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ABSTRACT

The use of algorithmic decision making systems in domains which
impact the financial, social, and political well-being of people has
created a demand for these to be “fair” under some accepted notion
of equity. This demand has in turn inspired a large body of work
focused on the development of fair learning algorithms which are
then used in lieu of their conventional counterparts. Most anal-
ysis of such fair algorithms proceeds from the assumption that
the people affected by the algorithmic decisions are represented as
immutable feature vectors. However, strategic agents may possess
both the ability and the incentive to manipulate this observed fea-
ture vector in order to attain a more favorable outcome. We explore
the impact that strategic agent behavior can have on group-fair
classification. We find that in many settings strategic behavior can
lead to fairness reversal, with a conventional classifier exhibiting
higher fairness than a classifier trained to satisfy group fairness.
Further, we show that fairness reversal occurs as a result of a group-
fair classifier becoming more selective, achieving fairness largely
by excluding individuals from the advantaged group. In contrast, if
group fairness is achieved by the classifier becoming more inclusive,
fairness reversal does not occur.
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1 INTRODUCTION

The increasing deployment of algorithmic decision making systems
in social, political, and economic domains has brought with it a de-
mand that fairness of decisions be a central part of algorithm design.
While the specific notion of fairness appropriate to a domain is
often a matter of debate, several have come to be commonly used in
prior literature, such as positive (or selection) rate and false positive
rate. A common goal in the design of fairness-aware (group-fair)
algorithms is to balance predictive efficacy (such as accuracy) with
achieving near-equality on a chosen fairness measure among demo-
graphic categories, such as race or gender. A question that arises
in many domains where such “fair” algorithms could be used is
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whether they are susceptible to, and create incentives for, manipula-
tion by agents who may misrepresent themselves in order to achieve
better outcomes. For example, in selection of individuals to receive
assistance from social service programs or selection of individuals
for loans, it may be possible for applicants to misreport the number
of dependents, income, or other self-reported characteristics, and,
in some cases, even the sensitive attribute itself.

We investigate the effects of such strategic manipulation of a
binary group-fair classifier. In the social services example, the clas-
sifier may decide whether an applicant receives assistance, and
the fairness criterion could be approximate equality of selection
rate between male and female applicants. First, we observe that
the ability of individuals to manipulate the features a classifier
uses can lead to fairness reversal, with the conventional (accuracy-
maximizing) classifier exhibiting greater fairness than a group-fair
classifier. We demonstrate this phenomenon on several standard
benchmark datasets commonly used in evaluating group-fair clas-
sifiers. Next, we theoretically investigate conditions under which
fairness reversal occurs. We prove that the key characteristic that
leads to fairness reversal is that the group fair classifier becomes
more selective, excluding some of the individuals in the advantaged
group from being selected. Moreover, we show that this condition is
sufficient for fairness reversal for several classes of functions mea-
suring feature misreporting costs. In contrast, we experimentally
demonstrate that when a group-fair classifier exhibits inclusiveness
instead by selecting additional individuals from the disadvantaged
group, fairness reversal does not occur.

Summary of results: We begin by observing empirically the
phenomenon of fairness reversal, exhibited on a number of datasets
commonly used in benchmarking group-fair classification efficacy.
The key factor that results in fairness reversal is the extent to which
group fairness is achieved through increased selectivity (the fair
classifier fF positively classifies fewer inputs than the conventional
classifier fc) as opposed to increased inclusiveness (fr positively
classifies more inputs than fr). Next, we examine this issue the-
oretically, and prove that selectivity is a sufficient condition for
fairness reversal. Further, we show that, under some additional
conditions, selectivity is also a necessary condition. These results
obtain for two common classes of functions measuring the cost of
misreporting attributes, and explain our empirical observations.

2 RELATED WORK

Our work is closely related to two major strands in the literature:
algorithmic group-fair learning and adversarial, or strategic, learn-
ing.

The algorithmic fairness literature aims to study the extent to
which algorithmic decisions are perceived as unfair, for example, by
being inequitable to historically disadvantaged groups [2, 4, 5, 10].
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Many approaches have been introduced, particularly in machine
learning, that investigate how to balance fairness and task-related
efficacy, such as accuracy [1, 8, 16, 20, 24, 27, 43-45]. Many of these
impose hard constraints to ensure that pre-defined groups are near-
equitable on some exogenously specified metric, e.g., selection (pos-
itive) rate [1, 24, 44], although alternative means, such as modifying
the data to eliminate disparities, have also been proposed [9, 16].

Within the domain of algorithmic fairness, our work is related
to recent investigations into the effects of distribution shift, or data
mismeasurement, on fair learning [17, 33, 37, 38]. These works
asses the efficacy of fair learning in settings in which data is noisy,
or settings in which training data and testing data are sourced
from separate distributions. This line of research considers worst-
case, or random, distribution shifts, which is distinct from our
setting in which we explicitly consider shifts caused by strategic
agent behavior. Moreover, these works compare model fairness
and performance under distribution shifts or noise with model
fairness and performance under no distribution shifts or noise. This
is contrast to our work which examines fairness and performance
or a particular (fair) model, against an alternate choice of (fairness-
agnostic) model.

The adversarial learning literature, initially motivated by security
considerations, such as malware detection [22, 30, 41], has come to
have a far broader scope, including social applications [3, 6, 12, 19].
In the latter context, this is known as strategic classification, to indi-
cate the concern that individuals impacted by algorithmic decisions
change their features. In most cases, the strategic aspect here is
actual misreporting of features, which is our concern. However, a
related but distinct, line of work considers individuals who actually
change their features (rather than misreport these) to achieve a bet-
ter outcome [7, 25]. A broader related area of performative prediction
considers more general changes in behavior induced by algorithmic
systems [33, 34]. The intersection between strategic classification
and fairness is particularly salient to our work, and has featured
studies that highlight the inequity that results from strategic behav-
ior by individuals [21], as well as social cost disparities resulting
from making classifiers robust to strategic behavior [32, 43]. Our
goal, however, is quite distinct: we investigate the extent to which
group-fair learning itself leads to greater inequity than non-group-
fair baselines due to strategic manipulation of features. Finally, Liu
et al. [29] consider a closely related issue of fairness reversal that
may result from a population adapting to a classifier. However,
their analysis is at the population level, assuming known prediction
scores; in contrast, we delve into individual-level manipulation of
features, and build results using popular agency models.

