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A B S T R A C T

Social robots can assist older adults in their daily life. Verbal conversation is a natural and
convenient way for older adults to interact with social robots. However, most of the existing
conversation-based robot services, such as medication reminders, are rule-based systems. These
systems require many hand-crafted rules and a significant amount of expert knowledge, therefore
they cannot adapt to older adults’ characteristics and dialog history. There are many reinforcement
learning (RL) based methods for task-oriented dialogues, but they mainly focus on completing the
tasks through text-based conversations. Those methods cannot be directly used for elderly care
applications involving human-robot interactions (HRI). Considering the above shortcomings, we
proposed a dialog system adaptation method (DSAM) for social robots. The DSAM is based
on reinforcement learning which considers the characteristics of older adults, the dialog history
and user preference to adapt the dialog policy and improve the dialog module. We implemented
DSAM in our custom-made ASCCBot social robot. To evaluate DSAM, we firstly tested the dia-
log agent which was trained by a user simulator with different settings. The results show that the
obtained agent achieves a good result with the desired dialog flow compared to the baseline agent.
Based on the obtained dialog policy, the adaptation process is evaluated. The results show that
with a good success rate, the number of dialog turns is decreased and the NLU module perfor-
mance is improved by the adaptation process, which proves the effectiveness of DSAM. We also
tested DSAM with human subjects. The results show that the average adaptation success rate is
94.7% and the preference distance reaches 0 after 6 rounds of adaptation while creating reminders
successfully with a limited amount of user feedback.

1. Introduction

The increasing elderly population is creating a growing burden for the younger generation Zhao & Li (2018). Social robots can offer a solution
to this problem. Equipped with cameras, microphones and other advanced sensors, social robots can provide various services to improve the
well-being of older adults and reduce the burden on their caregivers. Social robots can carry out tasks like diet management Su et al. (2020),
companionship Saint-Aime et al. (2007), negative emotion management Pham et al. (2021), fall detection Liang et al. (2021) and clinical screening
interview Manh Do et al. (2021) to improve older adults’ well-being through verbal conversation. In our previous work Su et al. (2021), we
developed a conversation-based medication management robot for older adults.

Although conversational social robots can assist older adults with their daily life, there are still some drawbacks. Firstly, most of the existing
conversational robots are rule-based and require many hand-crafted rules and a significant amount of expert knowledge. Secondly, older adults
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tend to have age-related health issues like memory loss Perlmutter et al. (1987) and hearing impairment Lin et al. (2013). Some older adults may
not be able to pronounce every word clearly due to tooth loss Bitencourt et al. (2019). These robots failed to adapt to older adults’ special needs.
For example, when creating medication reminders, if the older adult cannot express the key information clearly, the social robot will not obtain the
correct entities to create a reminder. Thirdly, existing social robots are not able to learn from the conversations with older adults or improve their
abilities in natural language understanding (NLU) and dialog management.

Assisting older adults to create reminders or carry out clinical screening interviews is regarded as task-oriented conversations. The rule-based
methods Cassell et al. (1994), recurrent neural network (RNN) Abro et al. (2019) -based methods and reinforcement learning (RL) Koo et al.
(2019)-based methods are commonly used to construct task-oriented conversations. The RL-based methods can adapt the dialog policy gradually
according to the conversations with users, which is a desirable feature in human-robot interaction (HRI). Some tasks like booking movie tickets,
flight tickets and restaurant reservations have been implemented using RL-based algorithms Lu et al. (2021). However, most of the researches
using RL-based methods for task-oriented dialogues mainly focus on finishing the tasks through text-based conversations. Those methods cannot
be directly used for many elderly care applications as older adults have the above mentioned cognition impairments and special needs. Therefore
we need a new RL-based dialog policy which is capable of adapting to older adults’ characteristics.

In this paper, we proposed a dialog system adaptation method (DSAM) to create medication reminders, which considers the characteristics of
older adults and the user preference in a reinforcement learning framework. This method can customize the dialog actions of the dialog agent to
fit older adults’ cognitive capacity and learn from the conversation and user feedback to optimize the dialog module. The main contributions of
this paper are three folds. First, this is the first work that applies the RL method to the conversation-based medication reminder for older adults,
which considers the real-world conversation situations instead of the pure text-based dialogues. Second, the proposed DSAM is able to optimize
the dialog policy considering older adults’ characteristics and user preference. Third, we tested the proposed method using both a user simulator
and real human subjects. The preliminary results show that: 1) The obtained basic agent can handle realistic medication reminder conversations
with a good success rate; 2) For the adaptation process, the number of dialog turns is decreased and the NLU module performance is improved
without sacrificing the success rate in the simulation test. In the human subjects test, the adaptation success rate is 94.7% and the preference
distance reaches 0 after 6 rounds of conversation while creating reminders successfully.

The rest of this paper is organized as follows. Section II presents the related work. Section III provides the system overview. Section IV details
the proposed method. Section V gives the experimental results. Finally, Section VI concludes this paper and discusses the future work.

