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Abstract—Machine learning models with explainable predictions 

are increasingly sought after, especially for real-world, mission-
critical applications that require bias detection and risk mitigation. 
Inherent interpretability, where a model is designed from the ground-
up for interpretability, provides intuitive insights and transparent 
explanations on model prediction and performance. In this paper, we 
present COLABEL, an approach to build interpretable models with 
explanations rooted in the ground truth. We demonstrate COLABEL in 
a vehicle feature extraction application in the context of vehicle make-
model recognition (VMMR). By construction, COLABEL performs 
VMMR with a composite of interpretable features such as vehicle 
color, type, and make, all based on interpretable annotations of the 
ground truth labels. First, COLABEL performs corroborative integration 
to join multiple datasets that each have a subset of desired annotations 
of color, type, and make. Then, COLABEL uses decomposable branches 
to extract complementary features corresponding to desired 
annotations. Finally, COLABEL fuses them together for final 
predictions. During feature fusion, COLABEL harmonizes 
complementary branches so that VMMR features are compatible with 
each other and can be projected to the same semantic space for 
classification. With inherent interpretability, COLABEL achieves 
superior performance to the state-of-the-art black-box models, with 
accuracy of 0.98, 0.95, and 0.94 on CompCars, Cars196, and 
BoxCars116K, respectively. COLABEL provides intuitive explanations 
due to constructive interpretability, and subsequently achieves high 
accuracy and usability in mission-critical situations. 

I. INTRODUCTION 

Machine learning models that are interpretable and 

explainable are increasingly sought after in a wide variety of 

industry applications [1], [2], [3], [4]. Explainable models 

augment the black-box of deep networks by providing insights 

into their feature extraction and prediction [5]. They are 

particularly useful in real-world situations where 

accountability, transparency, and provenance of information 

for mission-critical human decisions are crucial, such as 

security, monitoring, 
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Fig. 1: COLABEL Architecture and Dataflow: COLABEL takes in 

multiple vehicle datasets, each with a subset of desired annotations.  
CORROBORATIVE INTEGRATION integrates annotations into a single 

training set.  COMPLEMENTARY FEATURES extracts interpretable 

features with complementary branches.  COLLABORATIVE LEARNING 

fuses complementary features to yield interpretable predictions for 

vehicle classification. 

and medicine [1], [6]. Interpretable indicates model features 

designed from the get-go to be human-readable. Explainable 

indicates post-hoc analysis of models to determine feature 

importance in prediction. 

Inherently interpretable models [7] are designed from the 

getgo to provide explainable results. This contrasts with post-

hoc explainability, where a black box model is analyzed to 

obtain potential explanations for its decisions. Inherently 

interpretable models provide more transparent explanations 

[7], since these are directly dependent on model design. Such 

models also bypasses some limitations of post-hoc 

explainability, such as unjustified counterfactual explanations 

[8]. Inherently interpretable models have higher trust under 

adversarial conditions [9] since their predictions can be 

directly tied to training ground truth through model-generated 

explanations. 
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There are several challenges, however, in building models 

that are inherently interpretable. There is no one-size-fits-all 

solution since interpretability is domain-specific [7]. Existing 

datasets may not have completely interpretable annotations; 

instead, most datasets only have the ground truth annotations 

without interpretable subsets. For example, existing vehicle 

classification datasets label vehicle make and model, but not 

vehicle color, type, or decals [10]. Furthermore, deep networks 

are biased during training towards strong signals, and may 

ignore more interpretable weaker signals. For example, person 

re-id models focus primarily on a person’s shirt, and need 

guidance to focus on more interpretable accessories such as 

hats, handbags, or limbs [1]. 

CoLabel. In this paper, we present COLABEL: a process for 

building inherently interpretable models. We use COLABEL to 

build end-to-end interpretable models that provide 

explanations rooted in the ground truth. By construction, 

COLABEL provides predictions along with a composite of 

interpretable features that comprise the prediction with a 

combination of CORROB- 

ORATIVE INTEGRATION, COMPLEMENTARY FEATURES, and 

COLLABORATIVE LEARNING. We call this this approach to 

achieve interpretable models from design and implementation 

constructive interpretability. 

We demonstrate the inherent interpretability and superior 

accuracy of COLABEL in vehicle feature extraction, an 

important challenge in monitoring, tracking, and surveillance 

applications [9], [7]. Specifically, vehicle features are crucial 

for re-id, traffic monitoring and management, tracking, and 

make/model classification. Current state-of-the-art vehicle 

classification models employ black-box models. 

These mission-critical applications require interpretable 

predictions for aiding human decisions, particularly for 

borderline cases where explanations aligned with human 

experience can benefit human decisions much more than 

algorithmic internal specifics. The goal of constructive 

interpretability is to design and build inherently interpretable 

models aligned with human understanding of applications. 

This is where COLABEL comes in. As an inherently 

interpretable model with constructive interpretability in mind, 

COLABEL has state-of-the-art accuracy as well as interpretable 

predictions. 