3 PRELIMINARIES

We consider a setting with a population of agents, each character-
ized by a feature vector x € X, a group g € G = {0, 1} to which
they belong (as is common in much prior literature, we treat groups
as binary), and a (true) binary label y € Y = {0, 1}, denoting, for
example, the agent’s qualification (for a service, employment, bail,
etc). Let D be the joint distribution over G X X x Y. We define p(x)
as the marginal pdf of x, and assume that p(x) > 0 for each x € X.

Since using the sensitive group membership feature may pose a
legal challenge, we assume that neither the conventional nor the
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group-fair classifier do so at prediction time (but may at training
time); from a analytical perspective group-aware classifiers (those
that use group membership at prediction time) are equivalent to
group-unaware classifiers from the perspective of agent manipula-
tions, so long as group membership can be misreported in a similar
fashion to other features. As such we provide a set of empirical
results demonstrating that fairness reversals occur for group aware
classifiers as well, but defer discussion of group-aware results to
Section E.3 of the Supplement. We denote the conventional clas-
sifier by fc, while the group-fair classifier is denoted by fr, and
both map from the domain of features X to the set of binary labels
Y. Let M(f;9) be a measure of efficacy (e.g., positive rate) of f
restricted to a group g, and define

U(f: M) = M(flg=1) - M(flg = 0)|-

We shorten this notation to U (f) where M is clear from context. We
assume that the conventional classifier aims to maximize accuracy,
ie, fo = argmaxs Py ) (f(x) = y), while fp aims to balance
accuracy and fairness, solving

fr =arg max (1= )Py y) (f(x) =y) —aU(f; M),

where a € [0, 1] specifies the relative weight of accuracy and
fairness terms.

In the literature fairness is sometimes defined with hard con-
straints, rather than the soft constraints of a-fairness, for example

fr=arg m;}X IED(x,y) (f(x) = y)
st. U(fiM) < B

In general these two formulations are not equivalent, however in
the cases we study (PR, FPR, and TPR fairness) soft constrained
and hard constrained fairness are equivalent, in the sense that for
any «a there exists a f such that the classifiers produced under
either formulation are equivalent, and viceversa. This is given more
precisely as Lemma A.4 in the Supplement. As such our results hold
for either case; we elect to study the problem through the lens of
a-fairness simply for ease of presentation.

We consider the impact of strategic behavior of agents when
they face a classifier f (whether conventional or group-fair). Specif-
ically, we suppose that each agent with features x can modify these,
transforming them into another feature vector x” that is reported
to the classifier. In doing so, the agent incurs a cost, captured by a
manipulation cost function ¢(x,x”) > 0 [18, 19, 30]. Cost functions
are assumed to be bounded ! over the domain X x X.

We study two common families of manipulation cost functions:

Feature-monotonic costs: Manipulation cost ¢(x,x’) is mono-
tonic in ||x — x’|| (larger manipulations are more costly).

Outcome-monotonic costs: Manipulation cost ¢(x, x”) is mono-
tonicin P(y = 1]x’) — P(y = 1|x) where ¢(x,x") = 0 for any x’ such
that P(y = 1|x) > P(y = 1|x") (manipulations leading to better out-
comes are more costly).

!Boundedness of ¢ is a rather mild assumption and holds for any continuous function
when X is a closed and bounded set, e.g. [0, 1]4. This assumption is used primarily
to avoid degenerated settings such as those in which no agents can manipulate, e.g.,
c(x,x") = coforall x # x’.
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For example, if the problem domain involves lending, feature-monotonic

costs can correspond to the mental and physiological burden of
dishonesty [39], or to the likelihood of failing an authenticity
check [14], while outcome-monotonic costs can correspond to the
required time investment to identify a productive manipulation,
or the likelihood of being audited [15] (applications more likely to
succeed are also more likely to be audited) and incurring associated
penalties.
We define the agent’s utility as

u(x,x’) = f(x') = f(x) = /B c(x.X),

where B is a parameter trading off costs and benefits of manip-
ulation. Following the standard setting in strategic classification
or adversarial machine learning, we assume any misreporting be-
havior would not change the true label y associated with x. We
assume that all agents are rational utility maximizers. Thus, since
f(x’') - f(x) < 1, the agent will misreport its features only when
c(x,x”) < B. Additionally, the agent will not misreport if f(x) = 1
(they are selected even when truthfully reporting x). Consequently,
we can equivalently view B as an upper bound on the costs that
agents are willing to incur from misreporting their features, that is,
the manipulation budget.

We next formalize the notion of a fairness reversal in the presence
of strategic agents (i.e., what it means for strategic agent behavior
to lead to fr becoming less fair than f¢).

Definition 3.1. (Fairness Reversal) Let M be a measure of efficacy,
fF be a classifier which is group-fair with respect to U(f; M) and
fc be a conventional accuracy-maximizing classifier. Suppose that
U(fps M) < U(fos M). Leth(C’B),fF(C’B) be the induced classifiers
when agents best respond to fc and fr respectively with manipulation
cost ¢(x,x") and budget B. We say that a budget B leads to fairness

reversal between fc and fr ifU(fF<C’B);M) > U(fC(C’B);M).

We will then say that fairness reversal between fr and fc occurs
if there is some strategic manipulation budget B which leads to
fairness reversal, that is, for this budget, f- becomes more fair than
fF after manipulation. Note that if the budget B is 0, fr will be more
fair than fc by construction, whereas if the budget is infinite, as
long as any input is classified as the positive class, all individuals
can misreport their features to be this class, and consequently both
classifiers are fair in the sense that every input is predicted as 1. As
a result, our analysis is focused solely on the intermediate cases
between these extremes.

