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Abstract—The Covid-19 pandemic has caused a dramatic and
parallel rise in dangerous misinformation, denoted an ‘infodemic’ by the
&DC and WHO. Misinformation tied to the Covid-19 infodemic
Rhanges continuously; this can lead to performance degradation of fine-
atuned models due to concept drift. Degredation can be mitigated if
mmodels generalize well-enough to capture some cyclical aspects of
odrifted data. In this paper, we explore generalizability of pre-trained and
ine-tuned fake news detectors across 9 fake news datasets. We show
Qhat existing models often overfit on their training dataset and have poor
Serformance on unseen data. However, on some subsets of unseen data
that overlap with training data, models have higher accuracy. Based on
this observation, we also present KMeansProxy, a fast and effective
Sethod based on K-Means clustering for quickly identifying these
g)verlapping subsets of unseen data. KMeans-Proxy improves
Ceeneralizability on unseen fake news datasets by 0.1-0.2 fl-points
ﬁ,;across datasets. We present both our generalizability experiments as
8vell as KMeans-Proxy to further research in tackling the fake news
;:Problem.
S

[. INTRODUCTION

The rapid spread of the Covid-19 virus has led to a parallel
urge in misinformation and disinformation [1] This surge of
alse information, coined an ‘infodemic’ by the CDC [2] can be
%ife-threatening, destabilizing, and potentially dangerous [3].
The infodemic is multimodal, meaning associated fake news can
%ake forms of social media posts, tweets, articles, blogs,
gommentary, misrepresented titles and headlines, videos, and
Egudio content.
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g’lurrent Research. There is significant progress on developing
%lomain-speciﬁc automated misinformation detection and
Zlassification tools [4], [5], [6], [7], [8], [9]. Such tools analyze
gabeled datasets in aforementioned modalities to classify fake
@iews. Recent approaches focus on transformer-based classifiers
Lgind language modelers [9], [7].

O Such fake news detectors are specific to the datasets they are
grained with [6], [9]. More recently, there is a focus on
"éddressing generalizability concerns in these models [9], [10],
4117, [12], [13], [14]. For example, [9] explores the impact of
~generalization of 15 transformer models on 5 fake news datasets.

Eﬂ“he results show there is a generalizability gap in fake news
m
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detection: a fine-tuned model trained on one fake news
dataset performs poorly on other unseen, but related, fake
news datasets.
Generalization Study. In this paper, we study the
generalizability and fine-tuning tradeoff and present our
findings for furthering the research interest. We study
several fake news detection architectures across 9 fake news
text datasets of different modalities. We find that fine-tuned
models often have reduced accuracy on any unseen dataset.
However, when paired with a reject option to abstain from
low-confidence predictions, fine-tuned models perform
significantly better. These abstention results can then be
labeled with active learning, crowdsourcing, weak label
integration, or a variety of other methods present in
literature.

KMeans-Proxy.  Through  observations on  our
generalizability results, we present a simple ‘reject option’
[15], [16], [17] for fake news detectors, called KMeans-
Proxy. KMeans-Proxy is based on KMeans clustering, and
is inspired by research into proxy losses [18], [19] and
foundation models [20], [21], [22]. It is written as a PyTorch
layer and requires only a few lines of code to implement for
most feature extractors. We show in our results that
KMeans-Proxy improves generalization on fake news
datasets by 0.1 to 0.2 f1 points across several experiments.

Contributions. In summary, our contributions are:

1. Extensive set of experiments across 9 fake news
datasets on the generalizability/fine-tuning trade off.

2. KMeans-Proxy, a simple reject-option for feature
extractors. KMeans-Proxy uses cluster proxies from
ProxyNCA to estimate embedding cluster centers of the
training data. During prediction, KMeans-Proxy
provides a reject option based on label difference
between sample prediction and nearest training data
cluster center.