We show COLABEL’s dataflow with respect to vehicle 

feature extraction in Figure 1. Our constructive interpretability 

approach for inherently interpretable models begins from 

selection of interpretation annotations for vehicle features: 

color, type, and make. COLABEL uses these annotations to 

generate interpretable vehicle features. These features are 

usable in a variety of applications, such as vehicle make and 
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model recognition (VMMR), re-id, tracking, and detection 

[10]. In this work, we focus COLABEL on VMMR. 

Dataflow. Given our desired annotations of color, type, an 

make, as well as datasets that each carry a subset of these 

annotations, COLABEL’s dataflow involves the following 

three steps: 

 CORROBORATIVE INTEGRATION integrates multiple 

datasets and corroborates annotations of ’natural’ vehicle 

 

Fig. 2: Constructive Interpretability: Models with constructive 

interpretability provide explanations for their predictions. This is 

achieved by incorporating human knowledge. Here, an interpretable 

model explains its prediction is based on vehicle color, type, seats, 

and vehicle part similarities. 

features across them. It then builds a robust training set with 

ground truth as well as interpretable annotations. 

 The COMPLEMENTARY FEATURES module extracts features 

corresponding to the interpretable annotations. The goal is to 

maintain interpretable knowledge when integrated. Each 

complementary feature is extracted with its own branch in the 

COLABEL model. 

 Finally, COLLABORATIVE LEARNING harmonizes 

complementary features, ensuring features from different 

branches can be fused more effectively. With harmonization, 

branches collaborate to exploit correlations between 

complementary features. 

Contributions. We show that COLABEL can achieve excellent 

accuracy on feature extraction while simultaneously providing 

interpretable results by construction. COLABEL’s explanations 

align with human knowledge of vehicles. The contributions 

are: 

• COLABEL
1 : Constructive interpretability approach to 

design and build an inherently interpretable vehicle 

feature extraction system by integrating diverse 

interpretable annotations that are aligned with human 

knowledge of vehicles. 

• Model: Experimental evaluation and demonstration of the 

superior accuracy and interpretability achieved by 

COLABEL across common VMMR datasets: on 

CompCars, Cars196, and BoxCars116K , COLABEL 

achieves accuracies of 0.98, 0.95, and 0.94, respectively. 
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II. RELATED WORK 

We first cover recent work in inherently interpretable models 

and post-hoc explanations. We will then cover vehicle feature 

extraction. 

A. Interpretability and Explainability 

Interpretability. Interpretable models are designed from the ground 

up to provide explanations for their features. Intuitively, 

interpretability is deeply intertwined with human understanding 

[8]. Models that are inherently interpretable directly integrate 

human understanding into feature generation. 

Such models are more desired is mission-critical scenarios 

such as healthcare, monitoring, and safety management[7], 

[11], [12]. The prototype layers in [13], [11] provide 

interpretable predictions: the layers compare test image 

samples to similar ground truth samples to provide 

explanations of the model classification. The decomposable 

approaches in [14], [15] build component-classifiers that are 

integrated for the overall task, e.g. image and credit 

classification, respectively. 

Explainability. Currently, most approaches perform posthoc 

explanation in a bottom-up fashion, where an existing model’s 

black-box is ’opened’ [16]. These include examining class 

activations [17], [18], concept activation vectors [4], neuron 

influence aggregation [19], and deconvolutions [5]. In post-

hoc explanation, second model is used to model the original 

model’s predictions by projecting model features along 

human-readable dimensions, if possible [18], [20], [19], [21]. 

However, these approaches do not build interpretable models 

from the ground truth; they merely enhance existing models 

for explanation. For example, Grad-CAM’s [17] outputs are 

used with human labeling to determine ’where’ and ’what’ a 

model is looking at [18], [20]. Similarly, the embedding and 

neuron views in [19], [21] make it easier to visually 

characterize an class similarity clusters. However, there are 

risks to explainability when it is disconnected from the ground 

truth [7], [8], [9]. Such explanations may not be accurate, 

because if they were, the explainer model would be sufficient 

for prediction [8]. Furthermore, interpretable models are 

usually as accurate as black-box models, with the added 

benefit of interpretability, with several examples provided in 

[22]. Thus, the challenges of bottom-up approaches are 

bypassed with constructive interpretability, since it is a top-

down approach for interpretability, as in Figure 2. In 

constructive interpretability, inherently interpretable models 

are built with features aligned with human knowledge of 

application domains, forming intuitively understandable and 

interpretable models as in [7], [11], [8], [13], [14], [15]. 

B. Vehicle Feature Extraction 

We demonstrate COLABEL’s interpretability with vehicle 

feature extraction. This encompasses several application areas, 

from VMMR[23], [24], [25], re-id [26], [27], [28], [29], 

tracking [30], [31], [32], [33], and vehicle detection[34], [35]. 

We cover recent research on feature extraction for these 

application areas. 

CNN and SSD models are used together for logo 

detection in high resolution images[36]. Logo-Net [37] 

uses such a composition to improve logo detection and 

classification. Wang et. al. [38] develop an orientation-

invariant approach that uses 20 engineered keypoint 

regions on vehicles to extract representative features. Liu 

et. al. propose RAM [39], which has sub-models that each 

focus on a different region of the vehicle’s image, because 

different regions of vehicles have different relevant 

features. 

