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This paper is concerned with the analysis of blow-ups for two McKean—
Vlasov equations involving hitting times. Let (B(¢); t > 0) be standard Brow-
nian motion, and 7 :=inf{r > 0 : X (#) < 0} be the hitting time to zero of a
given process X. The first equation is X () = X (0—) + B(t) — «P(z <1).
We provide a simple condition on « and the distribution of X (0—) such
that the corresponding Fokker—Planck equation has no blow-up, and thus the
McKean—Vlasov dynamics is well defined for all time ¢ > 0. Our approach
relies on a connection between the McKean—Vlasov equation and the super-
cooled Stefan problem, as well as several comparison principles. The second
equation is X (r) = X (0—)+ Bt + B(t) +a¢ InP(z > 1), t > 0, whose Fokker—
Planck equation is nonlocal. We prove that for g > 0 sufficiently large and «
no greater than a sufficiently small positive constant, there is no blow-up and
the McKean—Vlasov dynamics is well defined for all time # > 0. The argu-
ment is based on a new transform, which removes the nonlocal term, followed
by a relative entropy analysis.

1. Introduction and main results. Complex systems are central to the scientific model-
ing of real world phenomena. A challenge in mathematical modeling is to provide reasonably
simple frameworks to capture the collective behaviors of individuals with intricate interac-
tions. One famous example is the McKean—Vlasov equations, which were considered by Kac
[23] in the context of statistical physics, and were further developed by McKean [30] to study
weakly interacting particles. The McKean—Vlasov equations have proved to be a powerful
tool for modeling the mean field behavior of disordered systems, with applications including
the dynamics of granular media [4, 5], mathematical biology [6, 24], economics and social
networks [10, 22], and deep neural networks [31, 34]. There have been a rich body of works
on McKean—Vlasov equations, see [8, 9] for a detailed exposition.

In this paper, we are concerned with a class of generalized McKean—Vlasov equations
which involve hitting times as boundary penalties. These equations take the general form

X®)=XO0-)+pt+B@)+ f(s@), =0,
(1.1) T:=inf{r >0: X () <0},
s(t):=P(r <1),

where X (0—) has a distribution supported on (0, 00), f € R is the drift, (B(¢);t > 0) is
standard Brownian motion, and f : [0, 1) — R is a feedback function. While our approaches
may be used to study general cases, we focus on the following two special scenarios.
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1. B=0and f(x) =—ax, o > 0: The equation (1.1) specializes to

Xt)=X0—-)+B@t)—alP(t<t), t=0,

(1.2) T:=inf{r > 0: X (1) <0}.

This model was originated in the study of the integrate-and-fire mechanism in neuroscience,
from both probability aspects [15, 16] and PDE perspectives [7, 11, 12]. It also arose as
a toy model to study the mean field behavior of contagious financial networks [21]. These
works mainly dealt with the well-posedness of the McKean—Vlasov dynamics (1.2). By let-
ting p(z, -) be the subprobability density of X (#)1{;~;) and N(t) := 0,P(r <1t), the corre-
sponding Fokker—Planck equation is

1
Pt =5 Pxx +aN(t)px in [0, T) x (0, 00),

(1.3) N(t) = %px(z‘,O), p(1,00=0 forrel0,T),
p(0,x) = po(x) for x € [0, 00),

where po(x) is the probability density of X (0—). As was shown in [11], the negative feedback
a <0 is classical, and there is a unique smooth solution to (1.3) for all # > 0. The positive
feedback « > 0 is more subtle [7, 21]: s(¢) := P(r <t) may not be absolutely continuous,
and there may exist 7, > 0 such that N (Ty) = co. Such T is called a blow-up, which is the
main obstacle to analyze the Fokker—Planck equation (1.3), and study the well-posedness of
the McKean—Vlasov dynamics (1.2). To work around the blow-ups, [16] proposed the notion
of a “physical solution” satisfying s(¢) — s(t—) = inf{x > 0: P(X(t—) € (0, ax)) < x} to
the McKean—Vlasov dynamics (1.2), and proved the global existence by a particle system
approximation. A recent breakthrough [17] connected the Fokker—Planck equation (1.3) to
the supercooled Stefan problem, and as a byproduct the uniqueness of the physical solution
is proved in the presence of blow-ups. See also [2, 14, 28] for related developments.
2. f(x) =aln(l — x), a > 0: The equation (1.1) specializes to

Xt)=XO0-)+pt+ B@)+alnP(r >1), t=>0,

(14) v :=inf{r > 0: X (1) <0}.

Similar to [21], this model was proposed in [32] to study the systemic risk of default financial
networks. The nonlinearity of “In” comes from the assumption that after k banks default at
time ¢, the value of each remaining bank is reduced by a factor of (1 — m)_“.
Such a phenomenon is called a default cascade. By letting ¢ (z, -) be the subprobability den-
sity of X (t)1{r~s; and A(¢) := d; In[P(t > ¢), the corresponding Fokker-Planck equation is

nonlocal:

1
qr = ECIxx - (a)"(t) + ,B)CIX in [Oa T) X (07 OO),
(1.5) __ 1 «@0 _
A1) > fooo s y)dy’ q(t,0)=0 on]0,T),
(0, x) = go(x) on [0, 00),

where go(x) is the probability density of X(0—). Note that the equation (1.5) is slightly
different from that in [32], Section 3, since we define A(z) as 9;InlP(t > ¢) instead of
ad; InP(7 > r). There may also exist a blow-up Ty such that A [l ;219 7,] = fOT* A2(t) dt = oo.
It was proved in [32] that a physical solution exists for all time ¢. The uniqueness is still open,
though it is believable that the arguments in [17] carry over to this setting.
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As we have already seen, the main difficulty in analyzing the McKean—Vlasov dynamics
involving hitting times arises from the blow-ups. Though [16, 17, 32] proposed the physical
solution to overcome this problem, it is still interesting to know whether there is a blow-up
or not. This is because the existence of a blow up implies a possible systemic risk event in a
financial network. To be more precise, we ask the following question.

QUESTION. Under what conditions on the distribution of X(_ is there no blow-up in the
Fokker—Planck equations (1.3) and (1.5) respectively?

If there is no blow-up, the physical solution coincides with a smooth solution possibly in
some weak sense. We simply say that the McKean—Vlasov dynamics is (well-)defined for all
t > 0 if the corresponding Fokker—Planck equation does not exhibit blow-ups, and is hence
defined for all time in the classical sense. In [15, 21], no blow-up conditions for the Fokker—
Planck equation (1.3) have been studied, which assure that the McKean—Vlasov dynamics
(1.2) is defined for all time ¢ > 0. However, these conditions seem to be obscure, and are not
easy to check. No blow-up conditions for the Fokker—Planck equation (1.5) have yet been
explored, and it was conjectured in [32] that there is no blow-up if « is sufficiently small.

In this paper, we provide a simple criterion on the distribution of Xo_ under which the
Fokker—Planck equation (1.3) does not have any blow-up. We also study the problem of
blow-ups for the Fokker—Planck equation (1.5), resolving the aforementioned conjecture. To
state the results, we need the following definition of weak and generalized solutions to (1.3)
and (1.5), respectively. Below Ll ([0, 7)) (resp. L2 ([0, T))) denotes the functions that are

loc loc

locally uniformly L! (resp. L?) in [0, T), and L*°([0, T); L' (R)) denotes
[£:10.7) xR—>R*| f(t,) € L'(RY), sup )||f(t, Mg <00},

tel0, T

and Wzl’z([O, T] x [0, 00)) denotes the Sobolev space Lz([O, T] x [0, 00)) whose first weak
derivative in time and the first two weak derivatives in space belong to L2([0, T] x [0, 00)),

equipped with the associated Sobolev norm.
DEFINITION 1.1.

