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A B S T R A C T

Motivated by the super-diffusivity of self-repelling random walk, which has roots in statistical
physics, this paper develops a new perturbation mechanism for optimization algorithms. In this
mechanism, perturbations are adapted to the history of states via the notion of occupation time.
After integrating this mechanism into the framework of perturbed gradient descent (PGD) and
perturbed accelerated gradient descent (PAGD), two new algorithms are proposed: perturbed
gradient descent adapted to occupation time (PGDOT) and its accelerated version (PAGDOT).
PGDOT and PAGDOT are guaranteed to avoid getting stuck at non-degenerate saddle points,
and are shown to converge to second-order stationary points at least as fast as PGD and PAGD,
respectively. The theoretical analysis is corroborated by empirical studies in which the new
algorithms consistently escape saddle points and outperform not only their counterparts, PGD
and PAGD, but also other popular alternatives including stochastic gradient descent, Adam, and
several state-of-the-art adaptive gradient methods.

1. Introduction

Gradient descent (GD), which dates back to [1], aims to minimize a function 𝑓 ∶ R𝑑 → R via the iteration: 𝒙𝑡+1 = 𝒙𝑡−𝜂∇𝑓 (𝒙𝑡), 𝑡 =
, 1, 2,… , where 𝜂 > 0 is the step size and ∇𝑓 is the gradient of 𝑓 . Due to its simple form and fine computational properties, GD
nd its variants (e.g., stochastic gradient descent) are essential for many machine learning tools: principle component analysis [2],
hase retrieval [3], and deep neural network [4], just to name a few. In the era of data deluge, many problems are concerned with
arge-scale optimization in which the intrinsic dimension 𝑑 is large. GD turns out to be efficient in dealing with high-dimensional

convex optimization, where the first-order stationary point ∇𝑓 (𝒙) = 0 is necessarily the global minimum point. Algorithmically, it
involves finding a point with small gradient ‖∇𝑓 (𝒙)‖ < 𝜖. A classical result of [5] showed that the time required by GD to find such
a point in a possibly non-convex problem is of order 𝜖−2, independent of the dimension 𝑑.

In non-convex settings, applying GD will still lead to an approximate first-order stationary point. This is, however, insufficient:
for non-convex functions, first-order stationary points can be either global minimum, local minimum, local maximum, or saddle
points. As we will explain, saddle points are the main bottleneck for GD in many non-convex problems. The goal of this paper is
therefore to develop efficient algorithms to escape saddle points in high-dimensional non-convex problems, and hence overcome
the curse of dimensionality.

Escaping local minima: Inspired by annealing in metallurgy, [6] developed simulated annealing to approximate the global
minimum of a given function. [7] proposed a diffusion simulated annealing and proved that it converges to the set of global minimum

∗ Corresponding author.
E-mail addresses: xinguo@berkeley.edu (X. Guo), jiequnhan@gmail.com (J. Han), mahan_tajrobehkar@berkeley.edu (M. Tajrobehkar),

t2319@columbia.edu (W. Tang).
ttps://doi.org/10.1016/j.jcmds.2024.100090
eceived 22 December 2022; Received in revised form 30 December 2023; Accepted 8 January 2024

772-4158/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcmds.2024.100090
https://www.elsevier.com/locate/jcmds
https://www.elsevier.com/locate/jcmds
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcmds.2024.100090&domain=pdf
mailto:xinguo@berkeley.edu
mailto:jiequnhan@gmail.com
mailto:mahan_tajrobehkar@berkeley.edu
mailto:wt2319@columbia.edu
https://doi.org/10.1016/j.jcmds.2024.100090
http://creativecommons.org/licenses/by/4.0/


X. Guo, J. Han, M. Tajrobehkar et al. Journal of Computational Mathematics and Data Science 10 (2024) 100090

p
s
o
f
v
i
r
i

b
n
d
l
s
l
g

A
p
a
a

O
b
c

w
n

h
s

a
T
a
a

Fig. 1. Illustration of occupation-time-adapted perturbation using 𝑓 (𝑥) = 𝑥3.

oints. However, subsequent works [8–13] revealed that it might take an exponentially long time (of order exp(𝑑)) for diffusion
imulated annealing to get close to the global minimum. See [14] for a review. Some work, for instance based on Lévy flights [15]
r by Cuckoo’s search [16] showed empirically faster convergence to the global minimum. Yet the theory of these approaches is
ar fetched. Closely related to simulated annealing are recent efforts in approximating the global minimum in non-convex problems
ia Langevin dynamics-based stochastic gradient descent [17,18], where the gradient is evaluated at a randomly selected data point
n each iteration. There also exist several variants of Langevin-based stochastic gradient descent using non-reversibility [19] and
eplica exchange [20,21]. Typically, these algorithms take polynomial time in the dimension 𝑑, and thus may scale poorly when 𝑑
s large.
Escaping saddle points: Fortunately, in many non-convex problems, it suffices to find a local minimum. Indeed, there has

een a line of recent work arguing that local minima are less problematic, and that for many non-convex problems there are
o spurious local minima. That is, all local minima are comparable in value with the global minimum. Examples include tensor
ecomposition [22–25], semidefinite programming [26,27], dictionary learning [28], phase retrieval [29], robust regression [30],
ow-rank matrix factorization [31–34], and certain classes of deep neural networks [35–42]. Nevertheless, as shown in [43–45],
addle points may correspond to suboptimal solutions, and it may take exponentially long time to move from saddle points to a
ocal minimum point. Meanwhile, it has been observed in empirical studies [46,47] that GD and its variants such as stochastic
radient descent (SGD) [48] and Adam [49] may be trapped in saddle points.

[22] took the first step to show that by adding noise at each iteration, GD can escape all saddle points in polynomial time.
dditionally, [50,51] proved that with random initialization, GD converges to a local minimizer. Moreover, [52] proposed the
erturbed gradient descent (PGD) algorithm, which [53] further improved to the perturbed accelerated gradient descent (PAGD)
lgorithm. They showed that PGD and PAGD are efficient — the time complexity is almost independent of the dimension 𝑑. See
lso [54] for a summary of results in this direction.

ur idea. Motivated by the ‘‘fast exploration’’ of self-repelling random walk, this paper develops a new perturbation mechanism
y adapting the perturbations to the history of states. Recall that [52,54] used the following perturbation update when perturbation
onditions hold:

𝒙′𝑡 = 𝒙𝑡 + Unif(𝐵𝑑 (𝟎, 𝑟)), 𝒙𝑡+1 = 𝒙′𝑡 − 𝜂∇𝑓 (𝒙′𝑡),

here Unif(𝐵𝑑 (𝟎, 𝑟)) is a point picked uniformly in the ball of radius 𝑟. On the empirical side, [55,56] applied this idea of GD with
oise to train deep neural networks.

Our idea is to replace Unif(𝐵𝑑 (𝟎, 𝑟)) with non-uniform perturbations, whose mechanism depends on the current state 𝒙𝑡 and the
istory of states {𝒙𝑠; 𝑠 ≤ 𝑡}. There are conceivably many ways to add non-uniform perturbation based on the current and previous
tates; here we choose to adapt perturbations to the ‘‘occupation time’’.

The intuition is illustrated by the one-dimensional function 𝑓 (𝑥) = 𝑥3 (see Fig. 1).
There is a saddle point at 0, and imagine GD approaches 0 from the right. It can be shown that GD converges monotonically to

stationary point (see Appendix A). The uniform perturbation will add noise with probability 1∕2 both to the right and to the left.
o the right, GD will again get stuck at the saddle point 0. However, to the left, there is a possibility of escaping from 0 and finding
local minimum (−∞ in this case). Therefore, it is reasonable to add noise with a larger probability to the left, since it has spent
long time on the right and has yet to explore the left side.