Additionally, there have been recent datasets with varied 

annotations for feature extraction. Boukerche and Ma [10] 

provide a survey of such datasets for feature extraction. 

Yang et. al. [40] propose a part attributes driven vehicle 

model recognition and develop the CompCars dataset with 

VMMR labels. BoxCars116K [34] provides a dataset of 

vehicles annotations with type, and uses conventional 

vision modules for vehicle bounding box detection. 

Summary. Since each application area for vehicle features 

remains sensitive and mission-critical, interpretable features 

are crucial for deployment. The above approaches have 

improved on feature extraction. We augment them with 

COLABEL to demonstrate interpretability. We will further show 

that such inherently interpretable models offer additional 

avenues for increasing model accuracy. 

III. COLABEL 

COLABEL, our approach for interpretable feature extractions 

(Figure 3). We have given an overview of COLABEL’s dataflow 

in Figure 1. Here, we describe COLABEL’s components in 

details. We first describe  CORROBORATIVE INTEGRATION in 

§III-A. Then we present  COMPLEMENTARY FEATURES for 

interpretable annotations in §III-B. Finally, we present 

 COLLABORATIVE LEARNING in §III-C, where COLABEL fuses 

complementary features for interpretable predictions. We 

implement COLABEL for vehicle feature extraction, which has 

a need for interpretability in a variety of mission-critical 

applications in traffic management, safety monitoring, and 

multi-camera tracking. Specifically, we apply COLABEL for 

interpretable vehicle make and model recognition (VMMR), 

where the task is to generate features from vehicle images to 

identify the make and model. 

A. Corroborative Integration 

Constructive interpretability starts from a judicious 

decomposition of the application domain into interpretable 

annotations. For vehicle classification with COLABEL, we 

identified three interpretable annotations for model training in 

addition to VMMR labels: vehicle color, type, and make. 

Vehicle color is the overall color scheme of a vehicle. Type is 

the body type of the vehicle, such as SUV, sedan, or pickup 

truck. Finally, make is the vehicle brand, such as Toyota, 

Mazda, or Jeep. We select these annotations as they are broadly 

common across vehicle feature extraction datasets [10]. 
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One advantage of COLABEL is a very inclusive classifier training 

process. Of the several VMMR datasets (discussed in §IV-A), each 

has a subset of the three desired interpretable annotations. 

CompCars [40] labels make, model and type. VehicleColors [41] 

labels only the colors. BoxCars116K [34] labels make and model. 

COLABEL is capable of integrating the partial knowledge in all of 

labeled data sets with CORROBORATIVE 

INTEGRATION. 

Labeling Overview. So, COLABEL uses CORROBORATIVE 

INTEGRATION to ‘complete’ partial annotations: in this case by 

adding color labels to each image in CompCars. Let there be k 

interpretable annotations, and a set D of datasets, all of which 

contain some subset of k annotations/labels yˆk. Datasets in D also 

contain the overall ground truth label yˆ, i.e. VMMR. For 

COLABEL, k = 3: color (yˆcolor), type (yˆtype) and make 

CORROBORATIVE INTEGRATION. 

 

Fig. 4: CORROBORATIVE INTEGRATION: Given a desired 

annotation k (e.g. color), a subset dscolor ∈D of VMMR datasets 

contains this annotation. CORROBORATIVE INTEGRATION employs 

a team of labeling models Mcolors , each trained on a 

corresponding dscolor. Each model employs JPEG compression 

ensemble to improve labeling agreement. Using CORROBORATIVE 

INTEGRATION, COLABEL can label the remaining D−s datasets 

with the color annotations. 

(yˆmake). We show CORROBORATIVE INTEGRATION for a 

single interpretable annotation (yˆcolor) in Figure 4. 

So, a subset {dcolor}s ∈ D contains desired annotation 

yˆcolor. We train a set of models Mcolors, one for each of the 

s datasets in {dcolor}s, with the datasets’ corresponding 

{yˆcolor}s as the ground truth. Then, we build an team of 

{Mcolor}s to label the remaining datasets in D without color 

annotation, e.g. the yˆcolor-unlabeled subset   D −s, 

with weighted voting. Since d∗color has a subset of desired 

annotations, we call it a partially unlabeled dataset; this 

subset is the complement of labeled subset dcolor. 

Labeling Team. Team member votes are dynamically weighted 

for each partially unlabeled dataset d∗color. To obtain these 

weights, we first apply tSNE to the union 

, where i is the current partially unlabeled 

dataset. After dimensionality reduction, we obtain the distance 

between each dcolor cluster center to the  cluster center. 

 

Fig. 3: COLABEL for VMMR: For VMMR, we use color, type, and make labels as our interpretable annotations.  CORROBORATIVE 
INTEGRATION combines various VMMR datasets, each with a subset of desired interpretable annotations, with a labeling team to generate a 

single dataset with all desired annotations (§III-A).  Then, COMPLEMENTARY FEATURES uses 3 branches to extract color, type, and make features. 

