DISCRETE SUBGROUPS OF SMALL CRITICAL EXPONENT
BEIBEI LIU AND SHI WANG

ABSTRACT. We prove that finitely generated Kleinian groups I' < Isom(H") with small
critical exponent are always convex-cocompact. Along the way, we also prove some geomet-
ric properties for any complete pinched negatively curved manifold with critical exponent
less than 1.

1. INTRODUCTION

A Kleinian group is a discrete isometry subgroup of Isom(H"™). The study of 3-dimensional
finitely generated Kleinian groups dates back to Schottky, Poincaré and Klein. It is only
recently that the geometric picture of the associated hyperbolic manifold has been much
better understood, after the celebrated work of Ahlfors’ finiteness theorem [Ahl64], the proof
of the tameness conjecture [Bon86, Ago04, CGO06], and the unraveling of the Ending Lami-
nation Conjecture [Min10, BCM12, Som08, Bow11]. However, such geometric descriptions
fail in higher dimensions [Kap95, Kap08, KP91a, KP91b, Pot94, Pot92].

To study higher dimensional Kleinian groups, one way is to consider the interplay between
the group theoretic properties, the geometry of the quotient manifolds, and the measure-
theoretic size of the limit set. It is shown in [Gus89] that if the Hausdorff dimension of the
entire limit set dimy (A(I')) < 1, then I' is geometrically finite. In such case, the Hausdorft
dimension of the entire limit set equals the Hausdorff dimension of the conical limit set
[Bow95] which is smaller than 1. However, when I' is geometrically infinite, the size of the
entire limit set could a priori be much larger so as dimy A(I') > dimy Ao(T"). Thus, it is
interesting to ask what is the relative size of A.(I') compared to the entire A(I"), or rather,
to what extent is the size of A.(I') able to determine the geometric finiteness of the group.
By the work of Bishop and Jones [BJ97], the Hausdorff dimension of the conical limit set
A.(T) equals the critical exponent §(I"). Hence, Kapovich [Kap09, Problem 1.6] asked the
following question:

Question 1.1. Is every finitely generated Kleinian group I' < Isom(H") with 6(I') < 1
geometrically finite?

In the present paper, we partly answer this in the affirmative while considering in a
slightly more general context.

Theorem 1.2. For each n and k, there exists a positive constant D(n, k) < 1/2 with the
following property that: for every n-dimensional Hadamard manifold with pinched sectional
curvature —k? < K < —1 and any finitely generated, torsion-free, discrete isometry sub-
group I' < Isom(X), T is convex cocompact if 6(T') < D(n, k).

Remark 1.3. The constant D(n, ) can be obtained from the quantitative version of the
Tits alternative for pinched negatively curved manifolds [DKL19].

Remark 1.4. For 3-dimensional finitely generated Kleinian groups I' of second kind, i.e.,
A(T') # S2%, Bishop and Jones [BJ97] showed that T is geometrically finite if 6(T") < 2. Hou
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[Houl0, Hou20, Houl6] proved that a 3-dimensional Kleinian group I" is a classical Schottky
group if dimy (A(T)) < 1.

In [Kap09], Kapovich established a relation between the homological dimension and the
critical exponent of a Kleinian group. Similar homological vanishing feature has been ex-
tended to other rank one symmetric spaces by Connell, Farb and McReynolds [CFM16].
It is conjectured [Kap09, Conjecture 1.4] that the virtual cohomological dimension ved(T")
is bounded above by §(I") + 1 (assume I' has no higher rank cusps). Under the condition
d(T") < 1, it is equivalent [Sta68] to ask (See also a weaker form in [Bes04, Question 5.6].):

Question 1.5. Is every finitely generated Kleinian group I' < Isom(H") with 6(T') < 1
virtually free?

In the same paper, Kapovich gave a positive answer to this question under a stronger
assumption that I is finitely presented. On the other hand, when 6(I") is sufficiently small,
our Theorem 1.2 automatically implies dimy(A(T")) = 6(T') < D(n,x) < 1. This implies
that the limit set A(I") is a Cantor set since it is perfect. Following the classical result of
Kulkarni [Kul78, Theorem 6.11], we have:

Corollary 1.6. For each n, there exists a positive constant D(n) < 1/2 such that, any
finitely generated discrete isometry subgroup I' < Isom(H™) is virtually free if §(I') < D(n).

Remark 1.7. Under the assumption that dimy(A(I")) < 1, Pankka and Souto [PS19]
proved that any torsion free Kleinian group (not necessarily finitely generated) is free.

The method in [Kap09] also works for discrete isometry subgroups of Hadamard manifolds
with negatively pinched sectional curvature —x? < K < —1, and Question 1.5 can be asked
for this family of groups. If in addition we know I' is free in Theorem 1.2, then the constant
D(n, k) can actually be made effective, and independent of n and .

