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Abstract—Machine learning models with explainable predictions
are increasingly sought after, especially for real-world, mission-
critical applications that require bias detection and risk mitigation.
Inherent interpretability, where a model is designed from the ground-
up for interpretability, provides intuitive insights and transparent
explanations on model prediction and performance. In this paper, we
present COLABEL, an approach to build interpretable models with
explanations rooted in the ground truth. We demonstrate COLABEL in
a vehicle feature extraction application in the context of vehicle make-
model recognition (VMMR). By construction, COLABEL performs
VMMR with a composite of interpretable features such as vehicle
color, type, and make, all based on interpretable annotations of the
ground truth labels. First, COLABEL performs corroborative integration
to join multiple datasets that each have a subset of desired annotations
of color, type, and make. Then, COLABEL uses decomposable branches
to extract complementary features corresponding to desired
annotations. Finally, COLABEL fuses them together for final
predictions. During feature fusion, COLABEL harmonizes
complementary branches so that VMMR features are compatible with
each other and can be projected to the same semantic space for
classification. With inherent interpretability, COLABEL achieves
superior performance to the state-of-the-art black-box models, with
accuracy of 0.98, 0.95, and 0.94 on CompCars, Cars196, and
BoxCars116K, respectively. COLABEL provides intuitive explanations
due to constructive interpretability, and subsequently achieves high
accuracy and usability in mission-critical situations.

I. INTRODUCTION

Machine learning models that are interpretable and
explainable are increasingly sought after in a wide variety of
industry applications [1], [2], [3], [4]. Explainable models
augment the black-box of deep networks by providing insights
into their feature extraction and prediction [5]. They are
particularly useful in real-world situations  where
accountability, transparency, and provenance of information
for mission-critical human decisions are crucial, such as
security, monitoring,
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Fig. 1: CoLABEL Architecture and Dataflow: COLABEL takes in
multiple vehicle datasets, each with a subset of desired annotations.
CORROBORATIVE INTEGRATION integrates annotations into a single
training set. COMPLEMENTARY FEATURES extracts interpretable
features with complementary branches. COLLABORATIVE LEARNING
fuses complementary features to yield interpretable predictions for
vehicle classification.

and medicine [1], [6]. Interpretable indicates model features
designed from the get-go to be human-readable. Explainable
indicates post-hoc analysis of models to determine feature
importance in prediction.

Inherently interpretable models [7] are designed from the
getgo to provide explainable results. This contrasts with post-
hoc explainability, where a black box model is analyzed to
obtain potential explanations for its decisions. Inherently
interpretable models provide more transparent explanations
[7], since these are directly dependent on model design. Such
models also bypasses some limitations of post-hoc
explainability, such as unjustified counterfactual explanations
[8]. Inherently interpretable models have higher trust under
adversarial conditions [9] since their predictions can be
directly tied to training ground truth through model-generated
explanations.
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There are several challenges, however, in building models
that are inherently interpretable. There is no one-size-fits-all
solution since interpretability is domain-specific [7]. Existing
datasets may not have completely interpretable annotations;
instead, most datasets only have the ground truth annotations
without interpretable subsets. For example, existing vehicle
classification datasets label vehicle make and model, but not
vehicle color, type, or decals [10]. Furthermore, deep networks
are biased during training towards strong signals, and may
ignore more interpretable weaker signals. For example, person
re-id models focus primarily on a person’s shirt, and need
guidance to focus on more interpretable accessories such as
hats, handbags, or limbs [1].

CoLabel. In this paper, we present COLABEL: a process for
building inherently interpretable models. We use COLABEL to
build end-to-end interpretable models that provide
explanations rooted in the ground truth. By construction,
COLABEL provides predictions along with a composite of
interpretable features that comprise the prediction with a
combination of CORROB-

ORATIVE INTEGRATION, COMPLEMENTARY FEATURES, and
COLLABORATIVE LEARNING. We call this this approach to
achieve interpretable models from design and implementation
constructive interpretability.

We demonstrate the inherent interpretability and superior
accuracy of COLABEL in vehicle feature extraction, an
important challenge in monitoring, tracking, and surveillance
applications [9], [7]. Specifically, vehicle features are crucial
for re-id, traffic monitoring and management, tracking, and
make/model classification. Current state-of-the-art vehicle
classification models employ black-box models.

These mission-critical applications require interpretable
predictions for aiding human decisions, particularly for
borderline cases where explanations aligned with human
experience can benefit human decisions much more than
algorithmic internal specifics. The goal of constructive
interpretability is to design and build inherently interpretable
models aligned with human understanding of applications.
This is where COLABEL comes in. As an inherently
interpretable model with constructive interpretability in mind,
COLABEL has state-of-the-art accuracy as well as interpretable
predictions.

We show COLABEL’s dataflow with respect to vehicle
feature extraction in Figure 1. Our constructive interpretability
approach for inherently interpretable models begins from
selection of interpretation annotations for vehicle features:
color, type, and make. COLABEL uses these annotations to
generate interpretable vehicle features. These features are
usable in a variety of applications, such as vehicle make and
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model recognition (VMMR), re-id, tracking, and detection
[10]. In this work, we focus COLABEL on VMMR.

