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ABSTRACT
The use of algorithmic decision making systems in domains which

impact the financial, social, and political well-being of people has

created a demand for these to be “fair” under some accepted notion

of equity. This demand has in turn inspired a large body of work

focused on the development of fair learning algorithms which are

then used in lieu of their conventional counterparts. Most anal-

ysis of such fair algorithms proceeds from the assumption that

the people affected by the algorithmic decisions are represented as

immutable feature vectors. However, strategic agents may possess

both the ability and the incentive to manipulate this observed fea-

ture vector in order to attain a more favorable outcome. We explore

the impact that strategic agent behavior can have on group-fair

classification. We find that in many settings strategic behavior can

lead to fairness reversal, with a conventional classifier exhibiting

higher fairness than a classifier trained to satisfy group fairness.

Further, we show that fairness reversal occurs as a result of a group-

fair classifier becoming more selective, achieving fairness largely

by excluding individuals from the advantaged group. In contrast, if

group fairness is achieved by the classifier becoming more inclusive,
fairness reversal does not occur.
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1 INTRODUCTION
The increasing deployment of algorithmic decision making systems

in social, political, and economic domains has brought with it a de-

mand that fairness of decisions be a central part of algorithm design.

While the specific notion of fairness appropriate to a domain is

often a matter of debate, several have come to be commonly used in

prior literature, such as positive (or selection) rate and false positive

rate. A common goal in the design of fairness-aware (group-fair)
algorithms is to balance predictive efficacy (such as accuracy) with

achieving near-equality on a chosen fairness measure among demo-

graphic categories, such as race or gender. A question that arises

in many domains where such “fair” algorithms could be used is
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whether they are susceptible to, and create incentives for, manipula-

tion by agents who maymisrepresent themselves in order to achieve

better outcomes. For example, in selection of individuals to receive

assistance from social service programs or selection of individuals

for loans, it may be possible for applicants to misreport the number

of dependents, income, or other self-reported characteristics, and,

in some cases, even the sensitive attribute itself.

We investigate the effects of such strategic manipulation of a

binary group-fair classifier. In the social services example, the clas-

sifier may decide whether an applicant receives assistance, and

the fairness criterion could be approximate equality of selection

rate between male and female applicants. First, we observe that

the ability of individuals to manipulate the features a classifier

uses can lead to fairness reversal, with the conventional (accuracy-

maximizing) classifier exhibiting greater fairness than a group-fair

classifier. We demonstrate this phenomenon on several standard

benchmark datasets commonly used in evaluating group-fair clas-

sifiers. Next, we theoretically investigate conditions under which

fairness reversal occurs. We prove that the key characteristic that

leads to fairness reversal is that the group fair classifier becomes

more selective, excluding some of the individuals in the advantaged

group from being selected. Moreover, we show that this condition is

sufficient for fairness reversal for several classes of functions mea-

suring feature misreporting costs. In contrast, we experimentally

demonstrate that when a group-fair classifier exhibits inclusiveness

instead by selecting additional individuals from the disadvantaged

group, fairness reversal does not occur.

Summary of results: We begin by observing empirically the

phenomenon of fairness reversal, exhibited on a number of datasets

commonly used in benchmarking group-fair classification efficacy.

The key factor that results in fairness reversal is the extent to which

group fairness is achieved through increased selectivity (the fair

classifier 𝑓𝐹 positively classifies fewer inputs than the conventional

classifier 𝑓𝐶 ) as opposed to increased inclusiveness (𝑓𝐹 positively

classifies more inputs than 𝑓𝐶 ). Next, we examine this issue the-

oretically, and prove that selectivity is a sufficient condition for

fairness reversal. Further, we show that, under some additional

conditions, selectivity is also a necessary condition. These results

obtain for two common classes of functions measuring the cost of

misreporting attributes, and explain our empirical observations.

2 RELATEDWORK
Our work is closely related to two major strands in the literature:

algorithmic group-fair learning and adversarial, or strategic, learn-

ing.

The algorithmic fairness literature aims to study the extent to

which algorithmic decisions are perceived as unfair, for example, by

being inequitable to historically disadvantaged groups [2, 4, 5, 10].
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Many approaches have been introduced, particularly in machine

learning, that investigate how to balance fairness and task-related

efficacy, such as accuracy [1, 8, 16, 20, 24, 27, 43–45]. Many of these

impose hard constraints to ensure that pre-defined groups are near-

equitable on some exogenously specified metric, e.g., selection (pos-

itive) rate [1, 24, 44], although alternative means, such as modifying

the data to eliminate disparities, have also been proposed [9, 16].

Within the domain of algorithmic fairness, our work is related

to recent investigations into the effects of distribution shift, or data

mismeasurement, on fair learning [17, 33, 37, 38]. These works

asses the efficacy of fair learning in settings in which data is noisy,

or settings in which training data and testing data are sourced

from separate distributions. This line of research considers worst-

case, or random, distribution shifts, which is distinct from our

setting in which we explicitly consider shifts caused by strategic

agent behavior. Moreover, these works compare model fairness

and performance under distribution shifts or noise with model

fairness and performance under no distribution shifts or noise. This

is contrast to our work which examines fairness and performance

or a particular (fair) model, against an alternate choice of (fairness-

agnostic) model.

The adversarial learning literature, initially motivated by security

considerations, such as malware detection [22, 30, 41], has come to

have a far broader scope, including social applications [3, 6, 12, 19].

In the latter context, this is known as strategic classification, to indi-
cate the concern that individuals impacted by algorithmic decisions

change their features. In most cases, the strategic aspect here is

actual misreporting of features, which is our concern. However, a

related but distinct, line of work considers individuals who actually

change their features (rather than misreport these) to achieve a bet-

ter outcome [7, 25]. A broader related area of performative prediction
considers more general changes in behavior induced by algorithmic

systems [33, 34]. The intersection between strategic classification

and fairness is particularly salient to our work, and has featured

studies that highlight the inequity that results from strategic behav-

ior by individuals [21], as well as social cost disparities resulting

from making classifiers robust to strategic behavior [32, 43]. Our

goal, however, is quite distinct: we investigate the extent to which

group-fair learning itself leads to greater inequity than non-group-

fair baselines due to strategic manipulation of features. Finally, Liu

et al. [29] consider a closely related issue of fairness reversal that

may result from a population adapting to a classifier. However,

their analysis is at the population level, assuming known prediction

scores; in contrast, we delve into individual-level manipulation of

features, and build results using popular agency models.

3 PRELIMINARIES
We consider a setting with a population of agents, each character-

ized by a feature vector x ∈ X, a group 𝑔 ∈ 𝐺 ≡ {0, 1} to which

they belong (as is common in much prior literature, we treat groups

as binary), and a (true) binary label 𝑦 ∈ Y ≡ {0, 1}, denoting, for
example, the agent’s qualification (for a service, employment, bail,

etc). LetD be the joint distribution over𝐺 ×X×Y. We define 𝑝 (x)
as the marginal pdf of x, and assume that 𝑝 (x) > 0 for each x ∈ X.

Since using the sensitive group membership feature may pose a

legal challenge, we assume that neither the conventional nor the

group-fair classifier do so at prediction time (but may at training

time); from a analytical perspective group-aware classifiers (those

that use group membership at prediction time) are equivalent to

group-unaware classifiers from the perspective of agent manipula-

tions, so long as group membership can be misreported in a similar

fashion to other features. As such we provide a set of empirical

results demonstrating that fairness reversals occur for group aware

classifiers as well, but defer discussion of group-aware results to

Section E.3 of the Supplement. We denote the conventional clas-

sifier by 𝑓𝐶 , while the group-fair classifier is denoted by 𝑓𝐹 , and

both map from the domain of features X to the set of binary labels

Y. Let M(𝑓 ;𝑔) be a measure of efficacy (e.g., positive rate) of 𝑓

restricted to a group 𝑔, and define

𝑈 (𝑓 ;M) =
��M(𝑓 |𝑔 = 1) −M(𝑓 |𝑔 = 0)

��.
We shorten this notation to𝑈 (𝑓 ) whereM is clear from context.We

assume that the conventional classifier aims to maximize accuracy,

i.e., 𝑓𝐶 = argmax𝑓 P(x,𝑦)
(
𝑓 (x) = 𝑦

)
, while 𝑓𝐹 aims to balance

accuracy and fairness, solving

𝑓𝐹 = argmax

𝑓
(1 − 𝛼)P(x,𝑦)

(
𝑓 (x) = 𝑦

)
− 𝛼𝑈 (𝑓 ;M),

where 𝛼 ∈ [0, 1] specifies the relative weight of accuracy and

fairness terms.

