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This paper is concerned with the analysis of blow-ups for two McKean–
Vlasov equations involving hitting times. Let (B(t); t ≥ 0) be standard Brow-
nian motion, and τ := inf{t ≥ 0 : X(t) ≤ 0} be the hitting time to zero of a
given process X. The first equation is X(t) = X(0−) + B(t) − αP(τ ≤ t).
We provide a simple condition on α and the distribution of X(0−) such
that the corresponding Fokker–Planck equation has no blow-up, and thus the
McKean–Vlasov dynamics is well defined for all time t ≥ 0. Our approach
relies on a connection between the McKean–Vlasov equation and the super-
cooled Stefan problem, as well as several comparison principles. The second
equation is X(t) = X(0−)+βt +B(t)+α lnP(τ > t), t ≥ 0, whose Fokker–
Planck equation is nonlocal. We prove that for β > 0 sufficiently large and α

no greater than a sufficiently small positive constant, there is no blow-up and
the McKean–Vlasov dynamics is well defined for all time t ≥ 0. The argu-
ment is based on a new transform, which removes the nonlocal term, followed
by a relative entropy analysis.

1. Introduction and main results. Complex systems are central to the scientific model-
ing of real world phenomena. A challenge in mathematical modeling is to provide reasonably
simple frameworks to capture the collective behaviors of individuals with intricate interac-
tions. One famous example is the McKean–Vlasov equations, which were considered by Kac
[23] in the context of statistical physics, and were further developed by McKean [30] to study
weakly interacting particles. The McKean–Vlasov equations have proved to be a powerful
tool for modeling the mean field behavior of disordered systems, with applications including
the dynamics of granular media [4, 5], mathematical biology [6, 24], economics and social
networks [10, 22], and deep neural networks [31, 34]. There have been a rich body of works
on McKean–Vlasov equations, see [8, 9] for a detailed exposition.

In this paper, we are concerned with a class of generalized McKean–Vlasov equations
which involve hitting times as boundary penalties. These equations take the general form

(1.1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

X(t) = X(0−) + βt + B(t) + f
(

s(t)
)

, t ≥ 0,

τ := inf
{

t ≥ 0 : X(t) ≤ 0
}

,

s(t) := P(τ ≤ t),

where X(0−) has a distribution supported on (0,∞), β ∈ R is the drift, (B(t); t ≥ 0) is
standard Brownian motion, and f : [0,1) →R is a feedback function. While our approaches
may be used to study general cases, we focus on the following two special scenarios.
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1. β = 0 and f (x) = −αx, α > 0: The equation (1.1) specializes to

(1.2)

{

X(t) = X(0−) + B(t) − αP(τ ≤ t), t ≥ 0,

τ := inf
{

t ≥ 0 : X(t) ≤ 0
}

.

This model was originated in the study of the integrate-and-fire mechanism in neuroscience,
from both probability aspects [15, 16] and PDE perspectives [7, 11, 12]. It also arose as
a toy model to study the mean field behavior of contagious financial networks [21]. These
works mainly dealt with the well-posedness of the McKean–Vlasov dynamics (1.2). By let-
ting p(t, ·) be the subprobability density of X(t)1{τ>t} and N(t) := ∂tP(τ ≤ t), the corre-
sponding Fokker–Planck equation is

(1.3)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

pt =
1

2
pxx + αN(t)px in [0, T ) × (0,∞),

N(t) = 1

2
px(t,0), p(t,0) = 0 for t ∈ [0, T ),

p(0, x) = p0(x) for x ∈ [0,∞),

where p0(x) is the probability density of X(0−). As was shown in [11], the negative feedback
α ≤ 0 is classical, and there is a unique smooth solution to (1.3) for all t ≥ 0. The positive
feedback α > 0 is more subtle [7, 21]: s(t) := P(τ ≤ t) may not be absolutely continuous,
and there may exist T∗ > 0 such that N(T∗) = ∞. Such T∗ is called a blow-up, which is the
main obstacle to analyze the Fokker–Planck equation (1.3), and study the well-posedness of
the McKean–Vlasov dynamics (1.2). To work around the blow-ups, [16] proposed the notion
of a “physical solution” satisfying s(t) − s(t−) = inf{x ≥ 0 : P(X(t−) ∈ (0, αx)) < x} to
the McKean–Vlasov dynamics (1.2), and proved the global existence by a particle system
approximation. A recent breakthrough [17] connected the Fokker–Planck equation (1.3) to
the supercooled Stefan problem, and as a byproduct the uniqueness of the physical solution
is proved in the presence of blow-ups. See also [2, 14, 28] for related developments.

2. f (x) = α ln(1 − x), α > 0: The equation (1.1) specializes to

(1.4)

{

X(t) = X(0−) + βt + B(t) + α lnP(τ > t), t ≥ 0,

τ := inf
{

t ≥ 0 : X(t) ≤ 0
}

.

Similar to [21], this model was proposed in [32] to study the systemic risk of default financial
networks. The nonlinearity of “ln” comes from the assumption that after k banks default at
time t , the value of each remaining bank is reduced by a factor of (1 − k

# banks at time t−)−α .
Such a phenomenon is called a default cascade. By letting q(t, ·) be the subprobability den-
sity of X(t)1{τ>t} and λ(t) := ∂t lnP(τ > t), the corresponding Fokker–Planck equation is
nonlocal:

(1.5)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

qt = 1

2
qxx −

(

αλ(t) + β
)

qx in [0, T ) × (0,∞),

λ(t) = −
1

2

qx(t,0)
∫ ∞

0 q(t, y) dy
, q(t,0) = 0 on [0, T ),

q(0, x) = q0(x) on [0,∞),

where q0(x) is the probability density of X(0−). Note that the equation (1.5) is slightly
different from that in [32], Section 3, since we define λ(t) as ∂t lnP(τ > t) instead of
α∂t lnP(τ > t). There may also exist a blow-up T∗ such that ‖λ‖L2[0,T∗] :=

∫ T∗
0 λ2(t) dt = ∞.

It was proved in [32] that a physical solution exists for all time t . The uniqueness is still open,
though it is believable that the arguments in [17] carry over to this setting.
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As we have already seen, the main difficulty in analyzing the McKean–Vlasov dynamics
involving hitting times arises from the blow-ups. Though [16, 17, 32] proposed the physical
solution to overcome this problem, it is still interesting to know whether there is a blow-up
or not. This is because the existence of a blow up implies a possible systemic risk event in a
financial network. To be more precise, we ask the following question.

QUESTION. Under what conditions on the distribution of X0− is there no blow-up in the
Fokker–Planck equations (1.3) and (1.5) respectively?

If there is no blow-up, the physical solution coincides with a smooth solution possibly in
some weak sense. We simply say that the McKean–Vlasov dynamics is (well-)defined for all
t ≥ 0 if the corresponding Fokker–Planck equation does not exhibit blow-ups, and is hence
defined for all time in the classical sense. In [15, 21], no blow-up conditions for the Fokker–
Planck equation (1.3) have been studied, which assure that the McKean–Vlasov dynamics
(1.2) is defined for all time t ≥ 0. However, these conditions seem to be obscure, and are not
easy to check. No blow-up conditions for the Fokker–Planck equation (1.5) have yet been
explored, and it was conjectured in [32] that there is no blow-up if α is sufficiently small.

In this paper, we provide a simple criterion on the distribution of X0− under which the
Fokker–Planck equation (1.3) does not have any blow-up. We also study the problem of
blow-ups for the Fokker–Planck equation (1.5), resolving the aforementioned conjecture. To
state the results, we need the following definition of weak and generalized solutions to (1.3)
and (1.5), respectively. Below L1

loc([0, T )) (resp. L2
loc([0, T ))) denotes the functions that are

locally uniformly L1 (resp. L2) in [0, T ), and L∞([0, T );L1(R+)) denotes
{

f : [0, T ) ×R→R
+ ∣

∣ f (t, ·) ∈ L1(

R
+)

, sup
t∈[0,T )

∥

∥f (t, ·)
∥

∥

L1(R+) < ∞
}

,

and W
1,2
2 ([0, T ] × [0,∞)) denotes the Sobolev space L2([0, T ] × [0,∞)) whose first weak

derivative in time and the first two weak derivatives in space belong to L2([0, T ] × [0,∞)),
equipped with the associated Sobolev norm.

DEFINITION 1.1.