Dataflow. Given our desired annotations of color, type, an
make, as well as datasets that each carry a subset of these
annotations, COLABEL’s dataflow involves the following
three steps:

CORROBORATIVE INTEGRATION integrates multiple

datasets and corroborates annotations of "natural’ vehicle
Why?

Black Box

Color -White
Make | suv

GMC
Denali

_d '

Parts

GMC Logo

Fig. 2: Constructive Interpretability: Models with constructive
interpretability provide explanations for their predictions. This is
achieved by incorporating human knowledge. Here, an interpretable
model explains its prediction is based on vehicle color, type, seats,
and vehicle part similarities.

features across them. It then builds a robust training set with
ground truth as well as interpretable annotations.

The COMPLEMENTARY FEATURES module extracts features
corresponding to the interpretable annotations. The goal is to
maintain interpretable knowledge when integrated. Each
complementary feature is extracted with its own branch in the
COLABEL model.

Finally, COLLABORATIVE ~ LEARNING  harmonizes
complementary features, ensuring features from different
branches can be fused more effectively. With harmonization,
branches collaborate to exploit correlations between
complementary features.

Contributions. We show that COLABEL can achieve excellent
accuracy on feature extraction while simultaneously providing
interpretable results by construction. COLABEL’s explanations
align with human knowledge of vehicles. The contributions
are:

e COLABEL ': Constructive interpretability approach to
design and build an inherently interpretable vehicle
feature extraction system by integrating diverse
interpretable annotations that are aligned with human
knowledge of vehicles.

¢ Model: Experimental evaluation and demonstration of the
superior accuracy and interpretability achieved by
COLABEL across common VMMR datasets: on
CompCars, Cars196, and BoxCars116K , COLABEL
achieves accuracies of 0.98, 0.95, and 0.94, respectively.

anonymized
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https://anonymous.4open.science/t/GLAMOR-024D/readme.md
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II. RELATED WORK

We first cover recent work in inherently interpretable models
and post-hoc explanations. We will then cover vehicle feature
extraction.

A. Interpretability and Explainability

Interpretability. Interpretable models are designed from the ground
up to provide explanations for their features. Intuitively,
interpretability is deeply intertwined with human understanding
[8]. Models that are inherently interpretable directly integrate
human understanding into feature generation.
Such models are more desired is mission-critical scenarios
such as healthcare, monitoring, and safety management[7],
[11], [12]. The prototype layers in [13], [11] provide
interpretable predictions: the layers compare test image
samples to similar ground truth samples to provide
explanations of the model classification. The decomposable
approaches in [14], [15] build component-classifiers that are
integrated for the overall task, e.g. image and credit
classification, respectively.

Explainability. Currently, most approaches perform posthoc
explanation in a bottom-up fashion, where an existing model’s
black-box is ’opened’ [16]. These include examining class
activations [17], [18], concept activation vectors [4], neuron
influence aggregation [19], and deconvolutions [5]. In post-
hoc explanation, second model is used to model the original
model’s predictions by projecting model features along
human-readable dimensions, if possible [18], [20], [19], [21].
However, these approaches do not build interpretable models
from the ground truth; they merely enhance existing models
for explanation. For example, Grad-CAM’s [17] outputs are
used with human labeling to determine where’ and *what’ a
model is looking at [18], [20]. Similarly, the embedding and
neuron views in [19], [21] make it easier to visually
characterize an class similarity clusters. However, there are
risks to explainability when it is disconnected from the ground
truth [7], [8], [9]. Such explanations may not be accurate,
because if they were, the explainer model would be sufficient
for prediction [8]. Furthermore, interpretable models are
usually as accurate as black-box models, with the added
benefit of interpretability, with several examples provided in
[22]. Thus, the challenges of bottom-up approaches are
bypassed with constructive interpretability, since it is a top-
down approach for interpretability, as in Figure 2. In
constructive interpretability, inherently interpretable models
are built with features aligned with human knowledge of
application domains, forming intuitively understandable and
interpretable models as in [7], [11], [8], [13], [14], [15].

B. Vehicle Feature Extraction

We demonstrate COLABEL’s interpretability with vehicle
feature extraction. This encompasses several application areas,
from VMMR[23], [24], [25], re-id [26], [27], [28], [29],
tracking [30], [31], [32], [33], and vehicle detection[34], [35].
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We cover recent research on feature extraction for these
application areas.

CNN and SSD models are used together for logo
detection in high resolution images[36]. Logo-Net [37]
uses such a composition to improve logo detection and
classification. Wang et. al. [38] develop an orientation-
invariant approach that uses 20 engineered keypoint
regions on vehicles to extract representative features. Liu
et. al. propose RAM [39], which has sub-models that each
focus on a different region of the vehicle’s image, because
different regions of vehicles have different relevant
features.