In the literature fairness is sometimes defined with hard con-

straints, rather than the soft constraints of 𝛼-fairness, for example

𝑓𝐹 = argmax

𝑓
P(x,𝑦)

(
𝑓 (x) = 𝑦

)
s.t. 𝑈 (𝑓 ;M) ≤ 𝛽.

In general these two formulations are not equivalent, however in

the cases we study (PR, FPR, and TPR fairness) soft constrained

and hard constrained fairness are equivalent, in the sense that for

any 𝛼 there exists a 𝛽 such that the classifiers produced under

either formulation are equivalent, and viceversa. This is given more

precisely as Lemma A.4 in the Supplement. As such our results hold

for either case; we elect to study the problem through the lens of

𝛼-fairness simply for ease of presentation.

We consider the impact of strategic behavior of agents when

they face a classifier 𝑓 (whether conventional or group-fair). Specif-

ically, we suppose that each agent with features x can modify these,

transforming them into another feature vector x′ that is reported
to the classifier. In doing so, the agent incurs a cost, captured by a

manipulation cost function 𝑐 (x, x′) ≥ 0 [18, 19, 30]. Cost functions

are assumed to be bounded
1
over the domain X × X.

We study two common families of manipulation cost functions:

Feature-monotonic costs: Manipulation cost 𝑐 (x, x′) is mono-

tonic in | |x − x′ | | (larger manipulations are more costly).

Outcome-monotonic costs: Manipulation cost 𝑐 (x, x′) is mono-

tonic in P(𝑦 = 1|x′) − P(𝑦 = 1|x) where 𝑐 (x, x′) = 0 for any x′ such
that P(𝑦 = 1|x) > P(𝑦 = 1|x′) (manipulations leading to better out-

comes are more costly).

1
Boundedness of 𝑐 is a rather mild assumption and holds for any continuous function

when X is a closed and bounded set, e.g. [0, 1]𝑑 . This assumption is used primarily

to avoid degenerated settings such as those in which no agents can manipulate, e.g.,

𝑐 (x, x′ ) = ∞ for all x ≠ x′ .
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For example, if the problem domain involves lending, feature-monotonic

costs can correspond to the mental and physiological burden of

dishonesty [39], or to the likelihood of failing an authenticity

check [14], while outcome-monotonic costs can correspond to the

required time investment to identify a productive manipulation,

or the likelihood of being audited [15] (applications more likely to

succeed are also more likely to be audited) and incurring associated

penalties.

We define the agent’s utility as

𝑢 (x, x′) = 𝑓 (x′) − 𝑓 (x) − 1/𝐵 · 𝑐 (x, x′),

where 𝐵 is a parameter trading off costs and benefits of manip-

ulation. Following the standard setting in strategic classification

or adversarial machine learning, we assume any misreporting be-

havior would not change the true label 𝑦 associated with x. We

assume that all agents are rational utility maximizers. Thus, since

𝑓 (x′) − 𝑓 (x) ≤ 1, the agent will misreport its features only when

𝑐 (x, x′) ≤ 𝐵. Additionally, the agent will not misreport if 𝑓 (x) = 1

(they are selected even when truthfully reporting x). Consequently,
we can equivalently view 𝐵 as an upper bound on the costs that

agents are willing to incur from misreporting their features, that is,

the manipulation budget.
We next formalize the notion of a fairness reversal in the presence

of strategic agents (i.e., what it means for strategic agent behavior

to lead to 𝑓𝐹 becoming less fair than 𝑓𝐶 ).

Definition 3.1. (Fairness Reversal) LetM be a measure of efficacy,
𝑓𝐹 be a classifier which is group-fair with respect to 𝑈 (𝑓 ;M) and
𝑓𝐶 be a conventional accuracy-maximizing classifier. Suppose that
𝑈 (𝑓𝐹 ;M) < 𝑈 (𝑓𝐶 ;M). Let 𝑓 (𝑐,𝐵)

𝐶
, 𝑓

(𝑐,𝐵)
𝐹

be the induced classifiers
when agents best respond to 𝑓𝐶 and 𝑓𝐹 respectively with manipulation
cost 𝑐 (x, x′) and budget 𝐵. We say that a budget 𝐵 leads to fairness

reversal between 𝑓𝐶 and 𝑓𝐹 if𝑈 (𝑓 (𝑐,𝐵)
𝐹

;M) ≥ 𝑈 (𝑓 (𝑐,𝐵)
𝐶

;M).

We will then say that fairness reversal between 𝑓𝐹 and 𝑓𝐶 occurs

if there is some strategic manipulation budget 𝐵 which leads to

fairness reversal, that is, for this budget, 𝑓𝐶 becomes more fair than

𝑓𝐹 after manipulation. Note that if the budget 𝐵 is 0, 𝑓𝐹 will be more

fair than 𝑓𝐶 by construction, whereas if the budget is infinite, as

long as any input is classified as the positive class, all individuals

can misreport their features to be this class, and consequently both

classifiers are fair in the sense that every input is predicted as 1. As

a result, our analysis is focused solely on the intermediate cases

between these extremes.

4 FAIRNESS REVERSAL
Our central goal is to understand the conditions under which fair-
ness reversal occurs in strategic settings, that is, when a fair classifier
𝑓𝐹 becomes less fair than its conventional counterpart 𝑓𝐶 if agents

act strategically. Fairness reversal occurs when there is a range of

strategic manipulation budgets 𝐵 for which the conventional clas-

sifier 𝑓𝐶 exhibits greater fairness than the group-fair model 𝑓𝐹 . In

this section, we study this phenomenon empirically, demonstrating

that it is commonly observed for several benchmark datasets.

Datasets and Algorithms. For our empirical study, we use five

datasets commonly used as benchmarks for group-fair classifica-

tion: Adult: Dataset of working professionals where the goal is

to predict high or low income (protected feature: gender) [13, 26].

Community Crime: Dataset of communities where the objective

is to predict if the community has high crime (protected feature:

race) [13, 36]. Law School: Dataset of law students where the ob-

jective is to predict bar-exam passage (protected feature: race) [42].

Student: Dataset of students where the objective is to predict a

student receiving high math grades (protected feature: race) [11, 13].

Credit: Dataset of people applying for credit where the objective
is to predict creditworthiness (protected feature: age) [13].

All five datasets have binary outcomes, and we label the more

desirable outcome for the individuals by 𝑦 = 1 (e.g., having a high

income in the Adult dataset), with the less desirable outcome la-

beled by 𝑦 = 0. Consequently, higher positive rate (PR), true positive
rate (TPR), or false positive rate (FPR) is more desirable for indi-

viduals. Group membership in each dataset is determined by race,

gender, or age which in these datasets corresponds to a binary

feature (as in [23] the age feature is made binary by considering

those older than 25 as Old, and those 25 or younger as Young). A

detailed breakdown of the datasets can be found in Section E.7 of

the Supplement. In all cases, we refer to the “advantaged” group

(e.g. the group with higher PR for PR based fairness) as group 1,

or 𝐺1, while the disadvantaged group is referred to as 0 or 𝐺0. In

our experiments, we only consider features that can potentially be

manipulated (see Section E.7 of the Supplement for further details).