We will release our code for running experiments and for
KMeans-Proxy.
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II. RELATED WORK
A. Generalizability and Fine-Tuning

Since 2002, there are increasing numbers of Covid-19 fake
news datasets and associated models for these datasets [4], [8].
Recently, there is increasing interest in gauging the effectiveness
of each of these fine-tuned models on related, but unseen
datasets [9]. The authors of [9] conduct a generalization study
over 15 model architectures over 5 datasets, and find that fine-
tuning offers little advantage in classification accuracy. There is
also an abundance of research in unsupervised domain
adaptation to recover accuracy under changing domains or
concept drift [23], [24], [25], [26].

B. Concept Drift

Concept drift occurs when testing or prediction data exhibits
distribution shift [24], either in the data domain, or in the label
domain [26]. Data domain shift can include introduction of new
vocabularies, disappearance of existing words, and word
polysemy [27]. Label domain shift occurs when the label space
itself changes for the same type of data [25], [28]. For example,
when new types of misinformation are detected, then the
boundary between misinformation and true information must be
adjusted [28]. We show label shift in Figure 1, where subsets of
true and fake news occupy the same embedding space across
datasets due to fine-grained differences.

C. Reject Options

One drawback of classification models is that they provide a
prediction for every data point [15], regardless of confidence.
Reject options perform external or internal diagnosing. This can
help detect either low confidence due to low coverage or
divergence from training data distributions due to concept drift.
Several approaches are covered in a recent survey [15]. We
present a reject option that uses recent findings in [21] and [29]
on the topology of the embedding space: (i) find that local
smoothness of the label space is indicative of local accuracy and
coverage [29], and (ii) local label shift, where nearby samples
have different labels, is a good predictor of local smoothness
[21]. Our reject option, described in Section III-C is a clustering
approach that calculates cluster centers in the feature extractor
embedding space for the training data. Then, during prediction,
a model can provide a prediction as well the label for the nearest
training data cluster center. Flipped, or different, labels can
indicate reduced local smoothness, confidence, and coverage,
leading to a reject decision.

D. Motivation

It is well known that fine-tuned models suffer performance
degradation over time due to data domain shift [28], [30], [31].
Usually, this performance degradation is detected, and a new
model is trained on new labeled data. Recently, the velocity and
size of new data makes obtaining labeled data quickly and at
scale, very expensive [32]. Updating models during data domain
shift requires relying on weak labels, authoritative sources, and
hierarchical models [32], [33], [34]. In such cases, a team of
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prediction models is pruned and updated with new training
data [28]. However, we still need predictions in the period
when data domain shift is occurring, and new models have
not been trained. Our work, as well as recent research in
generalizability [9], weak labeling [33], foundation models
[21], and rapid fake news detection [32] falls in this period.
Our generalizability experiments in Section III show that
finetuned models, while having lower performance on
unseen data, do have better accuracy on some subsets. Our
KMeans-Proxy

TABLE I: Datasets used for our experiments. If splits were not
available, we used a random class-balanced split. For Tweet
datasets, sample counts are after rehydration, which removed some
samples due to missing tweets.

Dataset Training  Testing Type
k title [35] 31k 9K Article Titles
coaid [4] 5K 1K News summary
c19 text [36] 2.5K 0.5K Articles
cq [37] 12.5K 2K Tweets
miscov [38] 4K 0.6K Headlines
k text [35] 31k 9K Articles
rumor [39] 4.5K 1K Social Posts
cov fn [13] 4K 2K Tweets
c19 title [36] 2.5K 0.5K Article Titles

solution finds these subsets where fine-tuned models have
higher accuracy.

III. GENERALIZATION EXPERIMENTS

We transformer-based text feature extractors for fake
news classification  generalizability =~ with  several
experiments. We cover the datasets, architectures, and
experiments below.

Datasets. We used 9 fake news datasets, consisting of blog
articles, news headlines, news content, tweets, social media
posts, and article headlines. We have described our dataset
below in Table 1.

Where possible, we have used the provided training and
validation sets; otherwise, we performed a random,
classbalanced 70-30 split for training and testing. For [37]
and [13] datasets, we performed tweet rehydration, which
removed some samples due to missing tweets. We show
example of label shift due to label overlap in Figure 1. Here,
samples from each dataset are passed through a pre-trained
BERT classifier. The BERT embeddings are then reduced to
50 components with PCA then to 2 components with tSNE.
There are several regions with label overlaps, where samples
with positive and negative labels occupy similar spaces.