2. Related Work

Conversational social robots have been developed to help people in their daily life. Manh Do et al. (2021) proposed a clinical screening
interview system for older adults. In their system, verbal conversation allowed a social robot to ask older adults various questions in order to detect
mental and physical health problems. Lio et al. (2020) developed a Q&A dialog module for older adults using two robots. Their work reduced
the side effect of speech recognition failures during the conversation. Akiyoshi et al. (2021) proposed a conversational robot to improve users’
mood, in which a column method and a self-schema estimation method were employed to make the users aware of their negative emotions. Su
et al. (2020) developed a social robot that can extract the diet information automatically from conversations among family members, which can
help doctors develop efficient dietary therapy for the patients. Although the above works can provide meaningful assistance to older adults, they
lack adaptation in the sense that the dialog systems cannot learn or be improved over the time.

Reinforcement learning algorithms enable an agent to learn from the interactions with the environment. Qureshi et al. (2018) used the
reinforcement learning algorithm to make social robots master human-like social skills through real-world interaction. An event detector and
predictor was proposed as the intrinsically motivated reward to improve the agent. Ritschel et al. (2019) adapted a social robot’s linguistic style
based on an older adult’s feedback obtained from buttons. They utilized the multi-armed bandit algorithm Vermorel & Mohri (2005) which is a
simplified reinforcement learning algorithm. In order to facilitate children engagement and long-term learning gains using a storytelling robot, Park
et al. (2019) utilized the Q-learning method to personalize a policy based on children’s verbal and nonverbal emotions. By adapting the policy, the
social robot can choose a story with proper lexical and syntactic complexity. To build a task-oriented conversation system, Li et al. (2016) proposed
a user simulator to speed up the training and reduce human work load. However, the trained agent cannot handle complex conversations due to the
design of the reward function. Shah et al. (2016) added an action-specific feedback to the agent action reward instead of just using the task-level
reward which can help speed up the convergence by reducing the reward sparsity and also minimize human involvement.

Robot action adaptation aims to optimize the action to cater for user’s characteristics or preference after interacting with users. Adaptation
can be achieved implicitly from the interaction history or explicitly from the human feedback. Rudary et al. (2004) built an adaptive reminder
system using temporal constraint reasoning with RL which can remind users’ daily activities. The simulation results show that it can adapt to the
user profile and the short-term and long-term changes. However, it is not conversation based and only considers when and how to remind users
properly. How to create medication reminders in a user-friendly way is not included. Ferreira & Lefèvre (2015) proposed a socially inspired reward
function for human-robot dialog. The social rewards are defined based on dialog status and social cues like dialog actions. However, when it comes
to dialog adaptation, the parameters of the reward functions have to be manually varied to fit the user profiles. Wang et al. (2020) leveraged the
policy shaping and reward shaping method to learn from human demonstrations to improve the adaptation efficiency. A potential function based
on multi-variate Gaussian is used to learn a reward function from the state-action pairs. Based on the reward function, the reward sparsity issue can
be mitigated to some extent and the learning efficiency can be improved, but when it comes to real human-robot interaction, the proposed method
only involves the reward from human demonstrations and the task level reward, which is not sufficient to handle the real human-robot environment.
How to use reinforcement learning algorithms for medication management and user adaptation is still an open problem.
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Fig. 1: The ASCCBot social robot platform.

3. System Overview

In this section, we firstly introduce the custom-built social robot. Secondly, the overall architecture of the adaptive robotic dialog system is
proposed. Then the formulation of the RL-based medication reminder is developed. The Deep Q-Network used in this paper is introduced at the
end.

3.1. The Social Robot

Fig. 1 shows the ASCCBot social robot built our lab Manh Do et al. (2021), based on which we implemented the proposed system. The
ASCCBot is able to engage in conversation with humans. It has three parts: head, body and base. The head has two degrees of freedom, which
enables it to track human face and turn to the direction of sound based on sound localization. Its face is a touch screen connected to an embedded
ARM-based minicomputer. Multiple animated facial expressions are realized on the robot face to better engage the users. The robot features an
auditory system which has four microphones to implement sound localization and speech recognition. It also has a vision system which uses a
RGB-D camera for face detection. An Intel NUC with a Core i5 processor is the main computer. The robot is able to play news and music, report
weather, tell jokes and quotes, play games like rock-paper-scissors. The robot can recognize people’s face and take photos. When an emergency
situation occurs, such as a fall, the robot will contact family members or caregivers. The caregivers can then operate the robot remotely to assess
the situation and take further actions. In addition, various functions such as pain evaluation, mood and loneliness detection, as well as cognitive
assessment are implemented in the robot.

Fig. 2: The architecture of the adaptive robotic dialog system. The three orange rectangles show the three learning modules

3.2. System Architecture

In order to enable the social robot to adapt its behaviors to older adults, an adaptive robotic dialog system architecture is proposed as shown in
Fig. 2. This system has two parts: a user simulator that interacts with the dialog agent, and an adaptation module.

1) User S imulator : The user simulator has two functions. Firstly, at the beginning, it is used to interact with the dialog agent to train a basic
dialog policy using Deep Q-Network (DQN) Mnih et al. (2015). It is unrealistic to ask users to interact with the dialog agent from the beginning
since it requires a large number of interaction epochs to get an acceptable performance. We call it the “warm start" stage. Secondly, during the
human-robot interaction stage, based on the statistical result of the dialog history and the user feedback, the user simulator is utilized to adapt the
dialog policy to the user’s characteristics.