We use four types of conventional classifiers for 𝑓𝐶 , namely logis-

tic regression (LGR), support vector machines with an RBF kernel

(SVM), neural networks (NN), and gradient boosting trees (GB),

and three group-fair approaches to obtain 𝑓𝐹 , Reductions [1], Gerry-
Fair [24], and EqOdds [35]. The first two are inprocessing methods

which learn a fair model direction on a given dataset, while the

third remedies unfairness through postprocessing the predictions

of a conventional classifier. To study strategic manipulation, we use

a mix of local search for categorical features [28, 40] and projected

gradient descent (PGD) for continuous features [31]; further details

are provided in Section E.6 of the Supplement.

Fairness reversals under strategic agent behavior. In Figure 1 we in-
vestigate fairness reversals on three datasets with both Reductions

and EqOdds fairness methods; additional experiments in Section E

of the Supplement show that this illustration is representative in

the sense that although fairness reversals do not occur in all cases,

they are quite common. Consider first Figure 1 (top), which exam-

ines settings where predictions do not take the sensitive features

as an input (we call these group-agnostic classifiers). In these three

plots, the dashed line corresponds to 𝑓𝐶 , and the rest are group-fair

classifiers 𝑓𝐹 for different values of 𝛼 (recall that higher 𝛼 entails

greater importance of group fairness). What we observe is that in

many cases, particularly when 𝛼 is not very high, there is a range of

budget values 𝐵 for which 𝑓𝐹 becomes less fair than 𝑓𝐶 . Moreover,

in many cases, this range is considerable. In Figure 1 (bottom plots),

where group-fair classifiers are group-aware, including the sensi-
tive feature as an input, the fairness reversal phenomenon is even

more dramatic (not that EqOdds attempts to achieve 0 unfairness

between groups, i.e., 𝛽 = 0 is used in all experiments instead of 𝛼)
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Figure 1: Difference in unfairness between groups on several datasets as a function of the manipulation budget 𝐵 when
manipulation cost is 𝑐 (x, x′) = ∥x − x′∥2. The dashed black lines correspond to 𝑓𝐶 and colored lines correspond to 𝑓𝐹 . Fairness
reversal occurs when one of the colored lines is above the black line. The top row displays results when 𝑓𝐹 is learned via the
Reductions algorithm, with fairness defined in terms of PR, TPR, or FPR, for several different values of 𝛼 . The bottom row
displays results when 𝑓𝐹 is learned via the EqOdds algorithm, with fairness defined in terms of generalized false positive rate
GFPR (i.e. expected FPR: Definition 1 of [35]). Reductions is group-agnostic, and EqOdds is group-aware.

. In this experiment, when best responding agents are capable of

misreporting their group as if it where a feature in x (fairness is

still computed with true group membership). Due to the particular

nature of EqOdds, specifically its handling of agents from different

groups, we observe a sharp change in fairness at 𝐵 = 1, the precise

budget for which misreporting group membership is feasible.

Figure 1 exhibits several additional phenomena. Note, in particu-

lar, that in many cases the unfairness (i.e., FPR difference between

the groups) initially increases as the budget increases, but in all

cases as budgets 𝐵 keep increasing, eventually unfairness vanishes

as a result of strategic behavior by agents. Furthermore, much as

we observe this initial unfairness increase for both 𝑓𝐶 and 𝑓𝐹 , it

appears amplified for some of the group fair classifiers 𝑓𝐹 .

What causes fairness reversal? As we formally prove below, the

essential condition is selectivity of fair classifier 𝑓𝐹 compared to 𝑓𝐶 .

Specifically, in binary classification, there are, roughly, two ways

one can improve fairness on a given dataset (that is, without any

consideration of strategic behavior); either through inclusiveness
(positively classifying additional agents from the disadvantaged

group by changing their predicted class to 1), or through selectivity
(negative classifying some of the members of the advantaged group

by changing their predicted class 1 to 0).

Our key observation is that selectivity leads to fairness re-
versals, while inclusiveness does not. Specifically, we observe
that as the number of agents positively classified under 𝑓𝐶 , but

negatively under 𝑓𝐹 , is larger than the number of agents negatively

classified by 𝑓𝐶 , but positively under 𝑓𝐹 , fairness reversals are more

commons.

We illustrate this in Figure 2, which shows the decision bound-

aries of 𝑓𝐹 and 𝑓𝐶 (top row), as well as associated fairness as a func-

tion of budget (bottom row) for several combinations of dataset,

classifier, and fairness definition. On the Adult and Crime datasets

(first two columns), fairness is achieved predominantly through

selectivity, as the orange region (𝑓𝐶 ) includes few additional green

points (disadvantaged group) compared to the blue region (𝑓𝐶 ),

but excludes many blue points (advantaged group). This is given

more precisely in terms of the respective group-wise positive rates

for 𝑓𝐶 and 𝑓𝐹 ; in the first two examples the positive rates on both

groups drops when switching from 𝑓𝐶 to 𝑓𝐹 , while in the third

case the positive rate for both groups increases. This, in turn, leads

to instances of fairness reversal (bottom row first column). In the

Law School dataset (third column), in contrast, fairness is achieved

primarily through inclusiveness, and 𝑓𝐹 remains more fair than

𝑓𝐶 over a broad range of strategic manipulation budgets 𝐵. The
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Figure 2: Fairness reversals and selectivity of classifiers on two ordinal features. The top row shows regions with positive
predictions (blue for 𝑓𝐶 and light orange for 𝑓𝐹 ) using two features (corresponding to the axes), and dot colors correspond to
the sensitive demographics. The darker orange region corresponds to an overlap between the positive predictions of 𝑓𝐶 and
𝑓𝐹 . The bottom row shows the relative unfairness between demographic groups (for the classifiers shown in the top row) as a
function of strategic manipulation budget 𝐵 (lower means more fair). In the top row, the fraction of each group being positively
classified under 𝑓𝐶 is, Adult: (Male: .63, Female: .45), Crime: (White: .84, None-White: .26), Law: (White: .64: None-White: .35)
alternatively under 𝑓𝐹 is, Adult: (Male: .42, Female: .39), Crime: (White: .62, None-White: .23), Law: (White: .62: None-White: .51)

reason that selectivity leads to fairness reversal is that those from

the advantaged group who are excluded tend as a result to be closer

to the decision boundary than those from the disadvantaged group.

In Section E.1 of the Supplement we provide further results linking

selectivity of the fair classifier to fairness reversals. In this section

we also observe that when strategic agent behavior (for some ma-

nipulation budget) results in a fairness reversal between 𝑓𝐹 and 𝑓𝐶 ,

the relative accuracy of the classifiers is also reversed (for some

potentially different manipulation budget), implying a fundamen-

tal relationship between fairness and accuracy when agents are

strategic.

Unfairness of 𝑓𝐹 . Lastly we remark on the relationship of the

between the manipulation budge 𝐵 and the unfairness of the fair

classifier 𝑓𝐹 . As seen in Figures 2 and 1, the unfairness of 𝑓𝐹 is

frequently increasing in 𝐵 (for small values of 𝐵). To provide in-

sight into this phenomenon we look to the case of single variable

prediction as showing in Figure 3. This figure shows the error and

unfairness of a single variable classifier (i.e., a threshold classifier

with threshold 𝜃 ) when using a student’s LSAT score to predict

whether they will pass the bar exam. Since manipulations change

model decisions only in a single direction (negative predictions

become positive), predicting on strategically altered data amounts

to predicting on unaltered data with a lower threshold . As the ma-

nipulation budget 𝐵 grows, the corresponding threshold becomes

increasingly smaller. Thus, when 𝑓𝐹 is more selective than 𝑓𝐶 , i.e.