Each branch contains a feature extractor backbone. A dense layer converts features to branch-specific predictions. A second dense layer yields 

harmonization features (§III-B).  Finally, COLLABORATIVE LEARNING fuses features for VMMR classification. Simultaneously, a harmonization 

loss ensures branch features collaborate on feature correlations (§III-C). Predictions are combined from COLLABORATIVE LEARNING and 

COMPLEMENTARY FEATURES to generate interpretable classification that correspond to annotations from 
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The closest labeled datasets get proportionally higher weights, 

similar to the approach in [42]. 

Each trained model generalizes to the task for cross-domain 

datasets, as we will show in §IV-B. However, models still 

encounter edge cases due to dataset overfitting [43]. We address 

cross-domain performance deterioration with early stopping, a 

JPEG compression ensemble, and greater-thanmajority agreement 

among models. 

Early Stopping. During training of each model in {Mcolor}s, we 

compute validation accuracy over the validation sets in {dcolor}s. 

With early stopping tuned to cross-dataset validation accuracy, we 

can ensure models do not overfit to their own training dataset. 

JPEG Compression. During labeling of any d∗color, each labeling 

model Mcolor takes 4 copies of an unlabeled image. The first is the 

original image. Each of the three remaining copies is the original 

image compressed using the JPEG protocol, with quality factors of 

90, 70, and 50. We use the majority predicted label amongst the 

four copies as the model’s final prediction. This is similar to the 

’vaccination’ step from [44], where JPEG compression removes 

high-frequency artifacts that can impact cross-dataset 

performance. 

Team Agreement. If an image has no majority label from a 

model’s JPEG ensemble, we discard that model’s label. 

Further, if we only have < 50% of models in the labeling team 

after discarding models without JPEG ensemble majority 

label, we leave the annotation for that image blank. 

Summary. Using these steps, we can label most partially 

unlabeled samples datasets without the desired annotation. We 

evaluate labeling accuracy given these strategies in §IV-B, 

where we test on held-out labeled datasets. Our results show 

average accuracy improvement of almost 20% from 0.83 to 

0.98 for held-out unlabeled samples when we use labeling 

teams with early stopping for team members and JPEG 

compression ensemble for each model. 

B. Complementary Features 

COLABEL’s next step is COMPLEMENTARY FEATURES 

extraction, which propagates the three interpretable 

annotations from CORROBORATIVE INTEGRATION for feature 

extraction. COMPLEMENTARY FEATURES comprises of 2 stages: 

a shared input stage, followed by k = 3 complementary feature 

branches. The shared input stage performs shallow 

convolutional feature extraction. These features are common 

to each branch’s input. Then, the complementary branches 

extract their annotationspecific interpretable features and 

propagate them to COLLAB- 

ORATIVE LEARNING. 

Shared Input Block. Multi-branch models often use different 

inputs for each branch [45], [46]. COLABEL uses a shared input 

block to create common input to each branch to improve 

feature fusing in COLLABORATIVE LEARNING. Feature fusing 

requires integration of branches that carry different semantics 

and scales. This is accomplished with additional dense layers 

after concatenation [38], longer training to ensure 

convergence or appropriate selection of loss functions 

[45]. COLABEL’s branches perform complementary feature 

extraction, where the features are semantically different. 

So, we use a shared input block to ensure branches have a 

common starting point in shallow convolutional features 

and use attribute features from those layers [1], [47]. It 

consists of early layers in a feature extractor backbone 

such as ResNet, along with attention modules (we use 

CBAM [48]). For COLABEL, we use the first ResNet 

bottleneck block in the shared input layer, and use the 

remaining bottleneck blocks in the branches. We show the 

the impact of the shared input block for training in §IV-C. 

Complementary Feature Branches. Each interpretable 

annotation from  CORROBORATIVE INTEGRATION is 

matched to a corresponding branch in COLABEL. We 

describe a single COMPLEMENTARY FEATURES branch here. 

The features xshared from the shared input block are passed 

through a feature extractor backbone comprising of conv 

layers, normalization, pooling, and CBAM. This yields 

intermediate features xk, e.g. xcolor for the color branch. A 

fully connected layer Fcolor projects xcolor to predictions 

ycolor. A second fully 

 

Fig. 5: COLLABORATIVE LEARNING: Features from COMPLEMENTARY 

FEATURES are fused with concatenation. Branches collaborate on 

feature correlations and interdependencies with the harmonization 

losses LkH. LkH uses the fused features as soft-targets for xk−fused from 

§III-B. A fused loss LF on the cross-entropy loss between VMMR 

targets and fused prediction also backpropagates over the entire 

model. 

connected layer Fcolor−fused projects xcolor to tentative fused 

predictions ycolor−fused These tentative fused predictions are only 

used during training to improve feature harmonization in 

COLLABORATIVE LEARNING. We defer their discussion to §III-

C. Finally, xcolor is also sent to COLLABORATIVE LEARNING for 

fusion with the other branch features xtype and xmake. 