2) Adaptation Module : The adaptation module consists of basic conversation modules, a dialog agent and three learning modules as shown
in the orange rectangle in Fig. 2. The basic conversation modules include the Automatic Speech Recognizer (ASR) module, Natural Language
Understanding (NLU) module, Natural Language Generation (NLG) module and Text-to-Speech Synthesizer (TTS) module. These modules can
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parse the user’s input to the dialog agent and take the agent action as the feedback to the users. The dialog agent generates an action in response
to the user’s query. Based on the dialog history, the Reward Updater modifies the reward for different actions to control the dialog flow while the
NLU Updater expands the NLU module’s dictionary to enhance the slot filling ability. Users can directly talk to the robot. The created reminders
are stored in the Database. The touch screen can display the created reminders. If the agent action can not cater for the users’ preference, the users
can select a desired action from a list of suggested actions shown on the touch screen. The feedback is utilized to train a User Preference Model
(UPM). After updating the NLU module, the UPM module and the reward function, the user simulator is employed to talk to the agent to train an
adapted dialog policy, which is utilized in the next round of human-robot conversation.

3.3. Problem Formulation

The dialog agent decides which action it should take based on user’s input and the dialog history, which can be regarded as a Markov Decision
Process (MDP) Levin et al. (1997) which can be described as a tuple {S , A,T,R, γ}. S is the state set. A state s ∈ S includes the latest agent and
user actions, the status of slots, the requested and informed slots and other information that can help the agent make decisions. A is the action set.
The agent can perform an action a ∈ A at each turn. T is the state transition probability matrix. R is the reward function to evaluate agent actions.
γ ∈ [0,1] is the discount factor. The cumulative reward with the discount factor is R =

∑+∞
t=0 γ

trt , where t is time step and rt = R(st , at). The goal of
MDP is to derive an optimal policy which can maximize the cumulative reward. The policy function π is a probability density function and maps
the state to an action π : S → A.

The state and agent actions used by the dialog agent are listed in Table 1, while the abbreviation of the agent or user actions are show in Table
2. The four agent actions REQ, INF, AC and REP combined with the 6 slots result in 24 actions. Therefore, the agent has a total of 29 actions to
choose from. For the user actions, the REQ, INF and MO action combined with the 6 slots result in 18 actions. There are a total of 27 actions in
the user action space. The agent actions are determined based on the characteristics of human-robot interaction and the previous dialog history. For
example, because of the environment noise, speech recognition error, limited NLU ability and user’s unclear voice, sometimes the system cannot
get the correct key entities. Therefore, the agent will perform the action AC to obtain user’s confirmation. The action INF and REQ are to tell the
user the obtained information and request new slots. REP is the response to user’s AR action. S U informs the user all the slots that the agent has
obtained so far. CL stops the conversation.

Table 1: State, actions and slots.

State Agent User Slot
Action Action

user action request inform patient
user inform inform request medicine
slot
agent act ask for confirm dosage

confirmation query
agent request repeat deny query start
slot time
agent inform summary ask to repeat end
slot time
turn number close stop remind

conversation time
filled slots greeting long time no

reply
thanks greeting
ask to deny
modify summary

modify
thanks
other actions

3.4. Deep Q-Network

We use DQN to learn the dialog policy. DQN is a deep neural network that approximates the optimal action-value function, namely Q-function,
Q(st , at;ω) = max

π
(Qπ(st , at)), which gives an expected return if an agent picks an action at while being in state st . Based on the trained Q-function,

the agent can select an action a in a greedy way as a = arg max
a∈A

(Q(st , at;ω)) or in a ε-greedy way where the agent chooses a random action a

under the probability of ε. The temporal difference (TD) algorithms are usually used to train DQN. The idea is to minimize loss function (1) which
measures the distance between the predication Q(st , at;ω) and TD target yt (2) at time step t.

loss = E[(Q(st , at;ω) − yt)2] (1)
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Table 2: Action Notations.

Action Notation Action Notation

ask for AC thanks T H
confirmation
inform INF greeting GR
request REQ modify MO
repeat REP summary S U
ask to repeat AR close CL
stop S C confirm CQ
conversation query
deny query DQ other actions OA
deny summary DS ask to modify AM
long time no LT
reply

yt = rt + γ ∗max
a

(Qπ(st+1, a;ω)) (2)

while rt is the accrual reward from the environment at time step t, ω represents the network parameter and max
a

(Qπ(st+1, a;ω)) is the predicted

reward of action a under state st+1.
The experience replay strategy Adam et al. (2012) is utilized in this paper to improve the performance of DQN. The tuples (st , at , rt , st+1) are

saved in the experience pool. The benefit of using experience replay is that it can make DQN not sensitive to the correlation among the samples,
and increase the data efficiency by reusing the samples Lu et al. (2021).

4. Methodology

In this section, we firstly introduce the user simulator used to interact with the RL agent. Secondly, the reward function to train the basic dialog
policy is proposed. Then the adaptation process is detailed.