𝜃𝐹 > 𝜃𝐶 = 0.57, the unfairness of 𝑓𝐹 will initially increase as

𝐵 increases. In the case of multivariate prediction, the increased

unfairness of 𝑓𝐹 stems from a similar

Next, we study fairness and accuracy reversals in strategic clas-

sification settings theoretically, demonstrating that selectivity is

indeed a sufficient (and, under some additional qualifications, nec-

essary) condition for fairness reversal.

5 THEORETICAL ANALYSIS
In this section we provide theoretical explanations of the empirical

observations made in the previous section. We start with single-

variable classifiers and then proceed to generalize our observations

to multi-feature classifiers. Our key finding is that selectivity (de-

fined next) is in fact a sufficient condition for fairness reversal, pro-

viding a theoretical underpinning for the empirical observations

above. Additionally, we investigate the underlying causes of fair
classifiers becoming more selective, and provide conditions on the

underlying distribution for this to be the case. In the cases of single

variable classifiers with feature-monotonic costs and multivariable

classifiers with outcome-monotonic costs, we further demonstrate

that selectivity also leads to accuracy reversals (strategic behavior
causes the fair classifier to become more accurate than the conven-

tional model), and outline conditions on the underlying distribution
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such that selectivity is not just sufficient, but also necessary for both

of these phenomena. When strategic agent behavior results in both

a fairness and accuracy reversal, the functionality of both classifiers

has fundamentally swapped; the accuracy driven (conventional)

model 𝑓𝐶 is no longer the most accurate model and the fairness

driven (fair) model 𝑓𝐹 is no longer the most fair model. Prior to our

results, we first formalize the notion of classifier selectivity.

Definition 5.1. LetX𝑓𝐶 = {x ∈ X : 𝑓𝐶 (x) = 1} andX𝑓𝐹 = {x ∈ X :

𝑓𝐹 (x) = 1}. We say that 𝑓𝐹 is more selective than 𝑓𝐶 if X𝑓𝐹 ⊂ X𝑓𝐶 .

That is, 𝑓𝐹 is more selective than 𝑓𝐶 if the set of positively clas-

sified examples under 𝑓𝐹 is a subset of those positively classified

under 𝑓𝐶 . While this definition of selectivity is slightly more re-

strictive than the type of selectivity found in our empirical results,

the subset propriety is a driving force behind the fairness reversals

observed in practice. Selectivity can be interpreted as the fair model

𝑓𝐹 , achieving fairness by “excluding" additional agents from posi-

tive classification, compared to 𝑓𝐶 . As an example, under PR-based

fairness let 𝐺0 be the group with lower PR and 𝐺1 be the group

with higher PR under 𝑓𝐶 (TPR and FPR hold similarly). A model

designer could improve the fairness of 𝑓𝐶 by positively classify-

ing more agents in 𝐺0 or negatively classifying more agents in 𝐺1

(or a combination of both). In the latter case, members of 𝐺0 are

“excluded" from positive classification, and the resulting model is

considered to be more selective. Note that this type of exclusion is

precisely the means through which fairness is achieved in Figure 2

(center).

5.1 Single Variable Classifier
We begin our theoretical exploration of fairness reversals with an

exemplar case: a single variable threshold classifier. In this setting

agents possess a single ordinal feature 𝑥 . For simplicity we demon-

strate our results for a continuous feature 𝑥 ∈ [0, 1], but the results
hold for any ordinal feature (discrete or continuous) . Both the

conventional classifier (selected for maximal accuracy) and fair

classifier (selected for a weighted combination of accuracy and fair-

ness with respect to a fairness metric𝑀) can be expressed as a single

parameter 𝜃𝐶 , 𝜃𝐹 ∈ [0, 1] respectively where 𝑓 (𝑥) = I[𝑥 ≥ 𝜃 ].
Our first result is that in single-feature classification, higher

selectivity of the group-fair classifier (i.e. 𝜃𝐶 < 𝜃𝐹 ) is sufficient for

fairness reversal.

Theorem 5.2. Suppose fairness is defined by PR, TPR, or FPR, 𝑐 (𝑥, 𝑥 ′)
is monotone in |𝑥 ′ − 𝑥 |, 𝜃𝐶 is the most accurate, and 𝜃𝐹 the optimal
𝛼-fair, threshold. If 𝜃𝐶 < 𝜃𝐹 , then there exists a budget 𝐵 that leads
to fairness reversal between 𝑓𝐹 and 𝑓𝐶 .

Proof Sketch. The full proof is provided in Section B of the

Supplement. Here we provide a proof sketch for continuous 𝑐 , a

similar line of reasoning, with a few additional edge cases, holds

for discontinuous 𝑐 . The unfairness of threshold 𝜃 w.r.t. to the dis-

tribution D and fairness metricM ∈ {PR,TPR, FPR} is expressed
as,

𝑈D (𝜃 ) =
��MD (𝜃 |𝑔 = 1) −MD (𝜃 |𝑔 = 0)

��,

For a given threshold 𝜃 andmanipulation budget𝐵 the best response

of an agent with true feature 𝑥 is

𝑥
(𝐵)
𝜃

= argmax

𝑥 ′

(
I[𝑥 ′ ≥ 𝜃 ] − I[𝑥 ≥ 𝜃 ]

)
s.t. 𝑐 (𝑥, 𝑥 ′) ≤ 𝐵,

When agents from D play this optimal response, let the result-

ing distribution be D (𝑐,𝐵)
𝜃

. The difference in unfairness between

classifiers when agents are strategic is 𝑈D (𝑐,𝐵)
𝜃𝐶

(𝜃𝐶 ) −𝑈D (𝑐,𝐵)
𝜃𝐹

(𝜃𝐹 ).

Since both 𝑓𝐶 and 𝑓𝐹 are thresholds, and 𝑐 is feature-monotonic,

the decisions of 𝜃𝐶 , 𝜃𝐹 on the modified distribution D (𝑐,𝐵)
𝜃

can be

expressed as decisions of modified thresholds 𝜃
(𝑐,𝐵)
𝐶

, 𝜃
(𝑐,𝐵)
𝐹

on the

original distribution D, i.e.,

𝑈D (𝑐,𝐵)
𝜃𝐶

(𝜃𝐶 ) −𝑈D (𝑐,𝐵)
𝜃𝐹

(𝜃𝐹 ) = 𝑈D (𝜃 (𝑐,𝐵)
𝐶

) −𝑈D (𝜃 (𝑐,𝐵)
𝐹

)

where

𝜃
(𝑐,𝐵)
𝐶

= argmin𝑥𝑥 s.t. 𝑐 (𝑥, 𝜃𝐶 ) ≤ 𝐵

and

𝜃
(𝑐,𝐵)
𝐹

= argmin𝑥𝑥 s.t. 𝑐 (𝑥, 𝜃𝐹 ) ≤ 𝐵

Given these modified threshold, we see that strategic agent behavior

results in a lowering of each threshold as more agents are now able

to achieve positive classification; this is due to the fact that only

negatively classified agents will behavior strategically, their goal

being to achieve positive classification. Moreover, when considering

𝜃
(𝑐,𝐵)
𝐶

, 𝜃
(𝑐,𝐵)
𝐹

as functions of 𝐵, both are monotonically decreasing

in 𝐵 (due to the the monotonicity of 𝑐), and 𝜃
(𝑐,𝐵)
𝐶

≤ 𝜃
(𝑐,𝐵)
𝐹

for all

𝐵 (due to 𝜃𝐶 < 𝜃𝐹 ).