Theorem 1.8. Let I' < Isom(X) be a finitely generated, virtually free, discrete isometry
subgroup of an n-dimensional Hadamard manifold with pinched negative curvature —r? <

1
K <-1. Ifo(') < 16’ then T" is convex cocompact.

Thus, in view of Kapovich’s result [Kap09, Corollary 1.5], we obtain,

1
Corollary 1.9. Any finitely presented Kleinian group with §(I") < 6 18 convex cocompact.

One of the main efforts in our proofs is to investigate the geometric properties of the
quotient manifold M = X/T" under the condition that § is small. While these results are
only restricted to § < 1, we still find that they might be of independent interest and worth
highlighting. The following theorem is closely related to the classical Plateau’s problem,
where we obtain a certain type of linear isoperimetric inequality for the quotient manifold

M = X/T.

Theorem 1.10. Suppose that C is a union of smooth loops in M = X/T" which represents
a trivial homology class in Hi(M,Z). If §(I') = 6 < 1, then C boundes a smooth surface
i:X — M (See Definition 2.6) whose area satisfies
4
A() < ——/(C
(1) = 7—54C),

where ¢(C) denotes the total length of the smooth loops in C.

Finitely generated Kleinian groups in dimension 3 have only finitely many cusps [Sul81],
but the same result does not hold in higher dimensions [Kap95]. As an application of



DISCRETE SUBGROUPS OF SMALL CRITICAL EXPONENT 3

Theorem 1.10, we show that under the assumption § < 1, the e-thin part of M has only
finitely many connected components when € is small enough. In particular, M has only
finitely many cusps.

Theorem 1.11. Let I' < Isom(X) be a finitely generated, torsion-free, discrete isometry
subgroup of an n-dimensional Hadamard manifold with pinched negative curvature —r? <
K < —1. Suppose that 6(T') < 1. Then,

(1) The number of cusps in M = X /T is no greater than the first Betti number of M.

(2) M has bounded geometry, that is, the noncuspidal part of M has a uniform lower
bound on its injectivity radius.

(3) T' is convex cocompact if and only if the injectivity radius function inj : M — R is
proper.

Remark 1.12. Note that without the assumption on the critical exponent, it is showed in
[BH20, Proposition 2.6] that I' is convex cocompact if and only if M is Gromov hyperbolic
and the injectivity radius function is proper.

Outline of the proof of Theorem 1.2. We first observe that whenever § < 1 there is an
area-decreasing self-map (the Besson-Courtois-Gallot map) on M. This allows us to prove
the linear isoperimetric type inequality as in Theorem 1.10, from which we deduce further
that closed geodesics on M asymptotically have uniformly bounded normal injectivity radii.
This means if there is an escaping sequence of closed geodesics on M, then there exists a
subsequence on which the normal injectivity radii are uniformly bounded. Next, we observe
that given a long closed geodesic with small normal injectivity radius, one can always
separate along the normal direction to replace it by a shorter closed geodesic nearby. Then,
we use the result from [KL19] which states that I' is geometrically infinite if and only if
there exists an escaping sequence of closed geodesics. The assumption that D(n, k) is smaller
than 1/2 excludes parabolic elements, and assume by contradiction that there is one such
escaping sequence. Using the idea of infinite descent, we can reduce the length of the closed
geodesics and find another escaping sequence whose lengths and normal injectivity radii
are both uniformly bounded, from which we can find two loxodromic isometries that move
a common point within a uniformly bounded distance. This means the non-elementary
subgroup generated by the two isometries will have large critical exponent, thus leading to
a contradiction if we assume ¢ is small enough.

Organization of the paper. In Section 2, we review some elementary results of negatively
pinched Hadamard manifolds and the Besson-Courtois-Gallot map. In Section 3, we give
the proofs of Theorem 1.10 and Theorem 1.11. In Section 4, we prove Theorem 4.1, which
together with Theorem 1.11 implies Theorem 1.2 and Theorem 1.8.

Acknowledgments. We would like to thank Grigori Avramidi, Igor Belegradek, Lvzhou
Chen, Joel Hass, Michael Kapovich, Gabriele Viaggi and Zhichao Wang for helpful discus-
sions. We appreciate the anonymous referees for the helpful comments and suggestions. We
are also grateful to Max Planck Institute for Mathematics in Bonn for its hospitality and
financial support, where this work was completed.

2. PRELIMINARIES

2.1. Discrete isometry groups. Let X be a complete, simply connected, n-dimensional
Riemannian manifold of pinched negative curvature —x? < K < —1 where x > 1. The
Riemannian metric on X induces the distance function dx and (X, dx) is a uniquely geodesic
space. With the curvature assumption, the metric space (X,dx) is Gromov hyperbolic,
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where the hyperbolicity constant &y can be chosen as cosh ™ (vV/2), i.e. every geodesic triangle
in X is dp-slim.

By the Cartan-Hadamard theorem, X is diffeomorphic to the Euclidean space R™ via the
exponential map at any point in X. We can naturally compactify X by adding the ideal
boundary 0., X, thus the compactified space X = X U 0, X is homeomorphic to the unit
n-ball B™.

