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Abstract—The Covid-19 pandemic has caused a dramatic and 

parallel rise in dangerous misinformation, denoted an ‘infodemic’ by the 
CDC and WHO. Misinformation tied to the Covid-19 infodemic 
changes continuously; this can lead to performance degradation of fine-
tuned models due to concept drift. Degredation can be mitigated if 
models generalize well-enough to capture some cyclical aspects of 
drifted data. In this paper, we explore generalizability of pre-trained and 
fine-tuned fake news detectors across 9 fake news datasets. We show 
that existing models often overfit on their training dataset and have poor 
performance on unseen data. However, on some subsets of unseen data 
that overlap with training data, models have higher accuracy. Based on 
this observation, we also present KMeansProxy, a fast and effective 
method based on K-Means clustering for quickly identifying these 
overlapping subsets of unseen data. KMeans-Proxy improves 
generalizability on unseen fake news datasets by 0.1-0.2 f1-points 
across datasets. We present both our generalizability experiments as 
well as KMeans-Proxy to further research in tackling the fake news 
problem. 

I. INTRODUCTION 

The rapid spread of the Covid-19 virus has led to a parallel 

surge in misinformation and disinformation [1] This surge of 

false information, coined an ‘infodemic’ by the CDC [2] can be 

life-threatening, destabilizing, and potentially dangerous [3]. 

The infodemic is multimodal, meaning associated fake news can 

take forms of social media posts, tweets, articles, blogs, 

commentary, misrepresented titles and headlines, videos, and 

audio content. 

Current Research. There is significant progress on developing 

domain-specific automated misinformation detection and 

classification tools [4], [5], [6], [7], [8], [9]. Such tools analyze 

labeled datasets in aforementioned modalities to classify fake 

news. Recent approaches focus on transformer-based classifiers 

and language modelers [9], [7]. 

Such fake news detectors are specific to the datasets they are 

trained with [6], [9]. More recently, there is a focus on 

addressing generalizability concerns in these models [9], [10], 

[11], [12], [13], [14]. For example, [9] explores the impact of 

generalization of 15 transformer models on 5 fake news datasets. 

The results show there is a generalizability gap in fake news 

detection: a fine-tuned model trained on one fake news 

dataset performs poorly on other unseen, but related, fake 

news datasets. 

Generalization Study. In this paper, we study the 

generalizability and fine-tuning tradeoff and present our 

findings for furthering the research interest. We study 

several fake news detection architectures across 9 fake news 

text datasets of different modalities. We find that fine-tuned 

models often have reduced accuracy on any unseen dataset. 

However, when paired with a reject option to abstain from 

low-confidence predictions, fine-tuned models perform 

significantly better. These abstention results can then be 

labeled with active learning, crowdsourcing, weak label 

integration, or a variety of other methods present in 

literature. 

KMeans-Proxy. Through observations on our 

generalizability results, we present a simple ‘reject option’ 

[15], [16], [17] for fake news detectors, called KMeans-

Proxy. KMeans-Proxy is based on KMeans clustering, and 

is inspired by research into proxy losses [18], [19] and 

foundation models [20], [21], [22]. It is written as a PyTorch 

layer and requires only a few lines of code to implement for 

most feature extractors. We show in our results that 

KMeans-Proxy improves generalization on fake news 

datasets by 0.1 to 0.2 f1 points across several experiments. 

Contributions. In summary, our contributions are: 

1. Extensive set of experiments across 9 fake news 

datasets on the generalizability/fine-tuning trade off. 

2. KMeans-Proxy, a simple reject-option for feature 

extractors. KMeans-Proxy uses cluster proxies from 

ProxyNCA to estimate embedding cluster centers of the 

training data. During prediction, KMeans-Proxy 

provides a reject option based on label difference 

between sample prediction and nearest training data 

cluster center. 

We will release our code for running experiments and for 

KMeans-Proxy. 
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II. RELATED WORK 

A. Generalizability and Fine-Tuning 

Since 2002, there are increasing numbers of Covid-19 fake 

news datasets and associated models for these datasets [4], [8]. 