The previous intuition can be quantified via the notion of occupation times 𝐿𝑡 (the number of {𝑥𝑠}𝑠<𝑡 to the left of 𝑥𝑡) and 𝑅𝑡
(the number of {𝑥𝑠}𝑠<𝑡 to the right of 𝑥𝑡). By definition, 𝑅𝑡 + 𝐿𝑡 = 𝑡, for each 𝑡 = 0, 1,…. If 𝐿𝑡 is larger, the perturbation will push
the iterate 𝑥𝑡 to the right; and if 𝑅𝑡 is larger, push to the left. More precisely,

𝑥𝑡+1 =
{

𝑥𝑡 − 𝑟Unif(0, 1) with probability 𝑝,
𝑥𝑡 + 𝑟Unif(0, 1) with probability 1 − 𝑝,

(1)

where 𝑝 = 𝑤(𝑅𝑡)
𝑤(𝐿𝑡)+𝑤(𝑅𝑡)

and 𝑤 ∶ {0, 1,…} → (0,∞) is an increasing weight function on the nonnegative integers (e.g., 𝑤(𝑘) = 1 + 𝑘𝛼

for 𝛼 > 0).
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The dynamics (1) is closely related to the vertex-repelling random walk defined by

𝑍𝑡+1 =

⎧

⎪

⎨

⎪

⎩

𝑍𝑡 − 1 with probability 𝑤(𝑅𝑡)
𝑤(𝐿̃𝑡)+𝑤(𝑅𝑡)

,

𝑍𝑡 + 1 with probability 𝑤(𝐿̃𝑡)
𝑤(𝐿̃𝑡)+𝑤(𝑅𝑡)

,
(2)

where 𝑅𝑡 ∶= {𝑠 < 𝑡 ∶ 𝑍𝑠 = 𝑍𝑡 + 1} and 𝐿̃𝑡 ∶= {𝑠 < 𝑡 ∶ 𝑍𝑠 = 𝑍𝑡 − 1}. This (non-Markovian) random walk model was introduced
by [57] in the statistical physics literature. Based on the scaling arguments and simulations, it was conjectured that for 𝑤(⋅) with
a suitable growth, the walk (𝑍𝑡, 𝑡 ≥ 0) is recurrent and is further super-diffusive in the sense that E𝑍2

𝑡 ∼ 𝑡
4
3 , whereas for a simple

random walk (𝑆𝑡, 𝑡 ≥ 0) its exploration range is E𝑆2
𝑡 ∼ 𝑡 ≪ 𝑡

4
3 . These properties have only been proved rigorously for a simpler

ariant — the edge-repelling random walk, see [58–61]. For instance, it was conjectured that for 𝑤(𝑘) ∼ 𝜆𝑘 with 𝜆 > 1,
(

𝑍𝑛𝑢

(𝜎𝑛)
2
3

, 𝑢 ≥ 0

)

converges in distribution to (𝑢, 𝑢 ≥ 0) as 𝑛 → ∞,

where 𝜎 > 0 is a variance parameter depending on 𝑤(⋅), and the scaling limit (𝑢, 𝑢 ≥ 0) is a (universal) continuous process whose
marginal distribution 𝑝(𝑢, ⋅) is given as follows. Let

(

|𝐵ℎ
𝑠 |, 𝑠 ∈ R

)

be a two-sided reflected Brownian motion with |𝐵ℎ
0 | = ℎ > 0. Define

𝑇 −
0 ∶= sup{𝑠 < 0 ∶ |𝐵ℎ

𝑠 | = 0} and 𝑇 +
𝑟 ∶= sup{𝑠 > 𝑟 ∶ |𝐵ℎ

𝑠 | = 0} for 𝑟 > 0,

nd

ℎ
𝑟 ∶= ∫

𝑇+
𝑟

𝑇−
0

|𝐵ℎ
𝑠 |𝑑𝑠 (area of |𝐵ℎ

| between 𝑇 −
0 and 𝑇 +

𝑟 ).

See Fig. 2 for an illustration.
Denote by 𝜌(𝑢, 𝑟;ℎ) ∶= 𝜕

𝜕𝑢P
(

ℎ
𝑟 ≤ 𝑢

)

the density of ℎ
𝑟 . Then

𝑝(𝑢, 𝑥) = ∫

∞

0
𝜌
( 𝑢
2
, |𝑥|;ℎ

)

𝑑ℎ for 𝑥 ∈ R. (3)

Clearly, the conjecture implies that E𝑍2
𝑡 is of order 𝑡

4
3 . It is easy to see from (3) that 𝑢 has the same distribution as 𝑟−

2
3 𝑟𝑢 for each

𝑢 > 0. However, the distribution of (𝑢, 𝑢 ≥ 0) at the process level remains open to date, and we even do not know whether the process
 is a diffusion process. A counterpart to the vertex-repelling walk is the vertex-reinforced walk [62,63] defined by 𝑍𝑡+1 = 𝑍𝑡 − 1
with probability 𝑤(𝐿̃𝑡)

𝑤(𝐿̃𝑡)+𝑤(𝑅𝑡)
, and 𝑍𝑡+1 = 𝑍𝑡 + 1 with probability 𝑤(𝑅𝑡)

𝑤(𝐿̃𝑡)+𝑤(𝑅𝑡)
. It is well known [63,64] that vertex-reinforced random

walk exhibits localization at a finite number of points for some choices of 𝑤(⋅), e.g., 𝑤(𝑘) ∼ 𝑘𝛼 with 𝛼 ≥ 1.

Our results. We will first show that vertex-repelling walk will never be localized or stuck at some points in contrast with vertex-
reinforced walk (see Theorem 3.1). The non-localization and the (conjectured) super-diffusive properties of the vertex-repelling walk
(2) facilitate exploration, and thus the corresponding perturbation scheme (1) makes it more likely to escape from saddle points.

We will then propose a new perturbation mechanism based on the dynamics (1), which can be integrated into the framework
of (any) perturbation-based optimization algorithms. In particular, integrating the above-mentioned mechanism into the framework
of PGD and PAGD, we propose two new algorithms: perturbed gradient descent adapted to occupation time (PGDOT, Algorithm 1)
and its accelerated version, perturbed accelerated gradient descent adapted to occupation time (PAGDOT, Algorithm 2).

We will prove that Algorithm 1 (resp. Algorithm 2) converges to a second-order stationary point at least as fast as PGD (resp.
PAGD). Algorithms 1 and 2 are state-dependent adaptive algorithms, perturbing GD and accelerated gradient descent (AGD) [65]
non-uniformly according to the history of states.

We will finally corroborate our theoretical analysis by experimental results. Specifically, we will empirically demonstrate that
Algorithms 1 and 2 exhibit faster escape from saddle points, surpassing not only their counterparts (PGD and PAGD) but also
outperforming SGD and several adaptive gradient methods, including Adam, AMSGrad [66], AdaBelief [67], and STORM [68] in
training deep learning models on popular datasets such as MNIST [69], CIFAR-10 [70], and CIFAR-100 [70].
3
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Algorithm 1 Perturbed Gradient Descent Adapted to Occupation Time (Meta Algorithm)
for 𝑡 = 0, 1,… do
if perturbation condition holds then
for 𝑖 = 1,… , 𝑑 do
𝐿𝑖
𝑡 ← #{𝑠 < 𝑡 ∶ 𝑥𝑖𝑠 ≤ 𝑥𝑖𝑡}

𝑅𝑖
𝑡 ← #{𝑠 < 𝑡 ∶ 𝑥𝑖𝑠 > 𝑥𝑖𝑡}

𝑥𝑖𝑡 ←

⎧

⎪

⎨

⎪

⎩

𝑥𝑖𝑡 −
𝑟

√

𝑑
Unif(0, 1) w.p. 𝑝,

𝑥𝑖𝑡 +
𝑟

√

𝑑
Unif(0, 1) w.p. 1 − 𝑝,

where 𝑝 = 𝑤(𝑅𝑖
𝑡)

𝑤(𝐿𝑖
𝑡)+𝑤(𝑅𝑖

𝑡)
𝑥𝑥𝑥𝑡+1 ← 𝑥𝑥𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑥𝑥𝑡)

Algorithm 2 Perturbed Accelerated Gradient Descent Adapted to Occupation Time (Meta Algorithm)
for 𝑡 = 0, 1,… , do
if perturbation condition holds then
for 𝑖 = 1,… , 𝑑 do
𝐿𝑖
𝑡 ← #{𝑠 < 𝑡 ∶ 𝑥𝑖𝑠 ≤ 𝑥𝑖𝑡}

𝑅𝑖
𝑡 ← #{𝑠 < 𝑡 ∶ 𝑥𝑖𝑠 > 𝑥𝑖𝑡}

𝑥𝑖𝑡 ←

⎧

⎪

⎨

⎪

⎩

𝑥𝑖𝑡 −
𝑟

√

𝑑
Unif(0, 1) w.p. 𝑝,

𝑥𝑖𝑡 +
𝑟

√

𝑑
Unif(0, 1) w.p. 1 − 𝑝,

where 𝑝 = 𝑤(𝑅𝑖
𝑡)

𝑤(𝐿𝑖
𝑡)+𝑤(𝑅𝑖

𝑡)

𝑥𝑥𝑥𝑡+1 ← Accelerate(𝑥𝑥𝑥𝑡, 𝑣𝑣𝑣𝑡), 𝑣𝑣𝑣𝑡+1 ← 𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡

Notations. Below we collect the notations that will be used throughout this paper. For 𝑆 a finite set, let #𝑆 denote the number of
lements in 𝑆. For 𝐷 as a domain, let Unif(𝐷) be the uniform distribution on 𝐷, e.g., Unif(0, 1) is the uniform distribution on [0, 1].

For a function 𝑓 ∶ R𝑑 → R, let ∇𝑓 and ∇2𝑓 denote its gradient and Hessian, and 𝑓⋆ ∶= min𝒙∈R𝑑 𝑓 (𝒙) denote its global minimum.
or 𝑨 a symmetric matrix, let 𝜆min(𝑨) be its minimum eigenvalue.