Architectures. We use BERT and AIBERT architectures for
our experiments [40], [41]. Each transformer architecture
converts input tokens to a classification feature vector. We
used pretrained architectures as starting points; our
selections include the BERT [40], AIBERT [41], and
COVID-Twitter-BERT [42].

Experiments. We performed 3 experiments to evaluate
generalizability of covid fake news detectors. In each case,
our starting point is a pre-trained foundation model,



described in previous section. We then conduct the following
experiments:

L.

Static-Backbone. We freeze the pre-trained feature
extractor backbone, and train only the classifier head. This
is analogous to using a static foundation model.

Static-Embedding. We fine-tune the transformer part of the
pre-trained feature extractor along with the classifier head
together with a single optimizer, and freeze the embedding
module

Fine-Tuned Backbone. We fine-tune the entire feature
extractor backbone along with the classifier head.

Evaluation. We average results across multiple runs of each
transformer architecture. To show results in limited space, we

t-SNE x component

Fig.
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1: Overlap of label embeddings: We show label embeddings for all

9 datasets here. There are several regions where true news (blue) overlap
with fake news (red) across different datasets. This can make models for

one

dataset perform worse on unseen, but related text-based fake news

datasets.

Static Backbone

cov_fn k_short coaid cq k_long rumor c19_text miscov c19_title
o 057 048 048 076 039 053 061
k_short 0.49 0.49 0.52 0.79 0.49 0.51 0.39 0.77
coaid | 083 081 u‘&
cq 0.47 0.58 0.42 0.44 0.42 0.53
k_long 0.44 0.54 0.47 0.52 0.42 0.66
rumor 069 054  0.34 033 036 065
c19_text 068 043 056 066 .88 | 071 046
miscoy | 051 BOMEN 0.5+ BOSNOATN 0.52
c19_title = 0.72 0.63 0.49 0.57 0.68 0.74

Fig. 2: Confusion Matrix for Static Backbone

have provided complete evaluation results for backbones using
Covid-Twitter-BERT. To test generalizability, we train each
model on a single dataset, and evaluate on the test-sets of the
remaining, unseen datasets as well as its own testing dataset. Our
results are presented as a confusion matrix. All approaches are
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trained for 5 epochs with an AdamW optimizer, with a
learning rate of le-4, with a batch size of 64.

A. Generalizability Results

We show generalizability results using the COVID-
Twitter backbone in for static-backbone training in Figure 2,
staticembedding training in Figure 3, and fine-tuned
backbone training in Figure 4.

Static backbone vs Fine-Tuning. The confusion matrices
show that upon fine-tuning, each model increases accuracy
on its corresponding test dataset. For example, accuracy on

‘k _short’ increases from 0.90 to 0.97 between the static
backbone and the fine-tuned backbone. However, this
finetuning comes at the cost of generalization in some cases:
across

Static Embedding

cov_fn k_short coaid cq k_long rumor c19_text miscov c19_title

cov_fn 041 044 048 047 048 044 052 057
k_short  0.52 0.57 0.52 . 0.52 059 048 049
coaid 0.76 0.83 -
q 0.50 0.56 0.59 0.59 051 041 045
k_long 0.53 0.76 0.51 0.60 0.48 0.49
rumor  0.69 045 031 066 0.47 034 048
19 text 0.51 =076 0.64 057 064 0.57 043 068
miscoy 049 047 045 045 045 045 0.50
c19_title  0.59 0.55 BSFS 0.57 | 067 057 058

Fig. 3: Confusion Matrix for Static-Embedding Backbone

Fine-Tuned Backbone

cov_fn k_short coaid cq k_long rumor cl19_text miscov c19_title
S 051 044 047 075 040 052 064
kshort [ROES 0.56 057 | 086 052 050 048 052
coaid 0.53 048 043 040 076 083 084
i 057 057 055 | 054 | 059 042 055 041 046
k_long 053 071 058 0.40 043 054 048 054
umor [RGEEN 0553 055 052 Wase 048 034 060
clotext 0.57 072 079 044 0.67 043 043
miscoy 046 0.45 047 053 044 054 046 | 0.54
c19_title 0.57 0.55 0.77 0.55 0.62 0.81 0.62 0.43