1. A pair of functions (p,N) is a weak solution to the Fokker–Planck equation (1.3) in
the time interval [0, T ) if

p ∈ L∞(

[0, T
)

;L1(

R
+)

)

, N ∈ L1
loc

(

[0, T
)

),

p, N are nonnegative, and for any test function φ(t, x) ∈ C∞([0, T ′] × [0,∞)) with T ′ < T

such that φ,φt , φx, φxx ∈ L∞([0, T ′] × [0,∞)), we have
∫ T ′

0

∫ ∞

0
p(t, x)

[

−φt (t, x) + αN(t)φx(t, x) −
1

2
φxx(t, x)

]

dx dt

= −
∫ T ′

0
N(t)φ(t,0) dt +

∫ ∞

0
p0(x)φ(0, x) dx −

∫ ∞

0
p

(

T ′, x
)

φ
(

T ′, x
)

dx.

2. [26, 32] A pair of functions (q, λ) is a generalized solution to the Fokker–Planck equa-
tion (1.5) in the time interval [0, T ) if

λ ∈ L2
loc

(

[0, T )
)

,

and for T ′ < T , the unique solution to the equation

qt =
1

2
qxx −

(

αλ(t) + β
)

qx, q(t,0) = 0, q(0, x) = q0(x),

in W
1,2
2 ([0, T ′] × [0,∞)) satisfies λ(t) = −1

2
qx(t,0)

∫ ∞
0 q(t,y) dy

for almost every t ∈ [0, T ′].
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In the above definition, a generalized solution to the equation (1.5) is more restrictive than
a weak solution to the equation (1.3), and it requires the uniqueness along with the existence.
This complication is due to the nonlocal term “

∫ ∞
0 q(t, y) dy” in the Fokker–Planck equation

(1.5). Our first result provides sufficient conditions for the Fokker–Planck equations (1.3) and
(1.5) to exhibit blow-ups, which is in a similar spirit to [7], Theorem 2.2.

PROPOSITION 1.1.

1. If there exists μ > 0 such that

(1.6) μα

∫ ∞

0
e−μxp0(x) dx ≥ 1,

then there is no weak solution to the Fokker–Planck equation (1.3) for all time t ≥ 0. In this

case, the solution can only exist before time

(1.7) T :=
2

μ2 ln

∫ ∞
0 p0(x) dx

∫ ∞
0 e−μxp0(x) dx

.

In particular, if α > minμ>0{(μ
∫ ∞

0 e−μxp0(x) dx)−1,2
∫ ∞

0 xp0(x) dx}, then there is no

weak solution to the Fokker–Planck equation (1.3) for all time t ≥ 0.
2. If there exists a positive number μ > 2β such that

(1.8) (1 + αμ)

∫ ∞

0
e−μxq0(x) dx ≥

∫ ∞

0
q0(x) dx,

then there is no generalized solution to the Fokker–Planck equation (1.5) for all time t ≥ 0.
In this case, the solution can only exist before time

(1.9) T :=
2

μ(μ − 2β)
ln

(

∫ ∞
0 q0(x) dx

∫ ∞
0 e−μxq0(x) dx

)

.

In view of Lemma 2.3, if we further assume

(1.10) lim sup
x→0+

p0(x) <
1

α
and lim

x→∞
p0(x) = 0,

then the solution blows up (N(t) → ∞) before time T with T defined by (1.7). By
Lemma 3.1, if we assume that q0(·) ∈ W 1

2 ([0,∞)) and q0(0) = 0, then there exists a time
treg ∈ (0, T ] with T defined by (1.9) such that limt↑treg ‖λ‖L2[0,t] = ∞. We emphasize that
the physical solution allows the presence of blow ups, and Proposition 1.1 then implies that
the first blow up must occur before time T in each Fokker–Planck equation.

The next theorem, which is our main result, gives a simple condition under which there
is no blow-up for the Fokker–Planck equation (1.3). Thus, a weak solution to (1.3), which is
proved to be a classical one, is defined for all time t ≥ 0. Consequently, the McKean–Vlasov
dynamics (1.2) is defined for all time t ≥ 0.

THEOREM 1.1. Let p0 be a probability density supported on (0,∞) such that (1.10)
holds and

(1.11)
∫ x

0

(

1 − αp0(y)
)

dy > 0 for all x ∈ (0,∞).

Assume that the weak solution (p,N) to the Fokker–Planck equation (1.3) with initial data

p0 exists for a short time. Then it exists for all time t ≥ 0. Moreover, (p,N) satisfies the

equation in the classical sense, and for all t > 0, and for some C > 0 depending only on p0
we have

N(t) ≤ Cα−1(

1 + α−1 +
(

1 + α
1
2
)

t−
1
2 + (ln t)2)

for all t > 0.
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Note that under the assumption (1.10), if we further assume the probability density p0 to
be piecewise continuous, then the weak solution (p,N) exists for a short time. This can be
done by the argument in [19], Theorem 1.3.

Note that the condition (1.11) is weaker than α < ‖p0‖−1
∞ . Indeed, we do not assume

any L∞ bound on the initial data. It was proved in [27], Theorem 2.2, that if α < ‖p0‖−1
∞ , the

McKean–Vlasov dynamics (1.2) is pathwise unique. Combining this result with Theorem 1.1,
we get the following corollary.

COROLLARY 1.1. Assume that limx→∞ p0(x) = 0 and α < ‖p0‖−1
∞ . Then the McKean–

Vlasov dynamics (1.2) is defined for all time t ≥ 0, and is pathwise unique.

Furthermore, we consider the Fokker–Planck equation (1.3) with initial data of form δx0

(delta mass). Applying Proposition 1.1(1) and Theorem 1.1 yields the following corollary.

COROLLARY 1.2. Let α,x0 > 0. Let (p(·, x;x0),N(·;x0)) be a weak solution to the

Fokker–Planck equation (1.3) with initial data δx0 , and assume that (p(·, x;x0),N(·;x0))

exists for a small time. Then:

• if α < x0, the solution p(t, ·;x0) exists for all time t ≥ 0 and N(t;x0) < ∞ for all t > 0.
• if α > 2x0, the solution cannot exist for all time. Moreover, there exists Tx0 > 0 such that

lim supt→Tx0
px(t, ·;x0) = ∞.

Now we turn to the Fokker–Planck equation (1.5). Due to the nonlocal term, it seems to
be difficult to get a simple criterion for no blow-up. Nevertheless, we are able to show that
for any initial data if β > 0 is sufficiently large, and α is no greater than a sufficiently small
positive constant, then a generalized solution to (1.5) and the McKean–Vlasov dynamics
(1.4) is well defined for all time t ≥ 0. This confirms a conjecture in [32], Remark 2.8. Below
W 1

2 ([0,∞)) denotes the Sobolev space of L2([0,∞)) functions whose first weak derivative
belongs to L2([0,∞)).

THEOREM 1.2. Let q0(·) ∈ W 1
2 ([0,∞)) with q0(0) = 0, and assume that q2

0 (x)/x is

integrable on (0,1). There exists C0 > 0 depending only on q0 such that if β ≥ C0 and

α ≤ 1
C0

, then the generalized solution (q, λ) to the Fokker–Planck equation (1.5) with initial

data q0 exists for all time t ≥ 0. Moreover, for some C > 0 depending only on q0 we have

(1.12)
∫ t

0

∣

∣λ(s)
∣

∣

2
ds ≤ C(1 + t) for all t > 0.

Note that [32] only considers the case α > 0, while Theorem 1.2 extends to all α ≤ 0
provided that β > 0 is sufficiently large. As a consequence of (1.12), there exists C ′ > 0 such
that P(τ > t) ≥ exp(−C′t) for all t > 0, which gives a lower bound on the tail of the hitting
time of the McKean–Vlasov dynamics (1.4). The problem of the uniqueness is more subtle. In
our forthcoming paper [3], we prove that for some initial distribution q0, the McKean–Vlasov
dynamics (1.4) for large β and small α is not unique in distribution.

The main idea to prove Theorem 1.1 and Theorem 1.2 consists of comparing the solution
to (1.3) with the self-similar solution to the super-cooled Stefan problem, and comparing
the solution to (1.5) with the stationary solution to a transformed equation. In contrast with
the fixed-point method used in [15, 21, 32], we rely on comparison principles and relative
entropy arguments which are of independent interest.

Organization of the paper. In Section 2, we consider the weak solutions to the equation
(1.3). There we prove Theorem 1.1. Section 3 is devoted to the study of the equation (1.5),
and Theorem 1.2 is proved.
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2. Solutions to the Fokker–Planck equation (1.3). In this section, we study the weak
solutions to the Fokker–Planck equation (1.3). The idea of the proof is inspired from [19],
Theorem 4.1, regarding the supercooled Stefan problem. Using the transformation (2.4) be-
low, it can be deduced from [19] that if

lim sup
x→0+

p0(x) <
1

α
,

the solution p to the equation (1.3) exists for a short time, and within the short time N(t) < ∞
for t > 0. In comparison with [19], our approach is notably different: (1) our existence and
regularity results hold for all time; (2) we consider an unbounded domain. To achieve these,
technically, we need more delicate comparison principles (Lemma 2.4 and Lemma 2.5).

