetics of Punch Sticking of Pharmaceuticals. *J Pharm Sci, J Pharm Sci* 106, 151–158. <https://doi.org/10.1016/j.xphs.2016.07.015>

Paul, S., Taylor, L.J., Murphy, B., Krzyzaniak, J.F., Dawson, N., Mullarney, M.P., Meenan, P., Sun, C.C., 2017c. Powder properties and compaction parameters that influence punch sticking propensity of pharmaceuticals. *Int J Pharm, Int J Pharm* 521, 374–383. <https://doi.org/10.1016/j.ijpharm.2017.02.053>

Paul, S., Wang, C., Sun, C.C., 2020. Tabletability Flip – Role of Bonding Area and Bonding Strength Interplay 109, 3569–3573. <https://doi.org/10.1016/j.xphs.2020.09.005>

Paul, S., Wang, K., Taylor, L.J., Murphy, B., Krzyzaniak, J., Dawson, N., Mullarney, M.P., Meenan, P., Sun, C.C., 2017d. Dependence of Punch Sticking on Compaction Pressure—Roles of Particle Deformability and Tablet Tensile Strength. *J Pharm Sci, J Pharm Sci* 106, 2060–2067. <https://doi.org/10.1016/j.xphs.2017.04.059>

Paulson, S.K., Vaughn, M.B., Jessen, S.M., Lawal, Y., Gresk, C.J., Yan, B., Maziasz, T.J., Cook, C.S., Karim, A., 2001. Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. *J Pharmacol Exp Ther* 297, 638–45.

RC, R., PJ, S., ME, Q., 2009. *Handbook of Pharmaceutical Excipients*.

Rowe, R.C., Sheskey, P.J., Quinn, M.E., 2009. *Handbook of Pharmaceutical Excipients: 6th Edition*.

Ryshkewitch, E., 1953. Compression Strength of Porous Sintered Alumina and Zirconia. *J Am Ceram Soc* 36, 65–68. <https://doi.org/10.1111/j.1151-2916.1953.tb12837.x>

Sinha, V.R., Anitha, R., Ghosh, S., Nanda, A., Kumria, R., 2005. Complexation of celecoxib with β -cyclodextrin: Characterization of the interaction in solution and in solid state. *J. Pharm. Sci.* 94, 676–687. <https://doi.org/10.1002/jps.20287>

Slowing, I.I., Vivero-Escoto, J.L., Wu, C.-W., Lin, V.S.-Y., 2008. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. *Adv Drug Deliver Rev* 60, 1278–1288. <https://doi.org/10.1016/j.addr.2008.03.012>

Song, W.H., Park, J.H., Yeom, D.W., Ahn, B.K., Lee, K.M., Lee, S.G., Woo, H.S., Choi, Y.W., 2013. Enhanced dissolution of celecoxib by supersaturating self-emulsifying drug delivery system (S-SEDDS) formulation. *Arch Pharm Res* 36, 69–78. <https://doi.org/10.1007/s12272-013-0011-z>

Sun, C. (Calvin), 2005. True Density of Microcrystalline Cellulose. *J. Pharm. Sci., J Pharm Sci* 94, 2132–2134. <https://doi.org/10.1002/jps.20459>

Sun, C. (Calvin), 2004. A Novel Method for Deriving True Density of Pharmaceutical Solids Including Hydrates and Water-Containing Powders. *J. Pharm. Sci., J Pharm Sci* 93, 646–653. <https://doi.org/10.1002/jps.10595>

Sun, C.C., 2017. Microstructure of Tablet—Pharmaceutical Significance, Assessment, and Engineering. *Pharm Res, Pharmaceutical Research* 34, 918–928. <https://doi.org/10.1007/s11095-016-1989-y>

Sun, C.C., 2015. Dependence of ejection force on tableting speed-A compaction simulation study. *Powder Technol, Powder Technology* 279, 123–126.

Sun, C. C., 2010. Setting the bar for powder flow properties in successful high speed tableting. *Powder Technol, Powder Technology* 201, 106–108. <https://doi.org/10.1016/j.powtec.2010.03.011>

Sun, Changquan Calvin, 2010. Setting the bar for powder flow properties in successful high speed tableting. *Powder Technol, Powder Technology* 201, 106–108. <https://doi.org/https://doi.org/10.1016/j.powtec.2010.03.011>

Sun, C.C., 2008. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. *Int J Pharm, Int J Pharm* 346, 93–101. <https://doi.org/10.1016/j.ijpharm.2007.06.017>

Sun, C.C., 2005. Quantifying Errors in Tableting Data Analysis Using the Ryshkewitch Equation Due to Inaccurate True Density. *J Pharm Sci, J Pharm Sci* 94, 2061–2068. <https://doi.org/10.1002/jps.20421>

Sun, W.-J., Aburub, A., Sun, C.C., 2018. A mesoporous silica based platform to enable tablet formulations of low dose drugs by direct compression. *Int J Pharm* 539, 184–189. <https://doi.org/10.1016/j.ijpharm.2018.01.049>

Tammer, M., 2004. G. Sokrates: Infrared and Raman characteristic group frequencies: tables and charts. *Colloid Polymer Sci* 283, 235–235. <https://doi.org/10.1007/s00396-004-1164-6>

Vreeman, G., Sun, C.C., 2021. Mean yield pressure from the in-die Heckel analysis is a reliable plasticity parameter. *Int J Pharm* 3, 100094.

Wang, K., Sun, C.C., 2019. Crystal Growth of Celecoxib from Amorphous State: Polymorphism, Growth Mechanism, and Kinetics. *Crystal Growth & Design* 19, 3592–3600. <https://doi.org/10.1021/acs.cgd.9b00597>

Wang, K., Sun, C.C., 2021. Direct compression tablet formulation of celecoxib enabled with a pharmaceutical solvate, *Int J Pharm* 596, 120239. <https://doi.org/10.1016/j.ijpharm.2021.120239>

Yamashita, H., Sun, C.C., 2019. Expedited Tablet Formulation Development of a Highly Soluble Carbamazepine Cocrystal Enabled by Precipitation Inhibition in Diffusion Layer. *Pharm Res* 36, 90. <https://doi.org/10.1007/s11095-019-2622-7>

Zolotov, S.A., Demina, N.B., Zolotova, A.S., Shevlyagina, N.V., Buzanov, G.A., Retivov, V.M., Kozhukhova, E.I., Zakhoda, O.Y., Dain, I.A., Filatov, A.R., Cheremisin, A.M., 2021. Development of novel darunavir amorphous solid dispersions with mesoporous carriers. *Eur J Pharm Sci* 159, 105700. <https://doi.org/10.1016/j.ejps.2021.105700>