Additionally, there have been recent datasets with varied
annotations for feature extraction. Boukerche and Ma [10]
provide a survey of such datasets for feature extraction.
Yang et. al. [40] propose a part attributes driven vehicle
model recognition and develop the CompCars dataset with
VMMR labels. BoxCars116K [34] provides a dataset of
vehicles annotations with type, and uses conventional
vision modules for vehicle bounding box detection.

Summary. Since each application area for vehicle features
remains sensitive and mission-critical, interpretable features
are crucial for deployment. The above approaches have
improved on feature extraction. We augment them with
COLABEL to demonstrate interpretability. We will further show
that such inherently interpretable models offer additional
avenues for increasing model accuracy.

III. COLABEL

COLABEL, our approach for interpretable feature extractions
(Figure 3). We have given an overview of COLABEL’s dataflow
in Figure 1. Here, we describe COLABEL’s components in
details. We first describe CORROBORATIVE INTEGRATION in
§III-A. Then we present COMPLEMENTARY FEATURES for
interpretable annotations in §II1-B. Finally, we present
COLLABORATIVE LEARNING in §III-C, where COLABEL fuses
complementary features for interpretable predictions. We
implement COLABEL for vehicle feature extraction, which has
a need for interpretability in a variety of mission-critical
applications in traffic management, safety monitoring, and
multi-camera tracking. Specifically, we apply COLABEL for
interpretable vehicle make and model recognition (VMMR),
where the task is to generate features from vehicle images to
identify the make and model.

A. Corroborative Integration

Constructive interpretability starts from a judicious
decomposition of the application domain into interpretable
annotations. For vehicle classification with COLABEL, we
identified three interpretable annotations for model training in
addition to VMMR labels: vehicle color, type, and make.
Vehicle color is the overall color scheme of a vehicle. Type is
the body type of the vehicle, such as SUV, sedan, or pickup
truck. Finally, make is the vehicle brand, such as Toyota,
Mazda, or Jeep. We select these annotations as they are broadly
common across vehicle feature extraction datasets [10].
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One advantage of COLABEL is a very inclusive classifier training
process. Of the several VMMR datasets (discussed in §1V-A), each
has a subset of the three desired interpretable annotations.
CompCars [40] labels make, model and type. VehicleColors [41]
labels only the colors. BoxCars116K [34] labels make and model.
COLABEL is capable of integrating the partial knowledge in all of
labeled data sets with CORROBORATIVE
INTEGRATION.

Labeling Overview. So, COLABEL uses CORROBORATIVE
INTEGRATION to ‘complete’ partial annotations: in this case by
adding color labels to each image in CompCars. Let there be k
interpretable annotations, and a set D of datasets, all of which
contain some subset of k annotations/labels y"«. Datasets in D also
contain the overall ground truth label y", i.e. VMMR. For
COLABEL, k = 3: color (¥ color), type (V ype) and make

@ Complementary Features
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Fig. 4: CORROBORATIVE INTEGRATION: Given a desired
annotation k (e.g. color), a subset dscolor ED of VMMR datasets
contains this annotation. CORROBORATIVE INTEGRATION employs
a team of labeling models M , each trained on a
corresponding dScoor. Each model employs JPEG compression
ensemble to improve labeling agreement. Using CORROBORATIVE
INTEGRATION, COLABEL can label the remaining D-s datasets
with the color annotations.

(V"make). We show CORROBORATIVE INTEGRATION for a
single interpretable annotation (y"coror) in Figure 4.

So, a subset {dwior}s € D contains desired annotation

Y color. We train a set of models Mcolors, one for each of the

© Collaborative Learning

Soft Targets for local
2| harmonization loss
E e

~

.

Features

VMMR
Ground truth

Features

_extractor___

][ Color ]
) e J

Interpretable predictions

[ Make

_extaetor | (L Model

e Branch

Fig. 3: CoLABEL for VMMR: For VMMR, we use color, type, and make labels as our interpretable annotations. CORROBORATIVE

INTEGRATION combines various VMMR datasets, each with a subset of

desired interpretable annotations, with a labeling team to generate a

single dataset with all desired annotations (§11I-A). Then, COMPLEMENTARY FEATURES uses 3 branches to extract color, type, and make features.
Each branch contains a feature extractor backbone. A dense layer converts features to branch-specific predictions. A second dense layer yields
harmonization features (§11I-B). Finally, COLLABORATIVE LEARNING fuses features for VMMR classification. Simultaneously, a harmonization

loss ensures branch features collaborate on feature correlations (§1I1-

C). Predictions are combined from COLLABORATIVE LEARNING and

COMPLEMENTARY FEATURES to generate interpretable classification that correspond to annotations from

CORROBORATIVE INTEGRATION.
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s datasets in {dwior}s, with the datasets’ corresponding
{V color}s as the ground truth. Then, we build an team of
{Mcoior}s to label the remaining datasets in D without color
annotation, e.g. the y cor-unlabeled subset{d:m!m-hm—s,
with weighted voting. Since d*wior has a subset of desired
annotations, we call it a partially unlabeled dataset; this
subset is the complement of labeled subset dcotor.

