
Towards User Guided Actionable Recourse
Jayanth Yetukuri

University of California, Santa Cruz

Santa Cruz, California, USA

jayanth.yetukuri@ucsc.edu

Ian Hardy

University of California, Santa Cruz

Santa Cruz, California, USA

ihardy@ucsc.edu

Yang Liu

University of California, Santa Cruz

Santa Cruz, California, USA

yangliu@ucsc.edu

ABSTRACT
Machine Learning’s proliferation in critical fields such as health-

care, banking, and criminal justice has motivated the creation of

tools which ensure trust and transparency in ML models. One such

tool is Actionable Recourse (AR) for negatively impacted users. AR

describes recommendations of cost-efficient changes to a user’s

actionable features to help them obtain favorable outcomes. Exist-

ing approaches for providing recourse optimize for properties such

as proximity, sparsity, validity, and distance-based costs. However,

an often-overlooked but crucial requirement for actionability is a

consideration of User Preference to guide the recourse generation

process. In this work, we attempt to capture user preferences via soft

constraints in three simple forms: i) scoring continuous features, ii)
bounding feature values and iii) ranking categorical features. Finally,
we propose a gradient-based approach to identify User Preferred
Actionable Recourse (UP-AR). We carried out extensive experiments

to verify the effectiveness of our approach.

CCS CONCEPTS
• Theory of computation → Actionable Recourse; • Comput-
ing methodologies → Knowledge representation and reasoning;
• Human-centered computing→ Human computer interac-
tion (HCI).
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1 INTRODUCTION
Actionable Recourse (AR) [30] refers to a list of actions an individual

can take to obtain a desired outcome from a fixed Machine Learning

(ML) model. Several domains such as lending [28], insurance [26],

resource allocation [6, 27] and hiring decisions [1] are required to

suggest recourses to ensure the trust of a decision system; in such

scenarios, it is critical to ensure the actionability (the viability of

taking a suggested action) of recourse, otherwise the suggestions

are pointless. Consider an individual named Alice who applies
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for a loan, and a bank, which uses an ML-based classifier, who

denies it. Naturally, Alice asks - What can I do to get the loan? The
inherent question is what action she must take to obtain the loan in

the future. Counterfactual explanation introduced inWachter [31]
provides a what-if scenario to alter the model’s decision, but it

does not account for actionability. AR aims to provide Alice with

a feasible action set which is both actionable by Alice and which

suggests as low-cost modifications as possible.

While some features (such as age or sex) are inherently inac-

tionable for all individuals, Alice’s personalized constraints may

also limit her ability to take action on certain suggested recourses

(such as a strong reluctance to secure a co-applicant). We call these

localized constraints User Preferences, synonymous to user-level

constraints introduced as local feasibility by Mahajan et al. [17].

Figure 1 illustrates the motivation behind UP-AR. Note that how

similar individuals can prefer contrasting recourse.

Actionability, as we consider it, is centered explicitly around

individual preferences, and similar recourses provided to two in-

dividuals (Alice and Bob) with identical feature vectors may not

necessarily be equally actionable. Most existing methods of finding

actionable recourse are restricted to omissions of features from the

actionable feature set and box constraints [18] that bound actions.

In this study, we discuss three forms of user preferences and pro-

pose a user-provided score formulation for capturing these different

idiosyncrasies. We believe that communicating in terms of prefer-

ence scores (by say, providing a 1-10 rating on the actionability of

specific features) improves the explainability of a recourse genera-

tion mechanism, which ultimately improves trust in the underlying

model. Such a system could also be easily re-run with different pref-

erence scores, allowing for diversifiable recourse. We surveyed 40

individuals and found that an overwhelming 60%majority preferred

to provide their preferences on individual features for influencing

a recourse mechanism, as opposed to receiving multiple “stock”

recourse options or simply receiving a single option. Additional

details of our survey are included in Section 7. We provide a hy-

pothetical example of UP-AR’s ability to adapt to preferences in

Table 1.

Motivated by the above considerations, we capture soft user pref-

erences along with hard constraints and identify recourse based

on local desires without affecting the success rate of identifying

recourse. For example, consider Alice prefers to have 80% of the

recourse “cost” from loan duration and only 20% from the loan

amount, meaning she prefers to have recourse with a minor re-

duction in the loan amount. Such recourse enables Alice to get

the benefits of a loan on her terms, and can easily be calculated

to Alice’s desire. We study the problem of providing user preferred
recourse by solving a custom optimization for individual user-based

preferences. Our contributions include:

742

https://doi.org/10.1145/3600211.3604708
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3600211.3604708
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600211.3604708&domain=pdf&date_stamp=2023-08-29


AIES ’23, August 08–10, 2023, Montréal, QC, Canada Yetukuri, Hardy and Liu

Alice’s

preferred

space

Bob’s

preferred

space

Decision

boundary

Alice

Bob

Figure 1: Illustration of UP-AR. Similar individuals Alice and
Bob with contrasting preferences can have different regions
of desired feature space for a recourse.

Table 1: A hypothetical actionable feature set of adversely
affected individuals sharing similar features and correspond-
ing suggested actions by AR and UP-AR. UP-AR provides
personalized recourses based on individual user preferences.

Actionable
Features

Curr.
val.

UP-AR values

Alice Bob
LoanDuration 18 8 17
LoanAmount $1940 $1840 $1200
HasGuarantor 0 0 1
HasCoapplicant 0 1 0

• We start by enabling Alice to provide three types of user

preferences: i) Scoring, ii) Ranking, and iii) Bounding. We em-

bed them into an optimization function to guide the recourse

generation mechanism.

• We then present User Preferred Actionable Recourse (UP-AR)
to identify a recourse tailored to her liking. Our approach

highlights a cost correction step to address the redundancy
induced by our method.