Every isometry 7 € Isom(X) extends the action to the ideal boundary, so it induces a
diffeomorphism on X. Based on its fixed point set Fix(7), the isometry v on X can be
classified as follows:

(1) ~ is parabolic if Fix(7) is a singleton {p} C s X.

(2) ~v is elliptic if it has a fixed point in X. In this case, the fixed point set Fix(y) is a
totally geodesic subspace of X invariant under «. In particular, the identity map is
elliptic.

(3) v is loxodromic if Fix(y) consists of two distinct points p, g € 0 X. In this case,
stabilizes and translates along the geodesic pq, and we call the geodesic pq the axis
of ~.

One can also use the translation length to classify the isometries on X. For each isometry
v € Isom(X), we define its translation length T(vy) as

() = Inf dx (z,7(x)).

The isometry ~ is loxodromic if and only if 7(v) > 0. In this case, the infimum is attained
exactly when the points are on the axis of . The isometry « is parabolic if and only if
7(7v) = 0 and the infimum is not attained. The isometry = is elliptic if and only if 7(y) =0
and the infimum is attained.

Let T" < Isom(X) be a discrete subgroup which acts on X properly discontinuously. If T’
is torsion-free, then any nontrivial element in I' is either loxodromic or parabolic. We denote
the quotient manifold X/T" by M, and let m : X — M denote the canonical projection. The
geodesic loops ¢ : [a,b] = M at p = c(a) = ¢(b) € M are in one-to-one correspondence with
geodesic segments from z to vy(x) where z € X with 7(z) = p and v € I'. Recall that the
injectivity radius at a point p € M is the largest radius for which the exponential map at p
is a diffeomorphism. The injectivity radius at a point p € M is half the length of shortest
geodesic loop at p since there are no conjugate points in M. We use inj(p) to denote the
injectivity radius at p and define

dr(z) = Jdnin dx(x,y(x))
for x € X. Then dr(z) = 2inj(m(x)). We say the injectivity radius function inj : M — R
is proper if the preimage of a compact set is compact. The injectivity radius function is
1-Lipschitz. To see this, given any two points p,q € M, let p,§ be a pair of lifts of p,q in
X whose distance is the same as the distance d(p, q) of p,q € M. There exists an isometry
v € I such that dx(p,vyp) = dr(p), and

2inj(q) < dx(q,7(q)) < dx(q,p) + dx(p,v(p)) + dx(v(p), (7))
= 2d(p, q) + 2inj(p).
Hence, inj(q) — inj(p) < d(p,q).

Recall that the critical exponent §(I') of a torsion-free discrete isometry group I' <
Isom(X) is defined to be:

5(I) = inf{s : 3 exp(~sdx(p,7(p))) < 00},
yerl
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where p is a given point in X. Note that 6(I") is independent of the choice of p. Alternatively,
one can also define the critical exponent 0(I') as follows [Nic89]:

(2.1) 0(T") = limsup log(N(R))
R—o0 R

where N(R) = #{y € T' | dx(x,v(z)) < R} for any given point z € X.
We will need to use the following proposition later in the proofs.

9

Proposition 2.1. [KL19, Corollary 6.12] Let w € M = X/T" be a piecewise geodesic loop
which consists of r geodesic segments, and let o be the closed geodesic freely homotopic to
w such that the length ¢(a) > € > 0. Then « is contained in the D-neighborhood of the loop
w, where

D = cosh™}(v/2)[logy 7] + sinh™1(2/¢) 4 2.

Remark 2.2. The original corollary was stated under the extra assumption that « is simple.
However, the proof of [KL19, Corollary 6.12] does not rely on this fact so we have removed
the assumption here.

2.2. Thick-thin decomposition. Given an isometry v € Isom(X), and a constant ¢ > 0,
we define the Margulis region Mar(vy, €) of v as

Mar(v,€) := {z € X | dx(x,v(z)) < €}.

It is a convex subset by the convexity of the distance function. Given a point x € X, and
a constant € > 0, the set

Fe(x) :={y € Isom(X) | dx(z,v(z)) < €}

consists of all isometries that translate z in a distance at most €. For any discrete subgroup
I' < Isom(X), we denote by I'.(z) the group generated by F.(z) NT'. The Margulis lemma
[BGS85, Theorem 9.5] states that I'c(x) is a finitely generated virtually nilpotent group for
any 0 < € < €(n, k), where €(n, k) is the Margulis constant depending on the dimension n
of X and the sectional curvature bound k.

We define the I'-invariant set

Te(I') := {p € X | T'e(p) is infinite}.

The thin part (more precisely, the e-thin part) of the quotient orbifold M = X/T", which we
denote by thin. (M), is defined to be T¢(I")/T". The closure of the complement M \ thin(I")
is called the thick part of M, denoted by thick.(M). The thin part consists of bounded and
unbounded components. The bounded components are called the Margulis tubes, which are
neighborhoods of short closed geodesics of length no greater than e. More precisely, for
every point = in the closed geodesic and every tangent vector v at x perpendicular to the
geodesic, we consider a unit speed ray p emanating from x in the direction of v. There
exists R, depending on x and v such that

dr(p(R)) =€ and dr(p(t)) <e

for all t < R. We call the arc p([0, R]) a maximal radial arc, and a Margulis tube is the
union of all radial arcs emanating from a short closed geodesic. For details, see for example
[BCD93|.