Labeling Team. Team member votes are dynamically weighted
for each partially unlabeled dataset d*conr. To obtain these
weights, we first apply tSNE to the union

{deotor }sU {d:oim-}i, where i is the current partially unlabeled
dataset. After dimensionality reduction, we obtain the distance
between each deoior cluster center to the 14%oior }1 cluster center.
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The closest labeled datasets get proportionally higher weights,
similar to the approach in [42].

Each trained model generalizes to the task for cross-domain
datasets, as we will show in §IV-B. However, models still
encounter edge cases due to dataset overfitting [43]. We address
cross-domain performance deterioration with early stopping, a
JPEG compression ensemble, and greater-thanmajority agreement
among models.

Early Stopping. During training of each model in {Mcolor}s, we
compute validation accuracy over the validation sets in {dcolor}s.
With early stopping tuned to cross-dataset validation accuracy, we
can ensure models do not overfit to their own training dataset.

JPEG Compression. During labeling of any d*clor, €ach labeling
model Mcoiortakes 4 copies of an unlabeled image. The first is the
original image. Each of the three remaining copies is the original
image compressed using the JPEG protocol, with quality factors of
90, 70, and 50. We use the majority predicted label amongst the
four copies as the model’s final prediction. This is similar to the
’vaccination’ step from [44], where JPEG compression removes
high-frequency artifacts that can impact cross-dataset
performance.

Team Agreement. If an image has no majority label from a
model’s JPEG ensemble, we discard that model’s label.
Further, if we only have < 50% of models in the labeling team
after discarding models without JPEG ensemble majority
label, we leave the annotation for that image blank.

Summary. Using these steps, we can label most partially
unlabeled samples datasets without the desired annotation. We
evaluate labeling accuracy given these strategies in §IV-B,
where we test on held-out labeled datasets. Our results show
average accuracy improvement of almost 20% from 0.83 to
0.98 for held-out unlabeled samples when we use labeling
teams with early stopping for team members and JPEG
compression ensemble for each model.

B. Complementary Features

COLABEL’s next step is COMPLEMENTARY FEATURES
extraction, which propagates the three interpretable
annotations from CORROBORATIVE INTEGRATION for feature
extraction. COMPLEMENTARY FEATURES comprises of 2 stages:
a shared input stage, followed by k = 3 complementary feature
branches. The shared input stage performs shallow
convolutional feature extraction. These features are common
to each branch’s input. Then, the complementary branches
extract their annotationspecific interpretable features and
propagate them to COLLAB-

ORATIVE LEARNING.

Shared Input Block. Multi-branch models often use different
inputs for each branch [45], [46]. COLABEL uses a shared input
block to create common input to each branch to improve
feature fusing in COLLABORATIVE LEARNING. Feature fusing
requires integration of branches that carry different semantics
and scales. This is accomplished with additional dense layers
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after concatenation [38], longer training to ensure
convergence or appropriate selection of loss functions
[45]. COLABEL’s branches perform complementary feature
extraction, where the features are semantically different.
So, we use a shared input block to ensure branches have a
common starting point in shallow convolutional features
and use attribute features from those layers [1], [47]. It
consists of early layers in a feature extractor backbone
such as ResNet, along with attention modules (we use
CBAM [48]). For COLABEL, we use the first ResNet
bottleneck block in the shared input layer, and use the
remaining bottleneck blocks in the branches. We show the
the impact of the shared input block for training in §IV-C.
Complementary Feature Branches. Each interpretable
annotation from  CORROBORATIVE INTEGRATION is
matched to a corresponding branch in COLABEL. We
describe a single COMPLEMENTARY FEATURES branch here.
The features Xsnared from the shared input block are passed
through a feature extractor backbone comprising of conv
layers, normalization, pooling, and CBAM. This yields
intermediate features xx, e.g. Xcolor for the color branch. A
fully connected layer Feoor projects Xecoior to predictions
Yeolor. A second fully

7
[
o
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g

Fig. 5: COLLABORATIVE LEARNING: Features from COMPLEMENTARY
FEATURES are fused with concatenation. Branches collaborate on
feature correlations and interdependencies with the harmonization
losses Lku. Lkyuses the fused features as soft-targets for Xk-fused from
§III-B. A fused loss Lron the cross-entropy loss between VMMR
targets and fused prediction also backpropagates over the entire
model.

connected layer Feoorfused projects Xwior to tentative fused
predictions Ywior—fused These tentative fused predictions are only
used during training to improve feature harmonization in
COLLABORATIVE LEARNING. We defer their discussion to §I1I-
C. Finally, Xcoloris also sent to COLLABORATIVE LEARNING for
fusion with the other branch features Xuype and xmake.