• We consolidate performance metrics with empirical results

of UP-AR across multiple datasets and compare them with

state-of-art techniques.

1.1 Related Works
Several methods exist to identify counterfactual explanations, such

as FACE [22], which uses the shortest path to identify counterfac-

tual explanations from high-density regions, and Growing Spheres

(GS) [16] which employs random sampling within increasing hyper-

spheres for finding counterfactuals. CLUE [3] identifies counterfac-

tuals with low uncertainty in terms of the classifier’s entropy within

the data distribution. Similarly, manifold-based CCHVAE [21] gen-

erates high-density counterfactuals through the use of a latent

space model. However, there is often no guarantee that the what-if
scenarios identified by these methods are attainable.

Existing research focuses on providing feasible recourses, yet

comprehensive literature on understanding and incorporating user

preferences within the recourse generation mechanism is lacking. It

is worth mentioning that instead of understanding user preferences,

Mothilal et al. [18] provides a user with diverse recourse options and

hopes that the user will benefit from at least one. The importance

of diverse recourse recommendations has also been explored in

recent works [18, 25, 31], which can be summarized as increasing

the chances of actionability as intuitively observed in the domain of

unknown user preferences [13]. Karimi et al. [14] and Cheng et al.

[5] also resolve uncertainty in a user’s cost function by inducing

diversity in the suggested recourses. Interestingly, only 16 out of

the 60 recourse methods explored in the survey by Karimi et al.

[13] include diversity as a constraint where diversity is measured

in terms of distance metrics. Alternatively, studies like Cui et al. [7],

Rawal and Lakkaraju [23], Ustun et al. [30] optimize on a universal

cost function. This does not capture individual idiosyncrasies and

preferences crucial for actionability.

Efforts of eliciting user preferences include recentwork byDe Toni

et al. [8]. The authors provide interactive human-in-the-loop ap-

proach, where a user continuously interacts with the system. How-

ever, learning user preferences by asking them to select from one

of the partial interventions provided is a derivative of providing a

diverse set of recourse candidates. In this work, we consider frac-

tional cost as a means to communicate with Alice, where fractional

cost of a feature refers to fraction of cost incurred from a feature 𝑖
out of the total cost of the required intervention.

The notion of user preference or user-level constraints was pre-

viously studied as local feasibility [17]. Since users can not precisely

quantify the cost function [23], Yadav et al. [32] diverged from the

assumption of a universal cost function and optimizes over the

distribution of cost functions. We argue that the inherent prob-

lem of feasibility can be solved more accurately by capturing and

understanding Alice’s recourse preference and adhering to her

constraints which can vary between Hard Rules such as unable to

bring a co-applicant and Soft Rules such as hesitation to reduce the

amount, which should not be interpreted as unwillingness. This is

the first study to capture individual idiosyncrasies in the recourse

generation optimization to improve feasibility.

2 PROBLEM FORMULATION
Consider a binary classification problem where each instance repre-

sents an individual’s feature vector x = [x1, x2, ·, x𝐷 ] and associated
binary label y ∈ {−1, +1}. We are given a model 𝑓 (x) to classify x
into either −1 or +1. Let 𝑓 (x) = +1 be the desirable output of 𝑓 (x)
for Alice. However, Alice was assigned an undesirable label of −1 by
𝑓 . We consider the problem of suggesting action r = [r1, r2, ·, r𝐷 ]
such that 𝑓 (x + r) = +1. Since suggested recourse only requires

actions to be taken on actionable features denoted by 𝐹𝐴 , we have

r𝑖 ≡ 0 : ∀𝑖 ∉ 𝐹𝐴 . We further split 𝐹𝐴 into continuous actionable fea-
tures 𝐹𝑐𝑜𝑛 and categorical actionable features 𝐹𝑐𝑎𝑡 based on feature

domain. Action r is obtained by solving the following optimization,

where userCost (r, x) is any predefined cost function of taking an
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action r such that:

min

r
userCost (r, x) (1)

𝑠 .𝑡 . userCost (r, x) =
∑︁
𝑖∈𝐹𝐴

userCost (r𝑖 , x𝑖 ) (2)

and 𝑓 (x + r) = +1. (3)

2.1 Capturing individual idiosyncrasies
A crucial step for generating recourse is identifying local feasibility
constraints captured in terms of individual user preferences. In this

study, we assume that every user provides their preferences in three

forms. Every continuous actionable feature 𝑖 ∈ 𝐹𝑐𝑜𝑛 is associated

with a preference score Γ𝑖 obtained from the affected individual.

Additional preferences in the form of feature value bounds and

ranking for preferential treatment of categorical features are also

requested from the user.

User Preference Type I (Scoring continuous features): User prefer-
ence for continuous features are captured in Γ𝑖 ∈ [0, 1] : ∀𝑖 ∈ 𝐹𝑐𝑜𝑛
subject to

∑
𝑖∈𝐹𝑐𝑜𝑛 Γ𝑖 = 1. Such soft constraints capture the user’s

preference without omitting the feature from the actionable fea-

ture set. Γ𝑖 refers to the fractional cost of action Alice prefers to

incur from a continuous feature 𝑖 . For example, consider 𝐹𝑐𝑜𝑛 =

{LoanDuration, LoanAmount} with corresponding user-provided

scores Γ = {0.8, 0.2} implying that Alice prefers to incur 80% of

fractional feature cost from taking action on LoanDuration, while
only 20% of fractional cost from taking action on LoanAmount. Here,
Alice prefers reducing LoanDuration to LoanAmount and providing

recourse in accordance improves actionability.

User Preference Type II (Bounding feature values): Users can also

provide constraints on values for individual features in 𝐹𝐴 . These

constraints are in the form of lower and upper bounds for individual

feature values represented by 𝛿
𝑖
and 𝛿

𝑖
for any feature 𝑖 respectively.