The unbounded components are called the Margulis cusps, which can be described more
precisely as follows. Denote the fixed point set of I' as

Fix(T) := () Fix(y).

~vel
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A discrete subgroup P < I is called a parabolic subgroup if Fix(P) consists of a single point
€ € 00X. Given a constant 0 < € < €(n, k) and a maximal parabolic subgroup P < T, the
set Te(P) C X is precisely invariant under P, and we have stabp(7:(P)) = P, see [Bow95,
Corollary 3.5.6]. In this case, 7.(P)/P can be regarded as a subset of M, called a Margulis
cusp. The cuspidal part of M is the union of all Margulis cusps, denoted by cusp (M).
Note that cusp, (M) C thin(M).

In our context, the parabolic subgroups in I' (hence also the cuspidal part of M) turn
out to be very simple due to the following proposition.

Proposition 2.3. Let I' < Isom(X) be a torsion-free, discrete isometry group, and P <T°
be any parabolic subgroup. Suppose § is the critical exponent of I' and P has polynomial
growth rate r, then we have r < 28. Thus,

(1) if 6 <1, then all parabolic subgroups (if they exist) are isomorphic to Z.
(2) if 6 < 1/2, then all non-trivial isometries in T' are loxodromic.

Proof. Let H be a horosphere that P acts on and choose any basepoint O € H. Denote
dy the horospherical distance and dp the Cayley metric with respect to some fixed finite
generating set of P. Then there exists a constant C' > 0 such that

(22) dx(0.7(0)) < C - dp(1,7)

holds for all v € P. By [HIH77, Theorem 4.6], there exists a constant C’ > 0 such that for
any p,q € H with dx(p,q) > C’, we have

(2.3) dx(p,q) < 2In (C" - dy(p,q)) -

By possibly replacing C' and C’ by a larger constant, we might assume C’ = C. Therefore,
we obtain from the above the following asymptotic inequalities (for R large)

{ye P:dp(l,7) < R} <[{y € P:du(0,7(0)) < C- R} by (2.2)
< v € P:dx(0,7(0)) < 2In(C* - R)}| by (2.3)
~ ten(C2-R)5(P) by (2.1)
~ R26(P)’

where 6(P) is the critical exponent of P. Since 0(P) < 4, it follows that r < 24.

In particular, if 6 < 1, then r < 2 and by the Bass-Guivarc’h formula [Bas72, Gui73],
P must be virtually Z. But since P is torsion-free, it must be Z [Sta68]. If § < 1/2, then
r < 1 and P can not exist. Thus all non-trivial elements in I" are loxodromic. O

2.3. Geometric finiteness. Recall that the limit set A(I') of a discrete subgroup I' <
Isom(X) is defined to be the set of accumulation points of the I'-orbit I'(p) in 0 X, where
p is an arbitrary given point in X, and the definition is independent of the choice on p. If
A(T) is finite, then I' is called elementary. Otherwise, it is called nonelementary. A point
¢ € A(') is called a conical limit point if every geodesic ray p : Ry — X asymptotic to £
projects to a non-proper map wo p: Ry — M = X/I". We denote by A.(I") the set of all
conical limit points.

We denote Hull(A) C X the closed convex hull of A C 0o X, which is the smallest closed
convex subset in X whose accumulation set in 0, X is A, and denote C(I') = Hull(A)/T
the convez core of T.

A discrete isometry subgroup I' < Isom X is geometrically finite if the noncuspidal part of
the convex core C'(I') in M = X/I" is compact. Otherwise, it is called geometrically infinite.
Moreover, if C(T") is compact, then the discrete subgroup I is called convex cocompact.

There are various equivalent definitions of geometric finiteness, but for the interest of
this paper, we will only mention one of them proved by Kapovich and the first author. For
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the other equivalent definitions, we refer the readers to [Bow95]. The following theorem is
a generalization of a previous result of Bonahon [Bon86].

Theorem 2.4. [KL19, Theorem 1.5] A discrete subgroup I' < Isom(X) is geometrically
infinite if and only if there exists a sequence of closed geodesics oy C M = X/T' which
escapes every compact subset of M.

2.4. Admissible surfaces. In this section, we give a sketch on the existence of smooth
admissible surfaces. This can be treated as a smooth version of [Cal09, Section 1.1.5]. In our
case, we will need a slightly broader category of admissible surfaces than smooth maps, in
order to include the gluing of two maps along a smooth boundary. In general the notion of
piecewise smooth map is rather technical (using Whitney stratification), but in our context,
we only consider maps from a smooth surface with boundary to a smooth manifold. Thus
we simplify the notion to the following:

Definition 2.5. Given a smooth surface ¥ (possibly with boundary), and a smooth mani-
fold M, we say amap f : X — M is a piecewise smooth map if there is a smooth triangulation
A ={o1,...,0m} on X (i.e. edges are all smooth paths) such that,

(1) f is continuous,
(2) f is smooth on the interior of each face o;,
(3) if e =0, N0 is a common edge, then the restriction f|, is smooth.

