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ABSTRACT
Recent work has connected adversarial attack methods and algo-
rithmic recourse methods: both seek minimal changes to an input
instance which alter a model’s classification decision. It has been
shown that traditional adversarial training, which seeks tominimize
a classifier’s susceptibility to malicious perturbations, increases the
cost of generated recourse; with larger adversarial training radii
correlating with higher recourse costs. From the perspective of
algorithmic recourse, however, the appropriate adversarial training
radius has always been unknown. Another recent line of work has
motivated adversarial training with adaptive training radii to ad-
dress the issue of instance-wise variable adversarial vulnerability,
showing success in domains with unknown attack radii. This work
studies the effects of adaptive adversarial training on algorithmic
recourse costs. We establish that the improvements in model ro-
bustness induced by adaptive adversarial training show little effect
on algorithmic recourse costs, providing a potential avenue for
affordable robustness in domains where recoursability is critical.

CCS CONCEPTS
• Theory of computation → Adversarial learning; • Comput-
ing methodologies → Knowledge representation and reasoning;
• Human-centered computing→ Human computer interac-
tion (HCI).
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1 INTRODUCTION
The adoption of Machine Learning (ML) in consequential environ-
ments motivates the provision of instructions to adversely-affected
users on actions they can take to alter a model’s decision. For ex-
ample, in the lending domain, if a classifier decides to deny an
applicant, there should be a mechanism for providing a feasible set
of actions the applicant can take to be approved. This instructive
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information is desirable as opaque self-learning systems inform
more and more of our society’s decision-making, for both trust
and accountability. The ability to obtain a desired outcome from a
known model, the actionable set of changes that users can make to
improve their qualification, or the systematic process of reversing
unfavorable decisions is defined as “algorithmic recourse,” or simply
“recourse” [12]. These what-if scenarios are also often referred to as
“counterfactual explanations." Importantly, the explicitly stated goal
of recourse is to find actions with minimal cost to the user [24].

Simultaneously, it has been observed that many neural networks
can be easily “fooled” by introducing small changes to input fea-
tures that may seem imperceptible. [22] first proposed the concept
of “adversarial examples": by adding small perturbations to an input
sample, models obtain incorrect classification results with high con-
fidence scores. These are sometimes referred to as “evasion attacks"
[5]. [22] also found that such perturbations can be adapted into
different model architectures, demonstrating that many deep neural
networks are vulnerable to these input manipulations. Adversarial
examples raise concerns about the trust one can place in neural
network classifiers, and much work has been put into adversarial
training methods to improve the robustness of models to adver-
sarial examples. The most popular adversarial training regimes [1]
generate adversarial examples (with corrected labels) within a fixed
“attack radius” (𝜖) during training procedure and include them in
the model’s training dataset. While adversarial training has been
shown to increase robustness to adversarial examples drastically, it
often comes at some cost to standard accuracy [28].

There is an inherent contention between the considerations of
algorithmic recourse and adversarial robustness. While minimizing
the changes necessary to alter a classifier’s decision is seen as
beneficial from a recourse perspective, such changes are harmful
from a robustness perspective. Research [14] has demonstrated that
adversarial training increases the average recourse cost, with higher
adversarial training radii corresponding to higher recourse costs,
which raises the concern that there may be an inherent trade-off
between robustness and recourse.

Briefly, it should be noted that the goals of adversarial robustness
are not totally at odds with recourse. Recourse should represent
true movements towards a desired class, and adversarial examples
that “fool” a model can be harmful and should not be presented
as recourse. Consider the lending setting: if an approval action
plan is provided to an applicant which does not represent a true
movement in their underlying propensity for repayment, both the
lender and borrower are putting themselves at long-term financial
risk by following that plan. This is relevant in the context of many
recourse settings, where data is tabular and it is not immediately
obvious which input perturbations constitute adversarial examples
and which input perturbations constitute recourse that genuinely
moves an individual towards a desired class manifold. With this in
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mind, it is worth considering not only the change in overall cost of
recourse, but also the change in proximity of recourse to the desired
data manifold, when selecting an adversarial training radius.

Even more fundamentally, it is important to question whether a
fixed adversarial training radius is appropriate, particularly in the
context of algorithmic recourse?. It has been shown [2] that different
data instances have different inherent adversarial vulnerabilities
due to their varying proximities to other classes. As such, some
researchers have argued that an identical adversarial training ra-
dius should not be applied to all instances during training. Several
methods [2, 6, 8] have been proposed for automatically learning
instance-wise adversarial radii to address this variability. These
are broadly referred to as “Adaptive Adversarial Training” (AAT)
regimes [1].