Section 2.1 presents preliminaries on the super-cooled Stefan problem, and its self-similar
solution. In Section 2.2, we provide key comparison lemmas which will be used in the proof
of Theorem 1.1. Theorem 1.1 and Corollary 1.2 will be proved in Section 2.3.

2.1. Preliminaries. We also need the notion of classical solutions to the equation (1.3).
To this end, we assume that the initial data p0 satsifies

(2.1)
p0 ∈ C1(

R
+)

∩ C
(

[0,∞)
)

∩ L1(

R
+)

,

p0(0) = lim
x→∞

p0(x) = lim
x→∞

∂xp0(x) = 0.

DEFINITION 2.1. A pair of functions (p,N) is a classical solution to the Fokker–Planck
equation (1.3) in the time interval [0, T ) for a given T ∈ (0,∞] and with initial data p0
satisfying (2.1), if the following conditions are satisfied:

1. N(t) is a continuous function for all t ∈ [0, T ).
2. p is continuous in [0, T )×[0,∞), p ∈ C1

t C2
x((0, T )×R

+), and for t ∈ (0, T ), p(t,0+)

is well defined and p,px(t, x) → 0 as x → ∞.
3. The equation (1.3) is satisfied in the classical sense.

The following result is a simple variant of [11], Theorem 3.1, Theorem 4.2.

LEMMA 2.1 ([11]). Let p0 satisfy (2.1). Then there exists a unique classical solution to

the Fokker–Planck equation (1.3) in the time interval [0, T∗) for some T∗ > 0. The maximal

time of existence T∗ > 0 is characterized as

T∗ = sup
{

t > 0 : N(t) < ∞
}

.

The lemma can be proved via a fixed point argument using that

	(N)(t) := 2
∫ ∞

0
G

(

t, s(t) − x
)

∂xp0(x) dx +
∫ t

0
N(τ)Gx

(

t − τ, s(t) − s(τ )
)

dτ,

which is derived through Green’s identity, defines a contraction mapping 	 on the space of
{N ∈ C([0, T ]) : ‖N‖∞ ≤ M} for some M > 0 when T is sufficiently small, see, for example,
[11, 20]. Here s(t) :=

∫ t
0 N(τ)dτ and

(2.2) G(t, x) :=
1√
2πt

e−|x|2/2t ,

is the Green function of the heat equation on the real line. After finding out N(t), p(t, x) can
be solved from the first equation in (1.3) on [0, T ]. The solution can then be extended up to
the time of the first blow-up, see Theorem 4.2 [11].
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Now we give a proof of Proposition 1.1(1).

PROOF OF PROPOSITION 1.1(1). Suppose by contradiction that a weak solution exists
for all time. From the weak formulation in Definition 1.1(1), taking φ(t, x) = e−μx for some
μ > 0, we have

(2.3)

∫ ∞

0
e−μxp(t, x) dx −

∫ ∞

0
e−μxp0(x) dx

=
∫ t

0

∫ ∞

0

μ2

2
e−μxp(τ, x) + αμe−μxN(τ)p(τ, x) dx dτ −

∫ t

0
N(τ)dτ.

Since p ≥ 0, this yields
∫ ∞

0
e−μxp(t, x) dx −

∫ ∞

0
e−μxp0(x) dx ≥

∫ t

0
N(τ)

(

αμ

∫ ∞

0
e−μxp(τ, x) dx − 1

)

dτ.

Writing Mμ(t) := μα
∫ ∞

0 e−μxp(t, x) dx − 1, we get

Mμ(t) − Mμ(0) ≥ μα

∫ t

0
N(τ)Mμ(τ ) dτ.

By Gronwall’s inequality (see, e.g., [33], Theorem 2.4.5), using Mμ(0) = μα
∫ ∞

0 e−μx ×
p0(x) dx − 1 ≥ 0 by (1.6), we have for all t ≥ 0 that

Mμ(t) = μα

∫ ∞

0
e−μxp(t, x) dx − 1 ≥ 0.

Therefore by (2.3) again, we obtain
∫ ∞

0
e−μxp(t, x) dx −

∫ ∞

0
e−μxp0(x) dx ≥

μ2

2

∫ t

0

∫ ∞

0
e−μxp(τ, x) dx ds.

This implies that
∫ ∞

0
e−μxp(t, x) dx ≥ e

μ2

2 t
∫ ∞

0
e−μxp0(x) dx → ∞ as t → ∞,

which is impossible. In fact, e
μ2

2 t
∫ ∞

0 e−μxp0(x) dx cannot be greater or equal than
∫ ∞

0 p0(x) dx since otherwise
∫ ∞

0
p(t, x) dx >

∫ ∞

0
e−μxp(t, x) dx ≥

∫ ∞

0
p0(x) dx,

but setting φ ≡ 1 (in the domain of [0, T ′] × [0,∞)) in the weak formulation in Defi-
nition 1.1(1) reveals that the total mass of p is nonincreasing in time. Solving eμ2T/2 ×
∫ ∞

0 e−μxp0(x) dx =
∫ ∞

0 p0(x) dx for T gives the upper bound on the existing time of so-
lutions when (1.6) holds. The second part follows from [21], Theorem 1.1. �

Super-cooled Stefan problem. Let (p,N) be a classical solution to the Fokker–Planck equa-
tion (1.3) in the time interval [0, T ). It is well known that the transformation

(2.4) u(t, x) := p
(

t, x − αs(t)
)

, s(t) :=
∫ t

0
N(τ)dτ

turns the equation into supercooled Stefan problem:

(2.5)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ut =
1

2
uxx in

{

(t, x) : x > αs(t), t ∈ (0, T )
}

,

s′(t) =
1

2
ux

(

t, αs(t)
)

, u
(

t, αs(t)
)

= 0 for t ∈ [0, T ),

u(0, x) = p0
(

x − αs(0)
)

for x ∈
[

αs(0),∞
)

.



MCKEAN–VLASOV EQUATIONS INVOLVING HITTING TIMES 1607

We start with the following simple lemma of a comparison principle between two solutions
with subquadratic growth in unbounded space-time domains.

LEMMA 2.2. Let s∗ : [0, T ] → [0,∞) be a continuous function. Suppose ut ≤ 1
2uxx in

DT := {(t, x) : x > s∗(t), t ∈ [0, T )} in the sense of distribution, that is, for any smooth,
nonnegative ϕ that is compactly supported in DT we have

∫

DT

u(t, x)

[

ϕt (t, x) +
1

2
ϕxx(t, x)

]

dx dt +
∫ ∞

s∗(0)
u0(x)ϕ(0, x) dx ≥ 0.

Let v ≥ 0 satisfy vt = 1
2vxx in DT . Then if u(0, ·) ≤ v(0, ·) in (s∗(0),∞),

lim sup
x→∞

sup
t∈[0,T )

{

u(t, x) − v(t, x)

x2

}

≤ 0 and sup
t∈[0,T )

lim sup
x→s∗(t)

{

u(t, x) − v(t, x)
}

≤ 0,

we have u ≤ v in DT .

PROOF. For any ε > 0, define

vε(t, x) := v(t, x) + εt + εx2.

By the assumption, for all M = M(ε) > 0 large enough we have vε(t,M) ≥ u(t,M) for
all t ∈ [0, T ). Since vε satisfies the heat equation, and vε(0, ·) ≥ u(0, ·), we can apply the
comparison principle (see, e.g., [29], Corollary 6.26) in {(t, x) ∈ DT : x < M} to conclude
that vε ≥ u in {(t, x) ∈ DT : x < M}. Passing M → ∞ yields vε ≥ u in DT . Then passing
ε → 0 yields v ≥ u in DT . �

LEMMA 2.3. Let p0 be a probability density supported on (0,∞) that satisfies (1.10).
Suppose that a weak solution (p,N) to (1.3) exists for a short time. Then there exists T∗ > 0
such that (p,N) can be extended to [0, T∗) and (p,N) is a classical solution for t ∈ (0, T∗).
The maximal time of existence T∗ > 0 is characterized as

T∗ = sup
{

t > 0 : N(t) < ∞
}

.