Recently, there is increasing interest in gauging the effectiveness 

of each of these fine-tuned models on related, but unseen 

datasets [9]. The authors of [9] conduct a generalization study 

over 15 model architectures over 5 datasets, and find that fine-

tuning offers little advantage in classification accuracy. There is 

also an abundance of research in unsupervised domain 

adaptation to recover accuracy under changing domains or 

concept drift [23], [24], [25], [26]. 

B. Concept Drift 

Concept drift occurs when testing or prediction data exhibits 

distribution shift [24], either in the data domain, or in the label 

domain [26]. Data domain shift can include introduction of new 

vocabularies, disappearance of existing words, and word 

polysemy [27]. Label domain shift occurs when the label space 

itself changes for the same type of data [25], [28]. For example, 

when new types of misinformation are detected, then the 

boundary between misinformation and true information must be 

adjusted [28]. We show label shift in Figure 1, where subsets of 

true and fake news occupy the same embedding space across 

datasets due to fine-grained differences. 

C. Reject Options 

One drawback of classification models is that they provide a 

prediction for every data point [15], regardless of confidence. 

Reject options perform external or internal diagnosing. This can 

help detect either low confidence due to low coverage or 

divergence from training data distributions due to concept drift. 

Several approaches are covered in a recent survey [15]. We 

present a reject option that uses recent findings in [21] and [29] 

on the topology of the embedding space: (i) find that local 

smoothness of the label space is indicative of local accuracy and 

coverage [29], and (ii) local label shift, where nearby samples 

have different labels, is a good predictor of local smoothness 

[21]. Our reject option, described in Section III-C is a clustering 

approach that calculates cluster centers in the feature extractor 

embedding space for the training data. Then, during prediction, 

a model can provide a prediction as well the label for the nearest 

training data cluster center. Flipped, or different, labels can 

indicate reduced local smoothness, confidence, and coverage, 

leading to a reject decision. 

D. Motivation 

It is well known that fine-tuned models suffer performance 

degradation over time due to data domain shift [28], [30], [31]. 

Usually, this performance degradation is detected, and a new 

model is trained on new labeled data. Recently, the velocity and 

size of new data makes obtaining labeled data quickly and at 

scale, very expensive [32]. Updating models during data domain 

shift requires relying on weak labels, authoritative sources, and 

hierarchical models [32], [33], [34]. In such cases, a team of 

prediction models is pruned and updated with new training 

data [28]. However, we still need predictions in the period 

when data domain shift is occurring, and new models have 

not been trained. Our work, as well as recent research in 

generalizability [9], weak labeling [33], foundation models 

[21], and rapid fake news detection [32] falls in this period. 

Our generalizability experiments in Section III show that 

finetuned models, while having lower performance on 

unseen data, do have better accuracy on some subsets. Our 

KMeans-Proxy 

TABLE I: Datasets used for our experiments. If splits were not 

available, we used a random class-balanced split. For Tweet 

datasets, sample counts are after rehydration, which removed some 

samples due to missing tweets. 
Dataset Training Testing Type 
k title [35] 31k 9K Article Titles 
coaid [4] 5K 1K News summary 
c19 text [36] 2.5K 0.5K Articles 
cq [37] 12.5K 2K Tweets 
miscov [38] 4K 0.6K Headlines 
k text [35] 31k 9K Articles 
rumor [39] 4.5K 1K Social Posts 
cov fn [13] 4K 2K Tweets 
c19 title [36] 2.5K 0.5K Article Titles 

solution finds these subsets where fine-tuned models have 

higher accuracy. 

III. GENERALIZATION EXPERIMENTS 

We transformer-based text feature extractors for fake 

news classification generalizability with several 

experiments. We cover the datasets, architectures, and 

experiments below. 

Datasets. We used 9 fake news datasets, consisting of blog 

articles, news headlines, news content, tweets, social media 

posts, and article headlines. We have described our dataset 

below in Table I. 