4.1. User Simulator

The user simulator mimics human actions to train a RL based dialog agent. We build the user simulator based on the methods in Li et al.
(2016) and Li et al. (2017) while meeting the specific needs of our task. The user actions and slots are listed in Table 1. Based on our observation
of the human-robot dialog history, we find that users may stop the conversation or not reply to the robot for a long time. Therefore, we define two
user actions S C and LT . Because of hearing impairment or the environment noise, the user may not hear robot’s utterance clearly which prompts
them to ask for repeat. Therefore user action AR is defined. CQ and DQ are the response to agent action AC. Considering the randomness and
unpredictability of human speech, we use OA to represent the unrecognized or unexpected user intents. The user simulator can respond DS when
there are slot errors in the agent action S U. As a response, the agent can perform AM to request the correct information and the user response is
MO when needed.

A goal for the user simulator is randomly generated which includes all the six values of the slots shown in the S lot column in Table 1. The
user goal is only visible to the user simulator. For each agent action, the user simulator responds correspondingly. Fig. 3 shows some examples
of the user simulator’s response to agent actions. For example, when the agent performs REQ, the user simulator chooses action INF with the
probability of (1 - Ps_l - Pa_o). Ps_l is the probability of selecting the action S C or LT . Considering the NLU and speech recognition errors, some
errors are added to the inform slots with a probability of Pslot_error . The user actions S C and LT are selected with a probability of Ps_l and AR and
OA are be selected with a probability of Pa_o.

4.2. Reward Function

The reward is a feedback to agent actions, which informs the agent how valuable it is to select a particular action. By adjusting the reward
function, the agent actions can be controlled. In task-oriented dialog systems, important information obtained from users should be confirmed due
to the speech recognition errors, limited NLU ability and unclear human voice. Furthermore, when the users ask the agent to repeat the utterance
because of their hearing impairment, stopping the conversation or not responding for a long time, the agent should respond as expected. We
proposed a reward function in Equation (3) based on human expectation. R1 is commonly used in the ticket or restaurant booking tasks Lu et al.
(2021), which is a task-level based reward. By using R1, the agent can find a shortest dialog flow to finish the task. When the agent obtains all slots
correctly, it is regarded as a success. Otherwise, it is a failed task. The drawback is that this reward makes the agent ignore the expectation under
different user actions. Therefore, we propose R2 and R3 as the supplemental reward. R2 controls the agent action AC. In Equation (5), Au is user
action. Aa is agent action. R3 provides feedback for other agent actions. The idea behind R2 and R3 is that if the agent action meets the expectation,
the reward is +1; otherwise the reward is -1. When the agent action meets the expectation, the total reward Rb is 0 during the conversation, which
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Fig. 3: User simulator response examples.

means there is no penalty on this action. When the users perform action S C or LT and the agent closes the conversation, the reward in R3 is set to
11 based on our experiment results, which means we regard this action as a positive action.

Rb = R1 + R2 + R3 (3)

R1 =


−1, doing task

20, task success

−5, task f ail

(4)

R2 =


1, (Au in [INF])&Aa in [AC])

−1, (Au in [INF])&¬(Aa in [AC])

0, other situations

(5)

R3 =



1 (Au in [AR,OA])&Aa in [RE])

or (Au in [DS ])&Aa in [AM])

−1, (Au in [S C, LT ])&¬(Aa in [CL])

or (Au in [AR,OA])&¬(Aa in [RE])

or (Au in [DS ])&¬(Aa in [AM])

11, (Au in [S C, LT ])&Aa in [CL])

0, other situations

(6)

4.3. Adaptation Method

The purpose of adaptation is to modify the dialog flow to make it fit a particular user’s characteristics and preference while improving the
accuracy of the NLU module. The adaptation is based on the conversation history between the user and the social robot and the user feedback
collected from the touch screen. For the conversation part, we use the method in our previous work Su et al. (2021) to implement the ASR, TTS,
NLU and NLG module. This section mainly focuses on the NLU updater module, the reward updater module and the user preference modeling
module.

1) NLU U pdater : The NLU module includes intent recognition and slot filling. For domain-specific tasks, due to the limited annotated
corpus, slot filling is usually implemented using rule-based methods combined with a dictionary. The size of dictionary can affect the slot filling
performance. Therefore, we propose an NLU Updater as shown in Algorithm I. When the users perform CQ to agent action AC (Line 6-12), the
dictionary is expanded. If the user denies the query and confirms it after another round of conversation (Line 13-22), the correct pair is recorded to
fix speech recognition errors.