This work explores the effects of AAT on both model robustness
and ultimate recourse costs in an attempt to address the trade-off
between the two and find a justifiable middle ground. Our contri-
butions include:

• An observation on the effects of robustness on recourse costs,
and when AAT yields more affordable recourse.

• Experiments demonstrating AAT’s superior robustness/ re-
course trade-offs over traditional AT.

2 BACKGROUND AND RELATED WORKS
Algorithmic Recourse: The continued adoption of ML in high-

impact decision making such as banking, healthcare, and resource
allocation has inspired much work in the field of Algorithmic Re-
course [11, 13, 24], and Counterfactual Explanations [15, 19, 21, 27].
The performance of different recourse methods depends highly
on properties of the datasets they are applied to, the model they
operate on, the application of that model’s score, and factual point
specificities [7]. However, broadly speaking, recourse methods are
classified based on: i) the model family they apply to, ii) the degree
of access they have to the underlying model (i.e. white vs. black box
methods), iii) the consideration of manifold proximity in the gener-
ation of recourse, iv) the underlying causal relationships in the data,
and v) the use of model approximations in the generation process
[26]. Recently, [18] introduced CARLA, a framework for bench-
marking different recourse methods which act as an aggregator for
popular recourse methods and standard datasets.

Adversarial Attacks and Adversarial Training: Adversarial vul-
nerability refers to the susceptibility of a model to be fooled by
perturbations to the input data which cannot be detected by hu-
mans (so-called Adversarial Examples) [23]. Adversarial Training
[10, 16] has been introduced to create models which are not sus-
ceptible to such attacks. The most popular method of Adversar-
ial Training generates adversarial examples during the training
process and includes them in the training dataset with corrected
labels alongside the uncorrupted dataset. Often, adversarial train-
ing comes at some cost to standard classification accuracy. There
have been many attack methods proposed to generate adversarial
examples [5] with varying degrees of access to the model under
attack, but most focus on defending against adversarial examples
within a given 𝜖-radius (which are often defined by ℓ1, ℓ2, or ℓ∞
norms of size 𝜖 .) This work follows the popular attack and training

formulation from [16], which minimizes the worst-case loss within
a defined 𝜖-radius.

On the Intersection of Robustness and Recourse. Both Adversarial
Examples and Counterfactual Explanations are formally described
as constrained optimization problems where the objective is to al-
ter a model’s output by minimally perturbing input features [4, 9].
Recent work [17] proved equivalence between certain adversarial
attack methods and counterfactual explanation methods, and fur-
ther work has demonstrated both theoretically and empirically that
increasing the radius of attack during adversarial training increases
the cost of the resulting recourse [14]. This inherent connection pits
security at odds with expressivity and raises an important question
as to how an adversarial radius ought to be selected for adversarial
training. If the radius is too small, the model may be overly sensitive
to an attack, while if it is too large, end users suffer from potentially
overly-burdensome recourse costs. In the context of many recourse
problems where data is tabular, it is difficult to determine what
may constitute an adversarial attack, furthering the difficulty of
radius selection. [3] discussed a formulation for adversarial attacks
on tabular data that accounts for both the radius of attack and
the importance of a feature, but this is difficult to know a priori
and often changes depending on the choice of explanation method
selected [20].

Adaptive Adversarial Training. It has been observed that differ-
ent data instances have different inherent adversarial vulnerability
due to their varying proximity to other class’ data manifolds, calling
into question the conventional wisdom that models should be ad-
versarially trained at a single consistent adversarial radius. [2] first
observed this issue in the image classification domain, where certain
instances can be meaningfully transformed into other classes even
at small adversarial radii. The authors of [2] proposed a means of
discovering instance-wise adversarial radii by iteratively increasing
or decreasing each instance’s attack radius based on whether at-
tacks are successful. [6] built on this work by further motivating the
effects of overly-large adversarial radii on classification accuracy
and proposed a variation of [2]’s method which included adaptive
label-smoothing to account for the uncertainty added by larger
attack radii, and [8] proposed a means for adaptive adversarial
training by increasing the classification margin around correctly-
classified datapoints. Adaptive Adversarial Training (AAT) presents
a means of “automatically” selecting attack radii during training,
and in all works thus far, has shown positive results in terms of the
accuracy/robustness trade-off inherent in adversarial training, as
well as smoother robustness curves across ranges of attack radii
compared with traditional Adversarial Training.