Where possible, we have used the provided training and 

validation sets; otherwise, we performed a random, 

classbalanced 70-30 split for training and testing. For [37] 

and [13] datasets, we performed tweet rehydration, which 

removed some samples due to missing tweets. We show 

example of label shift due to label overlap in Figure 1. Here, 

samples from each dataset are passed through a pre-trained 

BERT classifier. The BERT embeddings are then reduced to 

50 components with PCA then to 2 components with tSNE. 

There are several regions with label overlaps, where samples 

with positive and negative labels occupy similar spaces. 

Architectures. We use BERT and AlBERT architectures for 

our experiments [40], [41]. Each transformer architecture 

converts input tokens to a classification feature vector. We 

used pretrained architectures as starting points; our 

selections include the BERT [40], AlBERT [41], and 

COVID-Twitter-BERT [42]. 

Experiments. We performed 3 experiments to evaluate 

generalizability of covid fake news detectors. In each case, 

our starting point is a pre-trained foundation model, 
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described in previous section. We then conduct the following 

experiments: 

1. Static-Backbone. We freeze the pre-trained feature 

extractor backbone, and train only the classifier head. This 

is analogous to using a static foundation model. 

2. Static-Embedding. We fine-tune the transformer part of the 

pre-trained feature extractor along with the classifier head 

together with a single optimizer, and freeze the embedding 

module 

3. Fine-Tuned Backbone. We fine-tune the entire feature 

extractor backbone along with the classifier head. 

Evaluation. We average results across multiple runs of each 

transformer architecture. To show results in limited space, we 

 

Fig. 1: Overlap of label embeddings: We show label embeddings for all 

9 datasets here. There are several regions where true news (blue) overlap 

with fake news (red) across different datasets. This can make models for 

one dataset perform worse on unseen, but related text-based fake news 

datasets. 

 

Fig. 2: Confusion Matrix for Static Backbone 

have provided complete evaluation results for backbones using 

Covid-Twitter-BERT. To test generalizability, we train each 

model on a single dataset, and evaluate on the test-sets of the 

remaining, unseen datasets as well as its own testing dataset. Our 

results are presented as a confusion matrix. All approaches are 

trained for 5 epochs with an AdamW optimizer, with a 

learning rate of 1e-4, with a batch size of 64. 

A. Generalizability Results 

We show generalizability results using the COVID-

Twitter backbone in for static-backbone training in Figure 2, 

staticembedding training in Figure 3, and fine-tuned 

backbone training in Figure 4. 

Static backbone vs Fine-Tuning. The confusion matrices 

show that upon fine-tuning, each model increases accuracy 

on its corresponding test dataset. For example, accuracy on 

‘k  short’ increases from 0.90 to 0.97 between the static 

backbone and the fine-tuned backbone. However, this 

finetuning comes at the cost of generalization in some cases: 

across 

 

Fig. 3: Confusion Matrix for Static-Embedding Backbone 

 

Fig. 4: Confusion Matrix for FIne-Tuned Backbone 

several datasets, model accuracy on unseen data suffers in 

the fine-tuned backbone experiments. For example, a model 

trained on ‘cov fn’ achieves f1 of 0.72 when tested on ‘c19 

title’ in the static-backbone experiment in Figure 2. On the 

finetuned experiment, the same trained model achieves f1 of 

0.57, approximately a 20% drop. SImilarly, a model trained 

on ‘miscov’ and tested on ‘c19 text’ achieves f1 of 0.71 with 

static backbone, versus f1 of 0.43 with fine-tuned backbone. 

This indicates once a model is fine-tuned on a specific covid 

dataset, it loses some generalization information compared 

to the staticbackbone version. However, this is not 

consistent. In some cases, generalization accuracy increases: 

‘rumor’ performs better on ‘cov fn’ after fine-tuning, with 

f1 of 0.52 on the static backbone, versus an f1 of 0.75 after 

fine-tuning. Furthermore, ‘rumor’ achieves f1 of 0.67 when 

tested on ‘c19 title‘ on the static backbone, and f1 of 0.81 
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on the fine-tuned backbone (conversely, it performs worse on 

‘coaid‘, with f1 dropping from 0.83 to 0.40). 