Training. During training, we compute 2 local losses to train
the branch feature extractors. Lkpis the branch specific loss for
branch k, computed as the cross-entropy loss between yxand
Yk

LcolorB = H(}/culur,y'\calar) (] )

L*y, the local harmonization loss, is discussed in §III-C.
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Impact of Complementary Features. CORROBORATIVE
INTEGRATION generates interpretable features in Xcolor. As such, for
any prediction, we can decompose COLABEL into the k
complementary branches and explain predictions with the
component annotations. For prediction errors, COLABEL provides
provenance of its classification, so that the specific branch that
caused the error can be updated. Further, the interpretable branches
are extensible: any new desired annotations need only be added to
the training set with CORROBORATIVE INTEGRATION. Subsequently,
COMPLEMENTARY FEATURES will deploy a branch to generate
interpretable features for the corresponding annotations. We
discuss the impact of COMPLEMENTARY FEATURES in accuracy and
interpretability in §IV-C

C. Collaborative Learning

Finally, COLABEL performs feature fusion to generate
interpretable predictions. The branches of COMPLEMENTARY
FEATURES yield their corresponding features Xcoior, Xtype, and Xmake.
These are concatenated to yield fused features xr. A fully connected
layer projects xrto final predictions yr. COLABEL is trained end-to-
end with the cross-entropy loss between predictions and ground
truth:

., Ng
. 1 Y ]
Lp= H(?U”s :i/) = 7@ Zpi" 10g(ﬁ‘;‘71) ()

Local Harmonization Loss. COLABEL employs a local
harmonization loss for each branch in COMPLEMENTARY
FEATURES. Since the branches are extracting complementary
features, we need a way for branches to exploit correlation and
interdependency between features. We accomplish this with
weak supervision on the branch features using the fused feature
predictions yr. Intuitively, we want branches to agree on the
overal VMMR task. So, branch features should also
accomplish VMMR, in addition to their branch-specific
annotation. Using this fused-feature knowledge distillation, we
ensure that branch features harmonize on the final VMMR
prediction labels yr. In effect, yris a soft target for each branch.
The local harmonization loss is computed for each branch as
the cross-entropy loss between the tentative fused predictions
Yk-fused from COMPLEMENTARY FEATURES and the final fused
predictions yr. For the color branch:

LcolorH =H (}/color—fused,yF) (3)

Losses. COLABEL employs 3 losses during training, shown as
red arrows in Figure 3 and Figure 5. The fused loss Lrin Eq.
(2) backpropagates through the entire model. COLABEL’s

. . . k
branches are trained with branch annotation lossZB and local
harmonization loss Lx:

Lk = Lfl;:f + LJ.;I = H(yﬂ'- .‘}A) + ?{(ykffuscd- ,‘]F)
1 Nc Ng (4)

E—— N ZT"JM log pi* — Vi Zp;mf d log p*

Here, Cis the subset of mini-batch B that has the annotations
for x«. We need this because during CORROBORATIVE
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INTEGRATION, COLABEL leaves unlabeled samples without
team agreement as unlabeled. These unlabeled samples
can be processed under an active learning scheme. For this
paper, we compute loss using the subset of samples for
which the annotation is known.

IV. RESULTS

Now, we show the effectiveness and interpretability of
COLABEL. First, we will cover the experimental setup.
Then we will evaluate each of COLABEL’s components and
demonstrate efficacy of design choices. Finally, we
demonstrate interpretability as well as high accuracy with
the end-to-end model for VMMR.

A. Experimental Setup
We cover system setup, as well as datasets.

System Details. We implemented COLABEL in PyTorch 1.4
on Python 3.8. For our backbones, we use ResNet with
IBN [49], with pretrained ImageNet weights. Experiment
are performed on a server with NVIDIA Tesla P100, and
an Intel Xeon 2GHz processor.

Datasets. We use the following datasets: CompCars[40],
BoxCars116K[34], Cars196[50], VehicleColors[41], and
VeRi[51]. We also obtained our own dataset of vehicles
labeled with color and type annotations using a web
crawler on a

TABLE I: Datasets: We use the boldfaced datasets in our final

evaluations. They are partially annotated. To complete the No

annotations, we use the underlined datasets for each annotation in

CORROBORATIVE INTEGRATION.

Dataset Make Model Color Type
CompCars[40] Yes Yes No  Yes
BoxCars116K[34] Yes Yes No No
Cars196[50] Yes Yes No No
VehicleColors[41] No No Yes No
VeRi[51] No No Yes  Yes

CrawledVehicles (ours) No No Yes  Yes

Color Module

H
: i
1
Feature i Color Features i
Preprocessing ‘ R e T
| : «
H Ty

El E : Fused
1 ! » Complementary
! Type Features ,‘ Foatire

Fig. 6: CoLABEL Dataflow: Feature preprocessing extracts coarse
feature maps for each branch. Branches extract branch specific
features. These complementary features are fused for vehicle
classification. In addition, branch specific features provide important
metadata for the images.

variety of car-sale sites, called CrawledVehicles. Datasets are
described in Table I.
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We use CompCars, BoxCars116K, and Cars196 for end-toend
evaluations. Their annotations are incomplete, since none contain
all three desired annotations. We complete the ground truth for
these datasets with CORROBORATIVE INTEGRATION.

Dataflow. We show COLABEL’s implementation dataflow in Figure
6. We obtain attention maps from the initial attention modules,
described in §III-B. Attention maps are provided to each branch,
which select best-fit attention map for their corresponding feature
extractors. For example, color module clusters vehicles based on
color, while the type module clusters on vehicle type according to
labels from Table I. Finally, we fuse features to obtain predictions.