3 PRELIMINARIES & NOTATION
Standard Training: We begin with a model 𝑓 parameterized by

weights 𝜃 that maps X → Y, where 𝑥 ∈ X are features and 𝑦 ∈ Y
are their corresponding labels. Given a dataset D = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1,
and a loss function ℓ (·), a standard learning objective is to minimize
the average loss on the data:

min
𝜃

1
𝑁

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈𝐷

ℓ (𝑓𝜃 (𝑥𝑖 ), 𝑦𝑖 ) (1)
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(a) Toy problem demonstrating that adversarial training can result in
counterfactuals that are both costlier and further from the desired
class manifold. The natural decision boundary is shown in black,
the adversarial boundary in red. 𝜖-Adversarial training creates a
necessary recourse cost 𝑐𝑎 = 𝜖 > 𝑐𝑛 , and yields a distance in the
resulting recourse to the desired manifold of 𝑑𝑎 > 𝑑𝑛
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(b) Adaptive Adversarial Training provides counterfactuals which
are cheaper and relatively closer to the desired class manifold. The
natural decision boundary is shown in black, the adaptive adversarial
boundary in green. With instance specific robustness 𝜖𝑖 , the recourse
cost 𝑐𝑎𝑎 = 𝜖𝑖 > 𝑐𝑛 and 𝑐𝑎𝑎 < 𝜖 for any 𝜖𝑖 < 𝜖 . This yields a distance
𝑑𝑎𝑎 < 𝑑𝑎 .

Figure 1: An example scenario demonstrating the effectiveness of AAT in terms of recourse costs.

Let 𝑓𝑛𝑎𝑡 represent the naturally trained model using the standard
loss minimization based optimization technique.

Adversarial Attacks: The goal of an adversarial attack is to strate-
gically generate perturbations 𝛿 which can significantly enlarge the
loss ℓ (·) when added to an instance 𝑥 . [10] introduced Fast Gradient
Sign Method (FGSM) for generating adversarial examples using the
following mechanism:

𝑥 ′𝑖 = 𝑥𝑖 + 𝛼 · sign
(
∇𝑥𝑖 ℓ (𝑓𝜃 (𝑥𝑖 ), 𝑦𝑖 )

)
(2)

where 𝛼 denotes the size of the perturbation, 𝑥 ′𝑖 denotes the ad-
versarially perturbed sample, and 𝑥𝑖 is the original clean sample.
The sign function operates on the gradient of ℓ (𝑓𝜃 (𝑥𝑖 ), 𝑦𝑖 )) w.r.t. 𝑥𝑖 ,
which is used to set the gradient to 1 if it is greater than 0 and −1 if
it is less than 0. [16] proposed a stronger iterative version of FGSM,
performing Projected Gradient Descent (PGD) on the negative loss
function:

𝑥𝑖 (𝑡 + 1) = Π𝑥+S
(
𝑥𝑖 (𝑡) + 𝛼 · sign

(
∇𝑥𝑖 (𝑡 ) ℓ (𝑓𝜃 (𝑥𝑖 (𝑡)), 𝑦𝑖 )

))
where 𝛼 denotes the perturbation step size at each iteration and
𝑥𝑖 (𝑡 + 1) represents the perturbed example at step 𝑡 + 1 for the
clean instance 𝑥𝑖 . In this work, we use PGD due to its performance,
popularity, and relative speed.

Adversarial Training: Adversarial training is usually formulated
as a min-max learning objective, wherein we seek to minimize the
worst case loss within a fixed training radius 𝜖 .

min
𝜃

max
| |𝛿𝑖 | | ≤𝜖

1
𝑁

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈𝐷

ℓ (𝑓𝜃 (𝑥𝑖 + 𝛿𝑖 ), 𝑦𝑖 ) (3)

We solve thismin-max objective via an alternating stochasticmethod
that takes minimization steps for 𝜃 , followed by maximization steps
that approximately solve the inner optimization using 𝑘 steps of an
adversarial attack. PGD with a fixed 𝜖 is used to perturb an original
instance and let 𝑓𝜖-adv represent the model trained with a PGD
radius of 𝜖 .