1. A pair of functions (p, N) is a weak solution to the Fokker—Planck equation (1.3) in
the time interval [0, T) if

peL®([0,T); L'(RY)), N e Ll.([0,T)),

p, N are nonnegative, and for any test function ¢ (¢, x) € C*°([0, T'] x [0, 00)) with T/ < T
such that ¢, ¢y, ¢r, Pxx € L°([0, T'] x [0, 00)), we have

T' roo
/ f p(nx)[—q»(t, )+ aN (e (1, x) — l¢>M<t,x)] dx di
0 Jo 2

T’ 00 00
= —/ N(®)o(t,0)dt —i—/ po(x)¢ (0, x)dx —/ p(T', x)p(T', x)dx.
0 0 0
2. [26, 32] A pair of functions (g, A) is a generalized solution to the Fokker—Planck equa-
tion (1.5) in the time interval [0, T') if
re L (10, 7)),

and for 7’ < T, the unique solution to the equation

1
3%xx — (oA (®) + B)qx. q(t,0)=0, q(0, x) = qo(x),

in Wzl’z([O, T'] x [0, 00)) satisfies A(t) = —%% for almost every ¢ € [0, T'].

qr =
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In the above definition, a generalized solution to the equation (1.5) is more restrictive than
a weak solution to the equation (1.3), and it requires the uniqueness along with the existence.
This complication is due to the nonlocal term “[;° ¢ (¢, y) dy” in the Fokker—Planck equation
(1.5). Our first result provides sufficient conditions for the Fokker—Planck equations (1.3) and
(1.5) to exhibit blow-ups, which is in a similar spirit to [7], Theorem 2.2.

PROPOSITION 1.1.

1. If there exists n > 0 such that

o0
(1.6) na f e po(x)dx > 1,
0

then there is no weak solution to the Fokker—Planck equation (1.3) for all time t > 0. In this
case, the solution can only exist before time
2 0 d
(1.7) T:=In o~ po)dx
o Jo e M po(x)dx
In particular, if a > ming,-o{(n fooo e ™ po(x) dx)~1, 2f0°° xpo(x)dx}, then there is no

weak solution to the Fokker—Planck equation (1.3) for all time t > 0.
2. If there exists a positive number u > 2 such that

(1.8) (1 +aw) /0 e go(x)dx > fo do(x) dx,

then there is no generalized solution to the Fokker—Planck equation (1.5) for all time t > 0.
In this case, the solution can only exist before time

2 o0 d
(1.9) T .= 1n< Oofo qo(r) dx )
p(p =2B) \ fo e "¥qo(x)dx
In view of Lemma 2.3, if we further assume
. 1 .
(1.10) lfi%lip po(x) < - and  lim po(x) =0,

then the solution blows up (N () — oo) before time T with T defined by (1.7). By
Lemma 3.1, if we assume that go(-) € W21 ([0, 00)) and go(0) = 0, then there exists a time
treg € (0, T] with T defined by (1.9) such that limmreg 121l 2[0,,) = ©0. We emphasize that
the physical solution allows the presence of blow ups, and Proposition 1.1 then implies that
the first blow up must occur before time 7" in each Fokker—Planck equation.

The next theorem, which is our main result, gives a simple condition under which there
is no blow-up for the Fokker—Planck equation (1.3). Thus, a weak solution to (1.3), which is
proved to be a classical one, is defined for all time ¢ > 0. Consequently, the McKean—Vlasov
dynamics (1.2) is defined for all time ¢ > 0.

THEOREM 1.1. Let po be a probability density supported on (0, 00) such that (1.10)
holds and

(1.11) /Ox(l—apo(y))dy>0 forall x € (0, 00).

Assume that the weak solution (p, N) to the Fokker—Planck equation (1.3) with initial data
po exists for a short time. Then it exists for all time t > 0. Moreover, (p, N) satisfies the
equation in the classical sense, and for all t > 0, and for some C > 0 depending only on pg
we have

N@® <Ca '+ ' +(1+a2)™ 2+ nn?) forallt>O0.
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Note that under the assumption (1.10), if we further assume the probability density pg to
be piecewise continuous, then the weak solution (p, N) exists for a short time. This can be
done by the argument in [19], Theorem 1.3.

Note that the condition (1.11) is weaker than o < || pollgol. Indeed, we do not assume
any L bound on the initial data. It was proved in [27], Theorem 2.2, that if @ < || po ||gol, the
McKean—Vlasov dynamics (1.2) is pathwise unique. Combining this result with Theorem 1.1,

we get the following corollary.

COROLLARY 1.1. Assume that limy_, o po(x) =0 and o < ||po||gol. Then the McKean—
Vlasov dynamics (1.2) is defined for all time t > 0, and is pathwise unique.

Furthermore, we consider the Fokker—Planck equation (1.3) with initial data of form dy,
(delta mass). Applying Proposition 1.1(1) and Theorem 1.1 yields the following corollary.

COROLLARY 1.2. Let o, x9 > 0. Let (p(-, x; x9), N(-; x0)) be a weak solution to the
Fokker—Planck equation (1.3) with initial data §y,, and assume that (p(-, x; x0), N (-; x0))
exists for a small time. Then:

e ifa < xq, the solution p(t, -; xo) exists for all time t > 0 and N (t; xo) < oo forall t > 0.
o if a > 2xo, the solution cannot exist for all time. Moreover, there exists Ty, > 0 such that
limsup,_, 7, px(t, - x0) = 00.

Now we turn to the Fokker—Planck equation (1.5). Due to the nonlocal term, it seems to
be difficult to get a simple criterion for no blow-up. Nevertheless, we are able to show that
for any initial data if 8 > 0O is sufficiently large, and « is no greater than a sufficiently small
positive constant, then a generalized solution to (1.5) and the McKean—Vlasov dynamics
(1.4) is well defined for all time ¢ > 0. This confirms a conjecture in [32], Remark 2.8. Below
Wzl ([0, 00)) denotes the Sobolev space of L2([0, 00)) functions whose first weak derivative
belongs to L2([0, 00)).

THEOREM 1.2, Let qo(-) € W) ([0, 00)) with qo(0) = 0, and assume that q3(x)/x is
integrable on (0, 1). There exists Coy > 0 depending only on qo such that if § > Co and
o< Cio, then the generalized solution (q, )) to the Fokker—Planck equation (1.5) with initial
data qq exists for all time t > 0. Moreover, for some C > 0 depending only on gy we have

t
(1.12) /0 IA®)[*ds <CA+1) forallt > 0.

Note that [32] only considers the case « > 0, while Theorem 1.2 extends to all & <0
provided that 8 > 0 is sufficiently large. As a consequence of (1.12), there exists C’ > 0 such
that P(t > t) > exp(—C’t) for all + > 0, which gives a lower bound on the tail of the hitting
time of the McKean—Vlasov dynamics (1.4). The problem of the uniqueness is more subtle. In
our forthcoming paper [3], we prove that for some initial distribution gg, the McKean—Vlasov
dynamics (1.4) for large 8 and small « is not unique in distribution.