Fig. 4: Confusion Matrix for FIne-Tuned Backbone

several datasets, model accuracy on unseen data suffers in
the fine-tuned backbone experiments. For example, a model
trained on ‘cov fn’ achieves f1 of 0.72 when tested on ‘c19

_title’ in the static-backbone experiment in Figure 2. On the
finetuned experiment, the same trained model achieves f1 of
0.57, approximately a 20% drop. SImilarly, a model trained
on ‘miscov’ and tested on ‘c19 text’ achieves f1 of 0.71 with
static backbone, versus f1 of 0.43 with fine-tuned backbone.
This indicates once a model is fine-tuned on a specific covid
dataset, it loses some generalization information compared
to the staticbackbone version. However, this is not
consistent. In some cases, generalization accuracy increases:

‘rumor’ performs better on ‘cov _fn’ after fine-tuning, with
fl of 0.52 on the static backbone, versus an fl of 0.75 after
fine-tuning. Furthermore, ‘rumor’ achieves f1 of 0.67 when

tested on ‘c19 _title‘ on the static backbone, and f1 of 0.81



on the fine-tuned backbone (conversely, it performs worse on evaluation data changes continuously, so the overlap may
‘coaid‘, with f1 dropping from 0.83 to 0.40). itself: change due to concept drift. Recent research has
shown the; importance of exploring a model’s feature space
to identify embedding clusters [21], [29]. These embedding
clusters signify, regions of the data space a model has
captured. Metrics such assprobabilistic Lipschitzness show
that accuracy on embedding clusters can be bounded using
the smoothness, or gradient, in the embedding space [29].
Further, LIGER [21] shows that nondeterministic label
regions, i.e. where labels overlap, indicate non-smoothness.
We extend these findings to present KMeans-Proxy - a plug-
and-play pytorch layer.

Static Embedding. A middle ground between complete
finetuning and a fully static foundation feature extractor is to
freeze the embedding layer and fine-tune the transformer layer
of the backbone. Recent work finds freezing the embedding
layer during training can reduce computation costs while
achieving 90% of the accuracy of a fully fine-tuned model [43],
[44], [45], [46], [47]. We find similar results, where freezing the
embedding layer achieves accuracy similar to the corresponding
fine-tuned model on the testing dataset, shown in Figure 3
However, on unseen data, accuracy drop has higher variance. It
is not immediately clear what impact embedding freezing has on C. KMeans-Proxy

unseen data accuracy. For this, we must explore the actual Intuitively, if we can store the coverage of a model’s
overlap between datasets. embedding space, then for any sample point, we can check
B. Data Overlap and Accuracy if it falls inside the coverage. Further, we can also check if a

We have seen that there is label overlap between datasets in model’s prediction on the sample matches the prediction for
Figure 1. We have also seen accuracy variances on unseen data: the coverage. We can pair this with a coverage radius, e.g.

rather than a linear drop across unseen data, some models by computing r that constitutes coverage of all points in a
perform better and some perform worse after fine-tuning. These cluster that are 1 standard deviation away from the cluster
can be explained by directly measuring dataset overlap. center with respect to a distance metric, such as the 12 norm.

O-Metric. To compute overlap, we use the O-metric to calculate ~ Then, if the predictions do not match or a point falls outside
point-proximity overlap from [48]. The O-metric computes the single standard deviation coverage radius, this is a strong
overlap between 2 sets of points in n-dimensional space using a abstention/reject signal.
distance-metric. We find overlap as follows: given two datasets Implementation. We can capture the coverage of the
A and B, we compute the fraction of points in each dataset where embedding space by using embedding proxies. Proxies are
the nearest neighbor is not from the same dataset. So, for each common in cluster and proxy NCA losses [18], [19]. We
point x € A, first we obtain: adapt them as the KMeans cluster centroids by acting as
proxies for the cluster centers. This allows our approach to
extend to online or continuous learning domains as well. The
findings in [21] suggest increased partitioning of the
distance to the nearest point to x in A, embedding space can yield better local region coverage. So,
KMeans-Proxy is initialized with 2 parameters: the number
and b4() is the distance to the nearest point to x in B. Then we of classes c, and a proxy factor k. Then, we then obtain k - ¢
can compute the ratio pa= |04> 1|/|A| to find overlap of B in A. centers, with k proxies for each class, so that each cluster is
pais bounded in [0,1]; as paapproaches 1, this indicates most a smaller, more representative local region.
points in A are closer to a point in B than in' A. The O-metric is