3.1 Adaptive Adversarial Training
[2] first argued that different data instances have different intrin-
sic adversarial vulnerabilities due to their varying proximity to
other class manifolds, and introduced Instance-Adaptive Adversar-
ial Training (AAT) to automatically learn instance-wise adversarial
radii. The authors proposed the following objective function:

min
𝜃

max
| |𝛿𝑖 | | ≤𝜖𝑖

1
𝑁

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈𝐷

ℓ (𝑓𝜃 (𝑥𝑖 + 𝛿𝑖 ), 𝑦𝑖 ) (4)

where 𝜖𝑖 denotes each training instance’s attack radius. 𝜖𝑖 is iter-
atively updated at each training epoch, increasing by a constant
factor if the attack at the existing radius is unsuccessful and de-
creasing by a constant factor if it is successful.

[8] presented an alternate form of AAT calledMax-Margin Adver-
sarial (MMA) Training that seeks to impart adversarial robustness
by maximizing the margin between correctly classified datapoints
and the model’s decision boundary. Formally, they proposed the
following objective:

min
𝜃


∑︁
𝑖∈S+

𝜃

max{0, 𝑑𝑚𝑎𝑥 − 𝑑𝜃 (𝑥𝑖 , 𝑦𝑖 )} + 𝛽
∑︁
𝑖∈S−

𝜃

ℓ (𝑓𝜃 (𝑥 𝑗 ), 𝑦 𝑗 )


(5)
where 𝑆+

𝜃
is the set of correctly classified examples, 𝑆−

𝜃
is the set

of incorrectly classified examples, 𝑑𝜃 (𝑥𝑖 , 𝑦𝑖 ) is the margin between
correctly classified examples and the model’s decision boundary,
𝑑𝑚𝑎𝑥 is a hyper-parameter controlling which points to maximize
the boundary around (forcing the learning to focus on points with
𝑑𝜃 less than 𝑑𝑚𝑎𝑥 ,) and 𝛽 is a term controlling the trade-off between
standard loss and margin maximization. The authors use a line
search based on PGD to efficiently approximate 𝑑𝜃 (𝑥𝑖 , 𝑦𝑖 ). For the
rest of this study, let 𝑓𝑎𝑎𝑡 be a model trained using a mechanism
from this category of training techniques.
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3.2 Recourse Methods
For the scope of this study, we explore three different classes [14]
of recourse methods: i) one random search, ii) one gradient-based
search, and iii) one manifold-based approach. We will now briefly
discuss each method, and we refer the readers to the original works
for further implementation details.

Growing Spheres (GS):. [15] proposed a random search method
for calculating counterfactual by sampling from points within ℓ2-
hyper-spheres around 𝑥 of iteratively increasing radii until one or
more counterfactual is identified which flips 𝑓 (𝑥). Formally, they
present a minimization problem in selecting which counterfactual
𝑥 ′ to return:

argmin
𝑥 ′∈X

{𝑐 (𝑥, 𝑥 ′) |𝑓 (𝑥) ≠ 𝑓 (𝑥 ′)} (6)

where X is the family of sampled points around 𝑥 and 𝑐 is a cost
function in X × X → R+: | |𝑥 ′ − 𝑥 | |2 + 𝛾 | |𝑥 ′ − 𝑥 | |0, where 𝛾 is a
hyperparameter controlling the desired sparsity of the resulting
counterfactual.

Score Counterfactual Explanations (SCFE):. [27] proposed a gradient-
based method for identifying counterfactuals 𝑥 ′.

argmin
𝑥 ′

max
𝜆

𝜆(𝑓 (𝑥 ′) − 𝑦′)2 + 𝑑 (𝑥, 𝑥 ′) (7)

where 𝑑 (·, ·) is some distance function and 𝑦′ is the desired score
from the model. In practice, this is solved by iteratively finding 𝑥 ′
and increasing 𝜆 until a satisfactory solution is identified.