PROOF. Suppose (p,N) is a weak solution to (1.3) in [0, T ) for some T > 0. Let
u(t, x) = p(t, x − αs(t)), and so u is supported in DT := {(t, x) : x > αs(t), t ∈ [0, T )}.
Since 0 ≤ N(·) ∈ L1

loc, s(t) is a continuous, nondecreasing function satisfying s(0) = 0.
We extend u by 0 to [0, T ) × R. By Definition 1.1(1), we get for any test function ϕ :
[0, T ′] ×R →R with T ′ < T , that is smooth and bounded,

∫ ∞

0
u
(

T ′, x
)

ϕ
(

T ′, x
)

dx =
∫ T ′

0

∫ ∞

0
u(t, x)

[

ϕt (t, x) +
1

2
ϕxx(t, x)

]

dx dt

−
∫ T ′

0
N(t)ϕ

(

t, αs(t)
)

dt +
∫ ∞

0
u0(x)ϕ(0, x) dx.

Thus u solves the heat equation in the interior of DT . Moreover, since N ≥ 0, we have
ut ≤ 1

2uxx in (0, T ) × [0,∞) in the sense of distribution (see Lemma 2.2 with s∗ ≡ 0).
Since supt∈[0,T ) ‖u(t, ·)‖L1((αs(t),∞)) < ∞, by the hypothesis on p,

η(t, x) :=
∫ x

αs(t)
u(t, y) dy + s(t),

is uniformly bounded in DT . The equation yields that η(t, x) solves the heat equation in DT

in the sense of distribution, and η is continuous in both space and time. Then, after restricting
η to (0, T ) × [M,∞) for some M > αs(T ) + 1, we can obtain an explicit representation
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formula for η. Indeed, using the classical reflection method for heat equation with a source
on half-line for η(t, x + M) − η(t,M)e−x (see [35], Section 4.1), we get for all t ∈ (0, T )

and x > 0,

(2.6)

η(t, x + M)

= η(t,M)e−x

+
∫ ∞

0

(

G(t, x − y) − G(t, x + y)
)(

η(0, y + M) − η(0,M)e−y)

dy

+
∫ t

0

∫ ∞

0

(

G(t − τ, x − y) − G(t − τ, x + y)
)

×
(

1

2
η(τ,M)e−y − ηt (τ,M)e−y

)

dy dτ

=
∫ ∞

0

(

G(t, x − y) − G(t, x + y)
)

η(0, y + M)dy

−
∫ ∞

0

(

Gt (t, x − y) − Gt (t, x + y)
)

η(0,M)e−y dy

+
∫ t

0

∫ ∞

0

(

G(t − τ, x − y) − G(t − τ, x + y)
)1

2
η(τ,M)e−y dy dτ,

where G is the Green function given by (2.2), and the integral involving ηt is justified by
integration by parts. Using the formula (2.6), and limx→∞ ηx(0, x) = limx→∞ p0(x) = 0 by
the assumption, we obtain

(2.7) lim
x→∞

sup
t∈[0,T )

u(t, x) = lim
x→∞

sup
t∈[0,T )

ηx(t, x) = 0.

Moreover, it follows from the formula (2.6) (or from the parabolic interior regularity theory
[29], Theorem 11.5, and (2.7)) that

(2.8) lim
x→∞

∂xu(t, x) = 0 for all t ∈ (0, T ).

Now set

(2.9) ũ(t, x) :=
∫ ∞

0

(

G(t, x − y) − G(t, x + y)
)

p0(y) dy

which is then the solution to the heat equation in (0, T ) × R
+ satisfying ũ(t,0) = 0 and

ũ(0, ·) = p0(·). The assumption on p0 yields limx→∞ supt∈[0,T ) ũ(t, x) = 0. Due to (2.7),
it follows from Lemma 2.2 that u ≤ ũ in [0, T ) × R. Due to the first condition in (1.10),
there exists δ > 0 and h > 0 such that ũ < 1

α
for all x ∈ (0, h) and t ∈ [0, δ). Thus, the same

inequality holds for u in place of ũ. By taking δ to be small, we can assume that h > s(δ).
Then, since u is continuous for t > 0, for some M such that M > s(δ)+1, [19], Theorem 1.3,
yields that the following equation possesses a unique classical solution for a short time. For
any ε ∈ (0, δ):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ūt =
1

2
ūxx in

{

(t, x) : x ∈
(

αs̄(t),M
)

, t > 0
}

,

s̄′(t) =
1

2
ūx

(

t, αs̄(t)
)

, s̄(0) = s(ε) for t > 0,

ū
(

t, αs̄(t)
)

= 0, ū(t,M) = gε(t), for t > 0,

ū(0, x) = u(ε, x) for x ∈
(

αs(ε),M
)

,

where gε(t) := u(t + ε,M).
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Note that u and ū are smooth in their support, respectively, for t > 0 by parabolic interior
Schauder estimates (see [25]). Then applying [18], Theorem 3.1, to

∫ x

αs(t+ε)

∫ y

αs(t+ε)

(

1 − αu(t + ε, z)
)

dzdy and
∫ x

αs̄(t)

∫ y

αs̄(t)

(

1 − αū(t, z)
)

dzdy,

yields ū(t, ·) = u(t + ε, ·) and s̄(t) = s(t + ε) for all t ≥ 0 small enough. By (2.7) and (2.8),
p( δ

2 , ·) = u( δ
2 , · + αs( δ

2)) satisfies (2.1). Finally, Lemma 2.1 yields the conclusion. �

Self-similar solutions. For any β > 0, consider the following functions:

(2.10) U(t, x; c,β) := 2α−1βeβ2
∫ x−c√

2t

β
e−z2

dz and S(t; c,β) = α−1(c + β
√

2t).

These functions come from self-similar solutions to the supercooled Stefan problem (see [1,
13]): the pair (U(t, x; c,β), S(t; c,β)) satisfies

⎧

⎪

⎨

⎪

⎩

Ut =
1

2
Uxx in

{

(t, x) : x > αS(t; c,β),0 < t < T
}

,

S′(·; c,β) =
1

2
Ux

(

·, αS(·; c,β); c,β
)

on (0,∞).

It is easy to see that for all x, t > 0,

(2.11) β∞(β) := αU(0, x; c,β) = lim
x→∞

αU(t, x; c,β) = 2βeβ2
∫ ∞

β
e−z2

dz,

and for all β > 0, β∞(β) takes all values in (0,1). Indeed, for all β > 0,

β∞(β) = 2β

∫ ∞

0
e−y2−2βy dy =

∫ ∞

0
e−(2β)−2z2−z dz <

∫ ∞

0
e−z dz = 1.

Moreover, we have the following estimate for all β ≥ 1:

(2.12) β∞(β) =
∫ ∞

0
e−(2β)−2z2−z dz ≥

∫ β

0
e−z(1 − (2β)−2z2)

dz ≥ 1 −
1

β2 ,

where we used that
∫ ∞

0 e−zz2 dz = 2. From the equality in (2.12), we also know that β∞(·)
is an increasing function.

2.2. Comparison lemmas. We first present the following comparison lemma. Instead of
comparing the solutions to the super-cooled Stefan problem (2.5), we consider a linear com-
bination of the solution and its integration. This will allow us to compare a solution that
is possibly large at some points with the self-similar solution U (which is no greater than
β∞/α).

LEMMA 2.4. Suppose (u1, s1), (u2, s2) are two classical solutions to (2.5) in [0, T ) ×
[0,∞). Let γ ∈ [0,1] and for i = 1,2 write

vi(t, x) := γ ui(t, x) +
(∫ x

αsi(t)
ui(t, y) dy + si(t)

)

.

If the following holds for all t ∈ [0, T ):

1. s1(t) ≤ s2(t),
2. v1(0, x) ≥ v2(0, x) for all x > αs2(0),
3. lim infx→∞(v1(t, x) − v2(t, x)) > 0 locally uniformly in t ,
4. v1(t, αs2(t)) ≥ v2(t, αs2(t)),
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then for all t ∈ [0, T ) and x > αs2(t),

v1(t, x) ≥ v2(t, x).

PROOF. Direct computation yields
⎧

⎨

⎩

(vi)t = 1

2
(vi)xx in

{

(t, x) : x > αsi(t), t ∈ (0, T )
}

,

vi

(

t, αsi(t)
)

= si(t), (vi)x
(

t, αsi(t)
)

= 2γ s′
i(t) for t ∈ [0, T ).