The main idea to prove Theorem 1.1 and Theorem 1.2 consists of comparing the solution
to (1.3) with the self-similar solution to the super-cooled Stefan problem, and comparing
the solution to (1.5) with the stationary solution to a transformed equation. In contrast with
the fixed-point method used in [15, 21, 32], we rely on comparison principles and relative
entropy arguments which are of independent interest.

Organization of the paper. In Section 2, we consider the weak solutions to the equation
(1.3). There we prove Theorem 1.1. Section 3 is devoted to the study of the equation (1.5),
and Theorem 1.2 is proved.
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2. Solutions to the Fokker-Planck equation (1.3). In this section, we study the weak
solutions to the Fokker—Planck equation (1.3). The idea of the proof is inspired from [19],
Theorem 4.1, regarding the supercooled Stefan problem. Using the transformation (2.4) be-
low, it can be deduced from [19] that if

lim sup po(x) < l,
x—0+ o
the solution p to the equation (1.3) exists for a short time, and within the short time N (t) < oo
for t > 0. In comparison with [19], our approach is notably different: (1) our existence and
regularity results hold for all time; (2) we consider an unbounded domain. To achieve these,
technically, we need more delicate comparison principles (Lemma 2.4 and Lemma 2.5).
Section 2.1 presents preliminaries on the super-cooled Stefan problem, and its self-similar
solution. In Section 2.2, we provide key comparison lemmas which will be used in the proof
of Theorem 1.1. Theorem 1.1 and Corollary 1.2 will be proved in Section 2.3.

2.1. Preliminaries. We also need the notion of classical solutions to the equation (1.3).
To this end, we assume that the initial data pg satsifies
po e C'(RT)NC([0,00)) N L' (RT),

2.1 : .
po(0) = lim po(x) = lim 8 po(x) =0.

DEFINITION 2.1. A pair of functions (p, N) is a classical solution to the Fokker—Planck
equation (1.3) in the time interval [0, T) for a given T € (0, oo] and with initial data pg
satisfying (2.1), if the following conditions are satisfied:

1. N(¢) is a continuous function for all r € [0, T).

2. piscontinuousin [0, T) x [0, 00), p € C1C2((0, T) x R*), and for ¢ € (0, T), p(t,0%)
is well defined and p, p. (¢, x) — 0 as x — oo.

3. The equation (1.3) is satisfied in the classical sense.

The following result is a simple variant of [11], Theorem 3.1, Theorem 4.2.

LEMMA 2.1 ([11]). Let pg satisfy (2.1). Then there exists a unique classical solution to
the Fokker—Planck equation (1.3) in the time interval [0, T,) for some T, > 0. The maximal
time of existence T, > 0 is characterized as

T, =sup{r > 0: N(1) < 00}.
The lemma can be proved via a fixed point argument using that

T(N)(t) := 2/000 G(t.s(1) — x)dy po(x) dx + /Ot N(T)Gy(t — 7, 5(t) — s(v)) dx,

which is derived through Green’s identity, defines a contraction mapping I" on the space of
{NeC{O,T]) :|IN|lco < M} forsome M > 0 when T is sufficiently small, see, for example,
[11, 20]. Here s(¢) := f(; N(t)dt and

Iyl2
ol

2.2) G(t, x) =

2t

is the Green function of the heat equation on the real line. After finding out N (¢), p(z, x) can
be solved from the first equation in (1.3) on [0, T']. The solution can then be extended up to
the time of the first blow-up, see Theorem 4.2 [11].
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Now we give a proof of Proposition 1.1(1).

PROOF OF PROPOSITION 1.1(1). Suppose by contradiction that a weak solution exists
for all time. From the weak formulation in Definition 1.1(1), taking ¢ (¢, x) = e ** for some
u > 0, we have

/oo e Mp(t,x)dx — fw e " po(x)dx
0 0
(2.3)

—/ / —e Mp(r,x) +aue " N()p(r, x)dxdt—/ N(7)dr.
Since p > 0, this yields
o.¢] o0 t o
/ e " p(t,x)dx —/ e M po(x)dx Z/ N(f)(oz,u/ e Mp(r,x)dx — 1) dr.
0 0 0 0
Writing M, (1) := po [5° e ** p(t,x)dx — 1, we get
t
M, (t) —M,(0) > pwzf N(@)My(r)dr.
0

By Gronwall’s inequality (see, e.g., [33], Theorem 2.4.5), using M, (0) = po [5° e M* x
po(x)dx — 1> 0 by (1.6), we have for all # > 0 that

o
M, (1) = pca/ e ™M pt,x)dx —1>0.
0

Therefore by (2.3) again, we obtain

00 00 MZ t poo
/ e Mp(t,x)dx — / e " po(x)dx > —/ / e M p(r,x)dxds.
0 0 2 Jo Jo

This implies that

0 MZ o0
/ e M pt,x)dx > eT’/ e " po(x)dx — 00 ast— 00,
0 0

2
which is impossible. In fact, eMT’fOOO e~ po(x)dx cannot be greater or equal than
Jo° po(x)dx since otherwise

(0,0} (0,0] o0
f p(t,x)dx > / e M p(t,x)dx 2/ po(x)dx,
0 0 0

but setting ¢ = 1 (in the domain of [0, 7’] x [0, c0)) in the weak formulation in Defi-

nition 1.1(1) reveals that the total mass of p is nonincreasing in time. Solving eH'T/2
JoT e ™ po(x)dx = [5° po(x)dx for T gives the upper bound on the existing time of so-
lutions when (1.6) holds. The second part follows from [21], Theorem 1.1. [

Super-cooled Stefan problem. Let (p, N) be a classical solution to the Fokker—Planck equa-
tion (1.3) in the time interval [0, T'). It is well known that the transformation

t
2.4) u(t,x):=p(t,x —as)), s(1) ::/ N(r)dt
0
turns the equation into supercooled Stefan problem:
Uy = Sty in {(z,x):x >as@),1r€(0,T)},

25 V@)= %ux(t, as(®),  u(t,as(t))=0 fortel0,T),
u(0, x) = po(x — as(0)) for x € [as(0), 00).
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We start with the following simple lemma of a comparison principle between two solutions
with subquadratic growth in unbounded space-time domains.

LEMMA 2.2. Let s, : [0, T] — [0, 00) be a continuous function. Suppose u; < %u“ in
D7 :={(t,x) : x > 54(t),t € [0,T)} in the sense of distribution, that is, for any smooth,
nonnegative ¢ that is compactly supported in Dt we have

1 o0
/ u(r,x>[¢,(z, 0+ —m(r,x)] axdi+ [~ @00 dr 20
Dr 2 54(0)

Let v > 0 satisfy v; = %vxx in Dr. Then if u(0, -) < v(0, -) in (s4(0), 00),
{u(t,x) —v(t, x)

limsup sup

X—>00 t¢g[0,T)

5 } <0 and sup limsup{u(s,x)—v(t,x)} <0,
X

t€[0,T) x—s4(1)

we have u < v in Dr.

PROOF. For any ¢ > 0, define
ve(t,x) :=v(t,x)+ et + ex?.