4 FAIRNESS REVERSAL

Our central goal is to understand the conditions under which fair-
ness reversal occurs in strategic settings, that is, when a fair classifier
fr becomes less fair than its conventional counterpart fc if agents
act strategically. Fairness reversal occurs when there is a range of
strategic manipulation budgets B for which the conventional clas-
sifier fc exhibits greater fairness than the group-fair model fr. In
this section, we study this phenomenon empirically, demonstrating
that it is commonly observed for several benchmark datasets.
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Datasets and Algorithms. For our empirical study, we use five
datasets commonly used as benchmarks for group-fair classifica-
tion: Adult: Dataset of working professionals where the goal is
to predict high or low income (protected feature: gender) [13, 26].
Community Crime: Dataset of communities where the objective
is to predict if the community has high crime (protected feature:
race) [13, 36]. Law School: Dataset of law students where the ob-
jective is to predict bar-exam passage (protected feature: race) [42].
Student: Dataset of students where the objective is to predict a
student receiving high math grades (protected feature: race) [11, 13].
Credit: Dataset of people applying for credit where the objective
is to predict creditworthiness (protected feature: age) [13].

All five datasets have binary outcomes, and we label the more
desirable outcome for the individuals by y = 1 (e.g., having a high
income in the Adult dataset), with the less desirable outcome la-
beled by y = 0. Consequently, higher positive rate (PR), true positive
rate (TPR), or false positive rate (FPR) is more desirable for indi-
viduals. Group membership in each dataset is determined by race,
gender, or age which in these datasets corresponds to a binary
feature (as in [23] the age feature is made binary by considering
those older than 25 as Old, and those 25 or younger as Young). A
detailed breakdown of the datasets can be found in Section E.7 of
the Supplement. In all cases, we refer to the “advantaged” group
(e.g. the group with higher PR for PR based fairness) as group 1,
or G1, while the disadvantaged group is referred to as 0 or Go. In
our experiments, we only consider features that can potentially be
manipulated (see Section E.7 of the Supplement for further details).
We use four types of conventional classifiers for fc, namely logis-
tic regression (LGR), support vector machines with an RBF kernel
(SVM), neural networks (NN), and gradient boosting trees (GB),
and three group-fair approaches to obtain fr, Reductions [1], Gerry-
Fair [24], and EqOdds [35]. The first two are inprocessing methods
which learn a fair model direction on a given dataset, while the
third remedies unfairness through postprocessing the predictions
of a conventional classifier. To study strategic manipulation, we use
a mix of local search for categorical features [28, 40] and projected
gradient descent (PGD) for continuous features [31]; further details
are provided in Section E.6 of the Supplement.

Fairness reversals under strategic agent behavior. In Figure 1 we in-
vestigate fairness reversals on three datasets with both Reductions
and EqOdds fairness methods; additional experiments in Section E
of the Supplement show that this illustration is representative in
the sense that although fairness reversals do not occur in all cases,
they are quite common. Consider first Figure 1 (top), which exam-
ines settings where predictions do not take the sensitive features
as an input (we call these group-agnostic classifiers). In these three
plots, the dashed line corresponds to fr, and the rest are group-fair
classifiers fr for different values of a (recall that higher a entails
greater importance of group fairness). What we observe is that in
many cases, particularly when « is not very high, there is a range of
budget values B for which fr becomes less fair than f. Moreover,
in many cases, this range is considerable. In Figure 1 (bottom plots),
where group-fair classifiers are group-aware, including the sensi-
tive feature as an input, the fairness reversal phenomenon is even
more dramatic (not that EqOdds attempts to achieve 0 unfairness
between groups, i.e., f = 0 is used in all experiments instead of a)
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Figure 1: Difference in unfairness between groups on several datasets as a function of the manipulation budget B when
manipulation cost is ¢(x, x’) = ||x — x’||2. The dashed black lines correspond to f- and colored lines correspond to fr. Fairness
reversal occurs when one of the colored lines is above the black line. The top row displays results when fr is learned via the
Reductions algorithm, with fairness defined in terms of PR, TPR, or FPR, for several different values of «. The bottom row
displays results when fr is learned via the EqOdds algorithm, with fairness defined in terms of generalized false positive rate
GFPR (i.e. expected FPR: Definition 1 of [35]). Reductions is group-agnostic, and EqOdds is group-aware.

. In this experiment, when best responding agents are capable of
misreporting their group as if it where a feature in x (fairness is
still computed with true group membership). Due to the particular
nature of EqOdds, specifically its handling of agents from different
groups, we observe a sharp change in fairness at B = 1, the precise
budget for which misreporting group membership is feasible.
Figure 1 exhibits several additional phenomena. Note, in particu-
lar, that in many cases the unfairness (i.e., FPR difference between
the groups) initially increases as the budget increases, but in all
cases as budgets B keep increasing, eventually unfairness vanishes
as a result of strategic behavior by agents. Furthermore, much as
we observe this initial unfairness increase for both fr and f, it
appears amplified for some of the group fair classifiers fr.

What causes fairness reversal? As we formally prove below, the
essential condition is selectivity of fair classifier fr compared to fc.
Specifically, in binary classification, there are, roughly, two ways
one can improve fairness on a given dataset (that is, without any
consideration of strategic behavior); either through inclusiveness
(positively classifying additional agents from the disadvantaged
group by changing their predicted class to 1), or through selectivity
(negative classifying some of the members of the advantaged group
by changing their predicted class 1 to 0).
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Our key observation is that selectivity leads to fairness re-
versals, while inclusiveness does not. Specifically, we observe
that as the number of agents positively classified under fr, but
negatively under fF, is larger than the number of agents negatively
classified by fc, but positively under fr, fairness reversals are more
commons.