Since fairness is defined in terms of PR, FPR, or TPR the constant

function 𝑓 (𝑥) = 1 has unfairness 0 for any distribution. Thus,

𝜃
(𝑐,𝐵)
𝐶

= 0 implies𝑈D (𝜃 (𝑐,𝐵)
𝐶

) = 0. Let

𝐵′ = sup{𝐵 ∈ R+ : 𝑈D (𝜃 (𝑐,𝐵)
𝐶

) > 0},

Note that𝐵′ is guaranteed to exist due to𝑈D (𝜃 (𝑐,0)
𝐶

) > 𝑈D (𝜃 (𝑐,0)
𝐹

) ≥
0 and the boundedness of 𝑐 (𝑥, 𝑥 ′). Since 𝑈D ≥ 0 and 𝑐 is contin-

uous, there must exist some 𝜀 > 0 such that over the interval

𝐵 ∈ [𝐵′ − 𝜀, 𝐵′] the unfairness𝑈D (𝜃 (𝑐,𝐵)
𝐶

) is strictly decreasing in

𝐵. If

𝑈D (𝜃 (𝑐,𝐵
′−𝜀 )

𝐹
) ≥ 𝑈D (𝜃 (𝑐,𝐵

′−𝜀 )
𝐶

) > 0,

then a fairness reversal has already occurred for budget 𝐵′ − 𝜀, so

assume otherwise. Combining the difference in relative fairness for

budget 𝐵′ − 𝜀 with the fact that 𝜃
(𝑐,𝐵)
𝐶

≤ 𝜃
(𝑐,𝐵)
𝐹

for all 𝐵, we get

𝜃
(𝑐,𝐵′−𝜀 )
𝐶

< 𝜃
(𝑐,𝐵′−𝜀 )
𝐹

. Since 𝑐 is monotonic and continuous there

must exist some budget 𝐵𝐹 > 𝐵′ − 𝜀 such that 𝜃
(𝑐,𝐵′−𝜀 )
𝐶

= 𝜃
(𝑐,𝐵𝐹 )
𝐹

.

Since 𝐵𝐹 ≥ 𝐵′ − 𝜀, and 𝑈D (𝜃 (𝑐,𝐵)
𝐶

) is decreasing for 𝐵 ≥ 𝐵′ − 𝜀, it

must be the case that

𝑈D (𝜃 (𝑐,𝐵𝐹 )
𝐶

) = 𝑈D (𝜃 (𝑐,𝐵
′−𝜀 )

𝐹
) ≤ 𝑈D (𝜃 (𝑐,𝐵𝐹 )

𝐹
),

and a fairness reversal occurs for budget 𝐵𝐹 . □

We now turn our attention to a complementary observation: fair-

ness reversal is accompanied by accuracy reversal, that is, strategic
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behavior leads to 𝑓𝐹 having higher accuracy than 𝑓𝐶 . This is pri-

marily due to the fact that 𝑓𝐹 becomes more selective and therefore

more resilient to manipulation. Note that the fairness reversal and

accuracy reversal need not occur for the same budget 𝐵.

Theorem 5.3. Suppose fairness is defined by PR, TPR, or FPR, 𝑐 (𝑥, 𝑥 ′)
is monotone in |𝑥 ′ − 𝑥 |, 𝜃𝐶 is the most accurate threshold, and 𝜃𝐹 the
optimal 𝛼-fair threshold. If 𝜃𝐶 < 𝜃𝐹 , then there exists a budget 𝐵 s.t.
𝑓𝐹 is more accurate than 𝑓𝐶 .

Proof Sketch. We defer the full proof to Section B of the Sup-

plement and again give a proof sketch for continuous 𝑐 . The error

of threshold 𝜃 on distribution D is given by

LD (𝜃 ) = P
(
I[𝑥 ≥ 𝜃 ] = 𝑦

)
By the definition of 𝜃𝐶 , we have

LD (𝜃𝐶 ) ≤ LD (𝜃 ) for all 𝜃 ∈ [0, 1],
and therefore LD (𝜃𝐶 ) ≤ LD (𝜃𝐹 ). Similar to the proof of Theorem

5.2, agents strategically responding to threshold classifiers 𝜃𝐶 , 𝜃𝐹

can be viewed as modified thresholds 𝜃
(𝑐,𝐵)
𝐶

, 𝜃
(𝑐,𝐵)
𝐹

operating on

the true distribution D. Both 𝜃
(𝑐,𝐵)
𝐶

, 𝜃
(𝑐,𝐵)
𝐹

are monotonically de-

creasing in 𝐵. Moreover, 𝜃
(𝑐,𝐵)
𝐶

= 0 implies LD (𝜃 ) = P(𝑦 = 0),
since the threshold classifies all agents positively.

Let

𝐵′ = sup{𝐵 : LD (𝜃 (𝑐,𝐵)
𝐶

) < P(𝑦 = 0)},
i.e. 𝐵′ is the “largest" manipulation budget such that the conven-

tional threshold is not a trivial classifier (i.e., not making constant

predictions) in the presence of strategic agent behavior. In a sim-

ilar line of reasoning to the case of fairness reversals, there must

exist some interval [𝐵′ − 𝜀, 𝐵′] over which LD (𝜃 (𝑐,𝐵) ) is strictly
increasing. Again, by the fact that 𝜃𝐶 < 𝜃𝐹 , there must exist some

𝐵𝐹 > 𝐵′ − 𝜀 such that 𝜃
(𝐵′−𝜀 )
𝐶

= 𝜃
(𝑐,𝐵𝐹 )
𝐹

. Thus,

LD (𝜃 (𝑐,𝐵𝐹 )
𝐹

) = LD (𝜃 (𝑐,𝐵
′−𝜀 )

𝐶
) ≥ LD (𝜃 (𝑐,𝐵𝐹 )

𝐶
),

implying that an accuracy reversal occurs for budget 𝐵𝐹 . □

We have showed thus far that selectivity is sufficient for fairness
and accuracy reversals, but under what conditions is it also nec-
essary? Loosely speaking, when a feature 𝑥 is a good predictor of

both 𝑦 and 𝑔, the error and unfairness of 𝑓𝐶 and 𝑓𝐹 are unimodal
(defined next) with respect to the manipulation budget 𝐵.

Definition 5.4. (Unimodal): A function 𝑔 : [𝑎, 𝑏] → R is nega-
tively unimodal (positively unimodal) on the interval [𝑎, 𝑏] if there
exists an inflection point 𝑟 ∈ [𝑎, 𝑏] such that 𝑓 is monotone decreas-
ing (increasing) on [𝑎, 𝑟 ] and monotone increasing (decreasing) on
[𝑟, 𝑏].
(All convex functions are negatively unimodal and all concave func-
tions are positively unimodal).

Unimodality is relevant to fairness and accuracy reversals as we

will see that when error is negatively unimodal and unfairness is

positively unimodal, both fairness and accuracy reversals occur.

We empirically demonstrate that unimodality of both functions

holds frequently on real data. The condition of unimodal error and

unfairness can be interpreted as both functions possessing a “sweet

spot” which yields best case accuracy (or worst case unfairness). In

the former, 𝑥 is good predictor of true label 𝑦 and in the latter 𝑥 is

a good predictor of 𝑔.

As an example, in Figure 3 we see this phenomenon occur on

the Law School dataset when using a student’s LSAT score as the

predictive feature x. Both error and unfairness (in terms of positive

rate difference between groups) are both unimodal in the threshold

𝜃 . In this, we observe that LSAT score is a good predictor of both

the target variable (bar passage) and the sensitive feature (race);

this is a well established source of bias within this particular dataset.

We further document this relationship in Section E.4 of the Sup-

plement and find that most ordinal features produce threshold clas-

sifiers which have (approximately) unimodal error and unfairness.

In this section we also theoretically outline the precise conditions

under which error and unfairness would be unimodal; these con-

ditions essentially boil down to a correlation between 𝑦 |𝑥 and 𝑔|𝑥 ,
(which we observe to be the case for most ordinal features across

the datasets we study). When this occurs, the selectivity of 𝑓𝐹 is

not only sufficient for fairness and accuracy reversals, but also

necessary. We next formalize this in the following theorem; fur-

ther details on the necessary and sufficient conditions required for

fairness and accuracy reversals are provided in Section B of the

Supplement.