These constraints are used to discretize the steps. For a continuous

feature 𝑖 , action steps can be discretized into pre-specified step sizes

of Δ𝑖 = {𝑠 : 𝑠 ∈ [𝛿
𝑖
, 𝛿
𝑖
]}. For categorical features, steps are defined

as the feasible values a feature can take. For all categorical features

we define, Δ𝑖 = {𝛿
𝑖
, . . . , 𝛿

𝑖
} : ∀𝑖 ∈ 𝐹𝑐𝑎𝑡 representing the possible

values for categorical feature 𝑖 .

User Preference Type III (Ranking categorical features): Users are
also asked to provide a ranking function R : 𝐹𝑐𝑎𝑡 −→ Z+1 on 𝐹𝑐𝑎𝑡 .
Let R𝑖 refers to the corresponding rank for a categorical feature

𝑖 . Our framework identifies recourse by updating the candidate

action based on the ranking provided. For example, consider 𝐹𝑐𝑎𝑡 =

{HasCoapplicant, HasGuarantor, CriticalAccountOrLoansElsewhere}
for which Alice ranks them by {3, 2, 1}. The recourse generation
system considers suggesting an action on HasGuarantor before

HasCoapplicant. Ranking preferences can be easily guaranteed by a

simple override in case of discrepancies while finding a recourse.

2.1.1 Cognitive simplicity of preference scores. The user prefer-

ences proposed are highly beneficial for guiding the recourse gener-

ation process. Please note that in the absence of these preferences,

the recourse procedure falls back to the default values set by a

domain expert. Additionally, the users can be first presented with

the default preferences, and asked to adjust as per their individ-

ual preferences. A simple user interface can help them interact

with the system intuitively. For example, adjusting a feature score

automatically adjusts the corresponding preference type scores.

2.2 Proposed optimization
We depart from capturing a user’s cost of feature action and instead

obtain their preferences for each feature. We elicit three forms of

preferences detailed in the previous section and iteratively take

steps in the action space. We propose the following optimization

over the basic predefined steps based on the user preferences. Let
us denote the inherent hardness of feature action r𝑖 for feature
value x𝑖 using cost (r, x) which can be any cost function easily

communicable to Alice. Here, cost
(
r(𝑡 )
𝑖
, x𝑖

)
refers to a “universal"

cost of taking an action r(𝑡 )
𝑖

for feature value x𝑖 at step 𝑡 . Note
that this cost function or quantity differs from the userCost (·, ·)
function specified earlier. This quantity is capturing the inherent

difficulty of taking an action.

max

r

∑︁
𝑖∈𝐹𝐴

Γ𝑖
cost (r𝑖 , x𝑖 )

(Type I)

𝑠 .𝑡 . 𝑓 (x + r) = +1
Γ𝑖 = 0 : ∀𝑖 ∉ 𝐹𝐴 (actionability)

Γ𝑗 = 1 : ∀𝑗 ∈ 𝐹𝑐𝑎𝑡
r𝑖 ∈ Δ𝑖 : 𝑖 ∈ 𝐹𝐴 (Type II)

1{r𝑖 > 0} ≥ 1{r𝑗 > 0} : R𝑖 ≥ R 𝑗 ∀𝑖, 𝑗 ∈ 𝐹𝑐𝑎𝑡 (Type III)

The proposed method minimizes the cost of a recourse weighted

by Γ𝑖 for all actionable features. We discuss the details of our con-

siderations of cost function in Section 3.1. The order preference

of categorical feature actions can be constrained by restrictions

while finding a recourse. The next section introduces UP-AR as a

stochastic solution to the proposed optimization.

3 USER PREFERRED ACTIONABLE
RECOURSE (UP-AR)

Our proposed solution, User Preferred Actionable Recourse (UP-

AR), consists of two stages. The first stage generates a candidate re-

course by following a connected gradient-based iterative approach.

The second stage then improves upon the redundancy metric of the

generated recourse for better actionability. The details of UP-AR

are consolidated in Algorithm 1 and visualized in Figure 2.

3.1 Stage 1: Stochastic gradient-based approach
Poyiadzi et al. [22] identifies a counterfactual by following a high-

density connected path from the feature vector x. With a similar

idea, we follow a connected path guided by the user’s preference to

identify a feasible recourse. We propose incrementally updating the

candidate action with a predefined step size to solve the optimiza-

tion. At each step 𝑡 , a candidate intervention is generated, where

any feature 𝑖 is updated based on a Bernoulli trial with probability

𝐼
(𝑡 )
𝑖

derived from user preference scores and the cost of taking a
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∃𝑖 ∈ 𝐹𝑐𝑎𝑡

r(𝑇 )
𝑖

> 0

r(𝑡 ) . . . r(𝑇 )

Figure 2: Framework of UP-AR. Successful recourse candidates; r( ·) , r( ·) are colored in pink.

predefined step 𝛿
(𝑡 )
𝑖

using the following procedure:

𝐼
(𝑡 )
𝑖

∼ Bernoulli
(
𝜎

(
𝑧
(𝑡 )
𝑖

))
(4)

where 𝜎

(
𝑧
(𝑡 )
𝑖

)
=

e
𝑧
(𝑡 )
𝑖

/𝜏∑
𝑗∈𝐹𝐴 e

𝑧 (𝑡 ) /𝜏
, 𝑧

(𝑡 )
𝑖

=
Γ𝑖

cost
(
r(𝑡 )
𝑖
, x𝑖

) (5)

With precomputed costs for each step, weighted inverse cost is com-

puted for each feature, and these values are mapped to a probability

distribution using a function like softmax. Softmax gives a prob-

abilistic interpretation 𝑃

(
𝐼
(𝑡 )
𝑖

= 1|𝑧 (𝑡 )
𝑖

)
= 𝜎

(
𝑧
(𝑡 )
𝑖

)
by converting

𝑧
(𝑡 )
𝑖

scores into probabilities.