B. Corroborative Integration

CompCars, Cars196, and BoxCars116K are missing annotations
from our desired interpretable annotation list of make, color, and
type (see Table I). We use CORROBORATIVE INTEGRATION to
augment these datasets. Specifically, we use
VehicleColors, CrawledVehicles, and VeRi to label Cars196,
BoxCars116K, and CompCars with color annotations. Then, we
use CompCars and CrawledVehicles to label Cars196 and
BoxCars116K with type annotations.

Color Model (Color-CM). Color-CM is a team of 3 models, where
each model is trained with VehicleColors, CrawledVehicles, or
VeRi, respectively. During training of each model, we use
horizontal flipping, random erasing, and cropping
TABLE II: Color-CM: Accuracy of Color-CM teams in labeling
heldout datasets with color annotations. For each column’s
evaluation, the team member models are trained with the datasets of
the other 2 columns.

VehicleColors VeRi CrawledVehicles
Initial 0.87 0.84 0.86
+Early Stop 0.89 0.9 0.92
+Compression (90) 091 091 0.92
+Compression(90, 70, 50) 094 093 0.94
+Labeling Team 095 0.95 0.96
+Agreement 098 0.97 0.98

TABLE III: Type-CM: Accuracy of Type-CM team in held-out
dataset with type annotations.

CompCars  CrawledVehicles VeRi

Initial 0.86 0.88 0.86
+Early Stop 0.89 091 0.89
+Compression (90) 0.91 091 091
+Compression(90, 70, 50) 0.93 0.94 094
+Labeling Team 0.96 095 0.95
+Agreement 0.98 097 0.98

augmentations to improve training accuracy. For the JPEG
compression ratios of each model, we test with 2 schemes: (a)
with a single additional ratio of quality factor 90, and (b) 3
additional ratios with quality factors 90, 70, and 50. We use
majority voting from the JPEG compression ensemble. Then
with majority weighted voting from team member models, we
arrive at the final prediction.

We evaluate with held-out test sets from the labeled subset
of datasets. Specifically, we conduct three evaluations. For
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each of the 3 Ilabeled datasets VehicleColors,
CrawledVehicles, and VeRi, we use one for testing and the
remaining 2 for building the team. Results are provided in
Table I1.

On each held-out dataset, initial accuracy is ~0.86.
With cross-validation early stopping, we can increase this
to ~0.91 With JPEG compression with 3 ratios, we can
increase accuracy by a further 3%. By teaming several
models, we further increase accuracy to ~0.95 Finally, we
add the agreement constraint, where we accept a label only
if > 50% of models have agreed on the label. This
improves labeling accuracy by an additional 3%, to 0.98.
On the held-out test set, we can thus label 90% of the
samples, with the other 10% remaining unlabeled due to
disagreements.

With these strategies, we label color for BoxCars116K and
Cars196 using CORROBORATIVE INTEGRATION. COLABEL
can label 88% of the images in these datasets. Figure 7
shows a sample of these images and their assigned labels
in Cars196.

Type Corroborative Model (Type-CM). The team for type
annotation labeling is trained with ground truth in
CompCars, CrawledVehicles, and VeRi to label
BoxCars116K and Cars196. The training process is
similar to Color-CM.

Table III shows held-out accuracy on test sets. The
initial accuracy is 0.87, and with early stopping and JPEG
compression, we can increase accuracy by 4%, to 0.94.
Team of models
Cars196

) ]
e 1

VeRi Yellow
CrawledVehicles E ; ;

Color-CM

VehicleColors

z  CompCars Sedan SUV. Truck
i VeRi Sedan Truck
. CrawledVehicles Sedan SUV Truck
Color Yellow Red Black =
Type Sedan Suv Truck =
Fig. 7: Labeled Carsl96 Images: Using CORROBORATIVE

INTEGRATION, we can assign color and type annotations to Cars196
images. For some images with multiple vehicles or occlusions, we
leave blank annotations if CORROBORATIVE INTEGRATION cannot find

agreement on the labels.
m—— Colabel === Colabel-Multiinput === ColLabel-FusionOnly

6 1.0
>
3 505
P-4
0 10 20 30 40 50 0.0 10 20 30 40 50
Epochs Epochs

Fig. 8: Convergence of COLABEL: We compare convergence with
respect to loss minimization and accuracy of COLABEL against
CoLABEL-MuLTIINPUT and COLABEL-FUSIONONLY on CompCars.
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CoLABEL-MULTIINPUT has multiple inputs, which slows learning of fuse-
able branch features. COLABEL-FUSIONONLY uses only the fused feature
loss without local harmonization, which reduces effectiveness of feature
fusion.

increases accuracy to 0.96. By adding JPEG compression
agreement to team members, we arrive at a final accuracy of 0.98.
On our desired ground truth of BoxCars116K and Cars196, the
team of Type-CM models corroboratively labels 91% of samples.