The notation ‖ ⋅‖ is used for both the Euclidean norm of a vector and the spectral norm of a matrix. For 𝒙 = (𝑥1,… , 𝑥𝑑 ) and 𝑟 > 0,
et 𝐵𝑑 (𝒙, 𝑟) ∶= {𝒚 ∶ ‖𝒚−𝒙‖ ≤ 𝑟} be the 𝑑-dimensional ball centered at 𝒙 with radius 𝑟, and 𝐶𝑑 (𝒙, 𝑟) ∶= {𝒚 ∶ |𝑦𝑖 − 𝑥𝑖| ≤ 𝑟 for 1 ≤ 𝑖 ≤ 𝑑}
e the 𝑑-dimensional hypercube centered at 𝒙 with distance 𝑟 to each of its surfaces. We use the symbol 𝑂(⋅) to hide only absolute
onstants which do not depend on any problem parameter.

The rest of the paper is organized as follows. Section 2 provides background on the continuous optimization and recalls some
xisting results. Section 3 presents the main results. Section 4 contains numerical experiments to corroborate our analysis. Section 5
oncludes.

. Background and existing results

.1. Results of GD

We consider non-convex optimization (convex optimization results are recalled in Appendix B). In this case, it is generally difficult
o find the global minima. A popular approach is to consider the first-order stationary points instead.

efinition 2.1. Let 𝑓 ∶ R𝑑 → R be a differentiable function. We say that (𝑖) 𝒙 is a first-order stationary point of 𝑓 if ∇𝑓 (𝑥) = 0;
𝑖𝑖) 𝒙 is an 𝜖-first-order stationary point of 𝑓 if ‖∇𝑓 (𝑥)‖ ≤ 𝜖.

We say that a differentiable function 𝑓 ∶ R𝑑 → R is 𝓁-gradient Lipschitz if ‖∇𝑓 (𝒙1) − ∇𝑓 (𝒙2)‖ ≤ 𝓁‖𝒙1 − 𝒙2‖ for all 𝒙1,𝒙2 ∈ R𝑑 .
or gradient Lipschitz functions, GD converges to the first-order stationary points, which is quantified by the following theorem
rom [5][Section 1.2.3].

heorem 2.2. Assume that 𝑓 ∶ R𝑑 → R is 𝓁-gradient Lipschitz. For any 𝜖 > 0, if we run GD with step size 𝜂 = 𝓁−1, then the number of
terations to find an 𝜖-first-order stationary point is 𝓁(𝑓 (𝒙0)−𝑓⋆)

𝜖2
.

Note that in Theorem 2.2, the time complexity of GD is independent of the dimension 𝑑. For a non-convex function, a first-
rder stationary point can be either a local minimum, a saddle point, or a local maximum. The following definition is taken
rom [52][Definition 4].
4
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Definition 2.3. Let 𝑓 ∶ R𝑑 → R be a differentiable function. We say that (𝑖) 𝒙 is a local minimum if 𝒙 is a first-order stationary
point, and 𝑓 (𝒙) ≤ 𝑓 (𝒚) for all 𝒚 in some neighborhood of 𝒙; (𝑖𝑖) 𝒙 is a saddle point if 𝒙 is a first-order stationary point but not a
local minimum. Assume further that 𝑓 is twice differentiable. We say a saddle point 𝒙 is strict if 𝜆min(∇2𝑓 (𝒙)) < 0.

For a twice differentiable function 𝑓 , note that 𝜆min(∇2𝑓 (𝒙)) ≤ 0 for any saddle point 𝒙. So by assuming a saddle point 𝒙 to be
strict, we rule out the case 𝜆min(∇2𝑓 (𝒙)) = 0. The next subsection will review two perturbation-based algorithms that allow jumping
out of strict saddle points.

2.2. Results of PGD and PAGD

One drawback of GD in non-convex optimization is that it may get stuck at saddle points. [52,53] proposed PGD and PAGD,
respectively, to escape saddle points, which we review here. To proceed further, we need some vocabulary regarding the Hessian
of the function 𝑓 .

Definition 2.4. A twice differentiable function 𝑓 ∶ R𝑑 → R is 𝜌-Hessian Lipschitz if ‖∇2𝑓 (𝒙1) − ∇2𝑓 (𝒙2)‖ ≤ 𝜌‖𝒙1 − 𝒙2‖ for all
𝒙1,𝒙2 ∈ R𝑑 . Furthermore, we say that (𝑖) 𝒙 is a second-order stationary point of 𝑓 if ∇𝑓 (𝒙) = 0 and 𝜆min(∇2𝑓 (𝒙)) ≥ 0; (𝑖𝑖) 𝒙 is a
𝜖-second-order stationary point of 𝑓 if ‖∇𝑓 (𝒙)‖ ≤ 𝜖 and 𝜆min(∇2𝑓 (𝒙)) ≥ −

√

𝜌𝜖.

To simplify the presentation, assume that all saddle points are strict (Definition 2.3). In this situation, all second-order stationary
oints are local minima. The basic idea of these two algorithms is as follows. Imagine that we are currently at an iterate 𝒙𝑡 which

is not an 𝜖-second-order stationary point. There are two scenarios: (𝑖) The gradient ‖∇𝑓 (𝒙𝑡)‖ is large and a usual iteration of GD or
GD is enough; (𝑖𝑖) The gradient ‖∇𝑓 (𝒙𝑡)‖ is small but 𝜆min(∇2𝑓 (𝒙𝑡)) ≤ −

√

𝜌𝜖 (large negative). So 𝒙𝑡 is around a saddle point, and
a perturbation 𝜉 is needed to escape from the saddle region: 𝒙̃𝑡 = 𝒙𝑡 + 𝜉.

The main result for PGD, Theorem 3 in [52], and for PAGD, Theorem 3 in [53], are stated below showing that the time complexity
of these two algorithms are almost dimension-free (with a log factor).

Theorem 2.5 ([52]). Assume that 𝑓 ∶ R𝑑 → R is 𝓁-gradient Lipschitz and 𝜌-Hessian Lipschitz. Then there exists 𝑐max > 0 such that for
any 𝛿 > 0, 𝜖 ≤ 𝓁2∕𝜌, 𝛥𝑓 ≥ 𝑓 (𝒙0) − 𝑓 ∗, and 𝑐 ≤ 𝑐max, PGD outputs an 𝜖-second-order stationary point with probability 1 − 𝛿, terminating
within the following number of iterations:

𝑂
(

𝓁(𝑓 (𝒙0) − 𝑓⋆)
𝜖2

log4
(𝑑𝓁𝛥𝑓

𝜖2𝛿

))

.

Compared with Theorem 2.2, PGD takes almost the same order of time to find a second-order stationary point as GD does to
ind a first-order stationary point.

heorem 2.6 ([53]). Assume that 𝑓 ∶ R𝑑 → R is 𝓁-gradient Lipschitz and 𝜌-Hessian Lipschitz. Then there exists an absolute constant
𝑐max > 0 such that for any 𝛿 > 0, 𝜖 ≤ 𝓁2∕𝜌, 𝛥𝑓 ≥ 𝑓 (𝒙0) − 𝑓 ∗, and 𝑐 ≥ 𝑐max, with probability 1 − 𝛿, one of the iterates 𝒙𝑡 of PAGD will be
an 𝜖-second-order stationary point in the following number of iterations:

𝑂
(

𝓁1∕2𝜌1∕4(𝑓 (𝒙0) − 𝑓⋆)
𝜖7∕4

log6
(𝑑𝓁𝛥𝑓

𝜌𝜖𝛿

))

.

3. Main results

In this section, we first prove the non-localization property of the vertex-repelling random walk. Then, we formalize the idea of
perturbations adapted to occupation time and provide the full version of PGDOT and PAGDOT in Algorithms 3 and 4, respectively.
Our main results show that these algorithms converge rapidly to second-order stationary points.

3.1. Non-localization property of vertex-repelling random walk

The following theorem suggests that the new perturbation mechanism helps perturbation-based algorithms to avoid getting stuck
at saddle points, as the dynamics of vertex-repelling random walk prescribed in (1) does not localize.

Theorem 3.1. Let {𝑍𝑡, 𝑡 = 0, 1,…} be the vertex-repelling random walk defined by (2), where 𝑤 ∶ {0, 1,…} → (0,∞) is an increasing
function such that 𝑤(𝑛) → ∞ as 𝑛 → ∞. Then

P
(

∃𝑡0 > 0, 𝑘 ≤ 𝓁 ∶ 𝑍𝑡 ∈ {𝑘,… ,𝓁} for all 𝑡 ≥ 𝑡0
)

= 0.

The proof of this theorem is given in Appendix C.