We illustrate this in Figure 2, which shows the decision bound-
aries of fr and fc (top row), as well as associated fairness as a func-
tion of budget (bottom row) for several combinations of dataset,
classifier, and fairness definition. On the Adult and Crime datasets
(first two columns), fairness is achieved predominantly through
selectivity, as the orange region (fr) includes few additional green
points (disadvantaged group) compared to the blue region (f¢),
but excludes many blue points (advantaged group). This is given
more precisely in terms of the respective group-wise positive rates
for fc and fF; in the first two examples the positive rates on both
groups drops when switching from f¢ to fr, while in the third
case the positive rate for both groups increases. This, in turn, leads
to instances of fairness reversal (bottom row first column). In the
Law School dataset (third column), in contrast, fairness is achieved
primarily through inclusiveness, and fr remains more fair than
fc over a broad range of strategic manipulation budgets B. The
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Figure 2: Fairness reversals and selectivity of classifiers on two ordinal features. The top row shows regions with positive
predictions (blue for fr and light orange for fr) using two features (corresponding to the axes), and dot colors correspond to
the sensitive demographics. The darker orange region corresponds to an overlap between the positive predictions of f- and
fr. The bottom row shows the relative unfairness between demographic groups (for the classifiers shown in the top row) as a
function of strategic manipulation budget B (lower means more fair). In the top row, the fraction of each group being positively
classified under f¢ is, Adult: (Male: .63, Female: .45), Crime: (White: .84, None-White: .26), Law: (White: .64: None-White: .35)
alternatively under fr is, Adult: (Male: .42, Female: .39), Crime: (White: .62, None-White: .23), Law: (White: .62: None-White: .51)

reason that selectivity leads to fairness reversal is that those from
the advantaged group who are excluded tend as a result to be closer
to the decision boundary than those from the disadvantaged group.
In Section E.1 of the Supplement we provide further results linking
selectivity of the fair classifier to fairness reversals. In this section
we also observe that when strategic agent behavior (for some ma-
nipulation budget) results in a fairness reversal between fr and fc,
the relative accuracy of the classifiers is also reversed (for some
potentially different manipulation budget), implying a fundamen-
tal relationship between fairness and accuracy when agents are
strategic.

Unfairness of fr. Lastly we remark on the relationship of the
between the manipulation budge B and the unfairness of the fair
classifier fr. As seen in Figures 2 and 1, the unfairness of f is
frequently increasing in B (for small values of B). To provide in-
sight into this phenomenon we look to the case of single variable
prediction as showing in Figure 3. This figure shows the error and
unfairness of a single variable classifier (i.e., a threshold classifier
with threshold 6) when using a student’s LSAT score to predict
whether they will pass the bar exam. Since manipulations change
model decisions only in a single direction (negative predictions
become positive), predicting on strategically altered data amounts
to predicting on unaltered data with a lower threshold . As the ma-
nipulation budget B grows, the corresponding threshold becomes
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increasingly smaller. Thus, when fF is more selective than fc, i.e.
0r > Oc = 0.57, the unfairness of fr will initially increase as
B increases. In the case of multivariate prediction, the increased
unfairness of fr stems from a similar

Next, we study fairness and accuracy reversals in strategic clas-
sification settings theoretically, demonstrating that selectivity is
indeed a sufficient (and, under some additional qualifications, nec-
essary) condition for fairness reversal.

5 THEORETICAL ANALYSIS

In this section we provide theoretical explanations of the empirical
observations made in the previous section. We start with single-
variable classifiers and then proceed to generalize our observations
to multi-feature classifiers. Our key finding is that selectivity (de-
fined next) is in fact a sufficient condition for fairness reversal, pro-
viding a theoretical underpinning for the empirical observations
above. Additionally, we investigate the underlying causes of fair
classifiers becoming more selective, and provide conditions on the
underlying distribution for this to be the case. In the cases of single
variable classifiers with feature-monotonic costs and multivariable
classifiers with outcome-monotonic costs, we further demonstrate
that selectivity also leads to accuracy reversals (strategic behavior
causes the fair classifier to become more accurate than the conven-
tional model), and outline conditions on the underlying distribution
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such that selectivity is not just sufficient, but also necessary for both
of these phenomena. When strategic agent behavior results in both
a fairness and accuracy reversal, the functionality of both classifiers
has fundamentally swapped; the accuracy driven (conventional)
model fc is no longer the most accurate model and the fairness
driven (fair) model fF is no longer the most fair model. Prior to our
results, we first formalize the notion of classifier selectivity.

Definition 5.1. Let X = {x € X : fo(x) =1} and X, = {x € X :
fr(x) = 1}. We say that fr is more selective than fo if X5 € X

That is, fr is more selective than f if the set of positively clas-
sified examples under fF is a subset of those positively classified
under fr. While this definition of selectivity is slightly more re-
strictive than the type of selectivity found in our empirical results,
the subset propriety is a driving force behind the fairness reversals
observed in practice. Selectivity can be interpreted as the fair model
fF, achieving fairness by “excluding" additional agents from posi-
tive classification, compared to fc. As an example, under PR-based
fairness let Gy be the group with lower PR and G; be the group
with higher PR under f¢ (TPR and FPR hold similarly). A model
designer could improve the fairness of fc by positively classify-
ing more agents in Gy or negatively classifying more agents in Gy
(or a combination of both). In the latter case, members of Gy are
“excluded" from positive classification, and the resulting model is
considered to be more selective. Note that this type of exclusion is
precisely the means through which fairness is achieved in Figure 2
(center).

5.1 Single Variable Classifier

We begin our theoretical exploration of fairness reversals with an
exemplar case: a single variable threshold classifier. In this setting
agents possess a single ordinal feature x. For simplicity we demon-
strate our results for a continuous feature x € [0, 1], but the results
hold for any ordinal feature (discrete or continuous) . Both the
conventional classifier (selected for maximal accuracy) and fair
classifier (selected for a weighted combination of accuracy and fair-
ness with respect to a fairness metric M) can be expressed as a single
parameter Oc, Of € [0, 1] respectively where f(x) = I[x > 0].

Our first result is that in single-feature classification, higher
selectivity of the group-fair classifier (i.e. ¢ < 0F) is sufficient for
fairness reversal.

Theorem 5.2. Suppose fairness is defined by PR, TPR, or FPR, ¢(x, x”)
is monotone in |x" — x|, O¢ is the most accurate, and O the optimal
a-fair, threshold. If Oc < O, then there exists a budget B that leads
to fairness reversal between fr and fc.