2) Reward U pdater : The reward function Rb enables the agent to obtain a fixed dialog policy, which cannot be adapted. The agent action
AC is to ensure the correct slot values, which is important because the NLG model needs to use the collected slots to generate a good output
utterance. For example, when the agent asks the start time after collecting medicine : f lu medicine, the NLU module can generate the utterance
when will you start taking f lu medicine? If there is an error with the slot medicine, the NLU module will generate a wrong utterance which
may reduce the users’ satisfaction. However, if the agent keeps asking the user to confirm the information that is already clearly expressed in the
past, it will also reduce users’ satisfaction. Therefore, we believe that after interacting with the users for several rounds, it would be beneficial
if the agent can adapt its actions to further improve the dialog policy. We proposed a Reward U pdater to change the reward function for this
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Algorithm I: NLU Updater

Input:
Dialog history H = {H1,H2, ...,Hi, ...,Hm}, m is the
number of dialogs in the history. Li is the number of
turns of dialog Hi; NLU dictionary D and accept
threshold α;

Output:
Updated NLU dictionary D;

1: for Hi ∈ H do
2: for j ∈ Li do
3: agent_utterance = Hi j, user_utterance = Hi( j+1)

4: agent_action = agent_utterance[action]
5: user_uaction = user_utterance[action]
6: if agent_action = AC & user_uaction = CQ then
7: slot = agent_utterance[request slot]
8: value = agent_utterance[request slot][value]
9: if repeat_times(slot,value) ≥ α then

10: D[slot]← D[slot] ∪ value
11: end if
12: end if
13: ac_path = [DQo, INFp, CQq]
14: or [AMo, INFp, CQq]
15: if Judge(ac_path, user_utterance) = True then
16: error_value = Hi(o−1)[request slot][value]
17: true_value = Hi(q−1)[request slot][value]
18: pair = [error_value , true_value]
19: if repeat_times(pair) ≥ α then
20: D[correctionpair]← D[correctionpair]
21: ∪ pair
22: end if
23: end if
24: end for
25: end for
26: Return D

purpose, which is shown in Algorithm II. R2 is updated if the conversation follows the ac_path. ¬DQo means the agent action AC is not denied.
Judge(ac_path, user_utterance, S i) decides if the user follows the action path ac_path when the agent requests S i.

3) User Pre f erence Modeling : Different people have different preferences on the agent actions, such as the order of the request entities
or the generated response utterance. Therefore, it is not a good idea to provide the same dialog policy for different users. Furthermore, from
our observation, when it comes to the request slots, the order of the request changes every time the RL model is trained. It can generate some
unconventional request orders like requesting end time at the beginning and the start time in the end. Therefore, it would be better to enable users to
explicitly show their preference and allow the agent to adjust its action according to users’ feedback. In this paper, we focus on the user preference
of request slot orders.

To collect user feedback, we built a User Interface (UI) as shown in Fig. 4. Users can push the buttons on the Agent Action Suggestion column
to provide a feedback if the current agent action does not fit their preference. Besides, the Obtained Information column shows the collected slots
and the top of the UI shows the current utterances of the user and the agent which make it easier for users to observe and track the interaction
process.

The user feedback events can be divided into three classes: no f eedback ( f0), negative f eedback ( f1) and positive f eedback ( f2). We assign
the three events to the preferences no pre f erence (p0), dislike (p1) and like (p2). The item Situation (S itu) is used to represent the user preference
features as can be seen in Table 3. The more feedback and features, the better the user preference can be learned. However, it is impractical to ask
the users to provide a large amount of feedback. In order to reduce the requirement of the amount of feedback to model the user preference, only
the key actions and slots are selected as features. The user preference feature consists of the last user action, the last user slot, the current agent
action and the current agent slot, which is a 42-d vector. In real HRI, users may not provide feedback and sometimes they may provide different
feedback for the same situation because of operation mistakes or change of their preference. Therefore, we use the overwrite strategy in which the
old feedback will be replaced by the new feedback when it comes to the same situation. When users select the button which shows the same action
as the current agent action ( f2), this situation is marked as p2. When it is different ( f1), there are two pieces of feedback. The current situation is
regarded as p1 and another situation is generated based on the feedback and marked as p2 as shown in Table 3. When the event is f0, the situation
is regarded as p0.
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Algorithm II: Reward Updater

Input:
Dialog history H = {H1,H2, ...,Hi, ...,Hm}, m is the
number of dialogs in the history. Li is the number
of turns of dialog Hi; Accept threshold β, update
threshold N, step size K; Slots S lot = {S 1, S 2, S 3, S 4,

S 5, S 6}, S 1 corresponds to slot patient in the Slot
column in Table 1;

Output:
Updated reward function Rnew;

1: Initialize con f irm_vector=[0, 0, 0, 0, 0, 0]
2: ac_path = [¬DQo, INFp, CQq]
3: if m ≥ N then
4: for Hi ∈ Hsub = {Hm−B, ...,Hm} do
5: for S i ∈ S lot do
6: if Judge(ac_path, user_utterance, S i) = True
7: or Judge(¬AC, user_utterance, S i) = True
8: then
9: con f irm_vectori = con f irm_vectori + 1

10: end if
11: if Judge(AM, user_utterance, S i) = True
12: then
13: con f irm_vectori = con f irm_vectori - 1
14: end if
15: end for
16: con f irm_vector = con f irm_vector / N
17: for Ci ∈ con f irm_vector do
18: if Ci ≥ β then

19: R2i =



1, (Au in [INF])

&(Au[slot] = S i

&Aa¬ in [AC])

−1, (Au in [INF])

&(Au[slot] = S i

&Aa in [AC])

0, other situations
20: end if
21: end for
22: N = N + K
23: Rnew = R1 + R2 + R3

24: Return Rnew

The user preference feature is represented by a 42-d vector and classified into 3 classes. Therefore, we model the user preference as a
classification task. There are many models like the RNNs or Convolutional Neural Networks (CNNs) Xu & Sarikaya (2013) that can be used for
this task. For generalization and simplicity purpose, the Multilayer Perceptron (MLP) algorithm Taud & Mas (2018) is utilized to model the user
preference. Based on the user preference model, a user preference reward function Rp is proposed as shown in Equation (7).