Training. During training, we compute 2 local losses to train 

the branch feature extractors. LkB is the branch specific loss for 

branch k, computed as the cross-entropy loss between yk and 

yˆk: 

 LcolorB = H(ycolor,yˆcolor) (1) 

LkH, the local harmonization loss, is discussed in §III-C. 
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Impact of Complementary Features. CORROBORATIVE 

INTEGRATION generates interpretable features in xcolor. As such, for 

any prediction, we can decompose COLABEL into the k 

complementary branches and explain predictions with the 

component annotations. For prediction errors, COLABEL provides 

provenance of its classification, so that the specific branch that 

caused the error can be updated. Further, the interpretable branches 

are extensible: any new desired annotations need only be added to 

the training set with CORROBORATIVE INTEGRATION. Subsequently, 

COMPLEMENTARY FEATURES will deploy a branch to generate 

interpretable features for the corresponding annotations. We 

discuss the impact of COMPLEMENTARY FEATURES in accuracy and 

interpretability in §IV-C 

C. Collaborative Learning 

Finally, COLABEL performs feature fusion to generate 

interpretable predictions. The branches of COMPLEMENTARY 

FEATURES yield their corresponding features xcolor, xtype, and xmake. 

These are concatenated to yield fused features xF. A fully connected 

layer projects xF to final predictions yF. COLABEL is trained end-to-

end with the cross-entropy loss between predictions and ground 

truth: 

  (2) 

Local Harmonization Loss. COLABEL employs a local 

harmonization loss for each branch in COMPLEMENTARY 

FEATURES. Since the branches are extracting complementary 

features, we need a way for branches to exploit correlation and 

interdependency between features. We accomplish this with 

weak supervision on the branch features using the fused feature 

predictions yF. Intuitively, we want branches to agree on the 

overall VMMR task. So, branch features should also 

accomplish VMMR, in addition to their branch-specific 

annotation. Using this fused-feature knowledge distillation, we 

ensure that branch features harmonize on the final VMMR 

prediction labels yF. In effect, yF is a soft target for each branch. 

The local harmonization loss is computed for each branch as 

the cross-entropy loss between the tentative fused predictions 

yk−fused from COMPLEMENTARY FEATURES and the final fused 

predictions yF. For the color branch: 

 LcolorH = H(ycolor−fused,yF) (3) 

Losses. COLABEL employs 3 losses during training, shown as 

red arrows in Figure 3 and Figure 5. The fused loss LF in Eq. 

(2) backpropagates through the entire model. COLABEL’s 

branches are trained with branch annotation loss  and local 

harmonization loss LkH: 

 

Here, C is the subset of mini-batch B that has the annotations 

for xk. We need this because during CORROBORATIVE 

INTEGRATION, COLABEL leaves unlabeled samples without 

team agreement as unlabeled. These unlabeled samples 

can be processed under an active learning scheme. For this 

paper, we compute loss using the subset of samples for 

which the annotation is known. 

IV. RESULTS 

Now, we show the effectiveness and interpretability of 

COLABEL. First, we will cover the experimental setup. 

Then we will evaluate each of COLABEL’s components and 

demonstrate efficacy of design choices. Finally, we 

demonstrate interpretability as well as high accuracy with 

the end-to-end model for VMMR. 

A. Experimental Setup 

We cover system setup, as well as datasets. 

System Details. We implemented COLABEL in PyTorch 1.4 

on Python 3.8. For our backbones, we use ResNet with 

IBN [49], with pretrained ImageNet weights. Experiment 

are performed on a server with NVIDIA Tesla P100, and 

an Intel Xeon 2GHz processor. 

Datasets. We use the following datasets: CompCars[40], 

BoxCars116K[34], Cars196[50], VehicleColors[41], and 

VeRi[51]. We also obtained our own dataset of vehicles 

labeled with color and type annotations using a web 

crawler on a 

TABLE I: Datasets: We use the boldfaced datasets in our final 

evaluations. They are partially annotated. To complete the No 

annotations, we use the underlined datasets for each annotation in 

CORROBORATIVE INTEGRATION. 
Dataset Make Model Color Type 
CompCars[40] Yes Yes No Yes 
BoxCars116K[34] Yes Yes No No 
Cars196[50] Yes Yes No No 
VehicleColors[41] No No Yes No 
VeRi[51] No No Yes Yes 
CrawledVehicles (ours) No No Yes Yes 

 

Fig. 6: COLABEL Dataflow: Feature preprocessing extracts coarse 

feature maps for each branch. Branches extract branch specific 

features. These complementary features are fused for vehicle 

classification. In addition, branch specific features provide important 

metadata for the images. 

variety of car-sale sites, called CrawledVehicles. Datasets are 

described in Table I. 
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We use CompCars, BoxCars116K, and Cars196 for end-toend 

evaluations. Their annotations are incomplete, since none contain 

all three desired annotations. We complete the ground truth for 

these datasets with CORROBORATIVE INTEGRATION. 