Proor SKETCH. The full proof is provided in Section B of the
Supplement. Here we provide a proof sketch for continuous c, a
similar line of reasoning, with a few additional edge cases, holds
for discontinuous c. The unfairness of threshold 6 w.r.t. to the dis-
tribution P and fairness metric M € {PR, TPR, FPR} is expressed
as,

Up(6) = [Mp(8lg = 1) ~ Mp(6lg = 0)],
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For a given threshold 8 and manipulation budget B the best response
of an agent with true feature x is

xéB) = argmax (I[x" > 6] —I[x > 6])
e
s.t. c(x,x") < B,

When agents from D play this optimal response, let the result-

ing distribution be Z)éc’B). The difference in unfairness between

classifiers when agents are strategic is UD(C,B) (Oc) — UZ)("B) (0F).
) o

Since both fr and fF are thresholds, and c is feature-monotonic,

the decisions of 0¢, OF on the modified distribution DéC’B)

Q(C,B) Q(C’B)
c °°F

can be

expressed as decisions of modified thresholds on the

original distribution D, i.e.,

Upe (6) = Upyen (05) = Up(0EP) - Up (05°7)

where
gg’B) = argmin, x s.t. ¢(x,0c) < B
and
91(;’3) = argmin, x s.t. ¢(x, 0p) < B

Given these modified threshold, we see that strategic agent behavior
results in a lowering of each threshold as more agents are now able
to achieve positive classification; this is due to the fact that only
negatively classified agents will behavior strategically, their goal
being to achieve positive classification. Moreover, when considering

QéC’B) R GEC’B) as functions of B, both are monotonically decreasing

in B (due to the the monotonicity of c), and GéC’B) < Gl(f’B) for all
B (due to 6¢ < OF).

Since fairness is defined in terms of PR, FPR, or TPR the constant
function f(x) = 1 has unfairness 0 for any distribution. Thus,
Qéc’B) = 0 implies UD(Gg’B)) =0. Let

B’ =sup{Be Ry : Up(05°P)) > 0},

Note that B’ is guaranteed to exist due to Ug (Héc’o)) >Ugp (Ql(f’o)) >
0 and the boundedness of ¢(x, x"). Since Ugy > 0 and c is contin-
uous, there must exist some ¢ > 0 such that over the interval
B € [B’ — ¢, B’] the unfairness UD(QéC’B)) is strictly decreasing in
B.If
U@(géc,B —5)) > UD(eéc,B —.s)) >0,

then a fairness reversal has already occurred for budget B’ — ¢, so
assume otherwise. Combining the difference in relative fairness for
budget B’ — ¢ with the fact that H(CC’B) < 91(:0’3) for all B, we get
GéC’B’_E) < GI(UC’B/_E). Since ¢ is monotonic and continuous there
must exist some budget Bp > B’ — ¢ such that 9((:6’3/_5) = QEC’BF).
Since Br > B’ — ¢, and UD(QéC’B)) is decreasing for B > B’ — ¢, it
must be the case that

Up(0FP)) = Up (0;°% =) < Up (0177,

and a fairness reversal occurs for budget Br. O

We now turn our attention to a complementary observation: fair-
ness reversal is accompanied by accuracy reversal, that is, strategic
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behavior leads to fr having higher accuracy than fc. This is pri-
marily due to the fact that fr becomes more selective and therefore
more resilient to manipulation. Note that the fairness reversal and
accuracy reversal need not occur for the same budget B.

Theorem 5.3. Suppose fairness is defined by PR, TPR, or FPR, c¢(x, x”)
is monotone in |x’ — x|, Oc is the most accurate threshold, and O the
optimal a-fair threshold. If 6c < OF, then there exists a budget B s.t.
fF is more accurate than fc.

Proor SKETCH. We defer the full proof to Section B of the Sup-
plement and again give a proof sketch for continuous c. The error
of threshold 0 on distribution D is given by

Lp(0) =P(I[x > 0] =y)
By the definition of 6¢, we have
LpOc) < Lp(0) forall e [0,1],

and therefore L (0c) < Lo (0F). Similar to the proof of Theorem
5.2, agents strategically responding to threshold classifiers 6¢, O

can be viewed as modified thresholds QéC’B) , GI(,C’B) operating on
the true distribution D. Both GéC’B), 9}(36’3) are monotonically de-

creasing in B. Moreover, Qéc’B) = 0 implies Ly (0) = P(y = 0),
since the threshold classifies all agents positively.
Let
B =sup{B: Lp(0) <P(y=0)},

i.e. B’ is the “largest” manipulation budget such that the conven-
tional threshold is not a trivial classifier (i.e., not making constant
predictions) in the presence of strategic agent behavior. In a sim-
ilar line of reasoning to the case of fairness reversals, there must
exist some interval [B’ — ¢, B'] over which £ (8(¢B)) is strictly
increasing. Again, by the fact that ¢ < 0F, there must exist some
Br > B’ — ¢ such that GéB’_g) = Gl(:c’BF). Thus,

LD(QI(:C,BF)) :Lﬂ(eéc,B’,s)) > LD(QéC,BF)),

implying that an accuracy reversal occurs for budget Br. O

We have showed thus far that selectivity is sufficient for fairness
and accuracy reversals, but under what conditions is it also nec-
essary? Loosely speaking, when a feature x is a good predictor of
both y and g, the error and unfairness of f¢ and fr are unimodal
(defined next) with respect to the manipulation budget B.

Definition 5.4. (Unimodal): A function g : [a,b] — R is nega-
tively unimodal (positively unimodal) on the interval [a, b] if there
exists an inflection point r € [a, b] such that f is monotone decreas-
ing (increasing) on [a,r] and monotone increasing (decreasing) on
[r,b].

(All convex functions are negatively unimodal and all concave func-
tions are positively unimodal).

Unimodality is relevant to fairness and accuracy reversals as we
will see that when error is negatively unimodal and unfairness is
positively unimodal, both fairness and accuracy reversals occur.
We empirically demonstrate that unimodality of both functions
holds frequently on real data. The condition of unimodal error and
unfairness can be interpreted as both functions possessing a “sweet
spot” which yields best case accuracy (or worst case unfairness). In
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the former, x is good predictor of true label y and in the latter x is
a good predictor of g.

As an example, in Figure 3 we see this phenomenon occur on
the Law School dataset when using a student’s LSAT score as the
predictive feature x. Both error and unfairness (in terms of positive
rate difference between groups) are both unimodal in the threshold
0. In this, we observe that LSAT score is a good predictor of both
the target variable (bar passage) and the sensitive feature (race);
this is a well established source of bias within this particular dataset.