Static Embedding. A middle ground between complete 

finetuning and a fully static foundation feature extractor is to 

freeze the embedding layer and fine-tune the transformer layer 

of the backbone. Recent work finds freezing the embedding 

layer during training can reduce computation costs while 

achieving 90% of the accuracy of a fully fine-tuned model [43], 

[44], [45], [46], [47]. We find similar results, where freezing the 

embedding layer achieves accuracy similar to the corresponding 

fine-tuned model on the testing dataset, shown in Figure 3 

However, on unseen data, accuracy drop has higher variance. It 

is not immediately clear what impact embedding freezing has on 

unseen data accuracy. For this, we must explore the actual 

overlap between datasets. 

B. Data Overlap and Accuracy 

We have seen that there is label overlap between datasets in 

Figure 1. We have also seen accuracy variances on unseen data: 

rather than a linear drop across unseen data, some models 

perform better and some perform worse after fine-tuning. These 

can be explained by directly measuring dataset overlap. 

O-Metric. To compute overlap, we use the O-metric to calculate 

point-proximity overlap from [48]. The O-metric computes 

overlap between 2 sets of points in n-dimensional space using a 

distance-metric. We find overlap as follows: given two datasets 

A and B, we compute the fraction of points in each dataset where 

the nearest neighbor is not from the same dataset. So, for each 

point x ∈ A, first we obtain: 

OA(x) = wA(x)/bA(x) where wA() is the 

distance to the nearest point to x in A, 

and bA() is the distance to the nearest point to x in B. Then we 

can compute the ratio pA = |OA > 1|/|A| to find overlap of B in A. 

pA is bounded in [0,1]; as pA approaches 1, this indicates most 

points in A are closer to a point in B than in1 A. The O-metric is 

bidirectional in computing overlap and includes both pA and pB: 

O = pA+2pB 

Since we are interested in evaluating generalization, where we 

want to see only the overlap of unseen data on training data, we 

use a directional O-metric. That is, we let O = pA for the final 

overlap value in a context where A is the training1 dataset and B 

is the unseen dataset. We compute the overlap2 value between 

each dataset pair using cosine similarity on3 the embeddings of 

each data point. So, for each model, we4 compute embeddings of 

every sample across all 9 datasets,5 then compute the directional 

O-metric overlap of each dataset on the model’s training dataset 

[ALGO???]. 

Accuracy and Overlap. 

Generalization and Overlap. Clearly, higher overlap between 

evaluation data and training data is indicative of accuracy. 

During testing, however, it may be difficult to evaluate this 

overlap due to computational constraints [21]. Further,1 

evaluation data changes continuously, so the overlap may 

itself2 change due to concept drift. Recent research has 

shown the3 importance of exploring a model’s feature space 

to identify embedding clusters [21], [29]. These embedding 

clusters signify4 regions of the data space a model has 

captured. Metrics such as5 probabilistic Lipschitzness show 

that accuracy on embedding clusters can be bounded using 

the smoothness, or gradient, in the embedding space [29]. 

Further, LIGER [21] shows that nondeterministic label 

regions, i.e. where labels overlap, indicate non-smoothness. 

We extend these findings to present KMeans-Proxy - a plug-

and-play pytorch layer. 

C. KMeans-Proxy 

Intuitively, if we can store the coverage of a model’s 

embedding space, then for any sample point, we can check 

if it falls inside the coverage. Further, we can also check if a 

model’s prediction on the sample matches the prediction for 

the coverage. We can pair this with a coverage radius, e.g. 

by computing r that constitutes coverage of all points in a 

cluster that are 1 standard deviation away from the cluster 

center with respect to a distance metric, such as the l2 norm. 

Then, if the predictions do not match or a point falls outside 

the single standard deviation coverage radius, this is a strong 

abstention/reject signal. 