By the assumption, for all M = M(e) > 0 large enough we have v (¢, M) > u(¢t, M) for
all t € [0, T). Since v, satisfies the heat equation, and v, (0, -) > u(0, -), we can apply the
comparison principle (see, e.g., [29], Corollary 6.26) in {(¢,x) € Dt : x < M} to conclude
that v > u in {(¢,x) € Dt : x < M}. Passing M — oo yields v, > u in D7. Then passing
e —0Qyieldsv>uin Dr. O

LEMMA 2.3. Let po be a probability density supported on (0, 00) that satisfies (1.10).
Suppose that a weak solution (p, N) to (1.3) exists for a short time. Then there exists Ty > 0
such that (p, N) can be extended to [0, T,) and (p, N) is a classical solution for t € (0, Ty).
The maximal time of existence Ty > 0 is characterized as

T, =sup{t > 0: N(t) < 00}.

PROOF. Suppose (p, N) is a weak solution to (1.3) in [0, T) for some T > 0. Let
u(t,x) = p(t,x —as(t)), and so u is supported in Dt :={(¢t,x) : x > as(t),t € [0,T)}.
Since 0 < N() € Llloc, s(t) is a continuous, nondecreasing function satisfying s(0) = 0.

We extend u by 0 to [0, T) x R. By Definition 1.1(1), we get for any test function ¢ :
[0, 7] x R — R with T’ < T, that is smooth and bounded,

0 , , T' oo 1
/(; u(T', x)p(T’, x)dx :/(; /0 u(t,x)|:g0,(t,x) + wax(t,x)] dx dt

T’ 0
— N®)p(t,as(t))dt —i—/ uo(x)e(0, x)dx.
0 0

Thus u solves the heat equation in the interior of Dr. Moreover, since N > 0, we have
u; < %uxx in (0, T) x [0, 0co) in the sense of distribution (see Lemma 2.2 with s, = 0).
Since sup; 0.7y 16(Z5 Il L1 (@s(r).00)) < 00, by the hypothesis on p,

n(t, x) :=f )u(t,y)dy+S(t),

s(t

is uniformly bounded in Dr. The equation yields that 5 (¢, x) solves the heat equation in Dr
in the sense of distribution, and 7 is continuous in both space and time. Then, after restricting
nto (0,T) x [M,o0) for some M > as(T) + 1, we can obtain an explicit representation
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formula for 5. Indeed, using the classical reflection method for heat equation with a source
on half-line for n(t, x + M) — n(t, M)e™ (see [35], Section 4.1), we get for all t € (0, T)
and x > 0,

nt,x+ M)
=n(t, M)e™

+/0°°(G(;,x_y)—G(t,x+y))(n(0,y+M)—n(O, Me™)dy
+/Otfooo(c;(z—r,x—y)—G(t—r,ery))

(2.6) % (%n(f, Me™ —n,(z, M)e‘y) dydt
=fOOO(G(z,x—y)—G(t,X+y))n(0,y+M)dy
— [T (Gt x =) = Guteox + ). M dy

t poo 1
+f / (G(t—r,x—y)—G(t—r,x+y))§n(r, M)e Y dydr,
0 Jo

where G is the Green function given by (2.2), and the integral involving #, is justified by
integration by parts. Using the formula (2.6), and lim,_, 5 7, (0, x) = lim,_, 5 po(x) = 0 by
the assumption, we obtain
2.7) lim sup u(f,x)= lim sup n.(¢,x)=0.

*=%el0,T) Y= el0,1) *
Moreover, it follows from the formula (2.6) (or from the parabolic interior regularity theory
[29], Theorem 11.5, and (2.7)) that

(2.8) xll)ngo ocu(t,x)=0 forallre (0, T).
Now set
(2.9) u(t, x) = /0 (G(t,x —y) = G(t,x +y))po(y)dy

which is then the solution to the heat equation in (0, T) x R™ satisfying i(z,0) = 0 and
u(0,-) = po(-). The assumption on pg yields limy_, oo SUpP;[0.7) u(t,x) =0. Due to (2.7),
it follows from Lemma 2.2 that ¥ < u in [0, T) x R. Due to the first condition in (1.10),
there exists § > 0 and /# > 0 such that u < é for all x € (0, h) and ¢ € [0, §). Thus, the same
inequality holds for u in place of i. By taking § to be small, we can assume that & > s(§).
Then, since u is continuous for ¢ > 0, for some M such that M > s(5) + 1, [19], Theorem 1.3,
yields that the following equation possesses a unique classical solution for a short time. For
any ¢ € (0, 9):

1

ﬁt:iﬁm in{(t,x):x € (a5(r), M), t > 0},

5(t) = %ax(z, @),  5(0)=s(e) fort >0,
u(t,as(t)) =0, iu(t,M)=g.(t), fort=>0,
(0, x) =u(e, x) for x € (as(e), M),

where g.(t) :=u(t + &, M).
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Note that « and u are smooth in their support, respectively, for ¢ > 0 by parabolic interior
Schauder estimates (see [25]). Then applying [18], Theorem 3.1, to

X y X y
/ f (1—au(t+e,z))dzdy and f / (1 —ai(t,z))dzdy,
as(t+e) Jas(t+e) as(t) Jas(t)

yields u(t,-) = u(t + ¢, -) and 5(¢) = s(¢ + ¢) for all ¢ > 0 small enough. By (2.7) and (2.8),
p(%, D)= u(%, -+ as(%)) satisfies (2.1). Finally, Lemma 2.1 yields the conclusion. [

Self-similar solutions. For any 8 > 0, consider the following functions:

(2.10) U(t,x;c,ﬂ)::2a_lﬂeﬂ2/ﬁe_zzdz and  S(t:c, B)=a (c+ BV20).
B

These functions come from self-similar solutions to the supercooled Stefan problem (see [1,
13]): the pair (U (¢, x; ¢, B), S(¢; c, B)) satisfies

1
Ut:EUxx in {(t,x):x >aS(t;¢,B),0<t<T},

1
S’(-;c,ﬂ)=EUx(-,aS(-;c,ﬂ);c,ﬂ) on (0, 00).

It is easy to see that for all x, ¢ > 0,
o0
(2.11) Boo(B) :=alU(0,x;¢,8)= lim aU(t,x;c,B) = Z,BeﬂZ/ e_22 dz,
X—> 00 ,3

and for all 8 > 0, Bo(B) takes all values in (0, 1). Indeed, for all 8 > 0,

o

% -2 % B2 -
ﬂoo(ﬁ)=2/3/ e ydy=/ )7 Zdz</ edz=1.
0 0 0

Moreover, we have the following estimate for all 8 > 1:
* —ep = 2,2 !
Q1) )= [ ez [T (- @p Tz 1 - oy,
0 0
where we used that fooo e ?z2dz = 2. From the equality in (2.12), we also know that B (-)
is an increasing function.

2.2. Comparison lemmas. We first present the following comparison lemma. Instead of
comparing the solutions to the super-cooled Stefan problem (2.5), we consider a linear com-
bination of the solution and its integration. This will allow us to compare a solution that
is possibly large at some points with the self-similar solution U (which is no greater than

Boo/ ).