We further document this relationship in Section E.4 of the Sup-
plement and find that most ordinal features produce threshold clas-
sifiers which have (approximately) unimodal error and unfairness.
In this section we also theoretically outline the precise conditions
under which error and unfairness would be unimodal; these con-
ditions essentially boil down to a correlation between y|x and g|x,
(which we observe to be the case for most ordinal features across
the datasets we study). When this occurs, the selectivity of fr is
not only sufficient for fairness and accuracy reversals, but also
necessary. We next formalize this in the following theorem; fur-
ther details on the necessary and sufficient conditions required for
fairness and accuracy reversals are provided in Section B of the
Supplement.

Theorem 5.5. Let Oc and O be the most accurate and optimal fair
classifiers respectively. Suppose fairness is defined by PR, FPR, or TPR,
and c(x,x’) is outcome monotonic, and that error (and unfairness)
are negatively (positively) unimodal in 0. Then there exists a budget
B such that strategic agent behavior leads to a fairness reversal if an
only if fr is more selective than Fc.

PROOF SKETCH. When error L) (6) and unfairness Ug, (0) are
both unimodal in 6, the optimal conventional threshold 8¢ and op-
timal a-fair threshold O can be expressed in terms of the inflection
points x y and xy of error and unfairness respectively. The most
accurate threshold is then 8¢ = x s, and the most unfair threshold

5]
@
8 4 m Unfairness
£ = Error
‘*g 31 -ac
-} ||||0

U

2 2]
@
1<)
(S|
L

.0

4 .6 .8 1.
0 (threshold on LSAT score)

Figure 3: Error (blue) and PR-based unfairness between
White and Non-White individuals (red) of a single variable
classifier on the Law School dataset when using the student’s
LSAT score as a single predictive feature. All individuals with
an LSAT score above the threshold 6 are predicted positively.
The thresholds 8- and 6;; are the most accurate and least fair
thresholds respectively.
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is then 0, = xy7. The forward direction, i.e. when 6- < 0, follows
a similar of reasoning to the proof of Theorem 5.2, let GéC’B) and

Gl(,C’B) be the modified thresholds induced by agents best respond-
ing to either threshold with cost function ¢ and budget B. Then,

(e.B) g(c.B)
CC , GFC

since 6 are monotonically decreasing in B and 0¢ < 0,

there must exist a B’ such that HéC’B,) < QI(TC’B’) = Oc. Thus

Up(0FF7) < Up(0c) = Up (05°F))

and

Lp0'F)) = Lp(0c) < L)),

implying that a fairness and accuracy reversal occurs for budget
B'.

The reverse direction, follows from the relationship between 0
and the two inflection points 6¢, 0. Given the assumption that
Or < 8¢, there are only three possible cases for the relationship
between these points

(l) Or < 0c < 0y,
(2) O < Oy < 0Oc,
(3) 0y < O0p < O¢c

the strict inequalities being due to the fact that O # ¢ and 0 # 0y
by definition. In cases (1) and (2), no fairness or accuracy reversal
can occur. Only in case (3) can a fairness or accuracy reversal
occur, however we will show by contradiction that such a case is
impossible.

Beginning with case (1), both error and unfairness are unimodal
in GI(JC’B), O(CCB), each of which is monotonically increasing in B.
Since unfairness in unimodal, any 6 < 6y and any B > 0 unfair-
ness U(6(¢B)) is monotonically decreasing in B. Similarly, since
error is unimodal, for any 6 < 6¢, error L(G(C’B) is monotonically
decreasing. Thus if 0 < ¢, then no accuracy reversal can occur.
Similarly if 0 < ¢ < 6y, no fairness reversal can occur, i.e. in
case (1), neither reversal can occur.

In case (2) since Up (0r) < Up(0¢), and Up (Héc’B)) is mono-

tonically increasing until Q(CC’B> = Oy, no fairness reversal will

occur. Similar to case (1), Or < 6c¢, implies that no accuracy rever-
sal occurs either.

Thus it remains only to show that case (3) can never occur. To
see this, note that for any 0 < ¢ < ¢ — 0F, it must be the case that
both

Up(OF +¢) < Up(OF)
and

Lp(OF+¢) < Lp(0F)
Which implies that 0F is in-fact not the optimal fair threshold. O

Now that we have established the critical role of selectivity in
fairness reversal, we next analyze why that is. As mentioned previ-
ously, there are roughly two ways to achieve fairness: inclusiveness
(classifying more examples as positive) or selectivity (classifying
fewer examples as positive). Which of these will be the predominant
outcome of training fr depends intimately on the data distribution.
We outline these conditions, as well as conditions for error and
unfairness to be unimodal, via Lemmas B.4, B.5, and Theorem B
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in the Supplement. In particular, Theorem B provides conditions
on the underlying distribution such that the optimal fair classifier
will achieve fairness via selectivity. The condition in this theorem
can be intuitively interpreted as follows. Suppose that S is the set
of individuals selected (i.e., classified as 1) by fc, who are also near
the decision boundary of fr. If the advantaged group (i.e., group
with better average outcomes) is overrepresented in S, there is a
range of parameters « such that the optimal a-fair classifier is more
selective than f¢ (recall that higher « places greater importance on
group-fairness in learning).

5.2 General Classifiers

Next we discuss general multi-variate classifiers, generalizing sev-
eral of the results from Section 5.1. First we show that when fF is
more selective than f, fairness reversal occurs for both feature-
monotonic and outcome-monotonic cost functions. Second, we
give conditions which lead to fr being more selective than fc. For
outcome-monotonic costs, we provide two additional results: 1)
greater selectivity of fr also leads to accuracy reversal, and 2) uni-
modality of each classifier’s error and unfairness causes selectivity
to be both necessary and sufficient for fairness and accuracy rever-
sal.

Outcome-Monotonic Costs. We begin with the case of outcome-
monotonic costs. As shown by Milli et al. [32], outcome-monotonic
manipulation costs result in the following best response for classi-
fier f. Let

x" = argmin P(y = 1]x)
X
st f(x)=1.