By the assumptions, we have w := v1 − v2 satisfies

wt = 1

2
wxx in

{

(t, x) : x > αs2(t), t ∈ (0, T )
}

,

and w(t,αs2(t)) ≥ 0. Also since the condition on the initial data yields w(0, ·) ≥ 0 on {x >

αs2(0)}, and due to the condition 3, the conclusion follows from the maximum principle
(in bounded space-time domain {(t, x) : x ∈ (αs2(t),N), t ∈ [0, T ′]} for any T ′ < T and for
sufficiently large N ) (see, e.g., [29], Corollary 6.26). �

We also use the following transformation as done in [19]: recall that (u, s) is a solution to
(2.5), and define

(2.13) m(t, x) :=
∫ x

αs(t)

∫ y

αs(t)

(

1 − αu(t, z)
)

dzdy,

and

m0(x) :=
∫ x

αs(0)

∫ y

αs(0)

(

1 − αu(0, z)
)

dzdy.

Then m satisfies the following problem:

(2.14)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

mt = 1

2
mxx − 1 in

{

(t, x) : x > αs(t),0 < t < T
}

,

m
(

t, αs(t)
)

= mx

(

t, αs(t)
)

= 0 for t ∈ [0, T ),

m(0, x) = m0(x) for x ∈ [αs(0),∞).

Note that in (2.14), differentiation of s(t) is not involved. However intuitively s(t) can
still be identified through the equation because of the two boundary information (if known
s(t), only one boundary data is needed to solve for m). We have the following comparison
principle.

LEMMA 2.5. Suppose (u1, s1), (u2, s2) are two classical solutions to (2.5) in [0, T ) ×
[0,∞) with nonnegative initial data u1,0, u2,0 that are supported in (αs1(0),∞) and

(αs2(0),∞) respectively. Write their corresponding transformations as m1, m2. Suppose the

following holds for all t ∈ [0, T ):

1. (s2(0) ≤ s1(0), s′
2(0) < s′

1(0)) or (s2(0) < s1(0)),
2. m2(0, ·) ≥ m1(0, ·) in [0,∞),
3. m2(t, x) ≥ 0 for x > αs2(0),
4. lim infx→∞(m2(t, x) − m1(t, x)) > 0, lim infx→∞ m2(t, x) > 0.

Then s2(t) < s1(t), and m1(t, ·) < m2(t, ·) for all t ∈ (0, T ).
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PROOF. The proof is identical to that in Lemma 3.1 and Remark 3.2 in [19]. �

Recall the self-similar solutions (U,S) given in (2.10). The idea of controlling N(t) in
(1.3) and then proving long time existence of solution is to apply the above two comparison
principles to compare the free boundaries of a general solution u and the self-similar solution
U with certain choices of c, β . We first show that S(t; c,β) ≥ s(t) for c > 0.

LEMMA 2.6. Let (u, s) be a classical solution to the super-cooled Stefan problem (2.5)
for t ∈ [0, T ), such that

(2.15) ‖u0‖L1(R+) ≤ 1, ‖u0‖∞ < ∞, lim
x→0

u0(x) + lim
x→∞

u0(x) = 0,

and

(2.16)
∫ x

0

(

1 − αu0(y)
)

dy > 0 for all x ∈ (0,∞).

There exists C0 ≥ 2 depending only on u0 such that for all β ≥ C0, we have

s(t) ≤ S(t;0, β) = α−1β
√

2t for all t ∈ [0, T ).

PROOF. Recall that u(t, x) solves the supercooled Stefan problem:

ut = 1

2
uxx in

{

x ∈
(

αs(t),∞
)

, t ∈ [0, T )
}

,

u
(

t, αs(t)
)

= 0 and ux

(

t, αs(t)
)

= s′(t).

Since s(·) ≥ 0, comparison principle yields u ≤ ũ where the latter is given by (2.9). By the
assumption u(0, x) → 0 as x → ∞, we have limx→∞ ũ(t, x) = 0 (uniformly in t), which
implies that limx→∞ u(t, x) = 0 uniformly in t . Thus for all t ∈ [0, T ) we have

(2.17) lim inf
x→∞

U(t, x; c,β) = α−1β∞ > 0 = lim
x→∞

u(t, x).

Let m be defined as in (2.13), and we also define

M(t, x; c,β) :=
∫ x

αS(t)

∫ y

αS(t)

(

1 − αU(t, z; c,β)
)

dzdy.

It follows from (2.17) that

(2.18) lim inf
x→∞

(

m(t, x) − M(t, x; c,β)
)

> 0.

Since the total mass of u(t, ·) is bounded from above by 1, we know

(2.19) m0(x) =
∫ x

0

∫ y

0

(

1 − αu0(z)
)

dzdy ≥
x2

2
− αx.

Also by the assumption (2.15)–(2.16), we obtain m0(x) > 0 for all x ∈ (0,∞) and m0(x) ≥
x2

4 for x > 0 small enough. In view of (2.11) and (2.12), there exists C0 ≥ 2 depending only
on u0 such that for all c ≥ 0, if β ≥ C0, we have

M(0, ·; c,β) =
1 − β∞

2
(x − c)2

+ ≤
x2

2β2 < m0(·) in (0,3α].

While for x > 3α, (2.19) yields

M(0, ·; c,β) ≤
x2

8
<

x2

2
− αx ≤ m0(·).
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Note that S(0; c,β) = α−1c. Then it follows from Lemma 2.5 with u1 = U , u2 = u that
s(t) < S(t; c,β) for all t ∈ [0, T ) and c > 0. By passing c → 0, we get

(2.20) s(t) ≤ S(t; c,β) for all t ∈ [0, T ) and c ≥ 0. �

In Lemma 2.6, we only applied the second comparison lemma (Lemma 2.5). From its
proof, note that we can replace the assumption (2.16) by

∫ x
0

∫ y
0 (1 − αu0(z)) dz dy > 0 for all

x > 0, which is slightly weaker than (2.16).
In order to compare s(t), S(t; c,β) for c < 0, we also need the following computations.

For some γ ∈ (0,1) to be determined, write

(2.21) V (t, x; c,β) := γU(t, x; c,β) +
(∫ x

αS(t;c,β)
U(t, y; c,β) dy + S(t; c,β)

)

and

(2.22) v(t, x) := γ u(t, x) +
(∫ x

αs(t)
u(t, y) dy + s(t)

)

.

LEMMA 2.7. Under the assumptions of Lemma 2.6, there exists γ0 ∈ (0,1) (depending

only on u0) such that for all γ ∈ (0, γ0), and β satisfying

β ≥ max
{

C0,100,2
√

α/γ ,4
√

2T γ −1,4
√

2T (αγ )−1,4
√

2T γ −1(

ln
(

4
√

2T γ −1))2}

,

and c ∈ (−α−1β
√

2T ,0), if s(t) ≥ S(t; c,β) for all t ∈ [0, t1] for some t1 < T , then the

following inequalities hold:

lim inf
x→∞

(

V (t, x; c,β) − v(t, x)
)

= ∞ for all t ∈ [0, T ),(2.23)

V (0, ·; c,β) ≥ v(0, ·) in [0,∞),(2.24)

V (t, x; c,β) ≥ α−1x for all t ∈ [0, t1] and x ≤ β
√

2T .(2.25)

PROOF. Due to (2.17), clearly (2.23) holds for all t , c, β . Using (2.11), (2.12), and c ∈
(−α−1β

√
2T ,0) yields for all x ≥ 0,

V (0, x; c,β) ≥ γα−1β∞ + α−1β∞x − (αβ)−1
√

2T .

Let us assume β ≥ max{4γ −1
√

2T ,2} and then β∞ ≥ 3
4 . By (2.12) and (2.21), we get

(2.26)

V (0, x; c,β) − v(0, x)

≥ γ

(

3

4
α−1 − u(0, x)

)

− γ (4α)−1 − α−1(1 − β∞)x + α−1
∫ x

0

(

1 − αu0(y)
)

dy

≥ γ
(

(2α)−1 − u(0, x)
)

+ α−1
(

−β−2x +
∫ x

0

(

1 − αu0(y)
)

dy

)

.

In view of (2.15), there exists c,A > 0 such that

u(0, x) ≤ (4α)−1 for all x ∈ [0, c] and u(0, x) ≤ A for all x ∈ [0,∞).