Rp =


0, p0 == MLP(S itu),

−1, p1 == MLP(S itu),

1, p2 == MLP(S itu).

(7)

5. Experimental Evaluation

We implemented the DSAM in our ASCCBot social robot. This section presents the experiments and evaluations of this system.
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Fig. 4: The UI for user feedback.

Table 3: Preference features.

Original Preference Generated Preference
Feature Feature

last user action last user action
last user slot last user slot
current agent action user feedback action
current agent slot user feedback slot

p0, p1, p2 p2

5.1. Agent Learning Process Evaluation

In order to evaluate the performance of the dialog agent equipped with the basic reward function Rb, we set different user simulator parameters
to test the dialog agent. R1 is a task-level reward function which is commonly used in the RL-based dialog systems like ticket booking and
restaurant booking and is regarded as a baseline reward. We also tested the performance of the dialog agent equipped with R1 to compare with that
of Rb.

1) Experimental Setup: We used the user simulator to train the basic dialog policy. The user simulator randomly selects a goal from the user
goal set. We generated 500 user goals based on the collected dictionary which includes the medicine, patient name, dosage and time information.
Each user goal has one reminder with 6 slots. To simulate the user actions like stop conversation, long time no reply or ask to repeat that appears
occasionally, we set Ps_l to 0.05 and Pa_o to 0.1. The slot error rate Pslot_error is set to 0.1, 0.3 and 0.7 to test the system robustness, simulating the
expert users, medium users and poor performance users, respectively. The maximum dialog turns are set to 50. The RL policy agent is a single
layer neural network with a hidden layer size of 80. During the training, we used ε-greedy strategy to choose agent action, where ε is set to 0.03.
Before training, the user simulator talks with a rule-based dialog agent to generate some initial experience with 100 conversation episodes. This
experiment includes 200 interaction epochs. In each epoch, there are 200 conversation episodes. The dialog agent is updated at the end of each
epoch.

2) Results and Analysis: The experiments were repeated for 5 times for each parameter setting. Fig. 5 (a) and (b) show the success rate and the
average turns in each epoch with different slot error rates when using the proposed basic reward function Rb. Fig. 5 (c) and (d) show the success
rate and the average turns in each epoch with different slot error rates when using the baseline R1. The boundaries of the shaded region show the
maximum and minimum value of the 5 runs. The middle line shows the average of the 5 runs. The results indicate the following:

• Equipped with the proposed basic reward function Rb, as can be seen from Fig. 5 (a), when the slot error is 0.1 and 0.3, the success rates
are similar with both above 0.9. Error rate 0.1 needs less than 50 epochs while error rate 0.3 needs almost 60 epochs to converge, which
means the larger the error rate the more time for the agent to find a good action. Fig. 5 (c) shows the success rate using the baseline R1. We
can observe that when the slot error is 0.1, it has a similar result as Rb. When the slot error is 0.3, using R1 it takes almost 175 epochs to
reach the same success rate as using Rb. The shadow area of the success rate using R1 is larger than that using Rb, which means the dialog
policy generated by Rb is more robust than R1. When the slot error is 0.7, the success rate using R1 reaches 0.7 and that of using Rb reaches
0.8, which is higher than R1. It indicates that even when the user expresses the incorrect key information with a probability of 70%, the
dialog agent trained with Rb is still able to handle such an extremely poor situation. From Fig. 5(b), we can observe that the average turns
are 20, 24 and 28 for slot error 0.1, 0.3 and 0.7, respectively. The results are similar in Fig. 5(d) for R1. It means the dialog agent generates
different dialog strategies for different situations.

By observing the dialogues between the user simulator and agent using Rb, we noticed that in the slot collecting stage, the dialog flow follows
the sequence: REQ(agent) → INF(user) → AC(agent) → CQ/DQ(user) when there is no other random user action. When using R1, the
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(a) (b)

(c) (d)

Fig. 5: Success rate and average turns of different rewards: (a) – Success rate of Rb; (b) - Average turns of Rb; (c) – Success rate of R1; (d) – Average turns of R1 .

dialog flow follows the sequence: REQ(agent) → INF(user) → REQ(agent) → INF(user). For example, the user informs his name John but
the speech recognition result is Joan. By performing the AC action, the agent can correct this slot immediately which the NLG module can use to
generate the correct utterance for the next turn of conversation like “Hi Jonn, can you tell me the medicine?”. However, with R1’s sequence, the
agent can not correct this slot immediately and generates the wrong utterance like “Hi Joan, can you tell me the medicine?”, which reduces user’s
satisfaction and trust on the service provided by the robot.

For comparison purpose, we constructed a rule-based agent to talk with the user simulator. However, the rule-based agent requires expert
knowledge and 45 hand-crafted rules to achieve the similar results and dialog flow with our proposed method using the basic reward function Rb.
With Rb and the exploration and exploitation property of the RL algorithm, the human effort of constructing rules can be significantly reduced.