If ¢(x,x*) < Bthen the best response is X’ = x* otherwise x’ = x.
With this best response in hand we show that fr having greater
selectivity than fc leads to fairness reversal.

Theorem 5.6. Let fc and fr be the most accurate and optimal fair
classifiers respectively. Suppose fairness is defined by PR, FPR, or TPR,
and c(x,x") is outcome monotonic. Then if fr is more selective than
fo. there exists a budget B such that strategic agent behavior leads to
a fairness reversal.

Here we provide a proof sketch of this and other results; complete
proofs are deferred to the Supplement (Section C).

Proor skETCH. For a given classifier f, let

Pmin = xz}‘f(l)i:)lzl P(y =1x)

and let xpi be the feature associated with pmin (Xmin,c: Pmin,C
and Xmin F, Pmin,F correspond to fc and fr respectively). When
agents best respond to f the resulting manipulated classifier can be
expressed as a threshold on the underlying probabilities P(y = 1|x).
More specifically, let

x" = argmin P(y = 1|x)
X
s.t. ¢(X, Xmin) < B.

Then when agents best resound to f (inducing classifier f(¢5)) any
agent x with P(y = 1|x) > P(y = 1|x*) will be positively classified
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under f(C’B), ie.

f(C’B) (X) _ 1 if P(y = 1|X) > P(y = llx*)
0 otherwise

Thus f(¢B) can expressed as the threshold P(y = 1|x*) operating
on the conditional distribution P(y = 1|x).

Since f is more selective than fc, (i.e, forany x € X, if fr(x) = 1
then fo(x) = 1), and xXpin F is positively classified under fr, we
have,

fF(Xmin,F) =1 = fc(Xmin,p)  and therefore pminc < pminF

Therefore the induced conventional and fair thresholds P(y = llx*c)
and P(y = 1|x}) acting on P(y = 1|x) have the relationship that
P(y = 11x5) < P(y = 1|x(.). Thus, we see that selectivity of the
fair classifier in the case of outcome-monotonic costs yields a fair
threshold (on a modified distribution) which is larger than the
induced conventional threshold (operating on the same distribution
as the fair threshold).

While this setting is not entirely equivalent to the single variable
case, the remainder of the proof follows in similar fashion to that
of Theorem 5.2. In particular, the monotonicity of P(y = 1|x*), as a
function of B, implies

P(y = l|x2) <P(y= 1|x;) for any B,

which in turn implies the existence of a budget interval over which
f(C’B)

the unfairness of fC(C’B) decreases below f; ', thus resulting in a
fairness reversal. O

Similar to the single-variable case, selectivity also result in accu-
racy reversal.

Theorem 5.7. Let fc and fr be the most accurate and optimal fair
classifiers respectively. Suppose fairness is defined by PR, FPR, or TPR,
and c(x, x") is outcome-monotonic. Then if f is more selective than
fc, then there exists a budget B under which fr becomes more accurate

than fe.

Proor. The full proof (which follows from a similarly Theorem
5.3, 5.6) is deferred to Section C of the Supplement. O

Before outlining settings in which selectivity is not only suffi-
cient but also necessary for fairness and accuracy reversals to occur,
we first remark on the connection between selectivity, accuracy,
and fairness. As previously noted, errors caused by strategic agent
behavior are single-directional in the sense that manipulation can
only induce false positive errors. As such, classifiers which are
more selective are thus more robust to manipulation than their less
selective counterparts. Generally speaking, this implies that for
some range of manipulation budgets, a model that is more selective
than the accuracy-maximizing model fc will increase in its perfor-
mative ability compared to fr. As the performative ability of most
classifiers on biased datasets is naturally tied with unfairness, the
unfairness of the more robust model (more selective model) will
likewise increase. Thus, we see a fundamental, albeit not necessarily
universal, connection between selectivity (which in turn increases
robustness) and model unfairness (which is increasing in model
performance).

We next discuss unimodality in the context of outcome-monotonic
costs. Empirically we observe that when costs are outcome-monotonic,
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the majority of classifiers tend to have error and unfairness which is
(approximately) unimodal with respect to the manipulation budget
B. When this occurs, selectivity of fp becomes both necessary and
sufficient.

Theorem 5.8. Let fc and fr the optimal conventional and fair
classifiers respectively. Suppose fairness is defined in terms of PR, TPR,
or FPR fairness, and c(x, x") is outcome-monotonic. When error (and
unfairness) are negatively (positively) unimodal with respect to the
manipulation budget B, a fairness and accuracy reversal will occur
between fr and fc if and only if fr is more selective than fc (each
reversal may occur at different budgets B) .

Proor SKETcH. We deffer the full proof to Section C of the Sup-
plement. The intuition for this proof follows similarly to that of
Theorem 5.5. As shown in the proof of Theorem 5.6 when agents
best respond to classifier f, the decisions of f can be expressed as
threshold classifier acting on the conditional probability P(y = 1|x)
of the original distribution O, namely

f(C’B) (X) _ 1 if P(y = 1|x) > P(y = 1|X*)
0 otherwise

where x* is determined by the cost function ¢ and budget B. Since
P(y = 1|x*) is monotonically decreasing in B, we recover a setting

similar to 5.5, in which the forward direction of the claim holds
from the fact that,

P(y = 1Ix¢) < P(y = 1|xp),

While the reverse direction holds due to the fact that when X; < x*c,
unfairness is monotonically decreasing for both classifiers. O

for all B.

Remark 5.9. To better contextualize unimodality of error and un-
fairness with respect to the manipulation budget B, we can view
this condition in terms of the calibration of the score function h of
the classifier f. As is typical, classifiers are defined via thresholds
on their underlying score functions, i.e. f(x) = I[h(x) > 60]. Sup-
pose that h is reasonably well calibrated, then for every p € [0,1],
P(y = 1|h(x) = p) = p, i.e. h(X) is a good approximation of the con-
ditional distribution given by P(y = 1|x). When h is reasonably well
calibrated, the condition that error and unfairness are unimodal w.r.t.
to the manipulation budget B is equivalent to the error and unfairness
of f being unimodal w.r.t. to the choice of threshold 6. Through this
lens, one can see that the assumption of unimodality is likely to hold
(at least approximately so) in practice as it is typically the case there
is one “good” choice of threshold 6 and any deviation (increasing or
decreasing 0) results in strictly worse performance of f.