Theorem 5.5. Let 𝜃𝐶 and 𝜃𝐹 be the most accurate and optimal fair
classifiers respectively. Suppose fairness is defined by PR, FPR, or TPR,
and 𝑐 (x, x′) is outcome monotonic, and that error (and unfairness)
are negatively (positively) unimodal in 𝜃 . Then there exists a budget
𝐵 such that strategic agent behavior leads to a fairness reversal if an
only if 𝑓𝐹 is more selective than 𝐹𝐶 .

proof sketch. When error LD (𝜃 ) and unfairness 𝑈D (𝜃 ) are
both unimodal in 𝜃 , the optimal conventional threshold 𝜃𝐶 and op-

timal 𝛼-fair threshold 𝜃𝐹 can be expressed in terms of the inflection

points 𝑥L and 𝑥𝑈 of error and unfairness respectively. The most

accurate threshold is then 𝜃𝐶 = 𝑥L , and the most unfair threshold

Figure 3: Error (blue) and PR-based unfairness between
White and Non-White individuals (red) of a single variable
classifier on the Law School dataset when using the student’s
LSAT score as a single predictive feature. All individuals with
an LSAT score above the threshold 𝜃 are predicted positively.
The thresholds 𝜃𝐶 and 𝜃𝑈 are the most accurate and least fair
thresholds respectively.
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is then 𝜃𝑢 = 𝑥𝑈 . The forward direction, i.e. when 𝜃𝐶 < 𝜃𝐹 , follows

a similar of reasoning to the proof of Theorem 5.2, let 𝜃
(𝑐,𝐵)
𝐶

and

𝜃
(𝑐,𝐵)
𝐹

be the modified thresholds induced by agents best respond-

ing to either threshold with cost function 𝑐 and budget 𝐵. Then,

since 𝜃
(𝑐,𝐵)
𝐶

, 𝜃
(𝑐,𝐵)
𝐹

are monotonically decreasing in 𝐵 and 𝜃𝐶 < 𝜃𝐹 ,

there must exist a 𝐵′ such that 𝜃
(𝑐,𝐵′ )
𝐶

≤ 𝜃
(𝑐,𝐵′ )
𝐹

= 𝜃𝐶 . Thus

𝑈D (𝜃 (𝑐,𝐵
′ )

𝐶
) ≤ 𝑈D (𝜃𝐶 ) = 𝑈D (𝜃 (𝑐,𝐵

′ )
𝐹

)
and

LD (𝜃 (𝑐,𝐵
′ )

𝐹
) = LD (𝜃𝐶 ) ≤ LD (𝜃 (𝑐,𝐵

′ )
𝐶

),
implying that a fairness and accuracy reversal occurs for budget

𝐵′.
The reverse direction, follows from the relationship between 𝜃𝐹

and the two inflection points 𝜃𝐶 , 𝜃𝑈 . Given the assumption that

𝜃𝐹 < 𝜃𝐶 , there are only three possible cases for the relationship

between these points

(1) 𝜃𝐹 < 𝜃𝐶 ≤ 𝜃𝑈 ,

(2) 𝜃𝐹 < 𝜃𝑈 ≤ 𝜃𝐶 ,

(3) 𝜃𝑈 < 𝜃𝐹 < 𝜃𝐶

the strict inequalities being due to the fact that𝜃𝐹 ≠ 𝜃𝐶 and𝜃𝐹 ≠ 𝜃𝑈
by definition. In cases (1) and (2), no fairness or accuracy reversal

can occur. Only in case (3) can a fairness or accuracy reversal

occur, however we will show by contradiction that such a case is

impossible.

Beginning with case (1), both error and unfairness are unimodal

in 𝜃
(𝑐,𝐵)
𝐹

, 𝜃
(𝑐𝐵)
𝐶

, each of which is monotonically increasing in 𝐵.

Since unfairness in unimodal, any 𝜃 ≤ 𝜃𝑈 and any 𝐵 ≥ 0 unfair-

ness 𝑈 (𝜃 (𝑐,𝐵) ) is monotonically decreasing in 𝐵. Similarly, since

error is unimodal, for any 𝜃 ≤ 𝜃𝐶 , error L(𝜃 (𝑐,𝐵) is monotonically

decreasing. Thus if 𝜃𝐹 < 𝜃𝐶 , then no accuracy reversal can occur.

Similarly if 𝜃𝐹 < 𝜃𝐶 ≤ 𝜃𝑈 , no fairness reversal can occur, i.e. in

case (1), neither reversal can occur.

In case (2) since 𝑈D (𝜃𝐹 ) < 𝑈D (𝜃𝐶 ), and 𝑈D (𝜃 (𝑐,𝐵)
𝐶

) is mono-

tonically increasing until 𝜃
(𝑐,𝐵)
𝐶

= 𝜃𝑈 , no fairness reversal will

occur. Similar to case (1), 𝜃𝐹 < 𝜃𝐶 , implies that no accuracy rever-

sal occurs either.

Thus it remains only to show that case (3) can never occur. To

see this, note that for any 0 < 𝜀 < 𝜃𝐶 − 𝜃𝐹 , it must be the case that

both

𝑈D (𝜃𝐹 + 𝜀) ≤ 𝑈D (𝜃𝐹 )
and

LD (𝜃𝐹 + 𝜀) ≤ LD (𝜃𝐹 )
Which implies that 𝜃𝐹 is in-fact not the optimal fair threshold. □

Now that we have established the critical role of selectivity in

fairness reversal, we next analyze why that is. As mentioned previ-

ously, there are roughly two ways to achieve fairness: inclusiveness
(classifying more examples as positive) or selectivity (classifying

fewer examples as positive). Which of these will be the predominant

outcome of training 𝑓𝐹 depends intimately on the data distribution.

We outline these conditions, as well as conditions for error and

unfairness to be unimodal, via Lemmas B.4, B.5, and Theorem B

in the Supplement. In particular, Theorem B provides conditions

on the underlying distribution such that the optimal fair classifier

will achieve fairness via selectivity. The condition in this theorem

can be intuitively interpreted as follows. Suppose that 𝑆 is the set

of individuals selected (i.e., classified as 1) by 𝑓𝐶 , who are also near

the decision boundary of 𝑓𝐶 . If the advantaged group (i.e., group

with better average outcomes) is overrepresented in 𝑆 , there is a

range of parameters 𝛼 such that the optimal 𝛼-fair classifier is more

selective than 𝑓𝐶 (recall that higher 𝛼 places greater importance on

group-fairness in learning).

5.2 General Classifiers
Next we discuss general multi-variate classifiers, generalizing sev-

eral of the results from Section 5.1. First we show that when 𝑓𝐹 is

more selective than 𝑓𝐶 , fairness reversal occurs for both feature-

monotonic and outcome-monotonic cost functions. Second, we

give conditions which lead to 𝑓𝐹 being more selective than 𝑓𝐶 . For

outcome-monotonic costs, we provide two additional results: 1)

greater selectivity of 𝑓𝐹 also leads to accuracy reversal, and 2) uni-

modality of each classifier’s error and unfairness causes selectivity

to be both necessary and sufficient for fairness and accuracy rever-

sal.

Outcome-Monotonic Costs. We begin with the case of outcome-

monotonic costs. As shown by Milli et al. [32], outcome-monotonic

manipulation costs result in the following best response for classi-

fier 𝑓 . Let

x∗ = argmin

x
P(𝑦 = 1|x)

s.t. 𝑓 (x) = 1.

If 𝑐 (x, x∗) ≤ 𝐵 then the best response is x′ = x∗ otherwise x′ = x.
With this best response in hand we show that 𝑓𝐹 having greater

selectivity than 𝑓𝐶 leads to fairness reversal.

Theorem 5.6. Let 𝑓𝐶 and 𝑓𝐹 be the most accurate and optimal fair
classifiers respectively. Suppose fairness is defined by PR, FPR, or TPR,
and 𝑐 (x, x′) is outcome monotonic. Then if 𝑓𝐹 is more selective than
𝑓𝐶 , there exists a budget 𝐵 such that strategic agent behavior leads to
a fairness reversal.