5.2. Adaptation Evaluation on Simulated Users

1) Experimental S etup : We utilized the dialog agent trained with the base reward function Rb as the basic model to be adapted, where
Pslot_error of user simulator US 1 is set to 0.2. Another user simulator US 2 is employed to talk with the agent, where Pslot_error is also set to 0.2.
US 2 uses the NLG module to generate text response instead of directly sending the slots and values to the agent. The NLU module is then utilized
to extract entities from the user utterance. The slots patient, medicine and dosage mainly use the dictionaries to extract entities. The slot filling
success rate is largely based on the dictionary. Therefore, we focus on the expansion of the three slots’ dictionaries and the corresponding actions.
Their dictionaries are set to be empty before the adaptation. US 2 talks with the agent for 50 episodes. The Reward U pdater is performed after
the 50 episodes and the NLU U pdater is performed after each episode. After the 50 episodes, the agent interacts with US 1 for 50 epochs with 50
episodes in each epoch, where the updated reward function Rnew is utilized. The updated agent is used to interact with US 2 for another round.

2) Results and Analysis : We repeated this experiment for 5 times and got the following results. Fig. 6(a) shows the number of turns in
different rounds. Fig. 6(b) shows the number of times that the system’s NLU module failed to extract the three slots in each round. Fig. 6(c) shows
the average success rate in each round. The results indicate the following:

• From Fig. 6(a), we can observe that Round 1 has the most turns because the first round is based on the basic reward function and without
any adaptation. After the first round, the agent is adapted. Therefore, from Round 2 to Round 5, we can observe that the number of turns
in each episode decreases gradually. At Round 5, the numbers of turns are mostly below 20. Furthermore, from Fig. 6(c), we can observe
that the success rates in Round 4 and Round 5 reach 1.0, which indicates that even with the reduction of the interaction turns, the agent can
still maintain a good performance.
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(a) (b)

(c)

Fig. 6: Adaptation performance in different rounds evaluated on simulated users: (a) – Number of turns; (b) - NLU failure times; (c) - Average success rate.

• Before the adaptation, we set the dictionaries of the slots patient, medicine and dosage to be empty. Therefore, as can be seen in Fig. 6(b),
the NLU module did not work well for slot medicine and dosage at the first round. The person name, which is a well-studied slot in the
named entity recognition domain, is extracted using dictionary and NLTK’s Loper & Bird (2002) part-of-speech tool. Therefore, its failure
time is less than medicine and dosage at the beginning. With the adaptation, the failure time decreases quickly. The improvement on the
NLU module in turn contributes to the reduction of interaction turns and enhancement of the success rate as can be seen in Fig. 6(a) and
Fig. 6(c).

5.3. Adaptation Evaluation on Real Users

1) Experimental S etup : We recruited five users (5 males, between the ages of 25 and 35.) to test the adaptation process. They were asked to
create 10 reminders as shown in Table 4. They also provided feedback through the touch screen by pushing the buttons if the current agent action
do not fit their preference as shown in Fig. 7(a). The user preference model is updated after creating each reminder. For the NLU Updater, the
acceptance threshold α is set to 1. For the Reward Updater, the acceptance threshold β is set to 0.5, update threshold N is 2 and the step size K is 2.

We defined a metric named Preference Distance (PD) to measure the difference between the preferred slot order p and current slot order c.
PD is defined in Equation (8), where n is the number of slots. si is the ith slot. indexp(si) is the index of the si in the slot order p. indexc(si) is the
index of the si in the slot order c. PD is 0 if the two orders are the same.

PD = 2

√√ n∑
i=1

[indexp(si) − indexc(si)]2 (8)

2) Results and Analysis : The users interacted with our social robot through verbal conversation to test the system and provided feedback
through a touch screen. They tested the system based on two settings.

The first setting is for purely modelling the user preference. The users are asked to write down their preferred slot order before the interaction
and create reminders selected from Table 4. It takes each user around 18 minutes to finish the test. Fig. 7(b) shows the PD metric and the number
of feedback provided in the user preference adaptation process and Table 5 shows the corresponding statistical results. The number of feedback
includes f0, f1 and f2 mentioned in Part C, Section IV. The results indicate the following:
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(a) (b)

Fig. 7: Adaptation on real users: (a) – A user is providing feedback to the dialog system; (b) - User preference adaptation in different rounds.

Table 4: Reminder information.