Implementation. We can capture the coverage of the 

embedding space by using embedding proxies. Proxies are 

common in cluster and proxy NCA losses [18], [19]. We 

adapt them as the KMeans cluster centroids by acting as 

proxies for the cluster centers. This allows our approach to 

extend to online or continuous learning domains as well. The 

findings in [21] suggest increased partitioning of the 

embedding space can yield better local region coverage. So, 

KMeans-Proxy is initialized with 2 parameters: the number 

of classes c, and a proxy factor k. Then, we then obtain k · c 

centers, with k proxies for each class, so that each cluster is 

a smaller, more representative local region. 

s e l f . proxy = KMeansProxy ( proxy factor = 

 4 , c l a s s e s = 3 , dimensions = 768)  

During model training, KMeans-Proxy performs 

minibatch online KMeans clustering to obtain the 

embedding space proxies for cluster centers. Online 

clustering converges asymptotically, per [49]. 

def forward ( x ) : # Proxy forward function 

i f s e l f . t r a i n i n g : 

 s e l f . update proxies ( x ) 

 return x , None , None 

return x , s e l f . nearest proxy ( x ) , s e l f 

 . nearest proxy label ( x ) 

During prediction, a model using KMeans-Proxy can 

predection, as well as nearest proxy label and nearest proxy. 

A meta abstention policy can review for label flipping, or 

coverage radius. 
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def forward ( x ) : # Model forward function 

x = s e l f . f e a t u r e e x t r a c t o r ( x ) x , proxy , 

proxy label = s e l f . proxy ( x 

) 

l a b e l = s e l f . c l a s s i f i e r ( x ) 

return label , proxy , proxy label 

D. KMeans-Proxy Results 

We now show results from using KMeans-Proxy as a reject 

option in Table II and Table III. With rejection, we can increase 

generalization accuracy on unseen data. This is a faster approach 

than domain adaptation, since proxies are updated during 

training. Further, it is a plug-and-play solution, allowing for 

faster iteration on overall model design. 

With KMeans-Proxy, we are able to improve generalization 

performance across the board. Here, we compare models trained 

on ‘coaid’ and ‘rumor’ in Table II and Table III, 

TABLE II: Generalization improvement with KMP for model trained on 

‘coaid’. 
Trained on ‘coaid’ 

Testing Dataset  Approach 

SB SE FT FT+KMP 
cov fn 0.57 0.44 0.51 0.53 
k short 0.49 0.57 0.56 0.57 
coaid 0.85 0.95 0.97 0.98 
cq 0.42 0.59 0.55 0.57 
k long 0.47 0.51 0.58 0.55 
rumor 0.34 0.31 0.55 0.68 
c19 text 0.43 0.64 0.79 0.94 
miscov 0.54 0.45 0.47 0.57 
c19 title 0.49 0.75 0.77 0.90 

TABLE III: Generalization improvement with KMP for model trained 

on ‘rumor’ 
Trained on ‘rumor’ 

Testing Dataset  Approach 

SB SE FT FT+KMP 
cov fn 0.76 0.48 0.75 0.77 
k short 0.49 0.52 0.52 0.54 
coaid 0.17 0.17 0.40 0.76 
cq 0.47 0.59 0.42 0.58 
k long 0.59 0.52 0.43 0.53 
rumor 0.70 0.66 0.83 0.86 
c19 text 0.17 0.57 0.58 0.73 
miscov 0.52 0.45 0.54 0.54 
c19 title 0.74 0.57 0.81 0.76 

respectively. Models are compared across static backbone (SB), 

static embedding (SE), fine-tuned (FT), and fine-tuned with 

KMeans-Proxy (FT+KMP). 

For models trained on ‘coaid’ (in Table II) and tested on all 

datasets, incorporating KMeans-Proxy improves generalization 

performance. In each case, FT+KMP is either the best or the 

runner-up model by at most 0.05 f1 f1 points. We see similar 

result for models trained on ‘rumor’ in Table III, where KMeans-

Proxy is either the best model or runner up for every testing 

dataset. 