We leverage the idea of log percentile shift from AR to determine

the cost of action since it is easier to communicate with the users

in terms of percentile shifts. Specifically, we follow the idea and

formulation in [30] to define the cost:

cost (r𝑖 , x𝑖 ) = 𝑙𝑜𝑔
(
1 −𝑄𝑖 (x𝑖 + r𝑖 )
1 −𝑄𝑖 (x𝑖 )

)
(6)

were𝑄𝑖 (x𝑖 ) representing the percentile of feature 𝑖 with value x𝑖 is a
score below which𝑄𝑖 (x𝑖 ) percentage of scores fall in the frequency
distribution of feature values in the target population.

We adapt and extend the idea that counterfactual explanations

and adversarial examples [29] have a similar goal but with contrast-

ing intention [19]. A popular approach to generating adversarial

examples [10] is by using a gradient-based method. We employ

the learning of adversarial example generation to determine the

direction of feature modification in UP-AR: the Jacobian matrix is

used to measure the local sensitivity of outputs with respect to each

input feature. Consider that 𝑓 : R𝐷 → R𝐾 maps a 𝐷-dimensional

feature vector to a 𝐾-dimensional vector, such that each of the

partial derivatives exists. For a given x = [x1, . . . , x𝑖 , . . . , x𝐷 ] and
𝑓 (x) = [𝑓[1] (x), . . . , 𝑓[ 𝑗 ] (x), . . . , 𝑓[𝐾 ] (x)], the Jacobian matrix of

𝑓 is defined to be a 𝐷 × 𝐾 matrix denoted by J, where each ( 𝑗, 𝑖)
entry is J𝑗,𝑖 =

𝜕𝑓[ 𝑗 ] (x )
𝜕x𝑖 . For a neural network (NN) with at least one

hidden layer, J𝑗,𝑖 is obtained using the chain rule during backprop-

agation. For an NN with one hidden layer represented by weights
{𝑤}, we have:

J𝑗,𝑖 =
𝜕𝑓[ 𝑗 ] (x)
𝜕x𝑖

=
∑︁
𝑙

𝜕𝑓[𝑙 ] (x)
𝜕𝑎𝑙

𝜕𝑎𝑙

𝜕x𝑖
where 𝑎𝑙 =

∑︁
𝑖

𝑤𝑙𝑖x𝑖 (7)

Where in Equation 7, 𝑎𝑙 is the output (with possible activation) of

the hidden layer and𝑤𝑙 is the weight of the node 𝑙 . Notice line 4 in

Algorithm 1 which updates the candidate action for a feature 𝑖 at

step 𝑡 as:

r(𝑡 )
𝑖

= r(𝑡−1)
𝑖

+ 𝑆𝑖𝑔𝑛
(
J(𝑡 )+1,𝑖

)
· 𝐼 (𝑡 )
𝑖

· 𝛿 (𝑡 )
𝑖

(8)

Following the traditional notation of a binary classification problem

and with a bit of abuse of notation −1 → 1, +1 → +1, 𝑆𝑖𝑔𝑛
(
J(𝑡 )+1,𝑖

)
captures the direction of the feature change at step 𝑡 . This direction

is iteratively calculated, and additional constraints such as non-

increasing or non-decreasing features can be placed at this stage.

Algorithm 1 User Preferred Actionable Recourse (UP-AR)

Input: Model 𝑓 , user feature vector x, cost function cost (·, ·), step
size Δ𝑖 : ∀𝑖 ∈ 𝐹𝐴 , maximum steps 𝑇 , action r initialized to r(0) ,

fixed 𝜏 , 𝑡 = 1.

1: while 𝑡 ≤ 𝑇 or 𝑓

(
x + r(𝑡 )

)
≠ +1 do

2: 𝑧
(𝑡 )
𝑖

=
Γ𝑖

cost
(
r(𝑡 )
𝑖
,x𝑖

) : ∀𝑖

3: 𝐼
(𝑡 )
𝑖

∼ Bern(𝜎 (𝑧 (𝑡 )
𝑖

)) : ∀𝑖,where 𝜎 (𝑧 (𝑡 )
𝑖

) = e
𝑧
(𝑡 )
𝑖

/𝜏∑
𝑗 ∈𝐹𝐴 e

𝑧 (𝑡 ) /𝜏

4: r(𝑡 )
𝑖

= r(𝑡−1)
𝑖

+ 𝑆𝑖𝑔𝑛
(
J(𝑡 )+1,𝑖

)
· 𝐼 (𝑡 )
𝑖

· 𝛿 (𝑡 )
𝑖

: ∀𝑖 ∈ 𝐹𝐴
5: 𝑡 = 𝑡 + 1

6: Let 𝑡 be the smallest step such that 𝑓 (x + r(𝑡 ) ) = +1 and ini-

tialize 𝑡 = 𝑡

7: if ∃𝑖 ∈ 𝐹𝑐𝑎𝑡 : r(𝑡 )𝑖 > 0 then

8: while 𝑓
(
x + r(𝑡 )

)
= +1 do

9: r(𝑡 ) = r(𝑡 )

10: r(𝑡 )
𝑖

= r(𝑡 )
𝑖

: ∀𝑖 ∈ 𝐹𝑐𝑎𝑡
11: 𝑡 = 𝑡 − 1

12: return r(𝑡 ) as action r

3.1.1 Calibrating frequency of categorical actions. We employ tem-
perature scaling [11] parameter 𝜏 observed in Equation 5 to calibrate

UP-AR’s recourse generation cost. Updates on categorical features

with fixed step sizes are expensive, especially for binary categorical

values. Hence, tuning the frequency of categorical suggestions can

significantly impact the overall cost of a recourse. 𝜏 controls the fre-

quency with which categorical actions are suggested. Additionally,

if a user prefers updates on categorical features over continuous

features, UP-AR has the flexibility to address this with a smaller 𝜏 .