Dataflow. We show COLABEL’s implementation dataflow in Figure 

6. We obtain attention maps from the initial attention modules, 

described in §III-B. Attention maps are provided to each branch, 

which select best-fit attention map for their corresponding feature 

extractors. For example, color module clusters vehicles based on 

color, while the type module clusters on vehicle type according to 

labels from Table I. Finally, we fuse features to obtain predictions. 

B. Corroborative Integration 

CompCars, Cars196, and BoxCars116K are missing annotations 

from our desired interpretable annotation list of make, color, and 

type (see Table I). We use CORROBORATIVE INTEGRATION to 

augment these datasets. Specifically, we use 

VehicleColors, CrawledVehicles, and VeRi to label Cars196, 

BoxCars116K, and CompCars with color annotations. Then, we 

use CompCars and CrawledVehicles to label Cars196 and 

BoxCars116K with type annotations. 

Color Model (Color-CM). Color-CM is a team of 3 models, where 

each model is trained with VehicleColors, CrawledVehicles, or 

VeRi, respectively. During training of each model, we use 

horizontal flipping, random erasing, and cropping 

TABLE II: Color-CM: Accuracy of Color-CM teams in labeling 

heldout datasets with color annotations. For each column’s 

evaluation, the team member models are trained with the datasets of 

the other 2 columns. 

 VehicleColors VeRi CrawledVehicles 

Initial 0.87 0.84 0.86 

+Early Stop 0.89 0.9 0.92 

+Compression (90) 0.91 0.91 0.92 
+Compression(90, 70, 50) 0.94 0.93 0.94 

+Labeling Team 0.95 0.95 0.96 

+Agreement 0.98 0.97 0.98 

TABLE III: Type-CM: Accuracy of Type-CM team in held-out 

dataset with type annotations. 

 CompCars CrawledVehicles VeRi 

Initial 0.86 0.88 0.86 

+Early Stop 0.89 0.91 0.89 

+Compression (90) 0.91 0.91 0.91 
+Compression(90, 70, 50) 0.93 0.94 0.94 

+Labeling Team 0.96 0.95 0.95 

+Agreement 0.98 0.97 0.98 

augmentations to improve training accuracy. For the JPEG 

compression ratios of each model, we test with 2 schemes: (a) 

with a single additional ratio of quality factor 90, and (b) 3 

additional ratios with quality factors 90, 70, and 50. We use 

majority voting from the JPEG compression ensemble. Then 

with majority weighted voting from team member models, we 

arrive at the final prediction. 

We evaluate with held-out test sets from the labeled subset 

of datasets. Specifically, we conduct three evaluations. For 

each of the 3 labeled datasets VehicleColors, 

CrawledVehicles, and VeRi, we use one for testing and the 

remaining 2 for building the team. Results are provided in 

Table II. 

On each held-out dataset, initial accuracy is ∼0.86. 

With cross-validation early stopping, we can increase this 

to ∼0.91 With JPEG compression with 3 ratios, we can 

increase accuracy by a further 3%. By teaming several 

models, we further increase accuracy to ∼0.95 Finally, we 

add the agreement constraint, where we accept a label only 

if > 50% of models have agreed on the label. This 

improves labeling accuracy by an additional 3%, to 0.98. 

On the held-out test set, we can thus label 90% of the 

samples, with the other 10% remaining unlabeled due to 

disagreements. 

With these strategies, we label color for BoxCars116K and 

Cars196 using CORROBORATIVE INTEGRATION. COLABEL 

can label 88% of the images in these datasets. Figure 7 

shows a sample of these images and their assigned labels 

in Cars196. 

Type Corroborative Model (Type-CM). The team for type 

annotation labeling is trained with ground truth in 

CompCars, CrawledVehicles, and VeRi to label 

BoxCars116K and Cars196. The training process is 

similar to Color-CM. 

Table III shows held-out accuracy on test sets. The 

initial accuracy is 0.87, and with early stopping and JPEG 

compression, we can increase accuracy by 4%, to 0.94. 

Team of models 
Cars196 

 

 

Fig. 7: Labeled Cars196 Images: Using CORROBORATIVE 

INTEGRATION, we can assign color and type annotations to Cars196 

images. For some images with multiple vehicles or occlusions, we 

leave blank annotations if CORROBORATIVE INTEGRATION cannot find 

agreement on the labels. 

 

Fig. 8: Convergence of COLABEL: We compare convergence with 

respect to loss minimization and accuracy of COLABEL against 

COLABEL-MULTIINPUT and COLABEL-FUSIONONLY on CompCars. 
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COLABEL-MULTIINPUT has multiple inputs, which slows learning of fuse-

able branch features. COLABEL-FUSIONONLY uses only the fused feature 

loss without local harmonization, which reduces effectiveness of feature 

fusion. 

increases accuracy to 0.96. By adding JPEG compression 

agreement to team members, we arrive at a final accuracy of 0.98. 

On our desired ground truth of BoxCars116K and Cars196, the 

team of Type-CM models corroboratively labels 91% of samples. 