C. Complementary Features

After CORROBORATIVE INTEGRATION, we have our desired
interpretable annotations in the BoxCars116K, CompCars, and
Cars196 datasets. Here, we demonstrate interpretable
classification with COMPLEMENTARY FEATURES. Shared Input
Block. We first cover the shared input block. The shared block is
important for feature harmonization to ensure complementary
features are extracted from a common set of convolutional features
to improve semantic agreement. Further, the shared block is
updated with backpropagated loss from all branches, ensuring the
shallow features it extracts are usable by all branches. In turn, this
improves convergence and training time for COLABEL. We show
in Figure 8 the impact of the shared input block in convergence by
comparing loss over time between COLABEL and COLABEL-
MULTIINPUT, a model with an input for each branch. The shared
input block improves weight convergence and training time; we
will discuss
COLABEL-FUSIONONLY in the figure in §IV-D

Make Branch ii e Branch

Color Branch

Attention masks

Fig. 9: Attention masks: We obtain attention masks from the attention
modules in CORROBORATIVE INTEGRATION. We show a few of the
attention masks in shallow layers of each branch that help the branch
extract their annotation-specific features.

TABLE IV: Impact of attention: COLABEL with attention outperforms
model without attention (NOATT) across all classification tasks. For
VMMR, attention yields between 4-5% improvement across all

datasets.
CompCars Cars196 BoxCars116K
CoLabel NoAtt | CoLabel NoAtt | CoLabel NoAtt
Classification 0.96 0.89 0.94 0.91 0.89 0.84
Color 0.95 0.94 0.96 0.91 0.93 0.89
Type 0.96 0.92 0.96 0.92 0.91 0.85
Make 0.95 0.91 0.92 0.87 0.87 0.81

Attention Modules. COMPLEMENTARY FEATURES also uses
attention modules in both the shared input block and the
complementary feature branches. Attention improves feature
extraction in both cases. For the shared input layer, attention
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masks identify image region containing relevant features
for each branch. For complementary features, attention
further improves feature extraction accuracy, shown in
Table IV. The make branch improves classification
accuracy from 0.91 without attention (NOATT) to 0.95 by
including attention in the branch.

Attention Masks. We show attention masks of each branch
in Figure 9. While attention masks are generally black-
boxes, COLABEL’s interpretability allows us to make
educated guesses about the masks. Masks for each branch
are visually similar to each other, indicating attention has
been clustered by

CORROBORATIVE INTEGRATION. Further, the make branch
masks indicate the branch focuses on the logo area of
vehicles. Similarly, the type branch masks focus on the
general shape of the vehicle at the edges. The color branch
masks extract overall vehicle color information.

D. Collaborative Learning

Finally, COLABEL fuses complementary features to
generate final features for VMMR classification. We
evaluate COLABEL end-to-end to demonstrate the
feasibility of inherently interpretable models with several
experiments.

Impact of Loss Functions. First, we show the impact of

loss functions on training convergence and accuracy on the

CompCars dataset. Figure 8 compares COLABEL to a

COLABEL-FUSIONONLY, which uses only the final fused

loss and without the local harmonization losses. We also
TABLE V: Impact of Harmonization Loss: Across all datasets, using
both local harmonization loss and final fused loss significantly
1Improves accuracy.

CompCars Cars196 BoxCars116K
CoLabel 0.96 0.94 0.89
FusionOnly 0.87 0.84 0.81

TABLE VI: CoLABEL vs Non-Interpretable Models: We show
performance of COLABEL against several states-of-the-art. COLABEL
achieves similar performance with the added benefit of
interpretability. Further, interpretability allows us to exploit
disagreements between classifications and existing knowledgebases
to further improve accuracy. We show this with COLABEL-MATCH, a
model that selfdiagnoses mistakes using existing knowledge about
vehicle makes, models, and types.

CompCars BoxCars116K  Cars196
R50-Att [49] 0.90 0.75 0.89
R152 [24] 0.95 0.87 0.92
D161-CMP [24] 0.97 - 0.92
R50-CL [23] 0.95 0.86 -
CoLabel 0.96 0.89 0.94
CoLabel-Match 0.97 0.93 0.94

show accuracy across datasets in Table V. By adding the local
harmonization loss to improve feature fusion, we can increase
accuracy by almost 10% on average; on CompCars, we
increase accuracy from 0.87 to 0.96 for VMMR. Without the
harmonization loss, COLABEL-FUSIONONLY converges slower
and has lower accuracy.
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Interpretability and Accuracy. Now, we evaluate COLA-
BEL against several non-interpretable models: (a) R50-Att, a
ResNet50 backbone with a single branch with IBN and attention
[49], (b) R152, a ResNet152 with benchmark results from [24], (c)
D161-CMP, a DenseNet with channel pooling from [24], and (d)
R50-CL, a ResNet50 with unsupervised co-occurrence learning
[23].

For COLABEL, we use a ResNet34 backbone. The first
bottleneck block resides in the shared input block. The remaining
three bottleneck blocks are copied to each branch, as described in
§III-B. For each model, we use image size 224x224, and train for
50 epochs with Ir=1e-4, with a batch size of 64.