To study the effect of 𝜏 on overall cost, we train a Logistic Regres-

sion (LR) model on a processed version of German [4] dataset and
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generate recourses for the 155 individuals who were denied credit.

The cost gradually decreases with decreasing 𝜏 since the marginal

probability of suggesting a categorical feature change is diminished

and the corresponding experiment is deferred to the Appendix.

Hence, without affecting the success rate of recourse generation,

the overall cost of generating recourses can be brought down by

decreasing 𝜏 . In simple terms, with a higher 𝜏 , UP-AR frequently

suggests recourses with expensive categorical actions. We note that

𝜏 can also be informed by a user upon seeing an initial recourse. Af-

ter the strategic generation of an intervention, we implement a cost

correction to improve upon the potential redundancy of actions in

a recourse option.

3.2 Stage 2: Redundancy & Cost Correction (CC)
In our experiments, we observe that once an expensive action is

recommended for a categorical feature, some of the previous action

stepsmight become redundant. Consider an LRmodel trained on the

processed german dataset. Let 𝐹𝐴 = {LoanDuration, LoanAmount,
HasGuarantor} out of all the 26 features, where HasGuarantor is a
binary feature which represents the user’s ability to get a guarantor

for the loan. Stage 1 takes several steps over LoanAmount and
LoanDuration before recommending to updateHasGuarantor. These
steps are based on the feature action probability from Equation 5.

Since categorical feature updates are expensive and occur with

relatively low probability, Stage 1 finds a low-cost recourse by

suggesting low-cost steps more frequently in comparison with

high-cost steps.

Table 2: Redundancy corrected recourse for a hypothetical
individual.

Features to
change

Current
values

Stage 1
values

Stage 2
values

LoanDuration 18 8 12
LoanAmount $1940 $1040 $1540
HasGuarantor 0 1 1

Once an update to a categorical feature is recommended, some

of the previous low-cost steps may be redundant, which can be

rectified by tracing back previous continuous steps. Consider a

scenario such that ∃𝑖 ∈ 𝐹𝑐𝑎𝑡 : r(𝑇 )𝑖
> 0 for a recourse obtained after

𝑇 steps in Stage 1. The CC procedure updates all the intermediary

recourse candidates to reflect the categorical changes i.e., ∀𝑖 ∈ 𝐹𝑐𝑎𝑡 :
r(𝑇 )
𝑖

> 0, we update r(𝑡 )
𝑖

= r(𝑇 )
𝑖

: ∀𝑡 ∈ {1, 2, . . . ,𝑇 − 1} to obtain

r(𝑡 ) . We then perform a linear retracing procedure to return r(𝑡 )

such that 𝑓

(
x + r(𝑡 )

)
= +1 for the smallest 𝑡 .

4 DISCUSSION AND ANALYSIS
In this section, we analyze the user preference performance of UP-

AR. For simplicity, a user understands cost in terms of log percentile

shift from her initial feature vector described in Section 3. Let Γ̂𝑖
be the observed fractional cost for feature 𝑖 formally defined in

Equation 11. Any cost function can be plugged into UP-AR with

no restrictions. A user prefers to have Γ𝑖 fraction of the total de-

sired percentile shift from feature 𝑖 . Consider 𝐹𝐴 = {LoanDuration,

AR UP-AR
Recourse Method
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D
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at
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Figure 3: AR and UP-AR’s distribution of Γ̂LoanDuration for a
Logistic Regression model trained on German.
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Figure 4: GS and UP-AR’s distribution of Γ̂DebtRatio for a Neu-
ral Network model trained on GMSC.

LoanAmount} and let the corresponding user scores provided by all
the adversely affected individuals be: Γ = {0.8, 0.2}. Here, “Denied
loan applicants prefers reducing LoanDuration to LoanAmount by
8 : 2.” Figure 3 shows the frequency plot of feature cost ratio for fea-

ture LoanDuration out of total incurred cost from LoanDuration and
LoanAmount. i.e., 𝑦−axis represents Γ̂𝑖 . Also, Figure 4 further shows
the fractional cost of feature DebtRatio for recourses obtained for a

NN based model trained on Give Me Some Credit (GMSC) dataset.
These experiments signify the adaptability of UP-AR to user pref-

erences and provides evidence that distribution of Γ̂𝑖 is centered
around Γ𝑖 .

Lemma 4.1. Consider UP-AR identified recourse r for an individual
x. If 𝐶 (𝑇 ∗ )

𝑖,𝑚𝑖𝑛
and 𝐶 (𝑇 ∗ )

𝑖,𝑚𝑎𝑥
represent the minimum and maximum cost
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of any step for feature 𝑖 until 𝑇 ∗, then:

E [cost (r𝑖 , x𝑖 )] ≤ 𝑇 ∗𝜎 ©­« Γ𝑖

𝐶
(𝑇 ∗ )
𝑖,𝑚𝑖𝑛

ª®¬𝐶 (𝑇 ∗ )
𝑖,𝑚𝑎𝑥

. (9)

Lemma 4.1 implies that the expected cost E [cost (r𝑖 , x𝑖 )], specif-
ically for a continuous feature action is positively correlated to the

probabilistic interpretation of user preference scores. Hence r satis-
fies users critical Type I constraints in expectation. Recall that Type

II and III constraints are also applied at each step 𝑡 . Lemma 4.1 sig-

nifies that UP-AR adheres to user preferences and thereby increases

the actionability of a suggested recourse.