Roughly speaking, a piecewise smooth map is just a finite concatenation of smooth maps,
possibly pleating along the gluing edges. The singular set forms a piecewise smooth 1-
skeleton on ¥. Now we return to our context that M = X/T"is a complete pinched negatively
curved manifold. Suppose {71, ...,m;} is a collection of k& smooth loops in M. If there exists
a set of integers ci, ..., ¢, such that Zle ¢i - [m] = 0in Hi(M,Z). Then we claim that
(U, cimi will bound a piecewise smooth surface in the sense explained below.

We choose a basepoint xg € M, and connect xg to each of the loop n; by a smooth path
p;. Then the loop g; := p; * (¢;m;) * pfl is free homotopic to ¢;n;, which also represents an
element ~; € T 2 7 (M, z0). Since S ¢; - [;] = 0 in Hy(M,Z) = T/, T}, it follows that
the product v = 71 - - - 7% is an element in the commutator subgroup [m1 (M, x¢), 71 (M, o).
Thus, we can write

v = la1,b1] - - - [ag, byl,

for some a;,b; € I'. 'We choose smooth loops «;,3; from xy such that they represent
a;, b; respectively. Fix a preimage o € X of xg under the projection map 7w : X — M.
The loop 0 = a7 * 1 *ozfl *ﬁfl *ook oy ¥ Py *ag_l *,89_1 ¥ (qp % -+ % q)~ ! is null
homotopic, thus lifts to a piecewise smooth loop on X. Therefore, it bounds a smooth
disk on X, that is, there exists a disk D C R? and a piecewise smooth map f : D — X
with f(0D) = o. Moreover, by identifying D with a (4g 4+ 3k)-polygon with the label of
19, [@;, bi] -ﬁlflﬁfl . -mﬁkﬁ;l, we can make the map f explicit by sending the edge labels
as, b;, &;1,5;1,@,&,@_1 to «y, Bi, a;l,ﬁi_l,pl-, cl-m,pi_1 respectively. Therefore, after gluing
along the edge labels, f descends to a piecewise smooth map from 3, (a genus g surface
with & boundary components) to M, which sends the boundary components (corresponding
to 4;) to ¢m;.
In general, we can make the following definition.

Definition 2.6. Denote a compact oriented (not necessarily connected) surface with k
boundary components by . Given a collection of k loops {ay, ..., a;} on M, we say a map
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f X — M is admissible with respect to {a1, ..., ay} if the following diagram commutes:
f5) SR y
, fl J ;
Uf:l (073 % M.

Note that «a; could carry multiplicities, and the orientation of the surface ¥ induces an
orientation on 0%. In the above commutative diagram, we also require Jf to preserve the
orientations. If there exist such ¥ and f, then we simply say Ule «; bounds a surface f.

By the above discussions, we have the following proposition.

Proposition 2.7. Suppose {ai,...,ax} is a collection of k smooth loops in M. If there
exists a set of integers ci, ..., ¢ such that Zle ¢i-[oy] =0 in Hi(M,Z), then there exists a
piecewise smooth admissible map with respect to {c1a, ..., cxax }, that is, Ule c;oy bounds
a piecewise smooth surface f: X — M.

Given two Riemannian manifolds N, M, a smooth map F' : N — M and a positive integer
p < min{dim(N), dim M}, the p-Jacobian of F' at a point = € N is defined to be

Jacy (F)(z) = sup||dFy(e1) A dFy(e2) A ... N dFy(ep)]|,

where the supremum is taken over all orthonormal p-frames {ei,...,e;} on T, N, and the
norm is induced by the Riemannian inner product at Tp)M. Note that in the case p =

dim N < dim M, the p-Jacobian of F' coincides with \/dety, F*gps.

Definition 2.8. Given a Riemannian manifold M, a smooth map f : 3 — M and a smooth
region U C ¥, we define the area of the map on U to be

A(flv) ::/U]JaCQ fl(z)dVs.

where dVy is the volume form on ¥ with respect to some chosen Riemannian metric gs,
and it is clear the definition of area is independent on the choice of gs. When U = X, we
simply denote it by A(f). The definition naturally extends to a piecewise smooth map.
Note that, at the region where df is degenerate, (Jace f) vanishes, so it does not contribute
to the area.