Herewe provide a proof sketch of this and other results; complete

proofs are deferred to the Supplement (Section C).

Proof sketch. For a given classifier 𝑓 , let

𝑝min = min

x:𝑓 (x)=1
P(𝑦 = 1|x)

and let xmin be the feature associated with 𝑝min (xmin,𝐶 , 𝑝min,𝐶

and xmin,𝐹 , 𝑝min,𝐹 correspond to 𝑓𝐶 and 𝑓𝐹 respectively). When

agents best respond to 𝑓 the resulting manipulated classifier can be

expressed as a threshold on the underlying probabilities P(𝑦 = 1|x).
More specifically, let

x∗ = argmin

x
P(𝑦 = 1|x)

s.t. 𝑐 (x, xmin) ≤ 𝐵.

Then when agents best resound to 𝑓 (inducing classifier 𝑓 (𝑐,𝐵) ) any
agent x with P(𝑦 = 1|x) ≥ P(𝑦 = 1|x∗) will be positively classified
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under 𝑓 (𝑐,𝐵) , i.e.

𝑓 (𝑐,𝐵) (x) =
{
1 if P(𝑦 = 1|x) ≥ P(𝑦 = 1|x∗)
0 otherwise

Thus 𝑓 (𝑐,𝐵) can expressed as the threshold P(𝑦 = 1|x∗) operating
on the conditional distribution P(𝑦 = 1|x).

Since 𝑓𝐹 is more selective than 𝑓𝐶 , (i.e., for any x ∈ X, if 𝑓𝐹 (x) = 1

then 𝑓𝐶 (x) = 1), and xmin,𝐹 is positively classified under 𝑓𝐹 , we

have,

𝑓𝐹 (xmin,𝐹 ) = 1 = 𝑓𝐶 (xmin,𝐹 ) and therefore 𝑝min,𝐶 ≤ 𝑝min,𝐹

Therefore the induced conventional and fair thresholds P(𝑦 = 1|x∗
𝐶
)

and P(𝑦 = 1|x∗
𝐹
) acting on P(𝑦 = 1|x) have the relationship that

P(𝑦 = 1|x∗
𝐶
) ≤ P(𝑦 = 1|x∗

𝐶
). Thus, we see that selectivity of the

fair classifier in the case of outcome-monotonic costs yields a fair

threshold (on a modified distribution) which is larger than the

induced conventional threshold (operating on the same distribution

as the fair threshold).

While this setting is not entirely equivalent to the single variable

case, the remainder of the proof follows in similar fashion to that

of Theorem 5.2. In particular, the monotonicity of P(𝑦 = 1|x∗), as a
function of 𝐵, implies

P(𝑦 = 1|x∗𝐶 ) ≤ P(𝑦 = 1|x∗𝐹 ) for any 𝐵,

which in turn implies the existence of a budget interval over which

the unfairness of 𝑓
(𝑐,𝐵)
𝐶

decreases below 𝑓
(𝑐,𝐵)
𝐹

, thus resulting in a

fairness reversal. □

Similar to the single-variable case, selectivity also result in accu-

racy reversal.

Theorem 5.7. Let 𝑓𝐶 and 𝑓𝐹 be the most accurate and optimal fair
classifiers respectively. Suppose fairness is defined by PR, FPR, or TPR,
and 𝑐 (x, x′) is outcome-monotonic. Then if 𝑓𝐹 is more selective than
𝑓𝐶 , then there exists a budget 𝐵 under which 𝑓𝐹 becomes more accurate
than 𝑓𝐶 .

Proof. The full proof (which follows from a similarly Theorem

5.3, 5.6) is deferred to Section C of the Supplement. □

Before outlining settings in which selectivity is not only suffi-

cient but also necessary for fairness and accuracy reversals to occur,

we first remark on the connection between selectivity, accuracy,

and fairness. As previously noted, errors caused by strategic agent

behavior are single-directional in the sense that manipulation can

only induce false positive errors. As such, classifiers which are

more selective are thus more robust to manipulation than their less

selective counterparts. Generally speaking, this implies that for

some range of manipulation budgets, a model that is more selective

than the accuracy-maximizing model 𝑓𝐶 will increase in its perfor-

mative ability compared to 𝑓𝐶 . As the performative ability of most

classifiers on biased datasets is naturally tied with unfairness, the

unfairness of the more robust model (more selective model) will

likewise increase. Thus, we see a fundamental, albeit not necessarily

universal, connection between selectivity (which in turn increases

robustness) and model unfairness (which is increasing in model

performance).

We next discuss unimodality in the context of outcome-monotonic

costs. Empiricallywe observe thatwhen costs are outcome-monotonic,

the majority of classifiers tend to have error and unfairness which is

(approximately) unimodal with respect to the manipulation budget

𝐵. When this occurs, selectivity of 𝑓𝐹 becomes both necessary and

sufficient.

Theorem 5.8. Let 𝑓𝐶 and 𝑓𝐹 the optimal conventional and fair
classifiers respectively. Suppose fairness is defined in terms of PR, TPR,
or FPR fairness, and 𝑐 (𝑥, 𝑥 ′) is outcome-monotonic. When error (and
unfairness) are negatively (positively) unimodal with respect to the
manipulation budget 𝐵, a fairness and accuracy reversal will occur
between 𝑓𝐹 and 𝑓𝐶 if and only if 𝑓𝐹 is more selective than 𝑓𝐶 (each
reversal may occur at different budgets 𝐵) .

Proof Sketch. We deffer the full proof to Section C of the Sup-

plement. The intuition for this proof follows similarly to that of

Theorem 5.5. As shown in the proof of Theorem 5.6 when agents

best respond to classifier 𝑓 , the decisions of 𝑓 can be expressed as

threshold classifier acting on the conditional probability P(𝑦 = 1|x)
of the original distribution D, namely

𝑓 (𝑐,𝐵) (x) =
{
1 if P(𝑦 = 1|x) ≥ P(𝑦 = 1|x∗)
0 otherwise

where x∗ is determined by the cost function 𝑐 and budget 𝐵. Since

P(𝑦 = 1|x∗) is monotonically decreasing in 𝐵, we recover a setting

similar to 5.5, in which the forward direction of the claim holds

from the fact that,

P(𝑦 = 1|x∗𝐶 ) ≤ P(𝑦 = 1|x∗𝐹 ), for all 𝐵.

While the reverse direction holds due to the fact that when x∗
𝐹
≤ x∗

𝐶
,

unfairness is monotonically decreasing for both classifiers. □

Remark 5.9. To better contextualize unimodality of error and un-
fairness with respect to the manipulation budget 𝐵, we can view
this condition in terms of the calibration of the score function ℎ of
the classifier 𝑓 . As is typical, classifiers are defined via thresholds
on their underlying score functions, i.e. 𝑓 (x) = I[ℎ(x) ≥ 𝜃 ]. Sup-
pose that ℎ is reasonably well calibrated, then for every 𝑝 ∈ [0, 1],
P(𝑦 = 1|ℎ(x) = 𝑝) ≈ 𝑝 , i.e. ℎ(x) is a good approximation of the con-
ditional distribution given by P(𝑦 = 1|x). When ℎ is reasonably well
calibrated, the condition that error and unfairness are unimodal w.r.t.
to the manipulation budget 𝐵 is equivalent to the error and unfairness
of 𝑓 being unimodal w.r.t. to the choice of threshold 𝜃 . Through this
lens, one can see that the assumption of unimodality is likely to hold
(at least approximately so) in practice as it is typically the case there
is one “good” choice of threshold 𝜃 and any deviation (increasing or
decreasing 𝜃 ) results in strictly worse performance of 𝑓 .

Feature-Monotonic Costs. Finally, we demonstrate that selectivity

remains sufficient for fairness reversal in general when costs are

feature-monotonic.