0a(x) = wa(x)/ba(x) where wa() is the

sel f. proxy = KMeansProx roX:
bidirectional in computing overlap and includes both paand ps: Proxy A p. Y . .
4, classes =3, dimensions= 768)
O = pa+2ps

During model training, KMeans-Proxy performs
minibatch online KMeans clustering to obtain the
embedding space proxies for cluster centers. Online
clustering converges asymptotically, per [49].

Since we are interested in evaluating generalization, where we
want to see only the overlap of unseen data on training data, we
use a directional O-metric. That is, we let O = pa for the final
overlap value in a context where A is the training, dataset and B

is the unseen dataset. We compute the overlap. value between def forward(x): # Proxy forward  function
each dataset pair using cosine similarity on;the embeddings of if self.training:
each data point. So, for each model, wescompute embeddings of self.update _proxies (x)

every sample across all 9 datasets,sthen compute the directional
O-metric overlap of each dataset on the model’s training dataset
[ALGO???].

Accuracy and Overlap.

return x, None, None

return  x, self.nearest _proxy(x), self
.nearest  proxy label (x)
During prediction, a model using KMeans-Proxy can
predection, as well as nearest proxy label and nearest proxy.
A meta abstention policy can review for label flipping, or
coverage radius.

Generalization and Overlap. Clearly, higher overlap between
evaluation data and training data is indicative of accuracy.
During testing, however, it may be difficult to evaluate this
overlap due to computational constraints [21]. Further,,
85

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 04,2024 at 08:35:48 UTC from IEEE Xplore. Restrictions apply.



def forward (x): # Model  forward function
x=self.featureextractor(x)x,proxy,
proxy label =s el f. proxy (x

)
label = self.classifier(x)
return  label, proxy, proxy label

D. KMeans-Proxy Results

We now show results from using KMeans-Proxy as a reject
option in Table II and Table III. With rejection, we can increase
generalization accuracy on unseen data. This is a faster approach
than domain adaptation, since proxies are updated during
training. Further, it is a plug-and-play solution, allowing for
faster iteration on overall model design.

With KMeans-Proxy, we are able to improve generalization
performance across the board. Here, we compare models trained
on ‘coaid’ and ‘rumor’ in Table IT and Table III,

TABLE II: Generalization improvement with KMP for model trained on
‘coaid’.

Trained on ‘coaid’

Testing Dataset Approach

SB SE FT FT+KMP
cov fn 0.57 044 051 0.53
k short 049 0.57 0.56 0.57
coaid 0.85 095 0.97 0.98
cq 042 059 0.55 0.57
k long 047 051 0.58 0.55
rumor 0.34 031 0.55 0.68
c19 text 043 0.64 0.79 0.94
miscov 0.54 045 047 0.57
c19 title 049 075 0.77 0.90

TABLE III: Generalization improvement with KMP for model trained
on ‘rumor’
Trained on ‘rumor’

Testing Dataset Approach

SB SE FT FT+KMP
cov fn 0.76 048 0.75 0.77
k short 049 0.52 0.52 0.54
coaid 0.17 0.17 0.40 0.76
cq 047 059 042 0.58
k long 0.59 052 043 0.53
rumor 0.70 0.66 0.83 0.86
cl19 text 0.17 057 0.58 0.73
miscov 0.52 045 0.54 0.54
c19 title 0.74 057 0.81 0.76

respectively. Models are compared across static backbone (SB),
static embedding (SE), fine-tuned (FT), and fine-tuned with
KMeans-Proxy (FT+KMP).