2.5. Besson-Courtois-Gallot map. In this section, we give a brief introduction to the
Besson-Courtois-Gallot map and we refer the readers to [BCGO8] for a more detailed expo-
sition. First we recall that given any discrete subgroup I' < Isom(X), there exists a family
of positive finite Borel measures called the Patterson-Sullivan measures, which satisfy:

(1) pg is T-equivariant, for all z € X,
(2) dpe(0) = e *B@Ndy,(0), for all z € X, and 6 € 90X,
where ¢ is the critical exponent of T', 0 is a basepoint on X, and B(x, ) is the Busemann
function on X with respect to o. Recall that, the Busemann function B is defined by
B(z,0) = lim (d(x,a(t)) —t)
t—o0

where ap(t) is the unique geodesic ray from o to 6.
We note that the Busemann function B(x,#) is convex on X. If p is any finite Borel
measure supported on at least two points on d,,X, then the following function

x> By(x) = / B0 du(0)
Ooo X
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is strictly convex, and one can check it tends to +00 as © — 0, X . Hence we can define the
barycenter bar(u) of p to be the unique point in X where the function attains its minimum.
Now we construct the following map F': X — X that is given by

z — bar(e B@0 ),

and e~ B9, denotes the unique (up to measure zero) Borel measure which is absolutely
continuous with respect to j,, with the corresponding Radon-Nikodym derivative e 5 (.0),
Theorem 2.9 (Besson-Courtois-Gallot[BCGO8]). The map F : X — X constructed above

satisfies the following conditions:

(1) F is T-equivariant, and thus descends to a map F : M — M.
(2) F is smooth and homotopic to the identity.

(3) |Jacy(F)(z)] < (]LT‘HS)p for any integer p € [1,dim M| and any x € M.

Remark 2.10. The case of p = 1 in (3) is not directly stated in the paper, however it is
clear from the 2-form equation [BCGO08, Equation 4.11] that ||[dF|| < (14 ). According to
the theorem, if 6 < p—1, then |Jacy(F)| < 1 hence F is a p-dimensional volume-decreasing
map. However, in order to obtain the linear isoperimetric inequality in Section 3.1, we will
need an area-decreasing map, which is assured only in the case 6 < 1. Thus, we will only
apply the theorem to the cases p =1, 2.

Notations. In the rest of the paper, X always denotes a negatively pinched Hadamard
manifold with sectional curvature —x2 < K < —1, and T’ < Isom(X) denotes a torsion-free
discrete isometry subgroup. Let M = X/I' be the quotient manifold, 7 : X — M be the
quotient map, and d be the distance on M. Let § denote the critical exponent of I' and
C(0)=4/(1—¢). We use £ and A to denote the length and area function respectively. We
let inj(z) denote the injectivity radius at a point € M, and let NJ(S) denote the normal
injectivity radius of a submanifold S C M (see Section 3.2).

3. GEOMETRY WITH SMALL CRITICAL EXPONENT

In this section, we investigate the geometry of the quotient manifold M under the as-
sumption § < 1.

3.1. Linear isoperimetric type inequality. The study of isoperimetric problem has a
great long history. In the classical context, given a region 2 C R?, it is natural to ask what
is the optimal relation between its area A(Q2) and the length of its bounding curve £(0). It
is proved that there is a quadratic relation A(Q) < £(99)2/4r, and the equality holds if and
only if 2 has a circular boundary. However, the main interest of this paper has driven us
to consider in a slightly different context. Let M = X/I" be a complete quotient manifold
and C C M be a union of smooth loops which represents a trivial homology class in M.
By the discussion in Section 2.4, C bounds an admissible surface. Among all admissible
surfaces, we find one surface ¥ such that A(X) and ¢(0X) satisfy a linear isoperimetric type
inequality.

Definition 3.1. We say a family of loops F = {a1,...,ar} in M is irreducible if either

(1) k=1 and «; represents a trivial or torsion homology class, or
(2) F consists of linearly dependent loops, and any non-trivial subfamily of F is linearly
independent.

Suppose F = {aq, ..., } is an irreducible family of loops. In case (1), F consists of one
homology class [a], so there is a minimal positive integer ¢ such that ¢ - [a] = 0. In case
(2), there exists a unique (up to a sign) set of integers ¢y, ..., ¢ such that ged(cq, ..., cx) =1
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v(p)

7(q)

FiGure 1.

and 3% ¢; - [a;] = 0 in Hy(M). Thus, there exist admissible surfaces in M with respect

to ¢+ [a] (or Ule cia;) and by irreducibility they are necessarily connected. Note that c;a;
denotes the ¢; multiple of a; and when ¢; is negative, it means to reverse the orientation
of a;. We call the set of integers ci, ..., c; (or ¢ if in case (1)) the associated integers of the
irreducible family.

Theorem 3.2. Let F = {ay,...,ax} be any family of smooth loops in M which are linearly
dependent in Hy(M,Z) such that there are integers ci,...,c satisfying Zle ¢yl =0
in Hi(M). Suppose the critical exponent § < 1. Then Ule c;a; bounds a smooth surface
fo: X — M whose area satisfies

4 4 (&

Alfo) < =5 UFo(02)) = 1 E; jeil(en) |
i=

Proof. 1t is sufficient to assume F is irreducible. Otherwise, we decompose F into irreducible
subfamilies and use the additivity of area and length functions on disjoint unions. We
consider the set & which consists of all piecewise smooth surfaces bounded by Ule c;0y, O
more precisely, we set

S :={f:X — M| f is a piecewise smooth admissible map with respect to {cia, -+ ,crag}}.