When x ≥ 2α, the right-hand side of (2.26)

≥ −γA + α−1(

−β−2x + x − α
)

≥ −γA +
(

1 − 2β−2)

≥ 0,

if β ≥ 2 and γ ≤ (2A)−1. Next when x ≤ c (then u(0, x) ≤ (4α)−1), (2.26) and β ≥ 2 yield
again V (0, x; c,β) − v(0, x) ≥ 0. Lastly by the assumption (2.16), there exists ε > 0 such
that

∫ x
0 (1 − αu0(y)) dy ≥ ε for x ∈ [c,2α]. Thus we get

V (0, x; c,β) − v(0, x) ≥ γ
(

(2α)−1 − A
)

+
(

α−1ε − 2β−2)

≥ 0
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if β ≥ 2
√

α/ε and γ = γ (ε,A) ≤ ε is small enough. Overall, we find that there exists γ

depending only on u0 such that (2.24) holds for all β ≥ max{4γ −1
√

2T ,2
√

α/γ ,2}.
To prove the last inequality (2.25), we need a lower bound on U . Below we write

S(t) := S(t; c,β) for abbreviation of notation. It follows from (2.10), (2.12), and the fact
∫ ∞

0 e−zz2 dz = 2 that for β ≥ 2, if x−αS(t)√
2t

≥ 2 lnβ
β

, we have

(2.27)

αU(t, x; c,β) = 2βeβ2
∫ x−c√

2t

β
e−(z′)2

dz′ =
∫ 2β(

x−αS(t)√
2t

)

0
e−z−(2β)−2z2

dz

≥
∫ 2β(

x−αS(t)√
2t

)

0
e−z(1 − (2β)−2z2)

dz ≥
∫ 2β(

x−αS(t)√
2t

)

0
e−z dz −

1

2β2

= 1 − exp
(

−2β

(

x − αS(t)√
2t

))

−
1

2β2 ≥ 1 −
1

β2 .

When β ≥ 2 and x−αS(t)√
2t

<
2 lnβ

β
, since 1

8 ≥ lnβ

2β3 , direct computation yields

(2.28)

αU(t, x; c,β) =
∫ 2β(

x−αS(t)√
2t

)

0
e−z−(2β)−2z2

dz ≥
∫ 2β(

x−αS(t)√
2t

)

0
e−z−(2−1β−3 lnβ)z dz

≥
8

9

(

1 − exp
(

−
9β

4

(

x − αS(t)√
2t

)))

≥
1

2
min

{

β

(

x − αS(t)√
2t

)

,1
}

.

Using these estimates, for any t ∈ [0, T ) and

x ∈
[

αS(t),
2
√

2t lnβ

β
+ αS(t)

)

,

we obtain

V (t, x; c,β) ≥
γ

2α
min

{

β

(

x − αS(t)√
2t

)

,1
}

+ S(t)

and so to have V (t, x; c,β) ≥ α−1x, it suffices to require β ≥ 2γ −1
√

2T and β
lnβ

≥
4γ −1

√
2T which is indeed guaranteed by the assumption on β . Next for

(2.29) x ∈
[

2
√

2t lnβ

β
+ αS(t), β

√
2T

]

,

by (2.27) and (2.28) we find (writing U(t, y) := U(t, y; c,β))

α

∫ x

αS(t)
U(t, y; c,β) dy + αS(t)

= α

∫ αS(t)+
√

2t
β

αS(t)
U(t, y) dy

+ α

∫ αS(t)+ 2
√

2t lnβ
β

αS(t)+
√

2t
β

U(t, y) dy + α

∫ x

αS(t)+ 2
√

2t lnβ
β

U(t, y) dy + αS(t)

≥
√

2t

(

1

4β
+

1

2

(

2 lnβ

β
−

1

β

)

+
(

1 −
1

β2

)(

x − αS(t)√
2t

−
2 lnβ

β

))

+ αS(t)

≥ −
√

2t

4β
−

√
2t lnβ

β
+

(

1 −
1

β2

)

x +
αS(t)

β2 .
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Due to αS(t) ≥ c ≥ −α−1β
√

2T , then for x satisfying (2.29) we obtain

αV (t, x; c,β) − x ≥ γ

(

1 −
1

β2

)

−
√

2t

4β
−

√
2t lnβ

β
−

x

β2 +
αS(t)

β2

≥
3

4
γ −

√
2T

(

5

4β
+ lnβ

β
+ 1

αβ

)

≥ 0,

whenever

β ≥ max
{

100,4
√

2T (αγ )−1,4
√

2T γ −1(

ln
(

4
√

2T γ −1))2}

.

This is because for c0 := 4
√

2T γ −1 > 0, either β
lnβ

≥ 100
ln 100 ≥ c0 or β

lnβ
≥ c0(ln c0)

2

ln(c0(ln c0)
2)

≥ c0.
We proved (2.25). �

In the following proposition we show that if the curves x = αs(t) and x = αS(t; c,β) with
c < 0 intersect at time t = t0 > 0, then they can only insect at t = t0 for all t ∈ [0, T ).

LEMMA 2.8. Under the assumptions of Lemma 2.6, let (γ,β) be from Lemma 2.7. For

any fixed t0 ∈ (0, T ), if there is a value c ∈ (−α−1β
√

2T ,0) such that s(t0) = S(t0; c,β),
then for all t ∈ (0, T ),

(2.30) s(t) − S(t; c,β) changes sign from positive to negative at t = t0

(i.e., s(t) − S(t; c,β) > 0 for all t < t0 and s(t) − S(t; c,β) < 0 for all t > t0).

PROOF. It follows from c < 0 and S(0; c,β) = α−1c < 0 that S(t; c,β) < s(t) for t

sufficiently small. Suppose for contradiction that there is t1 < t0 such that S(t1; c,β) = s(t1)

and S(t; c,β) < s(t) for t < t1.
Lemma 2.6 yields s(t) ≤ α−1β

√
2T for all t ∈ [0, T ). Hence it follows from (2.25) that

V
(

t, αs(t); c,β
)

≥ s(t) = v
(

t, αs(t)
)

for t ∈ [0, T ).

Then, using the assumption that S(t; c,β) < s(t) for t < t1, Lemma 2.7 and Lemma 2.4 (with
v1 = V , v2 = v where V , v are given in (2.21), (2.22) respectively) yield that

(2.31)

γU(t, x; c,β) +
∫ x

αS(t)
U(t, y; c,β) dy + S(t; c,β) = V (t, x; c,β)

≥ v(t, x) = γ u(t, x) +
∫ x

αs(t)
u(t, y) dy + s(t)

for all (t, x) ∈ {x > αs(t), t ∈ [0, t1]}. By the strong maximum principle (or Hopf’s lemma),
we have S′(t1; c,β) > s′(t1).

Next consider

Z(x) :=
∫ x

αs(t1)

∫ y

αs(t1)

(

U(t1, z; c,β) − u(t1, z)
)

dz

which, by (2.31) and the assumption that S(t1; c,β) = s(t1), satisfies

γZ′′(x) + Z′(x) ≥ 0 and Z
(

αs(t1)
)

= Z′(αs(t1)
)

= 0.

This implies that Z(x) ≥ 0 for all x > αs(t1). Therefore the definitions of m, M yield
m(t1, ·) ≥ M(t1, ·; c,β). Clearly for all t ∈ [0, T ), by maximum principle and (2.18), we have
that m(t, ·) > 0 for x > αs(t). In view of Lemma 2.5 again, we obtain S(t; c,β) > s(t) for
all t > t1 which contradicts with the assumption that S(t0; c,β) = s(t0) with t0 > t1. Hence
S(t; c,β) < s(t) for all t < t0. By going over the arguments in the above again, we also find
that S(t; c,β) > s(t) for all t > t0. �
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2.3. Proofs of Theorem 1.1 and Corollary 1.2. We start by proving Theorem 1.1.

PROOF OF THEOREM 1.1. Suppose (p,N) is a weak solution to (1.3) in [0, T ). Let
s(t) =

∫ t
0 N(r) dr for all t ∈ [0, T ), and u, m be defined as in (2.4), (2.13) respectively. Then

u0 = p0. Since u solves the heat equation, u(t, ·) is bounded in L∞ norm for any t ∈ (0, T )

(see, e.g., [29], Theorem 6.17). By the argument before (2.17), we know that u(t, x) → 0 as
x → ∞ locally uniformly in t and so the same property holds for p(t, x). Therefore there
exists C > 0, ε ∈ (0, T ) such that

∫ x

0

(

1 − αp(t, y)
)

dy > 0 for all x ≥ C and t ≤ ε.

Due to (1.10) and u ≤ ũ with ũ from Lemma 2.3, we can assume without loss of generality
that for the same C,ε > 0, p(t, x) < 1

α
for all t ≤ ε and x ≤ 1

C
. By further taking ε to

be small enough, the weak formulation of solutions and the assumption on p0 imply that
∫ x

0 (1 − αp(t, y)) dy > 0 for x ∈ [ 1
C

,C] and t ≤ ε. Then the assumptions (2.15)–(2.16) hold
with u0 replaced by u(ε, ·). Hence, by starting at a small time t = ε instead of t = 0, we
can assume without loss of generality that p0 is uniformly bounded in L∞, and the solution
(p,N) is a classical solution.