Theorem 5.10. Let 𝑓𝐶 and 𝑓𝐹 be the most accurate and the optimal
𝛼-fair classifier, respectively. Suppose fairness is defined by PR, FPR,
or TPR and 𝑐 (x, x′) is feature-monotonic. If 𝑓𝐹 is more selective than
𝑓𝐶 , then there exists a budget 𝐵 that leads to fairness reversal between
𝑓𝐹 and 𝑓𝐶 .

Proof Sketch. The full proof is deferred to Section D of the

Supplement. The intuition behind this results is that trivial classi-

fiers (i.e., those that predict 𝑓 (x) = 1 for all x) have 0 unfairness
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for PR, FPR, and TPR based fairness. As 𝐵 increases, both 𝑓
(𝑐,𝐵)
𝐶

and 𝑓
(𝑐,𝐵)
𝐹

(the classifiers resulting from agents best responding to

either classifier with budget 𝐵 and cost function 𝑐) will approach

0 unfairness, not necessarily monotonically, as they become more

like trivial classifiers. At some point prior to reaching trivial clas-

sification, the conventional classifier 𝑓𝐶 will be at least as fair as

𝑓𝐹 . This can be seen through a combination of the fact that 𝑓𝐹 is

more selective than 𝑓𝐶 and the way in which manipulations alter

the positively predicted region of a classifier when costs are feature-

monotonic. In particular, 𝑓𝐹 being more selective than 𝑓𝐶 implies

that,

{x ∈ X : 𝑓𝐹 (x) = 1} ⊂ {x ∈ X : 𝑓𝐶 (x) = 1}.
Feature-monotonic cost functions preserve this subset propriety

under manipulation, i.e., for any 𝐵,

{x ∈ X : 𝑓
(𝑐,𝐵)
𝐹

(x) = 1} ⊂ {x ∈ X : 𝑓
(𝑐,𝐵)
𝐶

(x) = 1}.
Thus 𝑓𝐹 is always more selective than 𝑓𝐶 , regardless of the manipu-

lation budget 𝐵. As such, the positive rate of 𝑓𝐹 will never exceed

the positive rate of 𝑓𝐶 , implying that 𝑓
(𝑐,𝐵)
𝐹

approaches a trivial clas-

sifier more “slowly” than 𝑓
(𝑐,𝐵)
𝐶

, with respect to 𝐵. Moreover, prior

to approaching triviality 𝑓
(𝑐,𝐵)
𝐹

will effectively approach 𝑓𝐶 , thus

partially absorbing some of the original unfairness of 𝑓𝐶 , resulting

in a fairness reversal. □

Next, we provide a condition which leads 𝑓𝐹 to be more selective

than 𝑓𝐶 . Here, we provide this condition for the PR fairness metric;

analogous results for TPR and FPR are given in Section D of the

Supplement. For this result, we define the following notation

𝑃𝐺𝑧
= P(𝑔 = 𝑧), 𝑔(x) = 𝑃 (𝑔 = 1|x)

and

X0 = {x ∈ X : 𝑔(𝑥) < 𝑃𝐺1
and P(𝑦 = 1|x) < 1/2}.

The set X0 represents the set of features which are less likely than

chance to correspond to 𝑔 = 0 and 𝑦 = 0.

Theorem 5.11. Let 𝑓𝐶 and 𝑓𝐹 be the most accurate and optimal
𝛼-fair classifiers respectively, and fairness defined by PR. Then 𝑓𝐹 is
more selective than 𝑓𝐶 if and only if 0 < 𝛼 ≤ 𝛼∗, where

𝛼∗ = min

x∈X0

𝑃𝐺
0
𝑃𝐺

1
(2P(𝑦=1 |x)−1)

𝑔 (x)+𝑃𝐺
1

(
𝑃𝐺

1
−2𝑔 (x)−2𝑃𝐺

1
P(𝑦=1 |x)

) .
Proof. Both the conventional and fair objectives can be written

as follows:

𝑓𝐶 =argmin𝑓 P(𝑓 (x) ≠ 𝑦)
𝑓𝐹 =argmin𝑓 (1 − 𝛼)P(𝑓 (x) ≠ 𝑦)

+ 𝛼
��P(𝑓 (x) = 1|𝑔 = 1) − P(𝑓 (𝑥) = 1|𝑔 = 0)

��
Assuming the optimal 𝑓𝐹 has higher positive rate for group 1 (the

group 0 holds symmetrically), the fair objective function can be

simplified to,

(1 − 𝛼)
∑︁
x∈X

(
(1 − 𝑓 (x))P(𝑦 = 1|x) + 𝑓 (x)P(𝑦 = 0|x)

)
P(x)

+ 𝛼
∑︁
x∈X

𝑓 (x)
(
P(𝑔 = 1|x)
P(𝑔 = 1) − P(𝑔 = 0|x)

P(𝑔 = 0)

)
P(x)

Thus 𝑓𝐹 (x) = 1 is optimal if

𝛼
(P(𝑔 = 1|x) + (P(𝑔 = 1) − 2)P(𝑔 = 1))

(1 − P(𝑔 = 1))P(𝑔 = 1) (1)

− (1 − 𝛼)2P(𝑦 = 1|x) + 1 ≥ 0

and 𝑓𝐶 (x) = 1 is optimal if P(𝑦 = 1|x) ≥ P(𝑦 = 1). Thus, the
only case in which 𝑓𝐹 positively classifies an example x, which is

negatively classified by 𝑓𝐶 (i.e., 𝑓𝑓 (x) = 1 ≠ 𝑓𝐶 (X) = 0), is when

the left-hand side of Inequality 1 is nonnegative and P(𝑦 = 1|x) ≥
P(𝑦 = 1). Simplifying the condition in Equation ?? yields 𝛼∗. □

The key observation from Theorem 5.11 is that fairness reversal

is a small-𝛼 phenomenon. This may seem surprising, since 𝑓𝐹 is

likely to be most similar to 𝑓𝐶 for smaller values of 𝛼 (in particular,

the two are identical when 𝛼 = 0). However, when 𝛼 is high, the

fairness term is sufficiently dominant that reversals are unlikely.

Consequently, it is precisely the intermediate values of 𝛼 , where we

aspire to preserve high accuracy while improving group-fairness

that are most susceptible to fairness reversal. This is indeed consis-

tent with our empirical observations in Section 4, which indicate

that for intermediate values of 𝛼 fairness reversals are not only

more common, but occur with greater magnitude. Lastly, note that

for some distributions, 𝛼∗ ≤ 0, which means that fairness reversals

are luckily not guaranteed.

Remark 5.12. For some classifiers and agent distributions, fairness
reversals are straightforward to prevent. We outline several of these
cases in Section D.1 of the supplement.

6 CONCLUSION
We demonstrate a fairness-reversal phenomenon, where a trained-

to-be fair classifier exhibits more unfairness than the conventional

accuracy-maximizing one if human agents can strategically respond

to a classifier. We show that a sufficient condition for observing

fairness reversal is “selectivity”, that is, a group-fair classifier mak-

ing fewer positive predictions than its conventional counterpart.

Additionally, we demonstrated that this condition of “selectivity”

also results in an accuracy reversal. The aggregate of these results

indicates that when fairness is achieved through an overall decrease

in positive rate (compared to the conventional classifier), strategic

agent behavior can lead to a reversal of the core functionality of

both models (i.e., the performance based model becomes less accu-

rate than the fair model, and the fair model becomes less fair than

the fairness-agnostic model).

We view these results not as a critique of fair-learning, but rather

as a caution towards the expectation of fairness guarantees when a

fair classifier sees real-world deployment. The successful deploy-

ment of fair-learning models requires the consideration of many

nuanced factors, strategic agent response to model choice being on

such consideration. While we have outlined several necessary and

sufficient conditions regarding both classifier selectivity as well

as fairness reversals, a deeper investigation into when fair classi-

fiers may suffer from such problems in cases where the classifier s

designed to anticipate strategic behavior. Mitigating fairness and

accuracy reversals is an important direction for future work.
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