LEMMA 2.4. Suppose (uy,s1), (u2, s2) are two classical solutions to (2.5) in [0, T) x
[0, 00). Let y € [0, 1] and for i = 1,2 write

X

vi(, %) = yui (1, x) + (f

If the following holds for all t € [0, T'):

L. s1(2) < s2(0),

v1(0, x) > 12(0, x) for all x > as2(0),

liminfy_, o (v1 (¢, x) — v2(t, x)) > 0 locally uniformly in t,
v1(t, as2(t)) = va(t, asa (1)),

ui (e, y)dy +s; (r)).

s; (¢t

v
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then forall t € [0,T) and x > asy(t),

vi(f, x) = va(t, x).
PROOF. Direct computation yields

(Ui)t:%(vi)xx in {(#,x):x >asi(t),1 €0, T)},
vi(t, asi (1)) = si (), (Vi) (t, asi (1)) =2ys;(t) fort [0, T).

By the assumptions, we have w := v| — vy satisfies

1
Wi = 5 Was in{(t,x):x > as(t),t€(0,T)},

and w(t, as2(2)) > 0. Also since the condition on the initial data yields w(0, -) > 0 on {x >
as52(0)}, and due to the condition 3, the conclusion follows from the maximum principle
(in bounded space-time domain {(z, x) : x € (as2(t), N),t € [0, T']} for any T" < T and for
sufficiently large N) (see, e.g., [29], Corollary 6.26). [

We also use the following transformation as done in [19]: recall that (u, s) is a solution to
(2.5), and define

x y
(2.13) m(t, x) :=/ / (1 —au(t,z))dzdy,
as(t) Jas(t)
and
x y
mo(x) ::/ / (1—au(0,z2))dzdy.
as(0) Jas(0)
Then m satisfies the following problem:

1

My = —Myy — 1 in{(t,x):x>as(),0<r<T},
2
(2.14) m(t,as(t)) =my(t,as()) =0 forrel0,T),
m(0, x) =mg(x) for x € [as(0), 00).

Note that in (2.14), differentiation of s(¢) is not involved. However intuitively s(¢) can
still be identified through the equation because of the two boundary information (if known
s(t), only one boundary data is needed to solve for m). We have the following comparison
principle.

LEMMA 2.5. Suppose (u1,s1), (u2, s2) are two classical solutions to (2.5) in [0, T) x
[0, 0c0) with nonnegative initial data uy, uz0 that are supported in (asi(0), 00) and
(as2(0), 00) respectively. Write their corresponding transformations as m1, my. Suppose the
following holds for all t € [0, T):

L. (52(0) < 51(0), 55(0) < 51(0)) or (s2(0) < 51(0)),

2. my(0,-) =m (0, ) in [0, 00),

3. my(t,x) =0 for x > as(0),

4. liminfy,_ oo(my(t,x) —m(t,x)) > 0, liminf,_, oo mp (¢, x) > 0.

Then s>(t) < s1(t), and m(t,-) <ma(t,-) forallt € (0,T).
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PROOF. The proof is identical to that in Lemma 3.1 and Remark 3.2 in [19]. [

Recall the self-similar solutions (U, §) given in (2.10). The idea of controlling N (¢) in
(1.3) and then proving long time existence of solution is to apply the above two comparison
principles to compare the free boundaries of a general solution «# and the self-similar solution
U with certain choices of ¢, 8. We first show that S(¢; ¢, 8) > s(¢) for ¢ > 0.

LEMMA 2.6. Let (u, s) be a classical solution to the super-cooled Stefan problem (2.5)
fort €[0,T), such that

(2.15) lwoll 1 r+y = 1, lluolloe < 00, lim uo(x) + Lim uo(x) =0,
and
X
(2.16) / (1 —auo(y))dy >0 forall x € (0, 00).
0

There exists Co > 2 depending only on uqy such that for all B > Cy, we have

s(t) <S8 0,8) =a” ' B2t forallt €[0,T).

PROOF. Recall that u(t, x) solves the supercooled Stefan problem:
1 .
Uy = Sityy i {x € (as(t),0),1€[0,T)},
u(t,as()) =0 and uy(r,ast)) =s'(2).
Since s(-) > 0, comparison principle yields # < iz where the latter is given by (2.9). By the
assumption u(0, x) — 0 as x — oo, we have lim,_, » (¢, x) = 0 (uniformly in ¢), which
implies that limy_, o (¢, x) = 0 uniformly in ¢. Thus for all ¢ € [0, T)) we have

(2.17) liminfU (7, x; ¢, B) =a ' Boo > 0= lim u(r, x).
X—>00 X—>00

Let m be defined as in (2.13), and we also define

X

y
M(t,x;c, B):= / (1—aU(t,z;¢, B))dzdy.
aS@) Jasa)

It follows from (2.17) that
(2.18) liminf(m(z, x) — M (¢, x; ¢, B)) > 0.
X—>00

Since the total mass of u(z, -) is bounded from above by 1, we know

x 2
(2.19) mo(x) =f0 foy(l —aug(z))dzdy > % —ax.

Also by the assumption (2.15)—(2.16), we obtain mo(x) > 0 for all x € (0, co) and mg(x) >

% for x > 0 small enough. In view of (2.11) and (2.12), there exists Co > 2 depending only
on ug such that for all ¢ > 0, if 8 > Cyp, we have

B 2
MO, 1 c. B) = ﬂ"o(x—c)igz%<mo(-) in (0, 3a].

2 2
While for x > 3, (2.19) yields
xz X2

M(O,-;C,ﬂ)fg < ?—le <mo(-).
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Note that S(0; ¢, B) = a~'c. Then it follows from Lemma 2.5 with u; = U, up = u that
s(t) < S(t;c,B) forallt € [0, T) and ¢ > 0. By passing ¢ — 0, we get

(2.20) s(1) < S(t;c,B) forallte[0,T)and c> 0. O

In Lemma 2.6, we only applied the second comparison lemma (Lemma 2.5). From its
proof, note that we can replace the assumption (2.16) by f(f foy (1 —aup(z))dzdy > 0 for all
x > 0, which is slightly weaker than (2.16).

In order to compare s(t), S(¢; c, B) for ¢ < 0, we also need the following computations.
For some y € (0, 1) to be determined, write

X

Q21)  V(xieB)=yUlt.xic,p)+ (/ UGty c. B)dy + S(t: c, ﬂ))

S(t;c,B)
and

(2.22) v(t.x) 1= yult, x) + ( /

as(t)

X

u(t,y)dy + s(t)).

LEMMA 2.7. Under the assumptions of Lemma 2.6, there exists yy € (0, 1) (depending
only on ug) such that for all y € (0, yp), and B satisfying

B > max{Co, 100,2y/a/y, 42Ty ™" 42T (ay) ™", 42Ty " (In(4v2Ty "))},

and ¢ € (—oz_l,B\/ZT,O), if s(t) > S(t; ¢, B) for all t € [0, 1] for some t| < T, then the
following inequalities hold:

(2.23) lirgiogf(V(t,x; c,B)—v(t,x))=o00 foralltel0,T),
(2.24) V(0, ¢, B)=v(,-) inl0,00),
(2.25) V(t,x;c,B) = a lx forallt €[0,t1] and x < B~ 2T.
PROOF. Due to (2.17), clearly (2.23) holds for all ¢, ¢, 5. Using (2.11), (2.12), and c €
(—a~'BV/2T, 0) yields for all x > 0,
V(0,x5¢,8) = ya ™ Boo + o Boox — (af) V2T
Let us assume 8 > max{4y‘1«/2T, 2} and then By, > %. By (2.12) and (2.21), we get
V(0,x;¢,8) —v(0,x)