Reminder index Patient Medicine Dosage Start date End date Reminder time

1 Steven Flu medicine 3 pills Today Next Monday 8 am and 3 pm
2 Jack Penicillin 1.5 milligrams Tomorrow December 30th 1 pm
3 Steven Flu medicine 3 pills Today Next Monday 8 am and 3 pm
4 Jack Penicillin 1.5 milligrams Tomorrow December 30th 1 pm
5 Jobs Ibuprofen 2.25 milliliters December 23rd Next Friday At noon
6 Sherry Aspirin 3.5 mg Right now tomorrow 8:30 am
7 Jack Amoxicillin 4.15 ml Today Next Monday 3 pm
8 Steven Cold medicine 3 spoons March 1st The day after tomorrow 9 am and 6 pm
9 Sherry Penicillin 1 mg Today Next Monday 8 am and 3 pm
10 Steven Cold medicine 3 pills Today Next Tuesday In the morning

• From Fig. 7(b), we can observe that the amount of feedback and the preference distance decrease with the increase of the number of
interactions. It indicates that the agent can adapt its actions to the user preference with the obtained feedback. From Table 5 we can
observe that the amount of feedback at Episode 5 and 6 is nearly 0, which means for 4 out of 5 users, they do not need to provide any
feedback during the last two episodes because the user preference model has already modeled their preference. At Episode 6, the mean of
the preference distance is 0, which means that after the adaptation process, the agent can improve its actions to fit all users’ preference.

Table 5: Statistical results of the 6-episode adaptation process.

Metrics
Preference Distance No. of Feedback
Mean Std. Dev. Mean Std. Dev.

Episode 1 6.26 0.74 16.60 1.34
Episode 2 5.33 1.41 6.20 1.30
Episode 3 4.08 2.96 5.00 1.22
Episode 4 1.75 1.64 2.00 1.22
Episode 5 0.69 1.55 0.20 0.45
Episode 6 0.00 0.00 0.20 0.45

The second setting is to combine the NLU Updater and Reward Updater with the User Preference Modeling to evaluate the adaptation
performance. The NLU Updater updates the NLU module after creating each reminder (each episode). The User Preference Modeling is updated
as well. The Reward Updater generates the renewed reward function Rnew after creating every two reminders since each round has two episodes.
The users were asked to create the 10 reminders shown in Table 4. It took each user around 30 minutes to finish the test.

Fig. 8 shows the adaptation process of five users. Fig. 8(a) to Fig. 8(e) show the adaptation process of action AC. Fig. 8(f) shows the
preference distance. If there is a bar of EXP Patient, it means the agent is expected to perform AC on the slot patient. If there is a bar of
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: Adaptation process of 5 rounds: (a) – User 1: Ask confirm action; (b) - User 2: Ask confirm action; (c) – User 3: Ask confirm action; (d) – User 4: Ask confirm action; (e) –
User 5: Ask confirm action; (f) – Slot orders.
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CUR Patient, it means the agent performed AC on the slot patient currently. If the expectation is performed in the current action (Co-occurrence
or co-disappearance of the bar), it is marked as T . We can observe the following from the results:

• In the first two rounds (Reminder 1, 2 and 3, 4), the users need to create the same reminders. Therefore, we can observe that at Round 3,
the results of user 2, user 3 and user 4 are as expected. For user 1 and user 5, because of the user accent and speech recognition error, the
robot did not obtain the correct information even for the same reminder and the users had to ask the robot to modify the information, AC
was performed at Round 3 for some slots. At Round 3 (Reminder 5 and 6), there are two new reminders. Therefore, at Round 4, the two
bars appear as can be seen from user 1 to 5 and the number of turns also increases. At Round 4 (Reminder 7 and 8), the slot patient is not
new, so action AC was not performed for user 1 to 4. The action AC success rates for user 1 to 5 are 93.3%, 100.0%, 100.0%, 100.0% and
80.0%, respectively. The average of the adaptation success rate is 94.7% and the number of turns drops below 20 at the end.

• Similar to Fig. 7(b), from Fig. 8(f) we can observe that the amount of feedback and preference distance decrease with the increase of
the number of interactions. The action AC adaptation is included during the slot order adaptation process, therefore the zero-preference
distance appears one episode later than what is shown in Fig. 7(b). Even in the complex real world situations, because of the proposed
basic reward function Rb, the robot could still finish the tasks for all users to create all reminders successfully based on our observation of
the dialog logs.

5.4. Summary

We conducted 3 experiments to test the proposed system. In the first experiment, we evaluated the performance of the dialog agent with the
basic reward function Rb. The results show that the obtained dialog agent is robust to the slot errors and the dialog flow works as expected. The
second experiment evaluates the performance of the NLU U pdater and the Reward U pdater using a user simulator US 2, the results indicate that
while obtaining a good performance, the number of interaction turns and NLU failure times decrease along with the adaptation process. In the last
experiment, we recruited human subjects to test our system with three adaptation processes. The results show that the average adaptation success
rate is 94.7% and the preference distance reaches zero after 6 rounds of conversation while creating reminders successfully. Both the simulated
and human subject tests show good performance.

6. Conclusion and Future Work

In this paper, we proposed an adaptive robotic dialog system for medication reminder using reinforcement learning. A user simulator is
developed based on previous dialog history considering real interaction situations. In this system, the dialog policy and the NLU module can be
improved based on human-robot conversations and user feedback through a touch screen. We utilized both the user simulator and human subjects
to interact with the dialog adaptation system and the results show that our adaptive robotic dialog system achieves a good performance. Although
the proposed adaptation method is utilized in our medication reminder application, this method can be used in many other task-oriented dialog
systems and real-world human-robot interactions. In the future, we will improve the efficiency of the reinforcement learning algorithm to reduce
the training time. We will also explore multi-modal feedback data to further reduce human’s involvement in the adaptation process.
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