By Proposition 2.7 it is non-empty. Let Ay = inf{A(f) : f € &}. To avoid possible
existence and regularity issues (see the following remark) of minimal surfaces in M, we can
choose a piecewise smooth admissible map fe € & such that A(f.) < (1+¢)Ag for any € > 0.
Composing with the Besson-Courtois-Gallot map F' as described in Section 2.5, we obtain
a piecewise smooth admissible map F o f. with respect to Ule ¢iF(a;). By Theorem 2.9
we have the area estimate

A(F o fe) :/ | Jaca(F o fe)|dVs g/ | Jaca F| - | Jaca fe|dVxy
b P
1+46)?
< (Y20) A
146)?
(55 nron
and the length estimate ¢ (F'(a;)) < (14 6)¢(ay;). For each «;, since F'(«;) is free homotopic

to a;, we can build an (immersed) cylindrical homotopy ¥; C M between them by taking the
image of union of two geodesic cones Cone,, (F (d)) and Cone,(,) (&) under the projection
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m: X — M, see Figure 1. Here 7 € T" is an element represented by «, & is a lift of «,
and both p, ¢ and ~(p), v(q) are connected by geodesics. To estimate the area of ¥;, we will
need the following lemma.

Lemma 3.3. For any p € X and any smooth curve oo C X, the geodesic cone Conep(cv)
has an area bound
A (Conep(a)) < U(w).

Proof. We parameterize the smooth curve by « : [0,1] — X, and denote D(s) = d(p, a(s)).
The geodesic cone Coney,(a) can be parameterized by the smooth map

$:0,1] x [0, D(s)] = X

(s,t) = exp,, (tB(s))
where (s) is the unit vector in the direction of the preimage of a under the exponential map,
i.e. the unique curve in 7), X satisfying exp,, (D(s)3(s)) = a(s). Since a(s) = ®(s, D(s)) we

have
o(s) = |50 + 55 D/(s)| (5. D(s)

Let v5(t) = ®(s,t). For each s, it is a unit speed geodesic connecting p to a(s), so at any
point (s,t) € [0,1] x [0, D(s)], we have that

0P p 0d

T =Nt), — = J(t

87’5 75( )7 8 5( )’

where Js(t) is the unique Jacobi field along s satisfying Js(0) = 0 and Js(D(s)) =

%Cf (s,D(s) a/(s) — vL(D(s)) - D'(s), which is the projection of o/(s) orthogonal to

) =
v4(D(s)). This implies that J,(t) is a normal Jacobi field and that %—? 1 %—f. Therefore, we

obtain 90 90
| Jac(® )I—HfA H—Hf\l H H—IU()H

Using [HIH77, Proposition 2.3] and the curvature assumptlon K < —1, we can estimate the
norm of the Jacobi fields by

sinh ¢ sinh ¢

1s()]] < Snh(D(s)) 17s(D(s))]| < smh(D(s)) [l (s)]]-

Finally we obtain the area estimate of the geodesic cone by

A (Conep(a / / | Jac(®)| dt ds

(3 <[ s b 1)

< /0 o/ (5)]] ds
</l(«)

(3.1)

Now we continue with the proof. By the lemma above, we have
(3.3) A(S3) < ) + £ (Flan) < (24 8)(a).

Here 3; is a piecewise immersed surface in M and we can choose any piecewise smooth
parametrization o; : S x [0,1] — M to represent Y;. If we concatenate each o; with F o f.
(glue Ule ¢;2; onto F o fo(X) on M), we get a new piecewise smooth admissible surface
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f! with respect to [J_, cicy, and by the assumption A(f!) > Ap. On the other hand,

combining the above inequalities we have

k
Ag S A(f) =A(Fof)+ ) el A(Z)
i—1

2 k
< (1%5) (1+ Ao+ (2 +6) (; |ci|f<a@->> by (3.2) and (3.3).

Thus by letting € tend to zero, we obtain

k k
4(2+9) 4
o< s (S tton) < 5 St
Therefore, we can always choose a piecewise smooth map in & whose area is arbitrarily

close to Ay and finally we can always smoothen it with arbitrarily small increase on the
area. In particular, there is a smooth admissible map fy with area

4 k
Afo) < 7 (; ciw(ai)) .

0

Remark 3.4. The existence and regularity of minimal surfaces for a general complete
manifold relate to the generalized Plateau’s problem, which has been studied in [Mor48|.
If there is a uniform lower bound on the injectivity radius on M, then the condition of
“homogeneously regular” in [Mor48| is satisfied hence the existence and regularity of the
area minimizer hold. Although later in Theorem 3.7 we manage to show M has bounded
geometry, yet the proof relies on this theorem, hence using this will fall into a circular
reasoning.

We do not pursue the optimal bound in the theorem above. Indeed, the linear isoperi-
metric constant we produce via this method will always tend to infinity as 6 — 1. This
stands as an obstacle in improving our main theorems as J approaches 1.