3.2. Perturbed gradient descent adapted to occupation time

PGD adds a uniform random perturbation when stuck at saddle points. From the discussion in the introduction, it is more

reasonable to perturb with non-uniform noise whose distribution depends on the occupation times. Recall that 𝑤 ∶ {0, 1,…} → (0,∞)

5
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is an increasing weight function on the nonnegative integers. The following algorithm adapts PGD to random perturbation depending
on the occupation dynamics. We follow the parameter setting as in [52]. Our algorithm performs GD with step size 𝜂 and gets a
perturbation of amplitude 𝑟

√

𝑑
near saddle points at most once every 𝑡thres iterations. The threshold 𝑡thres ensures that the dynamics

f the algorithm is mostly GD. The threshold 𝑔thres determines if a perturbation is needed, and the threshold 𝑓thres decides when the
lgorithm terminates.

Algorithm 3 Perturbed Gradient Descent Adapted to Occupation Time: PGDOT(𝑥𝑥𝑥0,𝓁, 𝜌, 𝜖, 𝑐, 𝛿, 𝛥𝑓 , 𝑤)

𝜒 ← 3max
{

log( 𝑑𝓁𝛥𝑓
𝑐𝜖2𝛿

), 4
}

, 𝜂 ← 𝑐
𝓁

, 𝑟 ← 𝜖
√

𝑐
𝜒2𝓁

𝑔thres ←
𝜖
√

𝑐
𝜒2 , 𝑓thres ←

𝑐
𝜒3

√

𝜖3
𝜌 , 𝑡thres ←

𝜒𝓁
𝑐2
√

𝜌𝜖
𝑡noise ← −𝑡thres − 1
for 𝑡 = 0, 1,… do
if ||∇𝑓 (𝑥𝑥𝑥𝑡)|| ≤ 𝑔thres and 𝑡 − 𝑡noise > 𝑡thres then
𝑥𝑥𝑥𝑡 ← 𝑥𝑥𝑥𝑡, 𝑡noise ← 𝑡
for 𝑖 = 1,… , 𝑑 do
𝐿𝑖
𝑡 ← #{𝑠 < 𝑡 ∶ 𝑥𝑖𝑠 ≤ 𝑥𝑖𝑡}

𝑅𝑖
𝑡 ← #{𝑠 < 𝑡 ∶ 𝑥𝑖𝑠 > 𝑥𝑖𝑡}

𝑥𝑖𝑡 ←

⎧

⎪

⎨

⎪

⎩

𝑥𝑖𝑡 −
𝑟

√

𝑑
Unif(0, 1) w.p. 𝑝,

𝑥𝑖𝑡 +
𝑟

√

𝑑
Unif(0, 1) w.p. 1 − 𝑝,

where 𝑝 = 𝑤(𝑅𝑖
𝑡)

𝑤(𝐿𝑖
𝑡)+𝑤(𝑅𝑖

𝑡)

if 𝑡 − 𝑡noise = 𝑡thres and 𝑓 (𝑥𝑥𝑥𝑡) − 𝑓 (𝑥𝑥𝑥𝑡noise ) > −𝑓thres then
return 𝑥𝑥𝑥𝑡noise

𝑥𝑥𝑥𝑡+1 ← 𝑥𝑥𝑥𝑡 − 𝜂∇𝑓 (𝑥𝑥𝑥𝑡)

The next theorem gives the convergence rate of Algorithm 3: PGDOT finds a second-order stationary point in the same number
f iterations (up to a constant factor) as PGD does.

heorem 3.2. Assume that 𝑓 ∶ R𝑑 → R is 𝓁-gradient Lipschitz and 𝜌-Hessian Lipschitz. Then there exists 𝑐max > 0 such that for any
𝛿 > 0, 𝜖 ≤ 𝓁2∕𝜌, 𝛥𝑓 ≥ 𝑓 (𝒙0) − 𝑓 ∗, and 𝑐 ≤ 𝑐max, PGDOT (Algorithm 3) outputs an 𝜖-second-order stationary point with probability 1 − 𝛿
terminating within the following number of iterations:

𝑂
(

𝓁(𝑓 (𝒙0) − 𝑓⋆)
𝜖2

log4
(𝑑𝓁𝛥𝑓

𝜖2𝛿

))

.

The proof of Theorem 3.2 is based on a geometric characterization of saddle points — thin pancake property [52]. In Appendix D,
e will discuss this property, and show how it is used to prove Theorem 3.2.

.3. Perturbed accelerated gradient descent adapted to occupation time

Similar to the way we combined our perturbation mechanism with PGD, we can adapt PAGD to this mechanism as well resulting
n the accelerated version of PGDOT (Algorithm 4). We follow the parameter setting as in [53].

Algorithm 4, similar to PAGD, employs a feature called Negative Curvature Exploitation (NCE) which resets the momentum and
ecides whether to exploit the negative curvature when the function becomes ‘‘too convex’’. See [53][Algorithm 3].

The next theorem gives the convergence rate of Algorithm 4: PAGDOT finds a second-order stationary point in the same number
f iterations (up to a constant factor) as PAGD does, and therefore achieves a faster convergence rate than PGD and PGDOT. The
roof of Theorem 3.3 is similar to that of Theorem 3.2.

heorem 3.3. Assume that 𝑓 ∶ R𝑑 → R is 𝓁-gradient Lipschitz and 𝜌-Hessian Lipschitz. Then there exists an absolute constant 𝑐max > 0
such that for any 𝛿 > 0, 𝜖 ≤ 𝓁2∕𝜌, 𝛥𝑓 ≥ 𝑓 (𝒙0)−𝑓 ∗, and 𝑐 ≥ 𝑐max, one of the iterates 𝒙𝑡 of PAGDOT (Algorithm 4) will be an 𝜖-second-order
stationary point in the following number of iterations, with probability 1 − 𝛿:

𝑂
(

𝓁1∕2𝜌1∕4(𝑓 (𝒙0) − 𝑓⋆)
𝜖7∕4

log6
(𝑑𝓁𝛥𝑓

𝜌𝜖𝛿

))

.

It is worth mentioning that the new algorithms can be regarded as generalizations of PGD and PAGD. This is exemplified by the
fact that when the weight function 𝑤 is a constant function (e.g. 𝑤(𝑘) = 1,∀𝑘 ≥ 0), the perturbations become uniform. Additionally,
Algorithms 3 and 4 share some spirit with GD with momentum methods such as the heavy ball method [71]. In the heavy ball
method, a momentum term, which is a function of the current and previous states, is explicitly added to control the oscillations and
accelerate in low curvatures along the direction close to momentum. In Algorithms 3 and 4, however, no explicit momentum term
is added. Instead, the perturbation is adapted to the history of states providing the current state with an explicit direction.
6
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Algorithm 4 Perturbed Accelerated Gradient Descent Adapted to Occupation Time: PAGDOT(𝑥𝑥𝑥0, 𝜂, 𝜃, 𝛾, 𝑠, 𝑟,𝒯, 𝑤)

𝜒 ← max
{

log( 𝑑𝓁𝛥𝑓𝜌𝜖𝛿 ), 1
}

, 𝜅 ← 𝓁
√

𝜌𝜖
, 𝜂 ← 1

4𝓁

𝜃 ← 1
4
√

𝜅
, 𝛾 ← 𝜃2

𝜂 , 𝑠 ← 𝛾
4𝜌 , 𝑟 ← 𝜂𝜖

𝜒5𝑐8
, 𝒯 ← 𝜒𝑐

√

𝜅

𝑣𝑣𝑣0 ← 0
for 𝑡 = 0, 1,… , do
if ‖∇𝑓 (𝑥𝑥𝑥𝑡)‖ ≤ 𝜖 and no perturbation in last 𝒯 steps then
𝑥𝑥𝑥𝑡 ← 𝑥𝑥𝑥𝑡
for 𝑖 = 1,… , 𝑑 do

𝐿𝑖
𝑡 ← #{𝑠 < 𝑡 ∶ 𝑥𝑖𝑠 ≤ 𝑥𝑖𝑡}

𝑅𝑖
𝑡 ← #{𝑠 < 𝑡 ∶ 𝑥𝑖𝑠 > 𝑥𝑖𝑡}

𝑥𝑖𝑡 ←

⎧

⎪

⎨

⎪

⎩

𝑥𝑖𝑡 −
𝑟

√

𝑑
Unif(0, 1) w.p. 𝑝,

𝑥𝑖𝑡 +
𝑟

√

𝑑
Unif(0, 1) w.p. 1 − 𝑝,

where 𝑝 = 𝑤(𝑅𝑖
𝑡)

𝑤(𝐿𝑖
𝑡)+𝑤(𝑅𝑖

𝑡)