We take β > 0 to be the smallest constant satisfying the condition in Lemma 2.7. For
any fixed t0 ∈ (0, T ), (2.20) implies s(t0) ≤ S(t0;0, β). First, if s(t0) = S(t0;0, β), we claim
that s(t) = S(t;0, β) for all t ≤ t0. If this is not true, then there exist t1 < t0 and c < 0
sufficiently close to 0 such that s(t1) < S(t1; c,β). According to Lemma 2.8, we must have
s(t) < S(t; c,β) for all t > t1 which is a contradiction because then s(t0) < S(t0; c,β) <

S(t0;0, β). So in this case we obtain s(t) = S(t;0, β) for all t ≤ t0. Also, in the case, for all
t ∈ (0, t0) we have

N(t) = s′(t) = S′(t;0, β) = α−1β(2t)−
1
2 .

Next we consider the case when s(t0) < S(t0;0, β), which by definition is the same as
s(t0) < α−1β

√
2t0. Thus Lemma 2.8 yields that the curve x = S(t; s(t0) − α−1β

√
2t0, β)

intersects with x = s(t) at exactly one point t = t0 for all t ∈ [0, T ) (notice here in terms of
S(t; c,β), c takes the value of s(t0) − α−1β

√
2t0 ≥ −α−1β

√
2T , and so the assumption of

Lemma 2.8 is satisfied). Therefore

N(t) = s′(t) ≤ S′(t; s(t) − α−1β
√

2t , β
)

= α−1β(2t)−
1
2 .

From the choice of β , and by varying T (to be t) in the above arguments, we obtain for all
t ∈ [0, T ),

N(t) ≤ α−1β(2t)−
1
2 ≤ Cα−1(

1 + α−1 +
(

1 + α
1
2
)

t−
1
2 + (ln t)2)

for some C depending only on p0. We can now conclude the proof by Lemma 2.3. �

Now we proceed to proving Corollary 1.2.

PROOF OF COROLLARY 1.2. To prove the first statement, in view of Theorem 1.1, it
suffices to have

(2.32)
∫ x

0

(

1 − αδx0(y)
)

dy > 0

for all x > 0. Direct computation yields that this is equivalent to x > α1x>x0 , which is the
same as α < x0.



1616 BAYRAKTAR, GUO, TANG AND ZHANG

For the second statement, it follows from Proposition 1.1 that if

α > 2
∫ ∞

0
xδx0 dx = 2x0,

then any weak solution cannot exist for all time. In view of Lemma 2.3, (px0)x → ∞ in finite
time. �

3. Solutions to the Fokker–Planck equation (1.5). In this section, we consider the
Fokker–Planck equation (1.5). First of all, comparing to the equation (1.3), the equation is
nonlocal. Since the total mass is decreasing after assuming limx→∞ q(t, x) = 0 for all t (there
is no mass coming from x = ∞), the nonlocal form of λ(t) yields a fast growth of it as t in-
creases. Hence it is more likely that λ(t) grows to infinity in finite time comparing to N(t) in
(1.3).

Recall the following result from [32], Proposition 4.1, which proves existence and unique-
ness of a generalized solution up to the first blow-up.

LEMMA 3.1 ([32]). Let q0(·) ∈ W 1
2 ([0,∞)) with q0(0) = 0. For any T > 0, there exist a

time treg ∈ (0, T ] and a function λ ∈ L2
loc([0, treg)) such that for all T ′ ∈ (0, treg) the unique

solution to the Fokker–Planck equation (1.5) in W
1,2
2 ([0, T ′] × [0,∞)) satisfies

λ(t) = −
1

2

qx(t,0)
∫ ∞

0 q(t, y) dy
for almost every t ∈

[

0, T ′]

and limT ′↑treg ‖λ‖L2[0,T ′] = ∞ if treg < T .

The idea is to prove treg = ∞ for suitable q0, β , and α. Let us perform a transformation
which turn the nonlocal equation (1.5) into a local one. Denoting q̄(t) :=

∫ ∞
0 q(t, x) dx, we

then have q̄ ′(t) = λ(t)q̄(t), and r := q/q̄ satisfies

(3.1)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

rt =
1

2
rxx −

(

αλ(t) + β
)

rx − λ(t)r in [0,∞)2,

λ(t) = −1

2
rx(t,0), r(t,0) = 0 on [0,∞),

r(0, x) = q0(x)/q̄(0, ·) on [0,∞).

Clearly the equation preserves mass. Now let us prove Proposition 1.1(2). Call r0(x) :=
q0(x)/q̄(0, ·).

PROOF OF PROPOSITION 1.1(2). Let (r, λ) be from (3.1) and suppose the solu-
tion exists for t ∈ [0, T ′]. Since q ∈ W

1,2
2 ([0, T ′] × R), then r ∈ W

1,2
2 ([0, T ′] × R) and

∫ ∞
0 e−μxr(t, x) dx is Hölder continuous in time by Morrey’s inequality. It follows from the

equation that

(3.2)

∫ ∞

0
e−μxr(t, x) dx =

∫ ∞

0
e−μxr0(x) dx +

∫ t

0

∫ ∞

0

(

2−1e−μxrxx(τ, x)

−
(

αλ(τ) + β
)

e−μxrx(τ, x) − λ(τ)e−μxr(τ, x)
)

dx dτ

=
∫ ∞

0
e−μxr0(x) dx +

(

2−1μ2 − μβ
)

∫ t

0

∫ ∞

0
e−μxr(τ, x) dx dτ

−
∫ t

0
λ(τ)

(

(1 + αμ)

∫ ∞

0
e−μxr(τ, x) dx − 1

)

dτ.
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Since μ > 2β , writing Mμ(t) := (1 + αμ)
∫ ∞

0 e−μxr(t, x) dx − 1, we get

Mμ(t) ≥ Mμ(0) − (1 + αμ)

∫ t

0
λ(τ)Mμ(τ ) dτ.

It then follows from Gronwall’s inequality and Mμ(0) ≥ 0 by (1.8) that for all t ≥ 0,

(1 + αμ)

∫ ∞

0
e−μxr(t, x) dx ≥ 1.

Hence (3.2) yields
∫ ∞

0
e−μxr(t, x) dx ≥

∫ ∞

0
e−μxr0(x) dx +

1

2
μ(μ − 2β)

∫ t

0

∫ ∞

0
e−μxr(τ, x) dx dτ,

which, by Gronwall’s inequality, implies
∫ ∞

0
e−μxr(t, x) dx ≥ e

μ(μ−2β)
2 t

∫ ∞

0
e−μxr0(x) dx.

However since the total mass of r(t, ·) is always 1. The solution cannot exist for t ≥ T where
T is such that

e
μ(μ−2β)

2 T
∫ ∞

0
e−μxr0(x) dx = 1.

Then Lemma 3.1 yields that the L2 norm of λ(t) blows up at the time when the solution fails
to exist. �

To prove Theorem 1.2, we show an L2 bound on λ(t) for general initial data with small α

and large β > 0. We need the following technical lemma which is similar to [12], Lemma 3.4.

LEMMA 3.2. Define φ : [0,∞) → R by φ(x) = e
− 1

1−x2 if x ∈ [0,1), and φ(x) := 0
otherwise. Then the following properties hold:

1. 0 ≤ −φx ≤ φ on (0, 1
4).

2. There exists C > 0 such that φ2
x + φ2

xx + φ2
xxx ≤ Cφ on (0,1).

3. There exists x0 ∈ (0,1) such that φxx(x0) = 0 and φxx ≤ 0 on (0, x0).

PROOF. These are results of trivial (but tedious) computations. For the first property,
direct computation yields for x ∈ (0, 1

4), −φx = 2x
(1−x2)2 φ ≤ φ. For the remaining claims, it

follows line by line from the proof of [12], Lemma 3.4. �

PROOF OF THEOREM 1.2. For any fixed κ ∈ (0, 1
8 ], define ω(x) := 2κxe−

√
2κx and then

it is not hard to check that ωx(0) = 2κ and

(3.3)
1

2
ωxx +

√
2κωx + κω = 0.