CCHVAE:. [19] proposed a manifold-based solution to finding
counterfactuals using a Variational Auto Encoder (VAE) to search
for counterfactuals in a latent representation Z. The goal of CCH-
VAE and other manifold methods is to find counterfactuals that
are semantically “similar” to other data points. Formally, given
an encoder E, a decoderH , and a latent representationZ where
E : X → Z, CCHVAE optimizes the following:

argmin
𝑧′∈Z

{| |𝑧′ | | 𝑠 .𝑡 . 𝑓 (H (E(𝑥) + 𝑧′)) ≠ 𝑓 (𝑥)} (8)

4 RECOURSE TRADE-OFFS WITH ADAPTIVE
ADVERSARIAL TRAINING

Recourse cost. The cost of recourse is usually approximated us-
ing a distance based metric. A common practice among recourse
methodologies is to minimize the cost in some form or the other,
because in general a low cost recourse is assumed to be easier to
act upon. The cost of a recourse for a classification based model
is traditionally interpreted as the minimum distance between a
factual and the decision boundary. Alternatively, the inherent goal
of adversarial training is to maximize the distance between factuals
and the decision boundary. Hence, traditional adversarial training
exacerbates the recourse costs of a classifier. In this section, we
make preliminary observations on the effects of adaptive adversar-
ial training on recourse costs.

An increase in 𝜖 for 𝜖-adversarial training increases the over-
all recourse costs and the corresponding relation between 𝜖 and
𝐶 is discussed in [14]. In comparison with an 𝜖-adversarial train-
ing, we observe the following benefits from the instance adaptive
adversarially training:

4.1 Recourse Costs
Let 𝛿 (𝑛𝑎𝑡 )𝑥 = 𝑑 (𝑥, 𝑥 ′) be the distance to the closest adversarial
example 𝑥 ′ for the instance 𝑥 for a standard training based model,
and, analogously, let 𝑐 (𝑛𝑎𝑡 )𝑥 = 𝑐𝑜𝑠𝑡 (𝑥, 𝑥 ′′) be the cost of a recourse
𝑥 ′′ for an individual represented by𝑥 . For simplicity, we assume that
both 𝑐 ( ·)( ·) and 𝑐𝑜𝑠𝑡 (·, ·) use the same ℓ𝑝 norm based distance metrics.
Let𝐻− = {𝑥 ∈ X : 𝑓 (𝑥) = −1} represent the sub-population which
was adversely affected by the classifier 𝑓 (·), and analogously we
have 𝐻+ = {𝑥 ∈ X : 𝑓 (𝑥) = +1}. The average cost of recourses for
𝐻− is defined for a naturally trained model as:

𝑐
(𝑛𝑎𝑡 )
∗ =

1
|𝐻− |

∑︁
𝑥∈𝐻 −

𝑐
(𝑛𝑎𝑡 )
𝑥 (9)

Let 𝐻− = {𝑥 ∈ X : 𝑓 (𝑥) = −1, 𝑐 (𝑛𝑎𝑡 )𝑥 ≤ 𝜖}, where 𝜖 is a cost
threshold to identify low cost recourses. As observed in Figures 4
and 5, a low cost counterfactual is sufficient in practice for a large
section of the population. However, an optimal 𝜖𝑎-adv classifier
provides at least 𝜖𝑎 robustness to all samples in the training dataset.
This can be visualized by the sharp peak in the distribution of the
observed 𝜖 in the test dataset for all the 𝜖-adv models (Figure 8).
However AAT models provide natural robustness to the data sam-
ples, meaning that a data instance closer to the natural decision
boundary has 𝜖𝐻 −

𝑎𝑎𝑡 that depends on the data’s natural proximity to
the decision boundary. For instances with 𝜖𝐻

−
𝑎𝑎𝑡 < 𝜖𝑎 , the result-

ing recourse will be more affordable. For 𝜖𝐻 −
𝑎𝑎𝑡 < 𝑐

(𝑛𝑎𝑡 )
𝑥 , low cost

recourse within 𝐻− will be preserved.

4.2 Proximity to the Desired Manifold
Manifold Proximity measures the distance by some metric between
recourse and the target sub-population. For an 𝑓 ∗

𝜖𝑎-adv model, the
recourse suggested have at least 𝜖𝑎 proximity from the target
approved sub-population 𝐻+ due to the fact that the target sub-
population is also 𝜖𝑎 away from the decision boundary. Alterna-
tively 𝑓𝑎𝑎𝑡 is naturally robust for the target sub-population as well.
Hence, the Recourse provided has the potential to be closer in terms
of proximity to 𝐻+, so long as 𝜖𝐻

+
𝑎𝑎𝑡 < 𝜖𝑎 . We report the average

proximity 𝜌 𝑓𝜖-adv of the model 𝑓𝜖-adv using:

𝜌 𝑓𝜖-adv =
1

|𝑁𝑡𝑒𝑠𝑡 |
∑︁

𝑥∈𝑁𝑡𝑒𝑠𝑡

min
𝑥+∈𝐻+

𝑑 (𝑥, 𝑥+) (10)

where 𝑑 (𝑥, 𝑥+) is a distance measure between a counterfactual 𝑥
and a target population 𝑥+. We report both 𝜌 𝑓𝜖-adv and 𝜌 𝑓𝑎𝑎𝑡 for the
corresponding models. In Figure 7, we find that 𝜌 𝑓𝑎𝑎𝑡 is significantly
better than 𝜌 𝑓𝜖-adv . A motivating toy problem demonstrating lower
recourse costs and closer manifold proximity is also visualized in
Figure 1.

4.3 Preservation of Low Cost Recourse
The recourse costs provided to the adversely affected individuals
by a model should follow the natural distribution of the difficulty
of acting upon the suggested recourse at the population level. With
a fixed 𝜖 while training an optimal adversarially trained 𝑓 ∗

𝜖-adv
model, the recourse suggested must necessarily be 𝜖 away from
the decision boundary and further 𝜖 away from the nearest target
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Figure 2: Standard performance across datatsets. MMA shows particularly competitive standard performance compared with
all other Adversarial Training regimens.
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Figure 3: Attack Success Rate. Traditional Adversarial Training shows higher robustness within its predefined training threshold,
but sharper robustness degradation as the attack radius increases.

population sample. Such counterfactuals contradicts with the re-
course literature [25], which describes a distribution in recourse
costs wherein a proportion of individuals only require minimal low
cost actionable steps to obtain the desired outcome from a model,
whereas other individuals can have a much larger recourse costs.
Essentially, 𝜖-robustness necessarily denies recourse with lower
costs than 𝜖 .

𝑓𝑎𝑎𝑡 does not enforce a strict 𝜖 while training, allowing instances
to have a wider range of recourse costs. To this end we compare the
rate of extreme low cost recourse 𝐶Δ across the discussed training
methods with real-world datasets to measure the rate at which it

degrades in practice. For simplicity, we measure:

𝐶Δ =
1

|𝑁𝑡𝑒𝑠𝑡 |
∑︁

𝑥𝑖 ∈𝑁𝑡𝑒𝑠𝑡

1(𝐶𝑥𝑖 < 𝜖) (11)

where 𝐶𝑥𝑖 is the cost of recourse for an instance 𝑥𝑖 and 𝜖 is a
minimum adversarial training radius. We observe in Figure 4 that
Adaptive Adversarial Training preserves low cost recourse rates
despite providing overall robustness benefits.

5 EXPERIMENTAL DESIGN & METRICS
In this section, we detail our experimentation procedure to em-
pirically evaluate these various training methods and explain our
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Figure 4: Low cost recourse (ℓ∞ < 0.05) proportion for methods that optimize directly in the input space. We observe that
AAT models has much higher proportions of low cost recourse, supporting the hypothesis that it allows for robustness while
preserving low recourse costs for individuals near natural decision boundaries.

metric choices. The CARLA package [18] was used to source the
datasets and recourse methods we employed.

5.1 Experimental Setup
Datasets. We performed our experiments on three datasets:
• Adult Income: A dataset originating from the 1994 Census of
48,842 individuals for whom the task is to predict whether
someone makes more than $50,000/yr. It is comprised of
20 features which are a combination of demographic fea-
tures (age, sex, racial group), as well as employment fea-
tures (hours of work per week and salary), and financial
features (capital gains/losses.) In keeping with [14] and [3],
we removed categorical features for efficient training and
approximation of tabular adversarial examples. The target
distribution is somewhat skewed, with a 76% positive label
proportion.

• Home Equity Line of Credit (Heloc): pulled from the 2019
FICO Explainable Machine Learning (xML) challenge, the
Heloc dataset consists of anonymized credit bureau data
from 9,871 individuals where the task is to predict whether
an individual will repay their HELOC account within two
years. The dataset consists of 21 financial features and no
demographic data. The target distribution is evenly split,
with a 48% positive label proportion.

• Give Me Some Credit (GSC): a credit-scoring dataset pulled
from a 2011 Kaggle Competition consisting of 150,000 indi-
viduals for whom the task is to predict default. It consists
of 11 features, one of which is a demographic feature (age),
and the rest are financial variables. The target distribution
is heavily skewed, with a 93% positive label proportion.