Feature-Monotonic Costs. Finally, we demonstrate that selectivity
remains sufficient for fairness reversal in general when costs are
feature-monotonic.

Theorem 5.10. Let fe and fr be the most accurate and the optimal
a-fair classifier, respectively. Suppose fairness is defined by PR, FPR,
or TPR and ¢(x,x") is feature-monotonic. If fr is more selective than
fc, then there exists a budget B that leads to fairness reversal between

fr and fc.

Proor SKETCH. The full proof is deferred to Section D of the
Supplement. The intuition behind this results is that trivial classi-
fiers (i.e., those that predict f(x) = 1 for all x) have 0 unfairness
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for PR, FPR, and TPR based fairness. As B increases, both fC(C’B)

and f;C’B) (the classifiers resulting from agents best responding to
either classifier with budget B and cost function c) will approach
0 unfairness, not necessarily monotonically, as they become more
like trivial classifiers. At some point prior to reaching trivial clas-
sification, the conventional classifier fo will be at least as fair as
fr. This can be seen through a combination of the fact that fr is
more selective than fr and the way in which manipulations alter
the positively predicted region of a classifier when costs are feature-
monotonic. In particular, fr being more selective than fr implies
that,
{xeX:frx)=1}c{xeX: fo(x) =1}

Feature-monotonic cost functions preserve this subset propriety
under manipulation, i.e., for any B,

xeX: f P =11 cxeX: P =1}
Thus fr is always more selective than fr, regardless of the manipu-
lation budget B. As such, the positive rate of fr will never exceed
the positive rate of fc, implying that fF(C’B) approaches a trivial clas-
sifier more “slowly” than fC(C’B), with respect to B. Moreover, prior
to approaching triviality f}fc’B) will effectively approach fc, thus

partially absorbing some of the original unfairness of fr, resulting
in a fairness reversal. o

Next, we provide a condition which leads fr to be more selective
than fc. Here, we provide this condition for the PR fairness metric;
analogous results for TPR and FPR are given in Section D of the
Supplement. For this result, we define the following notation

PG, =P(g=2), g(x)=P(g=1]x)
and
Xo={x€X:g(x) < Pg, and P(y = 1|x) < 1/2}.
The set X represents the set of features which are less likely than
chance to correspond to g = 0 and y = 0.

Theorem 5.11. Let fc and fr be the most accurate and optimal
a-fair classifiers respectively, and fairness defined by PR. Then fr is
more selective than fc if and only if 0 < a < a*, where
. PGy PG, (2P(y=1|x)-1)
" = min .
xeX g(x)+Pg, (PG1 —2g(x)—2PG1P(y=1|x))

Proor. Both the conventional and fair objectives can be written
as follows:

fe =argmin (P(f(x) #y)
fr =argmin (1 - @)P(f(x) # y)
+aP(f(x) = 1lg = 1) - P(f(x) = 1|g = 0)|

Assuming the optimal fr has higher positive rate for group 1 (the
group 0 holds symmetrically), the fair objective function can be
simplified to,

(1-a) Z (1= fFENP(y = 11x) + fFO)P(y = 0]x))P(x)

xeX
Pg=1x) P(g=0x)
*“;(f(")( Pg=1)  Bg=0) ) ¥
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Thus fr(x) = 1 is optimal if

LJLEG=10)+@®(g=1 - 2)P(g=1))
(1-P(g=1)P(g=1)
—(1-a)2P(y=1jx)+1>0

and fo(x) = 1is optimal if P(y = 1|x) > P(y = 1). Thus, the

only case in which fr positively classifies an example x, which is

negatively classified by fc (ie., fr(x) = 1 # fo(X) = 0), is when

the left-hand side of Inequality 1 is nonnegative and P(y = 1|x) >

P(y = 1). Simplifying the condition in Equation ?? yields «*. O

1)

The key observation from Theorem 5.11 is that fairness reversal
is a small-o phenomenon. This may seem surprising, since fr is
likely to be most similar to fr for smaller values of « (in particular,
the two are identical when a = 0). However, when « is high, the
fairness term is sufficiently dominant that reversals are unlikely.
Consequently, it is precisely the intermediate values of &, where we
aspire to preserve high accuracy while improving group-fairness
that are most susceptible to fairness reversal. This is indeed consis-
tent with our empirical observations in Section 4, which indicate
that for intermediate values of « fairness reversals are not only
more common, but occur with greater magnitude. Lastly, note that
for some distributions, a* < 0, which means that fairness reversals
are luckily not guaranteed.

Remark 5.12. For some classifiers and agent distributions, fairness
reversals are straightforward to prevent. We outline several of these
cases in Section D.1 of the supplement.

6 CONCLUSION

We demonstrate a fairness-reversal phenomenon, where a trained-
to-be fair classifier exhibits more unfairness than the conventional
accuracy-maximizing one if human agents can strategically respond
to a classifier. We show that a sufficient condition for observing
fairness reversal is “selectivity”, that is, a group-fair classifier mak-
ing fewer positive predictions than its conventional counterpart.
Additionally, we demonstrated that this condition of “selectivity”
also results in an accuracy reversal. The aggregate of these results
indicates that when fairness is achieved through an overall decrease
in positive rate (compared to the conventional classifier), strategic
agent behavior can lead to a reversal of the core functionality of
both models (i.e., the performance based model becomes less accu-
rate than the fair model, and the fair model becomes less fair than
the fairness-agnostic model).

We view these results not as a critique of fair-learning, but rather
as a caution towards the expectation of fairness guarantees when a
fair classifier sees real-world deployment. The successful deploy-
ment of fair-learning models requires the consideration of many
nuanced factors, strategic agent response to model choice being on
such consideration. While we have outlined several necessary and
sufficient conditions regarding both classifier selectivity as well
as fairness reversals, a deeper investigation into when fair classi-
fiers may suffer from such problems in cases where the classifier s
designed to anticipate strategic behavior. Mitigating fairness and
accuracy reversals is an important direction for future work.
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