Results are shown in Table VI. COLABEL achieves slightly
higher accuracy than both R152 and R50-Att, with accuracy of
0.96 on VMMR on CompCars. For Cars196 and BoxCars116K,
COLABEL achieves accuracy of 0.94 and 0.89, respectively. In each
case, COLABEL achieves similar or slightly better performance than
existing non-interpretable approaches.

However, COLABEL’s results are also interpretable, allowing us
to further increase accuracy by retroactive corrections. Given
vehicle models and their ground truth types from existing vehicle
databases [52], we can check where COLABEL'’s type detection and
vehicle model predictions do not agree. This occurs when the
image is difficult to process, either due to occlusion, blurriness, or
other artifacts (an example such disagreement in CORROBORATIVE
INTEGRATION with 2 cars in the same image is shown in Figure 7).
As such, COLABEL generates conflicting interpretations, which are
themselves

TABLE VII: Single-Branch Multi-Labeling: With multi-labeling
output from a single branch in COLABEL-SMBL, we can maintain
interpretability for a single-branch while sacrificing accuracy.

CompCars BoxCars116K  Cars196 H Params
HML [53] 0.65 - - -
CoLabel-SMBL 0.91 0.84 0.89 25M
CoLabel 0.96 0.89 0.94 60M

TABLE VIII: All-v-All vs 2-Stage Cascade: We compare COLABEL
under all-v-all and 2-stage cascade. With COLABEL-2SC, we use a
specialized submodel for each make, simplifying the VMMR
problem. We can benefit from interpretability by including retroactive
correction to further increase VMMR classification accuracy.

CompCars BoxCars116K  Cars196
D161-SMP 0.97 - 0.92
CoLabel (AVA) 0.96 0.89 0.94
CoLabel-Match 0.97 0.93 0.94
CoLabel-2SC 0.97 0.93 0.95
CoLabel-2SC-Match 0.98 0.94 0.95

useful in analyzing the model. Using this variation called
COLABEL-MATCH, we can further increase accuracy solely due
to interpretability, to 0.97, 0.95, and 0.93 on CompCars,
Cars196, and BoxCars116K, respectively.

Single-Branch Multi-Labeling. Since COLABEL uses multiple
branches, a natural question is: could branches be removed
while maintaining interpretability? We compare COLABEL’S
multi-branch interpretability with Single-Branch Multi-

Labeling  approach, called = COLABEL-SMBL. In

COLABELSMBL, we use a single branch for feature extraction.
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The features are then used in 4 parallel dense layers: color,
type, make, and VMMR detection. With COLABEL-SMBL,
we could reduce model parameters, since we use a single
branch. We compare COLABEL-SMBL against COLABEL
and HML [53] in Table VII. COLABEL-SMBL sacrifices
accuracy with the reduced parameters. Further, we also
found COLABELSMBL more difficult to converge, as it
needed fine-tuning of learning rates to contend with the
multiple backpropagated losses. We leave further
exploration of COLABEL-SMBL with other architecture
choices to future work.

All-v-All vs 2-Stage Cascade. Here, we evaluate COLABEL
as a 2-stage cascade (COLABEL-2SC) and compare to all-
v-all (AVA) in Table VIII. AVA is the method we have
described in COLABEL, where final features are used for
make and model classification. In essence, this is a
complex problem where COLABEL’s fused features are
trained with every vehicle model in our datasets. In
COLABEL-2SC, we simplify the problem by creating
classifier submodel (i.e. a dense layer) for each make. The
submodels use COLABEL’ fused features for prediction. So,
given the 78 makes in CompCars, we create 78 submodels.
For each image, COLABEL-2SC’s vehicle make prediction
activates the corresponding classification submodel.

Since COLABEL-2SC works on a simpler problem, we
can improve accuracy from COLABEL, with a trade-off of
increased parameters due to the submodels. COLABEL-
2SC achieves accuracy of 0.97 on CompCars, 0.95 on
Cars196, and
0.93 on BoxCars116K, comparable to D161-CMP [24].
With COLABEL-2SC-MATCH, we apply retroactive
correction to further improve accuracy on CompCars to
0.98 by verifying predictions with make-model-type
knowledgebase [52].

V. CONCLUSION

In this paper, we have presented constructive interpretability
with COLABEL, an inherently interpretable model for feature
extraction and classification. COLABEL contains 3 components
for interpretability. CORROBORATIVE INTEGRATION allows us
to complete interpretable annotations in datasets using a
variety of corroborative datasets. COMPLEMENTARY FEATURES
perform feature extraction corresponding to interpretable
annotations. Finally, COLLABORATIVE LEARNING lets
COLABEL fuse features effectively during training using local
harmonization losses for each branch. Per [7], there is no
tradeoff between interpretability and accuracy. Our evaluations
show that COLABEL has superior accuracy to state-of-the-art
black box models. We are also able to exploit interpretability
to selfdiagnose mistakes in classification, further increasing
accuracy with COLABEL-MATCH and COLABEL-2SC-MATCH.
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