Models. We trained a total of 7 Neural Network models for each
of our datasets: one naturally trained model, one model trained
with AAT, one model trained with MMA, and four adversarially
trained models. All models are trained using Binary Cross Entropy
with the default model architecture from CARLA, with three hidden
layers of [18, 9, 3] units. The Adversarially Trained models were all
trained with PGD at a variety of 𝜖 ∈ [0.05, 0.1, 0.15, 0.2]. The AAT
model did not consider any hyperparameter choices, and the MMA
model was trained using the original work’s package [8] with the
default hyperparameter choices.

Recourse Methods. We constructed Counterfactual Explanations
for all models on a sample of 1000 negatively-classified test data
points using three methods: Growing Spheres (GS), C-CHVAE, and
SCFE. All hyperparameter choices for these methods were left as
their CARLA defaults.

5.2 Metrics
To study the effects of the different training methods on accuracy,
robustness, and recourse, we calculate the following metrics:

Standard Classification Performance. A primary consideration in
adversarial training is the trade-off in classification accuracy when
compared with natural training. We record the standard classifica-
tion accuracy of all models to measure the drop in accuracy that
may accompany the different adversarial training methods. For-
mally, we measure: 1

|D𝑡𝑒𝑠𝑡 |
∑
𝑥𝑖 ∈D𝑡𝑒𝑠𝑡

1(𝑓 (𝑥𝑖 ) = 𝑦𝑖 ). Given that we
are experimenting with datasets with skewed target distributions,
we also record the F1 score of each model on the minority target
population.
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Figure 5: AAT “Discovered” Radii Resulting from Adpative Adversarial Training
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Figure 6: Recourse costs (defined as the ℓ2 distance between a factual and counterfactual data point) for all methods and datsets.
We observe that adaptive adversarial training shows significantly more competitive recourse costs than traditional adversarial
training, and MMA training in particular shows almost no increase over natural training despite its robustness benefits.
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Figure 7: KNN and Sphere Manifold Proximity for Growing Spheres. We find that not only does adaptive adversarial training
produce less expensive recourse than traditional adversarial training, but also recourse that is more faithful to the desired class
these counterfactuals approximate.

Adversarial Success Rate. Given that we are primarily concerned
with the trade-off between robustness and recourse, and following
the concept of “boundary error” introduced in [29] to disentangle
standard performance and adversarial vulnerability, we also mea-
sure the success rate of adversarial attacks at various radii on our
models. Formally, given an attack A𝜖 such that A𝜖 (𝑥) identifies
the most adversarial example on 𝑥 within a radius 𝜖 , we measure

1
|D𝑡𝑒𝑠𝑡 |

∑
𝑥𝑖 ∈D𝑡𝑒𝑠𝑡

1(𝑓 (A𝜖 (𝑥)) ≠ 𝑓 (𝑥𝑖 )). We observe the adversar-
ial success rate across the radii on which we train our traditional
adversarial models. Note that this is an imperfect metric for mea-
suring the success of AAT, as AAT assumes that some “attacks”
at given radii represent real movements toward different classes;
however, it is still useful to capture this information in considering
the trade-off between traditional adversarial training and AAT.

Counterfactual Proximity. The primarymetric regarding recourse
we are interested in observing is the ultimate recourse cost between
our resultant models. As each specific domain’s cost function is
not concretely defined, we follow the convention of opting for ℓ2
distance as a standard approximation. Formally, for each model we
calculate: 1

|D𝑡𝑒𝑠𝑡 |
∑
𝑥𝑖 ∈D𝑡𝑒𝑠𝑡

| |𝑥∗𝑖 − 𝑥𝑖 | |2, where 𝑥∗ is the recourse
calculated for 𝑥𝑖 .

Manifold Proximity. Motivated by the question of how faithful
our resulting counterfactuals are to true movements towards the
desired class, we estimate the distance between the counterfactuals

each model produces and the desired class manifold these counter-
factuals approximate. We use two methods for this: a KNN distance
measure and a sphere distance measure For KNN, we record the
average ℓ2 distance between the resulting counterfactuals and the
five nearest neighbors of the desired class. For the sphere measure,
we record the average ℓ2 distance between the resulting counterfac-
tuals and all neighbors of the desired class within an ℓ2 ball of size
𝜖 , where 𝜖 is calculated as 20% of the average ℓ2 distance between
any two points in the dataset.