𝑦𝑦𝑦𝑡 ← 𝑥𝑥𝑥𝑡 + (1 − 𝜃)𝑣𝑣𝑣𝑡
𝑥𝑥𝑥𝑡+1 ← 𝑦𝑦𝑦𝑡 − 𝜂∇𝑓 (𝑦𝑦𝑦𝑡)
𝑣𝑣𝑣𝑡+1 ← 𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡
if 𝑓 (𝑥𝑥𝑥𝑡) ≤ 𝑓 (𝑦𝑦𝑦𝑡) + ⟨∇𝑓 (𝑦𝑦𝑦𝑡), 𝑥𝑥𝑥𝑡 − 𝑦𝑦𝑦𝑡⟩ −

𝛾
2‖𝑥𝑥𝑥𝑡 − 𝑦𝑦𝑦𝑡‖2 then

(𝑥𝑥𝑥𝑡+1, 𝑣𝑣𝑣𝑡+1) ← NCE(𝑥𝑥𝑥𝑡, 𝑣𝑣𝑣𝑡, 𝑠)

We also remark that Theorem 3.2 (Theorem 3.3) has been proven using the exact same steps and lemmas as the ones employed
n proving Theorem 2.5 (Theorem 2.6). As a result, the convergence rate of PGDOT (PAGDOT) is identical to that of PGD (PAGD).
his equivalence extends to the hidden constants as well. However, we believe that by exploiting the intrinsic properties of the
mbedded perturbation mechanism, such as the super-diffusivity of the corresponding random walk, there is a possibility to enhance
he theoretical results. Nonetheless, formally establishing this improvement remains an open question.

. Empirical results

This section presents empirical results to corroborate the theoretical analysis presented in the previous section. The experiments
howcase the effectiveness of our new perturbation-based algorithms, not only in escaping saddle points but also in doing so
fficiently and rapidly. To comprehensively evaluate their performance, we consider both small-scale and large-scale problems to
emonstrate the practicality and scalability of the new algorithms. Here, we compare the algorithms on a per-iteration basis. Refer
o Appendix G for the runtime comparison.

The small-scale problems include a synthetic problem, a nonlinear regression problem, a regularized quadratic problem, and
phase retrieval problem, wherein we compare the new algorithms with their counterparts, PGD and PAGD, and vanilla GD. In

he large-scale problems, we focus on image classification tasks using popular datasets such as MNIST [69], CIFAR-10 [70], and
IFAR-100 [70]. We compare the performance of the new algorithms against their counterparts, as well as SGD [48] and several
tate-of-the-art adaptive gradient algorithms including Adam [49], AMSGrad [66], AdaBelief [67], and STORM [68].

In these experiments, we use 𝐿𝑖
𝑡(ℎ) ∶= #{𝑡 − 𝑡count ≤ 𝑠 < 𝑡 ∶ 𝑥𝑖𝑡 − ℎ ≤ 𝑥𝑖𝑠 ≤ 𝑥𝑖𝑡} and 𝑅𝑖

𝑡(ℎ) ∶= #{𝑡 − 𝑡count ≤ 𝑠 < 𝑡 ∶ 𝑥𝑖𝑡 < 𝑥𝑖𝑠 ≤ 𝑥𝑖𝑡 + ℎ}
nstead of 𝐿𝑖

𝑡 and 𝑅𝑖
𝑡 in Algorithms 3 and 4. Here ℎ is a hyperparameter characterizing the occupation time over a small interval. 𝑡count

s another hyperparameter prescribing how long one should keep track of the history of 𝒙𝑡 in order to approximate the occupation
ime with a constant memory cost. All the hyperparameter settings used in the experiments and their tuning process are reported in
ppendix E. The small-scale problems are run on a commodity machine with Intel® Core™ i7-7500U CPU. The image classification

asks are run on Google Colab, utilizing NVIDIA A100 GPU in the High-RAM setting.

tair function problem. Given 𝑁 ∈ Z+, 𝐿 ∈ R+, define a function 𝑓 ∶ R+ → R+ as

𝑓 (𝑟) =

⎧

⎪

⎨

⎪

⎩

𝑟3, 𝑟 ∈ [0, 12𝐿),
(𝑟 − 𝑛𝐿)3 + 1

4 𝑛𝐿
3, 𝑟 ∈ [𝑎(𝑛), 𝑏(𝑛)), 1 ≤ 𝑛 ≤ 𝑁,

(𝑟 −𝑁𝐿)3 + 1
4𝑁𝐿3, 𝑟 ∈ [𝑁𝐿 + 1

2𝐿,∞),

where 𝑎(𝑛) = 𝑛𝐿 − 1
2𝐿 and 𝑏(𝑛) = 𝑛𝐿 + 1

2𝐿. For 𝒙 = (𝑥1,… , 𝑥𝑑 ) ∈ R𝑑 , we define 𝑓 (𝒙) = 𝑓
(

1
𝑑
∑𝑑

𝑖=1 𝑥
2
𝑖

)

.
Fig. 3 presents the visualization of the case 𝑁 = 4, 𝐿 = 1 as well as the training curves of 𝑓 given by 5 different algorithms

when 𝑑 = 4. The initial values are all the same, and all the algorithms except for GD are run 3 times considering the randomness
of perturbations. We observe that while GD becomes trapped at saddle points, all other algorithms successfully navigate away from
these points. Furthermore, the newly introduced algorithms, PGDOT and PAGDOT, outperform their respective counterparts.

Nonlinear regression problem. We consider a nonlinear regression problem, adapted from learning time series data with a continuous
dynamical system [72]. The loss function is defined as 𝑓 (𝒙) = 1 ∑𝑁 (𝑦̂(𝑠 ;𝒙)−𝑦∗(𝑠 ))2, where {𝑠 }𝑁 are 𝑁 sample points, 𝑦∗(𝑠) is the
𝑁 𝑖=1 𝑖 𝑖 𝑖 𝑖=1

7
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Fig. 3. Graph of 𝑓 (left) and the landscape of 𝑓 (𝒙) (middle) with 𝒙 ∈ R2 in the case of 𝑁 = 4, 𝐿 = 1. The figure on the right shows the performance of different
lgorithms in the stair function problem when 𝑁 = 4, 𝐿 = 1, 𝑑 = 4.

Fig. 4. The target function 𝑦∗(𝑡) and fitted function 𝑦̂(𝑡) obtained by PGDOT (left), and the performance of different algorithms (right) in the nonlinear regression
problem.

target function, and 𝑦̂(𝑠) is the function to fit with the form 𝑦̂(𝑠;𝒙) =
∑𝑀

𝑚=1(𝑎𝑚 cos (𝜆𝑚𝑠)+𝑏𝑚 sin (𝜆𝑚𝑠))𝑒𝑤𝑚𝑠. Here 𝒙 = {𝑎𝑚, 𝑏𝑚, 𝜆𝑚, 𝑤𝑚}𝑀𝑚=1
and the optimization problem is non-convex. We assume 𝑦∗(𝑠) = Ai(𝜔[𝑠− 𝑠0]), where 𝜔 = 3.2, 𝑠0 = 3.0, and Ai(𝑠) is the Airy function
f the first kind, given by the improper integral Ai(𝑠) = 1

𝜋 ∫ ∞
0 cos

(

𝑢3

3 + 𝑠𝑢
)

d𝑢.
For the specific regression model, we assume 𝑀 = 4 and use 𝑁 = 50 data points with 𝑠𝑖 = 𝑖∕10, 𝑖 = 0,… , 49. {𝑎𝑚, 𝑏𝑚, 𝜆𝑚}4𝑚=1

are initialized via  (0, 1) and {𝑤𝑚}4𝑚=1 are initialized via Unif(−2,−0.2). Fig. 4 shows the target function and the fitted function
obtained by PGDOT. Also, the learning curves of 5 different algorithms are plotted. We observe that PGDOT and PAGDOT escape
the saddle point faster than GD and outperform PGD and PAGD, respectively.

The next two non-convex optimization problems are taken from [73]. In both problems, all other algorithms escape saddle points
faster than GD, with PGDOT and PAGDOT slightly outperforming their counterparts.

Regularized quadratic problem. The first problem is a regularized quadratic problem [74], in which the loss function is defined as

𝑓1(𝒙) =
1
2
𝒙𝑇𝐻𝒙 + 1

𝑁

𝑁
∑

𝑖=1
𝒃𝑇𝑖 𝒙 + ‖𝒙‖1010,

where we take 𝑁 = 10, 𝐻 = diag([1,−0.1]), and 𝒃𝑖’s instances of  (0,diag([0.1, 0.001])). We initialize this problem at 𝒙0 = 0. Different
lgorithms’ performance are shown in Fig. 5.

hase retrieval problem. The second problem is the phase retrieval problem [75] with loss function

𝑓2(𝒙) =
1
𝑁

𝑁
∑

𝑖=1
((𝒂𝑇𝑖 𝒙)

2 − (𝒂𝑇𝑖 𝒙
∗)2)2,

where we choose 𝑁 = 200, 𝒙∗ an instance of  (0, 𝐼𝑑∕𝑑), and 𝒂𝑖’s instances of  (0, 𝐼𝑑 ) with 𝑑 = 10. We initialize the problem at 𝒙0
sampled from  (0, 𝐼𝑑∕(10000𝑑)). Fig. 5 presents the learning curves of different algorithms.