Since κ ≤ 1
8 , ω(·) is an increasing function in (0, 1√

2κ
) ⊇ (0,1). Note that ω(·) can be viewed

as a stationary solution to (3.1) with λ(t) ≡ −κ and any α, β satisfying ακ − β =
√

2κ .
Recall r = q

q̄
and we call

(3.4) h(t, x) :=
r(t, x)

ω(x)
and j (t) := −

λ(t)

κ
.
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By L’Hopital’s rule, we have h(t,0) = j (t). Then let φ(x) be from Lemma 3.2 and recall
that it is supported on (0,1). Below we will sometimes drop t , x from the notation of h(t, x),
r(t, x), ω(x), j (t), λ(t), φ(x). It follows from equation (3.1) that

d

dt

∫ ∞

0
h2ωφ dx =

∫ ∞

0
h
(

rxx − 2(αλ + β)rx − 2λr
)

φ dx

=
∫ ∞

0

(

−hxrx − 2(αλ + β)rx − 2λr
)

φ dx −
∫ ∞

0
hrxφx dx + 2λjφ(0).

Using that rx = hxω + hωx and φ(0) = e−1, we get the above

= −
∫ ∞

0

(

h2
xω + hhxωx

)

φ dx − 2(αλ + β)

∫ ∞

0
h(hxω + hωx)φ dx

− 2λ

∫ ∞

0
h2ωφ dx −

∫ ∞

0
hrxφx dx − 2e−1j2κ

= −
∫ ∞

0
h2

xωφ dx +
1

2

∫ ∞

0
h2ωxxφ dx +

1

2

∫ ∞

0
h2ωxφx dx − (αλ + β)

∫ ∞

0
h2ωxφ dx

− 2λ

∫ ∞

0
h2ωφ dx + (αλ + β)

∫ ∞

0
h2ωφx dx −

∫ ∞

0
h(hxω + hωx)φx dx − e−1j2κ

= −
∫ ∞

0
h2

xωφ dx +
1

2

∫ ∞

0
h2ωxxφ dx +

1

2

∫ ∞

0
h2ωφxx dx − (αλ + β)

∫ ∞

0
h2ωxφ dx

− 2λ

∫ ∞

0
h2ωφ dx + (αλ + β)

∫ ∞

0
h2ωφx dx − λ2

eκ
.

Using equation (3.3), we obtain

(3.5)

d

dt

∫ ∞

0
h2ωφ dx = −

∫ ∞

0
h2

xωφ dx − (αλ + β +
√

2κ)

∫ ∞

0
h2ωxφ dx

− (2λ + κ)

∫ ∞

0
h2ωφ dx + (αλ + β)

∫ ∞

0
h2ωφx dx

+
1

2

∫ ∞

0
h2ωφxx dx −

λ2

eκ
.

Let us write I (t) :=
∫ ∞

0 h2ωφ dx, and J (t) :=
∫ ∞

0 h2
xωφ dx. By Young’s inequality, we

get

−αλ

∫ ∞

0
h2ωxφ dx ≤ −2αλ

∫ ∞

0
|hhxω|φ dx ≤

1

2
J (t) + 2α2λ2I (t).

Since κ ≤ 1
8 and φ is supported in (0,1), it is easy to check that ω ≤ 2ωx . We get

−(αλ + β +
√

2κ)

∫ ∞

0
h2ωxφ dx ≤ 1

2
J (t) + 2α2λ2I (t) − β

2
I (t).

The third term on the right-hand side of (3.5) satisfies

−(2λ + κ)

∫ ∞

0
h2ωφ dx ≤ −2λ

∫ ∞

0
h2ωφ dx ≤

λ2

2eκ
+ 2eκI (t)2.

Now we consider the fourth and fifth terms in (3.5). We claim that: there exists a constant
C (independent of α, β) such that for any ε > 0 we have

(3.6) (αλ + β)

∫ ∞

0
h2ωφx dx ≤ Cε

(

I (t) + J (t)
)

+
Cα2λ2

ε
I (t) +

Cα2λ2

ε
,
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and

(3.7)
1

2

∫ ∞

0
h2ωφxx dx ≤ Cε

(

I (t) + J (t)
)

+
C

ε
.

Assume the claim holds, and then it follows from (3.5) and the above estimates that there
exists C ≥ 1 independent of α, β such that for any ε ∈ (0,1),

I ′(t) ≤ −
1

2
J (t) − κI (t) + Cε

(

I (t) + J (t)
)

+
C

ε
α2λ2(

I (t) + 1
)

+
C

ε
−

λ2

2eκ

+ 2eκI (t)2 −
β

2
I (t),

which, by taking ε := min{ 1
2C

, κ
C

}, implies that for C1 := C
ε

≥ 1 (which is independent of α,
β , and t), we have

(3.8) I ′(t) ≤ λ2
(

−
1

2eκ
+ C1α

2(

I (t) + 1
)

)

+ C1 −
β

4
I (t) + I (t)

(

2eκI (t) −
β

4

)

.

Set M := max{1, I (0)} and pick

C0 := max
{

4C1,8eκM,
√

4eκC1(M + 1)
}

≥ 1,

and so β ≥ C0 and α ≤ 1/C0 imply that

C1 −
βM

4
≤ 0, 2eκM −

β

4
≤ 0 and −

1

2eκ
+ C1α

2(M + 1) ≤ −
1

4eκ
.

Then it is easy to see from the differential inequality (3.8) that I (t) cannot exceed M . Fur-
thermore, with these choices of α and β , the differential inequality (3.8) yields I ′(t) ≤
− 1

4eκ
λ2 + C1. Hence it follows the global L2 bound of λ:

∫ t

0
λ2(s) ds ≤ 4eκ(C1t + M)

for all t > 0 such that the solution is well defined. We conclude by applying Lemma 3.1.
Let us now prove the estimates (3.6)–(3.7). The proof follows closely the arguments in

[12]. To show (3.6), since β ≥ 0, λ ≤ 0, and φx ≤ 0, it suffices to estimate αλ
∫ ∞

0 h2ωφx dx.
Consider two nonnegative functions ϕ1, ϕ2 ∈ C∞(0,∞) with ϕ1 + ϕ2 = 1 such that ϕ1
is monotone nonincreasing with ϕ1 = 0 on (1

4 ,∞), and ϕ2 is monotone nondecreas-
ing with ϕ2 = 0 on (1

8 ,∞). With this partition of unity, we can write
∫ ∞

0 h2ωφx dx =
∫ ∞

0 h2ωφxϕ1 dx +
∫ ∞

0 h2ωφxϕ2 dx. Using 0 ≤ −φx ≤ φ on the support of ϕ1 by the first
property given in Lemma 3.2, we find

−
∫ ∞

0
h2ωφxϕ1 dx ≤

∫ ∞

0
h2ωφ dx = I (t).

Hence for all ε ∈ (0,1),

αλ

∫ ∞

0
h2ωφxϕ1 dx ≤

(

ε +
α2λ2

ε

)

I (t).

For the other part with cut-off function ϕ2, since
∫ ∞

0 p(t, x) dx = 1,

−
∫ ∞

0
h2ωφxϕ2 dx = −

∫ ∞

0
h∂x

(∫ x

0
p(t, y) dy

)

φxϕ2 dx

≤
∫ ∞

0
|hx |φxϕ2 dx +

∫ ∞

0
h
∣

∣(φxϕ2)x
∣

∣dx.
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Young’s inequality and the fact that φ is supported in (0,1) yield

−αλ

∫ ∞

0
|hx |φxϕ2 dx ≤ ε

∫ ∞

0
h2

x(φxϕ2)
2 dx +

1

ε
α2λ2

≤ CεJ (t) +
1

ε
α2λ2.

In the second inequality, we used (φxϕ2)
2 ≤ Cφ and ω(x) ≤ ω(1) on (0,1). Similarly

−αλ

∫ ∞

0
h
∣

∣(φxϕ2)x
∣

∣dx ≤ CεI (t) +
1

ε
α2λ2.

Putting these estimates together proves (3.6). As for (3.7), due to the third property stated in
Lemma 3.2, we have

∫ ∞

0
h2ωφxx dx =

∫ 1

x0

h2ωφxx dx =
∫ 1

x0

h∂x

(∫ x

0
p(t, y) dy

)

φxx dx

= −
∫ 1

x0

hx

(∫ x

0
p(t, y) dy

)

φxx dx −
∫ 1

x0

h

(∫ x

0
p(t, y) dy

)

φxxx dx

≤
∫ 1

x0

|hx ||φxx |dx +
∫ 1

x0

h|φxxx |dx,

where in the third equality φxx(x0) = 0 is applied, and in the inequality, we used
∫ ∞

0 p(t,

y) dy = 1. Due to the second property of Lemma 3.2 and ω > 0 on [x0,1], we obtain
∫ ∞

0
h2ωφxx dx ≤ C

∫ ∞

0
|hx |

√

ωφ dx + C

∫ ∞

0
h
√

ωφ dx ≤ Cε
(

I (t) + J (t)
)

+
C

ε

which finishes the proof of (3.7). �
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