Corollary 4.2. For UP-AR with a linear 𝜎 (·), predefined steps
with equal costs and cost (r, x) = ∑

𝑖∈𝐹𝐴 cost (r𝑖 , x𝑖 ), total expected
cost after 𝑇 ∗ steps is:

E [cost (r, x)] ≤ 𝑇 ∗
∑︁
𝑖∈𝐹𝐴

𝜎 (Γ𝑖 ) . (10)

Corollary 4.2 states that with strategic selection of 𝜎 (·), 𝛿 ( ·)· and

cost (·, ·), UP-AR can also tune the total cost of suggested actions. In

the next section, we will compare multiple recourses based on indi-

vidual user preferences for a randomly selected adversely affected

individual.

4.1 Case study of individuals with similar
features but disparate preferences

Given an LR model trained on german dataset and Alice, Bob and

Chris be three adversely affected individuals. 𝐹𝐴 = {LoanDuration,
LoanAmount, HasGuarantor} and corresponding user preferences

are provided by the users. In Table 3, we consolidate the corre-

sponding recourses generated for the specified disparate sets of

preferences.

From Table 3 we emphasize the ability of UP-AR to generate

a variety of user-preferred recourses based on their preferences,

whereas AR always provides the same low-cost recourse for all

the individuals. The customizability of feature actions for individ-

ual users can be found in the table. When the Type I score for

LoanAmount is 0.8, UP-AR prefers decreasing loan amount to loan

duration. Hence, the loan amount is much lesser for Chris than for

Alice and Bob.

5 EMPIRICAL EVALUATION
In this section, we demonstrate empirically: 1) that UP-AR respects

Γ𝑖 -fractional user preferences at the population level, and 2) that UP-
AR also performs favorably on traditional evaluate metrics drawn

from CARLA [20]. We used the native CARLA catalog for the Give
Me Some Credit (GMSC) [12], Adult Income (Adult) [9] and

Correctional Offender Management Profiling for Alternative
Sanctions (COMPAS) [2] data sets as well as pre-trained models

(both the Neural Network (NN) and Logistic Regression (LR)).

NN has three hidden layers of size [18, 9, 3], and the LR is a single

input layer leading to a Softmax function. Although AR is proposed

for linear models, it can be extended to nonlinear models by the

local linear decision boundary approximation method LIME [24]

(referred as AR-LIME).

PERFORMANCE METRICS:. For UP-AR, we evaluate:

(1) Success Rate (Succ. Rate): The percentage of adversely affected
individuals for whom recourse was found.

(2) Average Time Taken (Avg.Tim.): The average time (in seconds)

to generate recourse for a single individual.

(3) Constraint Violations (Con. Vio.): The average number of

non-actionable features modified.

(4) Redundancy (Red.): A metric that tracks superfluous feature

changes. For each successful recourse calculated on a uni-

variate basis, features are flipped to their original value. The

redundancy for recourse is the number of flips that do not

change the model’s classification decision.

(5) Proximity (Pro.): The normalized 𝑙2 distance of recourse to

its original point.

(6) Sparsity (Spa.): The average number of features modified.

We provide comparative results for UP-AR against state-of-the-art

counterfactual/recourse generation techniques such as GS,Wachter,

AR(-LIME), CCHAVE and FACE. Thesemethods were selected based

on their popularity and their representation of both independence

and dependence based methods, as defined in CARLA. In addition

to the traditional performance metrics, we also measure Preference-
Root mean squared error (pRMSE) between the user preference score

and the fractional cost of the suggested recourses. We calculate

𝑝𝑅𝑀𝑆𝐸𝑖 for a randomly selected continuous valued feature 𝑖 using:

𝑝𝑅𝑀𝑆𝐸𝑖 =

√√√
1

𝑛

𝑛∑︁
𝑗=1

(
Γ̂
( 𝑗 )
𝑖

− Γ
( 𝑗 )
𝑖

)
2

(11)

where Γ̂
( 𝑗 )
𝑖

=
cost (r𝑖 , x𝑖 )∑

𝑘∈𝐹𝑐𝑜𝑛 cost (r𝑘 , x𝑘 )
(12)

Here Γ
( 𝑗 )
𝑖

and Γ̂
( 𝑗 )
𝑖

are user provided and observed preference

scores of feature 𝑖 for an individual 𝑗 . In Table 4, we summarize

𝑝𝑅𝑀𝑆𝐸, which is the average error across continuous features such

that:

𝑝𝑅𝑀𝑆𝐸 =
1

|𝐹𝑐𝑜𝑛 |
∑︁

𝑖∈𝐹𝑐𝑜𝑛
𝑝𝑅𝑀𝑆𝐸𝑖 . (13)

DATASETS:. We train an LR model on the processed version of

german [4] credit dataset from sklearn’s linear_model module. We

replicate Ustun et al. [30]’s model training and recourse generation

on german. The dataset contains 1000 data points with 26 features

for a loan application. The model decides if an applicant’s credit

request should be approved or not. Consider 𝐹𝑐𝑜𝑛 = {LoanDuration,
LoanAmount}, and 𝐹𝑐𝑎𝑡 = {CriticalAccountOrLoansElsewhere, Has-
Guarantor, HasCoapplicant}. Let the user scores for 𝐹𝑐𝑜𝑛 be Γ =

{0.8, 0.2} and ranking for 𝐹𝑐𝑎𝑡 be {3, 1, 2} for all the denied individu-
als. For this experiment, we set 𝜏−1 = 4. Out of 155 individuals with

denied credit, AR and UP-AR provided recourses to 135 individuals.