C. Complementary Features 

After CORROBORATIVE INTEGRATION, we have our desired 

interpretable annotations in the BoxCars116K, CompCars, and 

Cars196 datasets. Here, we demonstrate interpretable 

classification with COMPLEMENTARY FEATURES. Shared Input 

Block. We first cover the shared input block. The shared block is 

important for feature harmonization to ensure complementary 

features are extracted from a common set of convolutional features 

to improve semantic agreement. Further, the shared block is 

updated with backpropagated loss from all branches, ensuring the 

shallow features it extracts are usable by all branches. In turn, this 

improves convergence and training time for COLABEL. We show 

in Figure 8 the impact of the shared input block in convergence by 

comparing loss over time between COLABEL and COLABEL-

MULTIINPUT, a model with an input for each branch. The shared 

input block improves weight convergence and training time; we 

will discuss 

COLABEL-FUSIONONLY in the figure in §IV-D 

 

Fig. 9: Attention masks: We obtain attention masks from the attention 

modules in CORROBORATIVE INTEGRATION. We show a few of the 

attention masks in shallow layers of each branch that help the branch 

extract their annotation-specific features. 
TABLE IV: Impact of attention: COLABEL with attention outperforms 

model without attention (NOATT) across all classification tasks. For 

VMMR, attention yields between 4-5% improvement across all 

datasets. 

 CompCars Cars196 BoxCars116K 

 CoLabel NoAtt CoLabel NoAtt CoLabel NoAtt 

Classification  0.96 0.89  0.94 0.91  0.89 0.84 
Color  0.95 0.94  0.96 0.91  0.93 0.89 
Type  0.96 0.92  0.96 0.92  0.91 0.85 
Make  0.95 0.91  0.92 0.87  0.87 0.81 

Attention Modules. COMPLEMENTARY FEATURES also uses 

attention modules in both the shared input block and the 

complementary feature branches. Attention improves feature 

extraction in both cases. For the shared input layer, attention 

masks identify image region containing relevant features 

for each branch. For complementary features, attention 

further improves feature extraction accuracy, shown in 

Table IV. The make branch improves classification 

accuracy from 0.91 without attention (NOATT) to 0.95 by 

including attention in the branch. 

Attention Masks. We show attention masks of each branch 

in Figure 9. While attention masks are generally black-

boxes, COLABEL’s interpretability allows us to make 

educated guesses about the masks. Masks for each branch 

are visually similar to each other, indicating attention has 

been clustered by 

CORROBORATIVE INTEGRATION. Further, the make branch 

masks indicate the branch focuses on the logo area of 

vehicles. Similarly, the type branch masks focus on the 

general shape of the vehicle at the edges. The color branch 

masks extract overall vehicle color information. 

D. Collaborative Learning 

Finally, COLABEL fuses complementary features to 

generate final features for VMMR classification. We 

evaluate COLABEL end-to-end to demonstrate the 

feasibility of inherently interpretable models with several 

experiments. 

Impact of Loss Functions. First, we show the impact of 

loss functions on training convergence and accuracy on the 

CompCars dataset. Figure 8 compares COLABEL to a 

COLABEL-FUSIONONLY, which uses only the final fused 

loss and without the local harmonization losses. We also 

TABLE V: Impact of Harmonization Loss: Across all datasets, using 

both local harmonization loss and final fused loss significantly 

improves accuracy. 

 CompCars Cars196 BoxCars116K 

CoLabel 0.96 0.94 0.89 
FusionOnly 0.87 0.84 0.81 

TABLE VI: COLABEL vs Non-Interpretable Models: We show 

performance of COLABEL against several states-of-the-art. COLABEL 

achieves similar performance with the added benefit of 

interpretability. Further, interpretability allows us to exploit 

disagreements between classifications and existing knowledgebases 

to further improve accuracy. We show this with COLABEL-MATCH, a 

model that selfdiagnoses mistakes using existing knowledge about 

vehicle makes, models, and types. 

 CompCars BoxCars116K Cars196 

R50-Att [49] 0.90 0.75 0.89 
R152 [24] 0.95 0.87 0.92 
D161-CMP [24] 0.97 - 0.92 
R50-CL [23] 0.95 0.86 - 
CoLabel 0.96 0.89 0.94 
CoLabel-Match 0.97 0.93 0.94 

show accuracy across datasets in Table V. By adding the local 

harmonization loss to improve feature fusion, we can increase 

accuracy by almost 10% on average; on CompCars, we 

increase accuracy from 0.87 to 0.96 for VMMR. Without the 

harmonization loss, COLABEL-FUSIONONLY converges slower 

and has lower accuracy. 
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Interpretability and Accuracy. Now, we evaluate COLA- 

BEL against several non-interpretable models: (a) R50-Att, a 

ResNet50 backbone with a single branch with IBN and attention 

[49], (b) R152, a ResNet152 with benchmark results from [24], (c) 

D161-CMP, a DenseNet with channel pooling from [24], and (d) 

R50-CL, a ResNet50 with unsupervised co-occurrence learning 

[23]. 

For COLABEL, we use a ResNet34 backbone. The first 

bottleneck block resides in the shared input block. The remaining 

three bottleneck blocks are copied to each branch, as described in 

§III-B. For each model, we use image size 224×224, and train for 

50 epochs with lr=1e-4, with a batch size of 64. 