3 x
0oe  zr(Ge —u0.0) =y a1 - o +a ! (1 - auo()dy

X
> y(2a) ™ = u(0, x)) + 7! (—,B_zx +/0 (1 — aug(y)) dy).
In view of (2.15), there exists ¢, A > 0 such that
u(0,x) < (40{)*1 forall x €[0,c] and u(0,x) <A forall x €[0, c0).
When x > 2, the right-hand side of (2.26)
> —yAta  (—p2x+x—a)>—yA+(1-287%)>0,

if 8>2and y < (2A)~!. Next when x < ¢ (then u(0, x) < (4a)~1), (2.26) and B > 2 yield
again V (0, x; ¢, B) — v(0, x) > 0. Lastly by the assumption (2.16), there exists € > 0 such
that [ (1 — auo(y))dy > ¢ for x € [c, 2a]. Thus we get

V(O0,x:¢,8) —v0,x)>y(Qa) ' —A) + (@ 'e =287 >0
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if B>2/a/e and y = y(e, A) < ¢ is small enough. Overall, we find that there exists y
depending only on uq such that (2.24) holds for all 8 > max{4y‘1\/ﬁ, 2/afy, 2},

To prove the last inequality (2.25), we need a lower bound on U. Below we write
S(t) := S(t; ¢, B) for abbreviation of notation. It follows from (2.10), (2.12), and the fact

0le iz 2dz—2thatfor,3 > 2, if 229210 ;‘%(t) > 212’3 we have

x—c ) Zﬁ(x aS(t) )
O‘U(I,X;C,ﬂ)=2ﬁe’32/@ e )2dz’:/ —-CH2E
0

2/3()( otS(t) /3()( utS([) 1
(2.27) >/ e (1 — (2B)27? a’z>/ e tdz— ——
> [ (1-@p) ) dz= | 25

=1 —exp(—Zﬂ(%)) - 2%82 >1- %

When B > 2 and =250 208 'qince £ > Inf " direct computation yields

Va2t B 283°
x—aS(t) x—aS()
UGt xic. f) /2/3( V2 )e_z_(zﬁ)fzzz iz > /25( V2 )e—z_(z”[ﬁ*ﬁnﬁ)z dz
0 0
(2.28) > §(1 _ exp(_%(x - aS(t)))>
9 4 V2t
1 —aS(t
z‘mmhii_gil)lk

2 V21

Using these estimates, for any ¢ € [0, T') and

22t Inp

S(),
xe|:oz (1) 8

+ ozS(t)),
we obtain

Vit,x:c,B) > % min{ﬁ(&\/z_f(t)), 1} + 50

and so to have V(t,x;c, B) = a x, it suffices to require g > 2;/_l 2T and & >
4y ~1\/2T which is indeed guaranteed by the assumption on S. Next for

24/2t1
(2.29) xe [ ‘/; "B as), B ]
by (2.27) and (2.28) we find (writing U (¢, y) := U (¢, y; c, B))

X
a/ Ut,y;c,B)dy +aS(t)
aS()

S+
=a/ Ut y)dy
aS(t)

aS(t)+2J;lnﬂ B
+o¢/ U,yd —i—oz/ U@i,y)dy +aS(@)
aS(z)+% . y)dy aS(t)+2*/2;% y)ay

) (- ) o

ST R )

>
4B B
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Due to aS(t) > ¢ > —a~ ! 8+/2T, then for x satisfying (2.29) we obtain

1) V2t 2t x aS®)

aV(l,X;Caﬁ)—xZ)/(l_@ 4B B B2 B?

ZV ~/_< ﬂﬁ+£)zo,

whenever
B > max {100, 4v2T (ay) ™", 4V/2Ty~ (In(4v2Ty"))?).

Qi - 1 B~ 100 B co(Inco)?
This is because for ¢ :=4+/2Ty~" > 0, either mp = o0 = €0 OF fo5 = m > ¢p.
We proved (2.25). U

In the following proposition we show that if the curves x = as(¢) and x = aS(¢; ¢, B) with
¢ < 0 intersect at time ¢ = fg > 0, then they can only insect at t =1y for all ¢ € [0, T').

LEMMA 2.8. Under the assumptions of Lemma 2.6, let (y, B) be from Lemma 2.7. For
any fixed to € (0, T), if there is a value c € (—oz_l,B«/ZT, 0) such that s(tg) = S(tg; c, B),
then forall t € (0,T),

(2.30) s(t) — S(t; ¢, B) changes sign from positive to negative at t = tg
(i.e.,s(t) —S(t;c,B)>0forallt <tyand s(t) — S(t;c, B) <0 forallt > ty).

PROOF. It follows from ¢ < 0 and S(0; ¢, B) = a~ e <0 that S(r; c, B) < s(t) for ¢t
sufficiently small. Suppose for contradiction that there is #; < ty such that S(¢1; c, 8) = s(#1)
and S(t;c, B) <s(t) fort <1.

Lemma 2.6 yields s(r) < «~!8+/2T for all t € [0, T). Hence it follows from (2.25) that

V(t,as(t);c, B)=s() =v(r,as(t)) fortel[0,T).

Then, using the assumption that S(¢; ¢, 8) < s(¢) for t < t;, Lemma 2.7 and Lemma 2.4 (with
vy =V, vy =v where V, v are given in (2.21), (2.22) respectively) yield that

yU(r,x;c,ﬁ>+/z UG, yic. )dy + S(tic. ) = V(t.x: ¢, )
2.31) @S®

X

2v(t,x)=yu(t,x)+/ u(t,y)dy + s(t)

as(t)
for all (¢, x) € {x > as(t),t € [0, t1]}. By the strong maximum principle (or Hopf’s lemma),
we have S'(t1; ¢, B) > s'(11).
Next consider

x y
Z(x) = /w(m /as(tl)(U(tl, zeB) —u(t,2)) dz

which, by (2.31) and the assumption that S(z1; ¢, ) = s(#1), satisfies
yZ'(x)+Z'(x)>0 and Z(as(t))=Z'(as(t)) =

This implies that Z(x) > O for all x > as(¢f;). Therefore the definitions of m, M yield
m(ty,-) > M(t1, -; c, B). Clearly for all t € [0, T'), by maximum principle and (2.18), we have
that m(z, -) > O for x > as(¢). In view of Lemma 2.5 again, we obtain S(¢; ¢, 8) > s(¢) for
all r > t; which contradicts with the assumption that S(#; c, 8) = s(tp) with #o > t1. Hence
S(t;c, B) <s(t) for all ¢ < ty. By going over the arguments in the above again, we also find
that S(z; ¢, B) > s(¢) forall t > 5. [
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2.3. Proofs of Theorem 1.1 and Corollary 1.2. We start by proving Theorem 1.1.