Cost Correction:Out of all the denied individuals for whom cat-

egorical actionswere suggested, an average of∼ $400 in LoanAmount
was recovered by cost correction.

For the following datasets, for traditional metrics, user prefer-

ences were set to be uniform for all actionable features to not bias

the results to one feature preference over another:

(1) GMSC: The data set from the 2011 Kaggle competition is

a credit underwriting dataset with 11 features where the
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Table 3: Recourses generated by UP-AR for similar individuals with a variety of preferences.

Alice Bob Chris

Features to
change

Current
values

AR
values

User
Pref

UP-AR
values

User
Pref

UP-AR
values

User
Pref

UP-AR
values

LoanDuration 30 25 0.8 20 0.8 10 0.2 27
LoanAmount $8072 $5669 0.2 $7372 0.2 $6472 0.8 $5272
HasGuarantor 0 1 1 1 0 0 1 1

Table 4: Summary of performance evaluation of UP-AR. Top performers are highlighted in green.

Neural Network Logistic Regression

Data. Recourse
Method

Succ.
Rate

pRMSE Avg
Tim.

Con.
Vio.

Red. Pro. Spa. Succ.
Rate

pRMSE Avg
Tim.

Con.
Vio.

Red. Pro. Spa.

GS 0.75 0.16 0.02 0.00 6.95 1.01 8.89 0.62 0.18 0.03 0.00 4.08 1.39 8.99
Wachter 1.00 0.18 0.02 1.49 6.84 1.08 8.46 1.00 0.17 0.03 1.23 3.51 1.42 7.18

GMSC AR(-LIME) 0.03 0.17 0.45 0.00 0.00 0.17 1.72 0.17 0.17 0.73 0.00 0.00 0.93 1.91
CCHVAE 1.00 0.18 1.05 2.0 9.99 1.15 10.1 1.00 0.18 1.37 2.00 8.64 2.05 11.0
FACE 1.00 0.17 8.05 1.57 6.65 1.20 6.69 1.00 0.16 11.9 1.65 7.47 2.30 8.45
UP-AR 0.94 0.07 0.08 0.00 1.30 0.49 3.22 1.00 0.07 0.12 0.00 1.47 0.68 3.92

GS 0.84 0.10 0.03 0.00 2.86 1.30 5.09 0.84 0.10 0.04 0.00 1.76 2.05 5.85
Wachter 0.55 0.10 0.04 1.44 3.05 0.74 4.90 1.00 0.11 0.10 1.68 0.90 1.44 5.81

Adult AR(-LIME) 0.42 0.10 9.20 0.00 0.00 2.10 2.54 0.76 0.10 7.37 0.00 0.03 2.10 2.31
CCHVAE 0.84 0.11 0.77 4.47 5.83 3.95 9.40 0.84 0.10 1.08 4.22 6.85 3.96 9.45
FACE 1.00 0.10 6.78 4.58 7.54 4.11 7.91 1.00 0.10 8.37 4.53 5.91 4.28 7.81
UP-AR 0.82 0.10 0.76 0.00 0.78 1.77 2.78 0.82 0.05 0.67 0.00 0.55 1.78 2.88

GS 1.00 0.15 0.03 0.00 1.09 0.47 3.35 1.00 0.14 0.04 0.00 0.34 1.12 3.98
Wachter 1.00 0.14 0.05 1.00 1.61 0.56 4.35 1.00 0.14 0.04 1.00 0.85 1.06 4.83

COMPAS AR(-LIME) 0.65 0.13 0.20 0.00 0.00 0.78 0.90 0.52 0.15 0.24 0.00 0.00 1.45 1.57
CCHVAE 1.00 0.14 5.09 2.27 4.31 1.70 4.91 1.00 0.14 0.02 1.62 2.70 1.74 4.92
FACE 1.00 0.15 0.37 2.39 3.96 2.35 4.72 1.00 0.15 0.40 2.47 4.38 2.46 4.81
UP-AR 0.92 0.08 0.04 0.00 0.60 0.63 1.82 1.00 0.10 0.05 0.00 0.81 0.82 2.74

target is the presence of delinquency. Here, we measure what

feature changes would lower the likelihood of delinquency.

We again used the default protected features (age and number
of dependents). The baseline accuracy for the NN model is

81%, while the baseline accuracy for the LR is 76%.

(2) Adult Income: This dataset originates from 1994 census

database with 14 attributes. The model decides whether an

individual’s income is higher than 50, 000 USD/year. The

baseline accuracy for the NNmodel is 85%, while the baseline

accuracy for the LR is 83%. Our experiment is conducted on

a sample of 1000 data points.

(3) COMPAS: The data set consists of 7 features describing

offenders and a target representing predictions. Here, we

measure what feature changes would change an automated

recidivism prediction.

The baseline accuracy for NN is 78%, while baseline accuracy for

LR is 71%.

PERFORMANCE ANALYSIS OF UP-AR:. We find UP-AR holisti-

cally performs favorably to its counterparts. Critically, it respects

feature constraints (which we believe is fundamental to actionable

recourse) while maintaining a significantly low redundancy and

sparsity. This indicates that it tends to change fewer necessary

features. Its speed makes it tractable for real-world use, while its

proximity values show that it recovers relatively low-cost recourse.

These results highlight the promise of UP-AR as a performative,

low-cost option for calculating recourse when user preferences are

paramount. UP-AR shows consistent improvements over all the

performance metrics. The occasional lower success rate for a NN

model is attributed to 0 constraint violations.

𝑝𝑅𝑀𝑆𝐸: We analyze user preference performance in terms of

𝑝𝑅𝑀𝑆𝐸. From Table 4, we observe that UP-AR’s 𝑝𝑅𝑀𝑆𝐸 is con-

sistently better than the state of art recourse methods. The cor-

responding experimental details and visual representation of the

distribution of 𝑝𝑅𝑀𝑆𝐸 is deferred to Appendix 5.1.