Results are shown in Table VI. COLABEL achieves slightly 

higher accuracy than both R152 and R50-Att, with accuracy of 

0.96 on VMMR on CompCars. For Cars196 and BoxCars116K, 

COLABEL achieves accuracy of 0.94 and 0.89, respectively. In each 

case, COLABEL achieves similar or slightly better performance than 

existing non-interpretable approaches. 

However, COLABEL’s results are also interpretable, allowing us 

to further increase accuracy by retroactive corrections. Given 

vehicle models and their ground truth types from existing vehicle 

databases [52], we can check where COLABEL’s type detection and 

vehicle model predictions do not agree. This occurs when the 

image is difficult to process, either due to occlusion, blurriness, or 

other artifacts (an example such disagreement in CORROBORATIVE 

INTEGRATION with 2 cars in the same image is shown in Figure 7). 

As such, COLABEL generates conflicting interpretations, which are 

themselves 

TABLE VII: Single-Branch Multi-Labeling: With multi-labeling 

output from a single branch in COLABEL-SMBL, we can maintain 

interpretability for a single-branch while sacrificing accuracy. 

 

TABLE VIII: All-v-All vs 2-Stage Cascade: We compare COLABEL 

under all-v-all and 2-stage cascade. With COLABEL-2SC, we use a 

specialized submodel for each make, simplifying the VMMR 

problem. We can benefit from interpretability by including retroactive 

correction to further increase VMMR classification accuracy. 

 CompCars BoxCars116K Cars196 

D161-SMP 0.97 - 0.92 

CoLabel (AVA) 0.96 0.89 0.94 
CoLabel-Match 0.97 0.93 0.94 
CoLabel-2SC 0.97 0.93 0.95 
CoLabel-2SC-Match 0.98 0.94 0.95 

useful in analyzing the model. Using this variation called 

COLABEL-MATCH, we can further increase accuracy solely due 

to interpretability, to 0.97, 0.95, and 0.93 on CompCars, 

Cars196, and BoxCars116K, respectively. 

Single-Branch Multi-Labeling. Since COLABEL uses multiple 

branches, a natural question is: could branches be removed 

while maintaining interpretability? We compare COLABEL’s 

multi-branch interpretability with Single-Branch Multi- 

Labeling approach, called COLABEL-SMBL. In 

COLABELSMBL, we use a single branch for feature extraction. 

The features are then used in 4 parallel dense layers: color, 

type, make, and VMMR detection. With COLABEL-SMBL, 

we could reduce model parameters, since we use a single 

branch. We compare COLABEL-SMBL against COLABEL 

and HML [53] in Table VII. COLABEL-SMBL sacrifices 

accuracy with the reduced parameters. Further, we also 

found COLABELSMBL more difficult to converge, as it 

needed fine-tuning of learning rates to contend with the 

multiple backpropagated losses. We leave further 

exploration of COLABEL-SMBL with other architecture 

choices to future work. 

All-v-All vs 2-Stage Cascade. Here, we evaluate COLABEL 

as a 2-stage cascade (COLABEL-2SC) and compare to all-

v-all (AVA) in Table VIII. AVA is the method we have 

described in COLABEL, where final features are used for 

make and model classification. In essence, this is a 

complex problem where COLABEL’s fused features are 

trained with every vehicle model in our datasets. In 

COLABEL-2SC, we simplify the problem by creating 

classifier submodel (i.e. a dense layer) for each make. The 

submodels use COLABEL’ fused features for prediction. So, 

given the 78 makes in CompCars, we create 78 submodels. 

For each image, COLABEL-2SC’s vehicle make prediction 

activates the corresponding classification submodel. 

Since COLABEL-2SC works on a simpler problem, we 

can improve accuracy from COLABEL, with a trade-off of 

increased parameters due to the submodels. COLABEL-

2SC achieves accuracy of 0.97 on CompCars, 0.95 on 

Cars196, and 

0.93 on BoxCars116K, comparable to D161-CMP [24]. 

With COLABEL-2SC-MATCH, we apply retroactive 

correction to further improve accuracy on CompCars to 

0.98 by verifying predictions with make-model-type 

knowledgebase [52]. 

V. CONCLUSION 

In this paper, we have presented constructive interpretability 

with COLABEL, an inherently interpretable model for feature 

extraction and classification. COLABEL contains 3 components 

for interpretability.  CORROBORATIVE INTEGRATION allows us 

to complete interpretable annotations in datasets using a 

variety of corroborative datasets.  COMPLEMENTARY FEATURES 

perform feature extraction corresponding to interpretable 

annotations. Finally,  COLLABORATIVE LEARNING lets 

COLABEL fuse features effectively during training using local 

harmonization losses for each branch. Per [7], there is no 

tradeoff between interpretability and accuracy. Our evaluations 

show that COLABEL has superior accuracy to state-of-the-art 

black box models. We are also able to exploit interpretability 

to selfdiagnose mistakes in classification, further increasing 

accuracy with COLABEL-MATCH and COLABEL-2SC-MATCH. 
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