Image classification task. [46] observed that in training multilayer perceptrons (MLPs) on MNIST and CIFAR-10, SGD might get
stuck at saddle points. Additionally, [47] demonstrated that Adam gets stuck and performs poorly when MLPs with certain weight
initialization are trained on the MNIST dataset. In the following, we conduct image classification task on the MNIST, CIFAR-10, and
CIFAR-100 datasets using various deep learning models. The purpose of these experiments is to deliberately subject the algorithms
to saddle points through specific weight initialization schemes, drawing inspiration from the abovementioned works.

In each experiment, we compare PGDOT and PAGDOT with PGD, PAGD, SGD, Adam, AMSGrad, AdaBlief, and STORM. The
batch size is set as 128 for all algorithms across all experiments. It is worth mentioning that SGD and the adaptive gradient methods
exhibit poor performance across all experiments, leading to nearly identical plots. As a result, we only present the training curves
of SGD and Adam in this section, while the performance results of AMSGrad, AdaBelief, and STORM can be found in Appendix F.
8
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Fig. 5. The performance of different algorithms in the regularized quadratic problem (left) and the phase retrieval problem (right).

Fig. 6. Experimental results of training the MLP model on MNIST using various algorithms.

Fig. 7. Experimental results of training SqueezeNet on CIFAR-10 using various algorithms.

In the first experiment, we train an MLP with one hidden layer of size 100 on the MNIST dataset. We use Rectified Linear Unit
ReLu) as the activation function of the neurons in the hidden layer. The MLP has 3 layers of size (28 × 28)-100-10 totaling in 79,510
arameters considering all the weights and biases. We initialize the weights and biases with  (−1, 0.1) and run the algorithms for

100 epochs. Fig. 6 shows the train and test losses and accuracy results of different algorithms.
In the second experiment, we train SqueezeNet [76] on the CIFAR-10 dataset. We set the number of output channels in the last

convolutional layer as 10 to account for the 10 different classes existing in CIFAR-10. In total, the model has 740,554 parameters.
The weights and biases of the convolutional layers are initialized with  (−1, 0.1) and the algorithms are run for 200 epochs. Fig. 7
shows the train and test losses and accuracy results of different algorithms.

In the third experiment, we train ResNet18 [77] on the CIFAR-100 dataset. We set the number of output channels in the last
linear layer as 100 to account for the 100 different classes existing CIFAR-100. In total, the model has 11,227,812 parameters. This
time, we initialize the weights and biases of the batch normalization modules (as denoted by 𝛾 and 𝛽 in [78]) to 0 and run the
lgorithms for 50 epochs. Fig. 8 shows the train and test losses and accuracy results of different algorithms.

From the results obtained, it is evident that both SGD and the adaptive gradient methods exhibit poor performance across all
xperiments. Despite the presence of inherent noise in the mini-batch gradient, these methods fail to navigate away from saddle
oints effectively. Conversely, the new algorithms demonstrate the ability to successfully escape saddle points and achieve significant
eductions in loss. Moreover, when comparing the new algorithms with their counterparts, it becomes apparent that the newly
ntroduced perturbation mechanism holds a distinct advantage over the uniform perturbation utilized in PGD and PAGD. It is
9
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Fig. 8. Experimental results of training ResNet18 on CIFAR-100 using various algorithms.

mportant to highlight that the observed generalization gap in CIFAR-10 and CIFAR-100 can be mainly attributed to the specific
nitialization scheme employed.

. Conclusion

In this paper, we develop a new perturbation mechanism in which the perturbations are adapted to the history of states via the
otion of occupation time. This mechanism is integrated into the framework of PGD and PAGD resulting in two new algorithms:
GDOT and PAGDOT. We prove that PGDOT and PAGDOT converge rapidly to second-order stationary points, which is corroborated
y empirical studies ranging from time series analysis and the phase retrieval problem to deep learning.
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ppendix A. Monotone convergence of gradient descent

Here we prove a property of gradient descent applied to a function 𝑓 ∶ R → R, as mentioned in the introduction. This property
of gradient descent supports the use of our proposed perturbation mechanism.

Proposition A.1. Let 𝑓 ∈ 2(R). Assume that we start gradient descent at some arbitrary point 𝑥0, and the corresponding iterates {𝑥𝑛}𝑛≥0
onverge to the point 𝑥𝑠 with 𝑓 ′′(𝑥𝑠) ≠ 0. Then, if 𝑓 is 𝓁-gradient Lipschitz and the step size is less than 1

𝓁
, the sequence {𝑥𝑛}𝑛≥0 converges

onotonically to 𝑥𝑠.

In order to prove this proposition, we break it down into two lemmas.

emma A.2. Let 𝑓 ∈ 2(R). Assume that we start gradient descent at some arbitrary point 𝑥0, and the corresponding iterates {𝑥𝑛}𝑛≥0
onverge to the point 𝑥𝑠 with 𝑓 ′′(𝑥𝑠) ≠ 0. Then, if 𝑓 is 𝓁-gradient Lipschitz and the step size is less than 1

𝓁
, there exists 𝑀 > 0 such that the

equence {𝑥𝑛}𝑛≥𝑀 converges monotonically to 𝑥𝑠.

roof. Note that for 𝑛 ≥ 0, 𝑥𝑛+1 = 𝑥𝑛 − 𝜂𝑓 ′(𝑥𝑛), where 0 < 𝜂 < 1
𝓁

is the step size. Also, it is easy to show that 𝑓 ′(𝑥𝑠) = 0. Assume
that at some point 𝑥𝑛 ≥ 𝑥𝑠. Then, since |𝑓 ′(𝑥𝑛) − 𝑓 ′(𝑥𝑠)| = |𝑓 ′(𝑥𝑛)| ≤ 𝓁|𝑥𝑛 − 𝑥𝑠|, we have

𝑥𝑠 ≤ 𝑥𝑛 −
1
𝓁
|𝑓 ′(𝑥𝑛)| ≤ 𝑥𝑛 − 𝜂|𝑓 ′(𝑥𝑛)|

≤ 𝑥𝑛 − 𝜂𝑓 ′(𝑥𝑛) = 𝑥𝑛+1.

Similarly, if 𝑥𝑛 ≤ 𝑥𝑠, then we get 𝑥𝑛+1 ≤ 𝑥𝑠. This implies that the sequence {𝑥𝑛}𝑛≥0 is entirely either on the left hand side of 𝑥𝑠 or
on its right hand side (including 𝑥𝑠).

Without loss of generality, assume that the entire sequence of iterations lies on the right hand side of 𝑥𝑠. If at some iteration,
𝑥𝑚 = 𝑥𝑠, then since 𝑓 ′(𝑥𝑠) = 0, 𝑥𝑛 = 𝑥𝑠 for 𝑛 ≥ 𝑚, which yields the desired result. So we can assume that 𝑥𝑛 ≠ 𝑥𝑠 for all 𝑛 ≥ 0.
Using a similar argument, we can also assume that 𝑓 ′(𝑥𝑛) ≠ 0 for all 𝑛 ≥ 0. Suppose by contradiction that there is no such 𝑀 as
described in the lemma. Then there exist infinitely many 𝑛 such that 𝑥𝑛 < 𝑥𝑛+1 implying that for infinitely many 𝑛, 𝑓 ′(𝑥𝑛) < 0.
Since lim𝑛→∞ 𝑥𝑛 = 𝑥𝑠 and the entire sequence is on the right hands side of 𝑥𝑠, we also have infinitely many 𝑛 such that 𝑓 ′(𝑥𝑛) > 0.
Combining these results, one can construct a strictly decreasing sub-sequence {𝑦𝑛}𝑛≥0 of the iterations such that lim𝑛→∞ 𝑦𝑛 = 𝑥𝑠,
𝑓 ′(𝑦2𝑚) > 0, and 𝑓 ′(𝑦2𝑚+1) < 0 for all 𝑚 ≥ 0. Since 𝑓 ′ is continuous, there exists 𝑦2𝑚+1 < 𝑧𝑚 < 𝑦2𝑚 such that 𝑓 ′(𝑧𝑚) = 0, for each
𝑚 ≥ 0. It is easy to see that {𝑧𝑛}𝑛≥0 is also strictly decreasing and lim𝑛→∞ 𝑧𝑛 = 𝑥𝑠. Note that since 𝑓 ′′ is continuous, by the mean
alue theorem, one can find a sequence {𝑡𝑛}𝑛≥0 such that for each 𝑛 ≥ 0, 𝑧𝑛+1 < 𝑡𝑛 < 𝑧𝑛 and 𝑓 ′′(𝑡𝑛) = 0. Since {𝑧𝑛}𝑛≥0 converges to
, then so does {𝑡 } . But this implies that 𝑓 ′′(𝑥 ) = lim 𝑓 ′′(𝑡 ) = 0 contradicting with the fact that 𝑓 ′′(𝑥 ) ≠ 0. □
𝑠 𝑛 𝑛≥0 𝑠 𝑛→∞ 𝑛 𝑠