5.1 Random user preference study
We performed an experiment with increasing step sizes on Ger-
man dataset. We observed that, with increasing step sizes, 𝑝𝑅𝑀𝑆𝐸𝑖
increased from 0.09 to 0.13, whereas it was consistent for AR.
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Figure 5: Distribution of the average 𝑝𝑅𝑀𝑆𝐸 of UP-AR and other recourse methodologies.

In the next experiment, we randomly choose user preference

for LoanDuration from [0.4, 0.5, 0.6, 0.7, 0.8]. The rest of the experi-
mental setup is identical to the setup discussed in Section 4. In this

experiment, we observe 𝑝𝑅𝑀𝑆𝐸 with non-universal user preference

for adversely affected individuals. Here the average 𝑝𝑅𝑀𝑆𝐸 of both

LoanDuration and LoadAmount for UP-AR is 0.19, whereas for AR

it is 0.34.

Further, using the CARLA package, we generated recourses for

a set of 1000 individuals and Γ for two continuous features was

randomly selected from [0.3, 0.6, 0.9]. Figure 5 provides a visual

analysis of the distribution of average 𝑝𝑅𝑀𝑆𝐸 using violin plots.

The experiments were performed on the 3 datasets discussed in

Section 5 for both the LR and NNmodels. For GMSC dataset, 𝐹𝑐𝑜𝑛 =

{DebtRatio, MonthlyIncome} and 𝐹𝐴 = {RevolvingUtilizationOf Un-
securedLines, NumberOfTime30-59DaysPastDueNotWorse, DebtRatio,
MonthlyIncome, NumberOfOpenCreditLinesAndLoans, NumberOf-
Times90DaysLate, NumberRealEstateLoansOrLines, NumberOfTime60-
89DaysPastDueNotWorse}. For COMPAS dataset, 𝐹𝑐𝑜𝑛 = {priors-
count, length-of-stay} and 𝐹𝐴 = {two-year-recid, priors-count’ length-
of-stay}. For Adult dataset, 𝐹𝑐𝑜𝑛 = {education-num, capital-gain}
and 𝐹𝐴 = {education-num, capital-gain, capital-loss, hours-per-week,
workclass-Non-Private, workclass-Private, marital-status-Married,

marital-status-Non-Married, occupation-Managerial-Specialist, occu-
pation-Other}.

With these experiments we conclude that UP-AR’s Γ̂ deviation
from the user’s Γ is consistently lower than the existing recourse

generation methodologies. We observe that AR is unaffected by

the varying user preference due to the fact that AR and other state-

of-the-art recourse methodologies lack the capability of capturing

such idiosyncrasies. On the other hand, UP-AR is driven by those

preferences and has significantly better 𝑝𝑅𝑀𝑆𝐸 in comparison to

AR.

5.2 Cost Correction analysis
In Table 5 we explore the effect of UP-AR’s cost correction proce-

dure on the Adult and COMPAS datasets. We do not include the

GMSC dataset as it does not include binary features, and there-

fore does not utilize the cost correction procedure. In Table 5 we

show the number of factuals, the percentage of factuals for which

recourse was found, the percentage of recourse found which con-

tained at least one binary action, the percent of recourse found

which underwent cost correction, the average percentage of steps

saved by the cost correction procedure, and the average percent of

cost savings, measured as the percent reduction in continuous cost
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Table 5: The Frequency and Effect of Cost Correction

Metrics Adult COMPAS
Number of Factuals 1000 568
Success Rate 79.3% 99.6%
Percent of Recourse with a Binary Action 71.9% 82.6%
Percent of Recourse with Cost Correction 38.4% 25.5%
Average Percentage of Steps Saved 67.9% 63.5%
Average Percentage of Continuous Cost Saved 83.1% 76.0%

Figure 6: Snapshot of the human acceptance survey.

(𝑙2 distance) between a factual and its recourse before and after the

cost-correction procedure.

6 CONCLUDING REMARKS
In this study, we propose to capture different forms of user prefer-

ences and propose an optimization function to generate actionable

recourse adhering to such constraints. We further provide an ap-

proach to generate a connected [15] recourse guided by the user.

We show how UP-AR adheres to soft constraints by evaluating

user satisfaction in fractional cost ratio. We emphasize the need to

capture various user preferences and communicate with the user

in comprehensible form. This work motivates further research on

how truthful reporting of preferences can help improve overall user

satisfaction.

7 USER ACCEPTANCE SURVEY
We surveyed 40 random students and employees from a mailing

list. The goal of this survey is to establish whether people preferred

to provide specific preferences over other mechanism. The survey

included one question with four options as follows:

If you are denied a loan application. What do you expect from bank
to get your loan approved ?

(1) Single list of suggestions to your profile. Ex: (increase income
by 100$ & reduce loan duration by 1 year)

(2) A set with multiple lists of suggestions to your profile. Ex: (i)
increase income by 100$ and reduce loan duration by 1 year

OR ii) increase income by 500$ OR iii) reduce loan duration by
3 year OR iv) bring a co-applicant)

(3) Influence bank’s suggestions by providing preferential scores
for actions you can take. Ex: (preferring to increase loan du-
ration more than loan amount by 8:2, or preferring to bring a
guarantor before a co-applicant)

(4) Any other form of preferences
Every individual in the survey was asked to select one of the

four choices provided. In this survey, it is identified that majority

of 60% of individuals preferred influencing the bank’s decision by

providing preference scores for individual features, followed by

30% of individuals who wanted multiple recourses from the bank.

The remaining 10% of individuals preferred a single recourse or any

other form of preference.
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