Choice of Proxy Factor. Increasing the proxy factor leads to 

better generalization performance. Table IV shows performance 

of a model trained on ‘c19 text‘ that has poor generalization 

without KMeans-Proxy (see Figure 4). As we increase the 

proxy factor, we gain better generalization across testing 

datasets. We test with different proxy factors and compare 

generalization performance of each model. We find that 

increasing the proxy factor leads to small, but measurable 

increase in accuracy. 

TABLE IV: Impact of changing proxy factor: increasing the proxy 

factor increases accuracy, since more proxies allow tighter bounds 

on local coverage estimates. 
Testing Dataset  Trained on c19 text  

FT k=1 k=2 k=3 k=5 k=10 
cov fn 0.44 0.50 0.54 0.58 0.58 0.58 
k short 0.59 0.70 0.73 0.73 0.73 0.75 
coaid 0.76 0.88 0.84 0.89 0.89 0.90 
cq 0.51 0.56 0.58 0.58 0.60 0.63 
k long 0.60 0.70 0.72 0.73 0.73 0.73 
rumor 0.47 0.45 0.51 0.58 0.58 0.67 
c19 text 0.97 0.98 0.99 0.99 0.99 0.99 
miscov 0.48 0.45 0.44 0.53 0.58 0.58 
c19 title 0.58 0.61 0.64 0.69 0.68 0.73 

E. Discussion 

There are several observations we can make from our 

generalization studies and KMeans-Proxy experiments. 

Generalization. For fake news detection, fine-tuned models 

must be used carefully to take advntage of learned 

parameters. As we showed in the confusion matrices, fine-

tuning improves performance only on subsets of unseen 

data. These subsets are regions of the data space where the 

unseen data overlaps with training data. On completely new 

regions of the data space, fine-tuned models make mistakes. 

These mistakes are because of label overlap. 

We must make a distinction between label and data 

overlap. Data overlap means a model has coverage on the 

unseen data, and can make predictions with higher 

confidence. Label coverage, as we showed in Fig, indicates 

where different labels occur close to each other in the 

embedding space. Both can coincide: unseen data points can 

have both data and label overlap. For these points, fine-

tuned models that have better captured a local region with 

training data are better poised to provide high-confidence 

labels. 

KMeans-Proxy. KMeans-Proxy allows us to identify these 

regions. With KMeans-Proxy, we partition the data space 

into clusters representing model coverage and labels. Our 

inclusion of the proxy factor k, where we create k clusters 

for each class label, allows fine-grained partitioning of the 

embedding space. This means we can better capture local 

characteristics of the embedding space [21]. In our 

experiments, we focus on 2 such characteristics: (i) whether 

the label for an unseen point matches the label for nearest 

proxy, and (ii) whether this unseen point is within one 

standard-deviation radius of the proxy. In our experiments, 

we show that using these provides improvements in 

generalizing to unseen data points. 



87 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 04,2024 at 08:35:48 UTC from IEEE Xplore.  Restrictions apply.  

Clearly, there is significant progress to be made in capturing 

local characteristics. For example, when using an ensemble of 

fine-tuned models, local smoothness [29], [21] can be computed 

for each non-abstaining model to rank them on coverage. There 

may also be advantages in using dynamic proxy allocation. If 

prior class balance is known, then we could use a class-specific 

proxy factor. 

IV. CONCLUSION 

In this paper, we have presented generalizability experiments 

and KMeans-Proxy. We perform generalization studies across 9 

fake news datasets using several transformer-based fake news 

detector models. Our generalizability experiments show that 

fine-tuned models generalize well to unseen data when there is 

overlap between unseen and training data. On unseen data that 

does not overlap, fine-tuned models make mistakes due to poor 

coverage, label flipping, and concept drift. 

Using our observations and recent research into local 

embedding regions, we develop and present KMeans-Proxy, a 

simple online KMeans clusterer paired with a proxy factor. With 

KMeans-Proxy, we partition the embedding space into local 

regions and use local characteristics to create a reject option for 

models. We show that KMeans-Proxy improves generalization 

accuracy for fine-tuned models across all 9 fake news datasets. 

We welcome future research in this area to better explore the 

generalizability and fine-tuning tradeoff. 
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