10
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Lemma A.3. Given the setting in Lemma A.2, {𝑥𝑛}𝑛≥0 converges monotonically to 𝑥𝑠.

roof. Without loss of generality, assume that 𝑥0 ≥ 𝑥𝑠, then using what we obtained during the proof of Lemma A.2, we know
hat the entire sequence {𝑥𝑛}𝑛≥0 lies on the right hand side of 𝑥𝑠 ((including 𝑥𝑠). Let 𝑀 be the minimum index that satisfies the
ondition in Lemma A.2. Suppose by contradiction that 𝑀 > 0. So 𝑥𝑠 < 𝑥𝑀−1 < 𝑥𝑀 , which implies 𝑓 ′(𝑥𝑀−1) < 0 considering
𝑀 = 𝑥𝑀−1 − 𝜂𝑓 ′(𝑥𝑀−1). Since the sequence converges to 𝑥𝑠, there should be a 𝑘 ≥ 0 such that 𝑥𝑀+𝑘+1 < 𝑥𝑀−1 < 𝑥𝑀+𝑘. Note that
𝑀+𝑘+1 = 𝑥𝑀+𝑘 − 𝜂𝑓 ′(𝑥𝑀+𝑘), so

𝜂𝑓 ′(𝑥𝑀+𝑘) = 𝑥𝑀+𝑘 − 𝑥𝑀+𝑘+1 > 𝑥𝑀+𝑘 − 𝑥𝑀−1.

ince 𝑓 ′(𝑥𝑀−1) < 0, we have 𝜂
(

𝑓 ′(𝑥𝑀+𝑘) − 𝑓 ′(𝑥𝑀−1)
)

> 𝜂𝑓 ′(𝑥𝑀+𝑘) > 𝑥𝑀+𝑘 − 𝑥𝑀−1. This contradicts the fact that 𝜂(𝑓 ′(𝑥𝑀+𝑘) −
′(𝑥𝑀−1)) ≤ 𝜂𝓁(𝑥𝑀+𝑘 − 𝑥𝑀−1) < 𝑥𝑀+𝑘 − 𝑥𝑀−1. □

ppendix B. Background on convex optimization

We provide some context of gradient descent applied to convex functions.

efinition B.1.

(1) A differentiable function 𝑓 ∶ R𝑑 → R is 𝓁-gradient Lipschitz if ‖∇𝑓 (𝒙1) − ∇𝑓 (𝒙2)‖ ≤ 𝓁‖𝒙1 − 𝒙2‖ for all 𝒙1,𝒙2 ∈ R𝑑 .
(2) A twice differentiable function 𝑓 ∶ R𝑑 → R is 𝛼-strongly convex if 𝜆min(∇2𝑓 (𝒙)) ≥ 𝛼 for all 𝒙 ∈ R𝑑 .

The gradient Lipschitz condition controls the amount of decay in each iteration, and the strong convexity condition guarantees
hat the unique stationary point is the global minimum. The ratio 𝓁∕𝛼 is often called the condition number of the function 𝑓 .
he following theorem shows the linear convergence of gradient descent to the global minimum 𝒙⋆, see [79][Theorem 3.10]
nd [5][Theorem 2.1.15].

heorem B.2 ([5,79]). Assume that 𝑓 ∶ R𝑑 → R is 𝓁-gradient Lipschitz and 𝛼-strongly convex. For any 𝜖 > 0, if we run gradient descent
ith step size 𝜂 = 𝓁−1, then the number of iterations to be 𝜖-close to 𝒙⋆ is 2𝓁

𝛼 log
(

‖𝒙0−𝒙⋆‖
𝜖

)

.

Appendix C. Proof of Theorem 3.1

Suppose by contradiction that with positive probability, the walk is localized at some points {𝑘,… ,𝓁}. We focus on the left end
𝑘. Let 𝜏𝑘𝑛 be the time at which the point 𝑘 is visited 𝑛 times. For 𝑛 sufficiently large, the point 𝑘+1 is visited approximately at least 𝑛
times by 𝜏𝑘𝑛 . So at time 𝜏𝑘𝑛 , the walk moves from 𝑘 to 𝑘+1 with probability bounded from above by 𝐶∕𝑤(𝑛) for some constant 𝐶 > 0.
Consequently, the probability that the walk is localized at {𝑘,… ,𝓁} is less than ∏

𝑛>0
𝐶

𝑤(𝑛) . By standard analysis, ∏𝑛>0
𝐶

𝑤(𝑛) = 0 if
(𝑛) → ∞ as 𝑛 → ∞. This leads to the desired result.

ppendix D. Proof of Theorem 3.2

We show how the thin-pancake property of saddle points is used to prove Theorem 3.2. Recall that an 𝜖-second-order stationary
oint is a point with a small gradient, and where the Hessian does not have a large negative eigenvalue. Let us put down the basic
dea in Section 2.2 with the parameters in Algorithm 3 (PGDOT). If we are currently at an iterate 𝒙𝑡 which is not an 𝜖-second-order
tationary point, there are two cases: (1) The gradient is large: ‖∇𝑓 (𝒙𝒕)‖ ≥ 𝑔thres; (2) 𝒙𝑡 is close to a saddle point: ‖∇𝑓 (𝒙𝒕)‖ ≤ 𝑔thres
nd 𝜆min(∇2𝑓 (𝒙𝒕)) ≤ −

√

𝜌𝜖. The case (1) is easy to deal with by the following elementary lemma.

Lemma D.1. Assume that 𝑓 ∶ R𝑑 → R is 𝓁-gradient Lipschitz. Then for GD with step size 𝜂 < 𝓁−1, we have 𝑓 (𝒙𝑡+1)−𝑓 (𝒙𝑡) ≤ − 𝜂
2‖∇𝑓 (𝒙𝑡)‖

2.

The case (2) is more subtle, and the following lemma gives the decay of the function value after a random perturbation described
n Algorithm 3 (PGDOT).

emma D.2. Assume that 𝑓 ∶ R𝑑 → R is 𝓁-gradient Lipschitz and 𝜌-Hessian Lipschitz. If ‖∇𝑓 (𝒙𝒕)‖ ≤ 𝑔thres and 𝜆min(∇2𝑓 (𝒙𝒕)) ≤ −
√

𝜌𝜖,
then adding one perturbation step as in Algorithm 3 followed by 𝑡thres steps of GD with step size 𝜂, we have 𝑓 (𝒙𝑡+𝑡thres ) − 𝑓 (𝒙𝑡) ≤ −𝑓thres with
probability at least 1 − 𝑑𝓁

√

𝜌𝜖
𝑒−𝜒 .

[52] proved Lemma D.2 for PGD, and used it together with Lemma D.1 to prove Theorem 2.5. We will use the same argument,
with Lemmas D.1 and D.2, leading to Theorem 3.2 for PGDOT.

Now, let us explain how to prove Lemma D.2 via a purely geometric property of saddle points. Consider a point 𝒙̃ satisfying
the condition ‖∇𝑓 (𝒙̃)‖ ≤ 𝑔thres and 𝜆min(∇2𝑓 (𝒙̃)) ≤ −

√

𝜌𝜖. After adding the perturbation in Algorithm 3, the resulting vector can
e viewed as a distribution over the cube 𝐶 (𝑑)(𝒙̃, 𝑟∕

√

𝑑). Similar as in [52], we call 𝐶 (𝑑)(𝒙̃, 𝑟∕
√

𝑑) the perturbation cube which is
divided into two regions: (1) escape region 𝜒escape which consists of all points 𝒙 ∈ 𝐶 (𝑑)(𝒙̃, 𝑟∕

√

𝑑) whose function value decreases by
at least 𝑓thres after 𝑡thres steps; (2) stuck region 𝜒stuck which is the complement of 𝜒escape in 𝐶 (𝑑)(𝒙̃, 𝑟∕

√

𝑑). The key idea is that the stuck
region 𝜒stuck looks like a non-flat thin pancake, which has a very small volume compared to that of 𝐶 (𝑑)(𝒙̃, 𝑟∕

√

𝑑). This claim can be
ormalized by the following lemma, which is a direct corollary of [52][Lemma 11] as 𝐶 (𝑑)(𝒙̃, 𝑟∕

√

𝑑) ⊆ 𝐵𝑑 (𝒙̃, 𝑟):
11
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Table 1
Hyperparameters utilized in the small-scale problems.

d ℎ 𝑡𝑐𝑜𝑢𝑛𝑡 𝜂 𝑡𝑡ℎ𝑟𝑒𝑠 𝑔𝑡ℎ𝑟𝑒𝑠 𝑟 Momentum # of steps

Stair function 4 0.04 200 0.1 10 0.01 0.04 0.5 2000
Nonlinear regression 16 0.04 200 0.1 50 0.1 0.1 0.5 14 000
Regularized quadratic 2 1 200 0.01 50 0.01 0.01 0.5 3000
Phase retrieval 10 1 200 0.001 50 1 0.01 0.5 1200

Table 2
Hyperparameters utilized by SGD and the adaptive gradient methods in the image classification tasks.