For models trained on ‘coaid’ (in Table II) and tested on all
datasets, incorporating KMeans-Proxy improves generalization
performance. In each case, FT+KMP is either the best or the
runner-up model by at most 0.05 f1 f1 points. We see similar
result for models trained on ‘rumor’ in Table III, where KMeans-
Proxy is either the best model or runner up for every testing
dataset.

Choice of Proxy Factor. Increasing the proxy factor leads to
better generalization performance. Table IV shows performance
of a model trained on ‘c19 text® that has poor generalization
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without KMeans-Proxy (see Figure 4). As we increase the
proxy factor, we gain better generalization across testing
datasets. We test with different proxy factors and compare
generalization performance of each model. We find that
increasing the proxy factor leads to small, but measurable
increase in accuracy.

TABLE IV: Impact of changing proxy factor: increasing the proxy
factor increases accuracy, since more proxies allow tighter bounds
on local coverage estimates.

Testing Dataset Trained on c19 text

FT k=1 k=2 k=3 k=5 k=10
cov fn 044 050 054 058 058 0.58
k short 059 0.70 0.73 073 0.73 0.75
coaid 0.76 088 0.84 0.89 0.89 0.90
cq 0.51 056 058 0.58 0.60 0.63
k long 0.60 070 0.72 0.73 0.73 0.73
rumor 047 045 051 058 058 0.67
c19 text 097 098 099 099 099 0.99
miscov 048 045 044 053 058 0.58
cl19 title 0.58 0.61 064 069 068 0.73

E. Discussion

There are several observations we can make from our
generalization studies and KMeans-Proxy experiments.
Generalization. For fake news detection, fine-tuned models
must be used carefully to take advntage of learned
parameters. As we showed in the confusion matrices, fine-
tuning improves performance only on subsets of unseen
data. These subsets are regions of the data space where the
unseen data overlaps with training data. On completely new
regions of the data space, fine-tuned models make mistakes.
These mistakes are because of label overlap.

We must make a distinction between label and data
overlap. Data overlap means a model has coverage on the
unseen data, and can make predictions with higher
confidence. Label coverage, as we showed in Fig, indicates
where different labels occur close to each other in the
embedding space. Both can coincide: unseen data points can
have both data and label overlap. For these points, fine-
tuned models that have better captured a local region with
training data are better poised to provide high-confidence
labels.

KMeans-Proxy. KMeans-Proxy allows us to identify these
regions. With KMeans-Proxy, we partition the data space
into clusters representing model coverage and labels. Our
inclusion of the proxy factor k, where we create k clusters
for each class label, allows fine-grained partitioning of the
embedding space. This means we can better capture local
characteristics of the embedding space [21]. In our
experiments, we focus on 2 such characteristics: (i) whether
the label for an unseen point matches the label for nearest
proxy, and (ii) whether this unseen point is within one
standard-deviation radius of the proxy. In our experiments,
we show that using these provides improvements in
generalizing to unseen data points.



Clearly, there is significant progress to be made in capturing
local characteristics. For example, when using an ensemble of
fine-tuned models, local smoothness [29], [21] can be computed
for each non-abstaining model to rank them on coverage. There
may also be advantages in using dynamic proxy allocation. If
prior class balance is known, then we could use a class-specific
proxy factor.

IV. CONCLUSION

In this paper, we have presented generalizability experiments
and KMeans-Proxy. We perform generalization studies across 9
fake news datasets using several transformer-based fake news
detector models. Our generalizability experiments show that
fine-tuned models generalize well to unseen data when there is
overlap between unseen and training data. On unseen data that
does not overlap, fine-tuned models make mistakes due to poor
coverage, label flipping, and concept drift.

Using our observations and recent research into local
embedding regions, we develop and present KMeans-Proxy, a
simple online KMeans clusterer paired with a proxy factor. With
KMeans-Proxy, we partition the embedding space into local
regions and use local characteristics to create a reject option for
models. We show that KMeans-Proxy improves generalization
accuracy for fine-tuned models across all 9 fake news datasets.
We welcome future research in this area to better explore the
generalizability and fine-tuning tradeoff.
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