PROOF OF THEOREM 1.1. Suppose (p, N) is a weak solution to (1.3) in [0, T). Let
s(t) = fot N(r)dr forall t € [0, T), and u, m be defined as in (2.4), (2.13) respectively. Then
ug = po. Since u solves the heat equation, u(z, -) is bounded in L°° norm for any ¢ € (0, T)
(see, e.g., [29], Theorem 6.17). By the argument before (2.17), we know that u(t, x) — 0 as
x — oo locally uniformly in ¢ and so the same property holds for p(z, x). Therefore there
exists C > 0, ¢ € (0, T') such that

X
/ (1—ap(t,y))dy >0 forallx>Candr<e.
0

Due to (1.10) and u# < & with & from Lemma 2.3, we can assume without loss of generality
that for the same C,e > 0, p(t,x) < é for all t < ¢ and x < % By further taking ¢ to
be small enough, the weak formulation of solutions and the assumption on pg imply that
f(j‘(l —ap(t,y))dy >0 for x € [%, C] and ¢ < ¢. Then the assumptions (2.15)—(2.16) hold
with ug replaced by u(e, -). Hence, by starting at a small time ¢ = ¢ instead of r =0, we
can assume without loss of generality that pg is uniformly bounded in L°°, and the solution
(p, N) is a classical solution.

We take B > 0 to be the smallest constant satisfying the condition in Lemma 2.7. For
any fixed 79 € (0, T'), (2.20) implies s(#9) < S(#o; 0, B). First, if s(f9) = S(#o; 0, B), we claim
that s(t) = S(¢; 0, B) for all ¢+ < 1y. If this is not true, then there exist #; < #p and ¢ < 0
sufficiently close to O such that s(t;) < S(¢1; ¢, 8). According to Lemma 2.8, we must have
s(t) < S(t; ¢, B) for all t+ > t; which is a contradiction because then s(#y) < S(tp; ¢, B) <
S(t0; 0, B). So in this case we obtain s(¢) = S(¢; 0, 8) for all r < fy. Also, in the case, for all
t € (0, tp) we have

N(t)=5'(t)=S'(t:0, B) =~ B(21) 2.

Next we consider the case when s(fy) < S(#o; 0, 8), which by definition is the same as
s(t9) < a~ ' B+/2tg. Thus Lemma 2.8 yields that the curve x = S(¢; s(to) — o~ 8+/210, B)
intersects with x = s(¢) at exactly one point ¢ = ¢ for all # € [0, T') (notice here in terms of
S(t; c, B), c takes the value of s(#y) — a‘l,B 2ty > —a_lﬁ\/ﬁ, and so the assumption of
Lemma 2.8 is satisfied). Therefore

N@) =s'(t) < S (1 5(t) — o BN21, B) =o' B21) 2.

From the choice of 8, and by varying T (to be ¢) in the above arguments, we obtain for all
tel[0,7),
1

N@ <e ' B 2 <Ca (1 +a™" + (1+a2)™2 + (In1)?)

for some C depending only on pg. We can now conclude the proof by Lemma 2.3. [
Now we proceed to proving Corollary 1.2.

PROOF OF COROLLARY 1.2. To prove the first statement, in view of Theorem 1.1, it
suffices to have

(2.32) /0 (1 —ady,(y))dy >0

for all x > 0. Direct computation yields that this is equivalent to x > a1, y,, which is the
same as o < xg.
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For the second statement, it follows from Proposition 1.1 that if
o0
o> 2/ X8y, dx = 2xp,
0

then any weak solution cannot exist for all time. In view of Lemma 2.3, (py,)x — o0 in finite
time. [

3. Solutions to the Fokker-Planck equation (1.5). In this section, we consider the
Fokker—Planck equation (1.5). First of all, comparing to the equation (1.3), the equation is
nonlocal. Since the total mass is decreasing after assuming lim,_, 5 g (¢, x) = 0 for all ¢ (there
is no mass coming from x = 00), the nonlocal form of A(¢) yields a fast growth of it as ¢ in-
creases. Hence it is more likely that A(#) grows to infinity in finite time comparing to N (¢) in
(1.3).

Recall the following result from [32], Proposition 4.1, which proves existence and unique-
ness of a generalized solution up to the first blow-up.

LEMMA 3.1 ([32]). Letqo(-) € W2 (10, 00)) with qo(0) = 0. For any T > 0, there exist a
time teg € (0, T] and a function X € LIOC([O, treg)) such that for all T’ € (0, treg) the unique
solution to the Fokker—Planck equation (1.5) in Wzl’z([O, T'] x [0, 00)) satisfies

1 CIx(tvO)
2 [ qt, y)dy

and limT/Ttreg ||)"||L2[0,T/] =00 l.f‘treg <T.

Al) =— for almost every t € [0, T']

The idea is to prove freg = 00 for suitable g, B, and «. Let us perform a transformation
which turn the nonlocal equation (1.5) into a local one. Denoting g (¢) := fooo q(t,x)dx, we
then have ¢'(r) = A(¢)g(¢), and r := q/q satisfies

rt =Sl — (ar(t) 4+ B)ry — A(t)r in [0, 00)",

1
G- MO ==3r(t.0). r(t,0)=0 on0,00),
r(va)qu(-x)/é(Ov ) on [Oa OO)
Clearly the equation preserves mass. Now let us prove Proposition 1.1(2). Call ro(x) :=

q0(x)/q (0, -).

PROOF OF PROPOSITION 1.1(2). Let (r,A) be from (3.1) and suppose the solu-
tion exists for ¢t € [0, T']. Since g € Wzl’z([O, T'] x R), then r € Wzl’z([O, T']1 x R) and
Jo° e " r(z, x) dx is Holder continuous in time by Morrey’s inequality. It follows from the
equation that

00 0 e
/ e M (1, x) dx = / e—ﬂxro<x>dx+/ / (27 e ra(z, )
0 0 0 JO

— (@A (z) + B)e M re(r, x) — AM(t)e M r(t,x))dx dt

(3.2)
=/0 TR ro(x) dx 4+ (27 L2 — up) / / e Mr(t,x)dxdr

—/lk(t)<(l+au)/ e Mk (T, x) dx — 1) dr.
0 0
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Since p > 2B, writing M, (t) := (1 +au) fooo e Mr(t,x)dx — 1, we get

t
M, (t) = M,,(0) — (1+(m)/0 MO)M, (1) d.

It then follows from Gronwall’s inequality and M, (0) > 0 by (1.8) that for all # > 0,

o0
(1 —|—a,u)/ e "r, x)dx > 1.
0

Hence (3.2) yields

o0 06} 1 t o0
[T emrandr= [Tt r@an+ g -2 [ [T e dxar,
0 0 2 0 Jo
which, by Gronwall’s inequality, implies
00 w(u—28) 00
/ et x)dx > e 2 t/ e " ro(x)dx.
0 0

However since the total mass of (¢, -) is always 1. The solution cannot exist for ¢ > T where
T is such that

1(p=2p) S
e 2 T/ e "rox)dx =1.
0

Then Lemma 3.1 yields that the L? norm of A(¢) blows up at the time when the solution fails
to exist. [J

To prove Theorem 1.2, we show an L? bound on A(¢) for general initial data with small o
and large 8 > 0. We need the following technical lemma which is similar to [12], Lemma 3.4.

1

LEMMA 3.2. Define ¢ : [0,00) — R by ¢p(x) =e 1-> if x € [0,1), and ¢(x) :=0
otherwise. Then the following properties hold:

L. 0<—¢:<¢on(0,}.
2. There exists C > 0 such that ¢ + ¢2, + ¢2,, < C¢ on (0, 1).

3. There exists xg € (0, 1) such that ¢, (xg) =0 and ¢xx <0 on (0, xg).

PROOF. These are results of trivial (but tedious) computations. For the first property,

direct computation yields for x € (0, }‘), —¢x = 2—’“2)2(]) < ¢. For the remaining claims, it

(1—x
follows line by line from the proof of [12], Lemma 3.4. [J

PROOF OF THEOREM 1.2. For any fixed « € (0, %], define w(x) := 2k xe™V?* and then
it is not hard to check that w, (0) = 2« and

1
3.3) wax + V2w + kw =0.