SGD Adam AMSGrad AdaBelief STORM

MLP on MNIST lr: 0.01 lr: 0.001 lr: 0.001 lr: 0.001 k: 0.01, c: 100
SqueezeNet on CIFAR-10 lr: 1.0 lr: 0.0001 lr: 1.0 lr: 0.1 k: 0.01, c: 10
ResNet18 on CIFAR-100 lr: 0.1 lr: 0.001 lr: 0.001 lr: 0.001 k: 0.1, c: 100

Table 3
Hyperparameters utilized by PGD, PAGD, PGDOT, and PAGDOT in the image classification tasks.

𝜂 𝑡𝑡ℎ𝑟𝑒𝑠 𝑔𝑡ℎ𝑟𝑒𝑠 𝑟PGD/PAGD 𝑟PGDOT/PAGDOT Momentum

MLP on MNIST 0.01 10 0.1 1∕
√

79, 510 1 0.9
SqueezeNet on CIFAR-10 0.001 10 1 10∕

√

740, 554 10 0.1
ResNet18 on CIFAR-100 0.01 200 1 1∕

√

11, 227, 812 1 0.9

Lemma D.3. Assume that 𝒙̃ satisfies ‖∇𝑓 (𝒙̃)‖ ≤ 𝑔thres and 𝜆min(∇2𝑓 (𝒙̃)) ≤ −
√

𝜌𝜖. Let 𝒆1 be the smallest eigendirection of ∇2𝑓 (𝒙̃). For any
𝛿 < 1∕3 and any 𝒖, 𝒗 ∈ 𝐶 (𝑑)(𝒙̃, 𝑟∕

√

𝑑), if 𝒖 − 𝒗 = 𝜇𝑟𝒆1 and 𝜇 ≥ 𝛿∕(2
√

𝑑), then at least one of 𝒖 and 𝒗 is not in the stuck region 𝜒stuck.

To prove Lemma D.2, it suffices to check that P(𝜒stuck) ≤ 𝐶𝛿 for some 𝐶 > 0. This criterion is general for any (random)
erturbation. Let 1,… ,2𝑑 be the orthants centered at 𝒙̃; that is, the space R𝑑 is divided into 2𝑑 subspaces according to the
oordinate signs of ⋅ − 𝒙̃. The symbol sgn(𝑖) ∈ {−1, 1}𝑑 denotes the coordinate signs of 𝒚 − 𝒙̃ for any 𝒚 ∈ 𝑖. For 1 ≤ 𝑖 ≤ 2𝑑 , let

𝑝𝑖 =
∏

sgn(𝑖)𝑘=−1

𝑤(𝑅𝑘
𝑡 )

𝑤(𝐿𝑘
𝑡 ) +𝑤(𝑅𝑘

𝑡 )

∏

sgn(𝑖)𝑘=1

𝑤(𝐿𝑘
𝑡 )

𝑤(𝐿𝑘
𝑡 ) +𝑤(𝑅𝑘

𝑡 )

be the probability that the random perturbation drives 𝒙̃ into 𝐶 (𝑑)(𝒙̃, 𝑟∕
√

𝑑) ∩𝑖. Consequently, P(𝜒stuck) =
∑2𝑑

𝑖=1 𝑝𝑖
Vol(𝜒stuck∩𝑖)

Vol(𝐶(𝑑)(𝒙̃,𝑟∕
√

𝑑)∩𝑖)
,

where Vol(⋅) denotes the volume of a domain. It is easy to see that Vol(𝐶 (𝑑)(𝒙̃, 𝑟∕
√

𝑑) ∩𝑖) = (𝑟∕
√

𝑑)𝑑 . By Lemma D.3 and the slicing
olume bound [80], Vol(𝜒stuck ∩ 𝑖) ≤

√

2(𝑟∕
√

𝑑)𝑑−1 𝛿𝑟
√

𝑑
. Therefore, Vol(𝜒stuck∩𝑖)

Vol(𝐶(𝑑)(𝒙̃,𝑟∕
√

𝑑)∩𝑖)
≤
√

2𝛿 implying that P(𝜒stuck) ≤
√

2𝛿.
Note that this proof does not rely on the full history of states for 𝐿𝑡 and 𝑅𝑡. Thus, one can restrict the number of previous

terations as is done in Section 4 using the hyperparameter 𝑡count.

ppendix E. Hyperparameter settings in the numerical examples

To ensure a fair comparison between algorithms in the small-scale problems, we opted to select a consistent set of hyperparame-
ers. Specifically, we employed the same learning rate as GD for all other algorithms. Additionally, we set the common hyperparam-
ters between the new algorithms and their counterparts to be equal. Table 1 provides an overview of the hyperparameters utilized
n the small-scale problems.

For the image classification tasks (the large-scale problems), we do a grid search and report the best hyperparameters for SGD
nd the adaptive gradient methods. For SGD, Adam, AMSGrad, and AdaBelief, the only hyperparameter is the learning rate. For
TORM, we tune both 𝑘 and 𝑐 while setting 𝑤 = 0.1. Table 2 provides an overview of the hyperparameters utilized by SGD and
he adaptive gradient methods in the image classification tasks. It is important to note that the significant disparity observed in
he learning rates employed by various algorithms in the second image classification task stems from the fact that regardless of the
earning rate value, none of the algorithms manage to escape the saddle points, leading to no improvement in the training loss.

To ensure fair comparison between PGDOT and PAGDOT and their counterparts, we select a consistent set of hyperparameters for
hem. The only difference is in the perturbation norm 𝑟. Note that norm of the actual perturbation applied in PGDOT and PAGDOT
s 𝑟∕

√

𝑑. Since 𝑑 is a large number in the large-scale problems, 𝑟∕
√

𝑑 would be significantly different than 𝑟. Therefore, we adjust
the perturbation norm in PGD and PAGD accordingly. Additionally, in all the image classification tasks, we set 𝑡count = 100 and
ℎ = 1012. Table 3 provides an overview of the hyperparameters utilized by PGD, PAGD, PGDOT, and PAGDOT.

We also remark that the weight function in Algorithms 3 and 4 is set as 𝑤(𝑘) = 1 + 𝑘5 for all the small-scale and large-scale
problems.
12
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Fig. 9. Experimental results of training the MLP model on MNIST using several adaptive gradient methods.

Fig. 10. Experimental results of training SqueezeNet on CIFAR-10 using several adaptive gradient methods.

Fig. 11. Experimental results of training ResNet18 on CIFAR-100 using several adaptive gradient methods.

ppendix F. Image classification task results of adaptive gradient methods

Here, we present the training outcomes of AMSGrad, AdaBelief, and STORM, in addition to Adam, across the three distinct image
lassification tasks. See Figs. 9, 10, and 11. It is worth noting that as Adam exhibited unsatisfactory performance in all experiments,
ny training curves that closely resemble or are identical to Adam’s indicate poor performance for the other algorithms as well.

ppendix G. Runtime comparison

In addition to the per-iteration basis comparison, in Figs. 12–16, we compare the algorithms runtime for each one of the examples
onsidered. Note that for each example, the number of iterations/epochs is kept the same and the losses are plotted against the
untime.

It is worth mentioning that the per-iteration time complexity of the new algorithms is the same (up to a constant factor) as that
f vanilla GD. To see this, note the followings:

1. The per-iteration time complexity is mainly determined by the gradient computation. In the new algorithms, similar to vanilla
GD, gradient computation occurs at each iteration — we always compute the gradient to see if its norm is small enough to
trigger the perturbation mechanism.

2. The number of the rest of the per-iteration operations (e.g. comparing the current iterate with previous iterates) is fixed due
to considering only 𝑡count previous iterations while computing the occupation time.
13
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Fig. 12. Runtime comparison: stair function problem (left) and nonlinear regression problem (right).

Fig. 13. Runtime comparison: regularized quadratic problem (left) and phase retrieval (right).

Fig. 14. Runtime comparison: training the MLP model on MNIST.

Fig. 15. Runtime comparison: training SqueezeNet on CIFAR-10.
14
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Fig. 16. Runtime comparison: training ResNet18 on CIFAR-100.

Appendix H. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jcmds.2024.100090.
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