6 RESULTS & DISCUSSION
Standard Performance. Figure 2 displays the classification accu-

racy and F1 scores of the various models. We observe that for the
Adult and Heloc datasets, adversarial training tends to decrease
standard performance, with higher training radii correlating with
worse performance. We observe that MMA training tends to keep
performance consistent, and that AAT worsens performance to a
degree similar to adversarial training with an 𝜖 value between 0.05
and 0.1.

Robustness. Figure 3 shows the vulnerability of the models under
PGD attack at a variety of raddii (𝜖 ∈ [0.05, 0.1, 0.15, 0.2, 0.25]). We
observe that while traditional adversarial training creates substan-
tially more robust models within a defined radius of attack, the
degredation in robustness tends to be more severe among tradition-
ally trained models than AAT methods when the radius increases
beyond their predefined training threshold. MMA in particular
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Figure 8: Decision boundary proximity, estimated by the minimum successful PGD attack radius on a sample of 1000 instances.
The height represents a proportion of the data, the average distance is shown in red.
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shows surprisingly consistent robustness benfits, although they are
more moderate than their adversarially trained counterparts’.

Counterfactual Proximity. Figure 6 displays the cost of recourse
across all datasets for the three recourse methods studied. We ob-
serve consistently that adaptive adversarial training yields recourse
with lower costs than traditional adversarial training, and in the
case of MMA costs that are consistently competitive with natural
training. This result seems unintuitive given the robustness benefits
that MMA provides, and we believe this presents an interesting
avenue for further research.

KNN & Sphere Manifold Distance. Figure 7 shows the Manifold
Proximity estimates for Growing Spheres across all datasets. We
observe that adaptive adversarial training produces recourse that is
consistently closer to the desired class manifold than traditional ad-
versarial training. This result, paired with the reduction in recourse
costs, may suggest that adaptive adversarial training encourages
more natural decision boundaries than traditional adversarial train-
ing, allowing for more meaningful recourse at lower costs.

Prevalence of Low Cost Recourse. For recourse methods that opti-
mize costs directly in the input space, we record the percentage of
counterfactuals that have an ℓ∞ cost less than 0.05 to measure the
proportion of low cost recourse among our models. The results are
recorded in Figure 4. We observe that adaptive adversarial training
shows higher proportions of low cost recourse than traditional
adversarially trained models; surprisingly, MMA training in par-
ticular finds proportions of low-cost recourse that are consistently
competitive with natural training, despite its benefits in overall
robustness.

Discovered Radii & Decision Boundary Distances. Figure 5 dis-
plays the instance-wise discovered radii after AAT for all three
datasets. We observe that for all datasets, a variety of radii are
found with unique distributions. This alludes to the fact that differ-
ent underlying data distributions have different levels of inherent
adversarial vulnerability, underscoring the challenge of estimat-
ing a proper singular radius at which to adversarially train. Figure
8 shows an estimation of the distribution of decision boundary
proximities across all models, calculated by finding the minimum
successful radius for PDG attack across a sample of 1000 instances.
We observe that traditional 𝜖-adversarial training often limits prox-
imity to the decision boundary 𝑑 > 𝜖𝑖 , while adaptive adversarial
training shows a greater distribution in ultimate decision boundary
proximties. In the case of MMA in particular, we find that the deci-
sion boundary proximities closely match that of the natural model,
despite its improved robustness.

7 CONCLUSION
This work explores the effects of adaptive adversarial training on
robustness and recourse, finding that it shows promising trade-offs
between the two. We motivate our work with a observation of
the effect of traditional adversarial training on recourse costs, and
introduce scenarios under which adaptive adversarial training pro-
vides more affordable recourse. We conduct experiments on three
datasets demonstrating that adaptive adversarial training yields
significant robustness benefits over natural training with little cost

incurred on recourse and standard performance, and provide ev-
idence that adaptive adversarial training produces recourse that
more faithfully represents movements towards the desired class
manifold. Finally we analyze the resulting models’ decision bound-
ary margins, providing evidence that supports our observations on
recourse costs under traditional adversarial training. We believe
that adaptive adversarial training, and Max-Margin adversarial
training in particular, presents a promising means of achieving the
ultimate goals of robustness while preserving affordable recourse
costs for end users.
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