Since ¥ < %, () is an increasing function in (0, \/LTK) 2 (0, 1). Note that w(-) can be viewed

as a stationary solution to (3.1) with A(f) = —« and any «, f satisfying ax — 8 = +/2«k.
Recall r = % and we call

r(t, x) A1)

(3.4) h(t,x):= 0 (0) and j(1):= -
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By L’Hopital’s rule, we have (¢, 0) = j(¢). Then let ¢(x) be from Lemma 3.2 and recall
that it is supported on (0, 1). Below we will sometimes drop ¢, x from the notation of A(¢, x),
r(t, x), w(x), j(t), A1), ¢(x). It follows from equation (3.1) that

d o o0
o / W opdx = / h(rex —2(ad + B)ry — 24r)¢p dx
0 0

o e.¢]
= / (=hyry —2(ah + B)ry — 2Ar)pdx — / hrydy dx +21jp(0).
0 0
Using that r, = hyo + ho, and ¢ (0) = e, we get the above

o0 0
=— f (h2w + hhywy)d dx — 2(ar + B) / h(hyw + hoy)g dx
0 0
o o0
— ZAf h2w¢ dx — / hrygdx — Ze_ljzlc
0 0
= _/ h2wpdx + —/ W ogpdx + —/ oy dx — (ah + ,B)/ hw.¢dx
0 2 Jo 2 Jo 0
o o0 0
—ZA/O h2w¢dx+(ak+ﬁ)/() hza)qudx —/0 h(hyw 4 hoy) oy dx _e—lsz

- / h2wdx + 5 / hweeddx + 5 / W wdyy dx — (ah + B) / hwe¢ dx
0 0 0 0

00 %) 22
_oa f W2 dx + (ah+ B) f W, dx — .
0 0

eK

Using equation (3.3), we obtain

d 0 o0 o0
o / hw¢dx = —f h2wpdx — (ar+ p + x/2/<)f o dx
0 0 0

o0 o0
(3.5) — X +k) f h2w dx + (ar + B) / hwpy dx
0 0
1 [oo A2
+ —/ h2w¢xx dx — —.
2 Jo eK

Let us write I (1) := [ h*wgdx, and J(t) := [§° h2wg dx. By Young’s inequality, we
get

o0 o0 1
—ax/ hWwrpdx < —ZaA/ |hholgdx < 2.0 (1) + 202021 (1).
0 0

Since k < % and ¢ is supported in (0, 1), it is easy to check that v < 2w, . We get

00 1
—(ar+ B+ \/2K)f W orpdx < SJ 0+ 20021 (1) — gm).
0
The third term on the right-hand side of (3.5) satisfies

00 00 22
—Q2r+ K)/ W opdx < —2x/ Wopdx < — + 2ex (1),
0 0 2ek

Now we consider the fourth and fifth terms in (3.5). We claim that: there exists a constant
C (independent of «, 8) such that for any ¢ > 0 we have

Ca’)? Ca’)\?
1(t) + pa—

(3.6) (i +B) /0 OO hwgydx < Ce(I1(t) + J (1)) + -
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and
1 [o© C
(3.7 3 fo hza)d)xx dx <Ce(I(t)+J(@)) + e

Assume the claim holds, and then it follows from (3.5) and the above estimates that there
exists C > 1 independent of «, 8 such that for any ¢ € (0, 1),

2

/ 1 C 2.2 C )\.
I't)<—=J@t)—kl@)+Ce(I(t) +J (@) +—a"A(I(t) + 1)+ — —
2 & e 2ek

+2ex1(t)? — gl(t),

which, by taking ¢ := min{%, %}, implies that for C; := % > 1 (which is independent of «,

B, and 1), we have

(3.8) I'(t) < AZ(—L + C]O{Z(I(t) + 1)) +C — éI(l) + I(t)(ZeKI(t) — é)
ek 4 4

Set M :=max{l1, 1(0)} and pick

Co :=max{4Cy, 8exk M, \J4ex C\(M + 1)} > 1,
and so 8 > Cp and o < 1/Cp imply that

BM B 1 2 1
Ci—— <0, 2e¢M — =<0 and —+Cija"(M+1)<——.
4 4 2ek dex

Then it is easy to see from the differential inequality (3.8) that /(¢) cannot exceed M. Fur-
thermore, with these choices of @ and B, the differential inequality (3.8) yields I'(r) <
—Li4c 1. Hence it follows the global L? bound of A:

4ex
t
f A(s)ds < dek(Cit + M)
0

for all # > O such that the solution is well defined. We conclude by applying Lemma 3.1.

Let us now prove the estimates (3.6)—(3.7). The proof follows closely the arguments in
[12]. To show (3.6), since B8 > 0, A <0, and ¢, < 0, it suffices to estimate A fooo hza)(]ﬁx dx.
Consider two nonnegative functions ¢y, g2 € C*°(0, 00) with ¢; + ¢ = 1 such that ¢
is monotone nonincreasing with ¢; = 0 on (%, 00), and ¢; is monotone nondecreas-

ing with ¢» =0 on (%, 00). With this partition of unity, we can write [OOO hzwqﬁx dx =
JoC h2wprprdx + [5° h2wprprdx. Using 0 < —¢, < ¢ on the support of ¢; by the first
property given in Lemma 3.2, we find

o o0
—/ hwper dx < f Wopdx =1(1).
0 0
Hence for all € € (0, 1),
© 5 a)?
oe)»/ heopyprdx <le+——)I1(2).
0 &
For the other part with cut-off function ¢, since fooo pt,x)dx =1,

0 2 o X
—/O h w¢x<pzdx=—/0 h8x</0 p(t,y)dy>¢x<pzdx

5/0 |y 2 dx +f0 h(pe2)x| dx.
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Young’s inequality and the fact that ¢ is supported in (0, 1) yield
> 2 2 1 5.0
—ah [ lhilgepdr <o [ R @pnPdx +at

1
< CeJ(t) + —a®)%.
e
In the second inequality, we used ((/bx<p2)2 <C¢ and w(x) <w(1l) on (0, 1). Similarly

00 1
—ah f h|(px@2)x| dx < Cel (1) + —aA>.
0 &

Putting these estimates together proves (3.6). As for (3.7), due to the third property stated in
Lemma 3.2, we have

e’} 1 1 X
[ wopedr= [ Ropuar= [ hax(/ p(t,y)dy)qsxxdx
0 X0 Xo 0

_ _/: 7 (/0 P, y)dy)(bxx dx — /: h(/o pit,y) dy)rpxxx dx

1 1
< [ Uhligerldx+ [ Bl s
X0 X0

where in the third equality ¢y (xo) = 0 is applied, and in the inequality, we used [;° p(z,
y)dy = 1. Due to the second property of Lemma 3.2 and @ > 0 on [xg, 1], we obtain

o0 o o C
/ hza)quxdeCf |hx|\/a)¢dx+C/ h\/wqbdxsz(I(t)—i-J(t))-i-;
0 0 0
which finishes the proof of (3.7). O
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