3.2. Asymptotically uniformly bounded tubular neighborhood. Let S be a closed
submanifold of M. Denote N(S,M) = {(z,v) € TM : x € S and v L TS} the normal
bundle of S in M, and denote N,.(S,M) = {(z,v) € N(S,M) : |v| < r} the r-normal
bundle of S in M. The normal exponential map expg is defined to be the restriction of the
exponential map exp : TM — M to the normal bundle N(S, M) of S in M. The normal
injectivity radius NJ(S) is defined to be the supremum of r such that expg is an embedding
on N, (S, M). In the case where r < NJ(S), we say expg(N, (S, M)) = {x € M | d(x,S) <r}
is the r-tubular neighborhood of S in M, and we denote it by 7,.(S). By convention, if the
submanifold has a self-intersection, we declare that it has normal injectivity radius zero.

Lemma 3.5. Let o be a closed geodesic in M with NJ(«) = R > 0, and let Tr(a) be its
R-tubular neighborhood in M. Ifi: Y — M is any smooth admissible map with respect to
{ka, '} such that either o is empty, or ' consists of a union of smooth loops outside of
Tr(a) (i.e. dy(of,a) > R). Then

A(ili=1(Tp(a)) = kR - L(a).

Proof. We choose a Riemannian metric gg on Y, and let €1, o be two positive real numbers
recognized to be small and to be determined later. First, we perturb the pullback metric
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1*gp to be Riemannian on 3 by setting g = t*gar + €190 and use this to estimate the area
of i. It follows that for any € > 0, and any region U C 3, we have

voly(0) = Alilo)| =| [ 1av, = [ 3acailav,
(3.4) = /U (\/detgo(g) = \/detgo(i*gM)) dVy,
= /Z (\/detgo (g) - \/detgo (Z*gM)) dvgo

< €,

after choosing €; small enough. Note that this follows from the continuity of determinant
function, and the estimate is uniform on U.

Next, we choose a suitable function on ¥ and use the coarea formula to estimate voly(U).
Denote o C 0% the boundary component which sends to ko under i, and denote p,, : M — R
the distance function to o on M. Now we construct a function f : > — R by setting

f=pacitep,
where @ is a smooth function on 3 chosen so that

(1) ¢(z) =0 on o and p(z) > 0 on X\o.
(2) there exists a collar neighborhood V' of o such that dp(z) # 0 when z € V\o.

For example, one can choose ¢ to be the distance function to ¢ on its local neighborhood
and then extend smoothly to any positive function outside. For this choice, it is clear that
f(xz) >0and f~1(0) = 0. Since M is negatively curved, there is no conjugate point for M.
Thus for any y € Tr(«), there is a unique geodesic projection onto «, so p, is smooth on
Tr(a)\a. It follows that f is smooth on i~ }(Tr(a))\oc C ¥. We can estimate the norm of
its differential with respect to metric g.

||df || = ||dpa o di + e2dep]|
(3.5) < ||dpall - ||di]| + €2||dp|| note that i is 1-Lipschitz
<(1+e),

after choosing €2 small enough, and this uses the compactness of X.

Finally we estimate the area of i on i !(Tgr(a)). By the construction of f, we have
f71([0,R)) C i (Tg(a)). Thusifweset U = f~1 ([0, R)), then vol,(U) < voly(i~*(Tr(c))).
On the other hand, by the coarea formula [BZ13, Section 13.4], we obtain from (3.5) that

1
vol, (V) > 5 [ llarliav,

1
1+e

Note that in the above formula, f~!(¢) might not be a smooth curve if ¢ is a singular value.
But by Sard’s theorem, almost all values r € (0, R) are regular, in which case the level
sets are unions of smooth circles on 3, and ¢, denotes the total length of the circles. In
particular, the above integral makes sense. Other boundary components (if any) of 3 do not
intersect with i ~!(Tg(«)) by the assumption, so given any regular value t € [0, R), f~1(¢)
(up to orientation) is homologous to f~!(0) = ¢ on ¥. Hence taking their images in M, we
obtain that i(f~1(¢)) (also a union of smooth loops) is homologous to ka on M. Since they
are entirely contained in Tr(c), i(f~1(¢)) is in fact free homotopic to ka. More precisely,
for almost all t € (0, R), if we write i(f~1(¢)) as a disjoint union of circles |J*, a;, then
each «; is a smooth loop free homotopic to k;« for k; € Z, since the fundamental group of

(3.6)

R
/ Ly(f71(t))dt coarea formula.
0
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the R-neighborhood of « is a cyclic group generated by the loop . (Some k; could be zero
in which case «; is homotopically trivial in M.) Moreover, we have Y ;" | k; = k. Since « is
a closed geodesic, we have that £ (i(f~1(¢))) = D7, (i) > D7, |kill(e) > kl(a). Note
that i is 1-Lipschitz, so we have £4(f~1(¢)) > £ (i(f~*(¢))). Combining the above inequality
with (3.4) and (3.6), we have

A(i‘i—l(TR(a))) > 11—|-6k;R : f(a) — €.
Since € > 0 is arbitrary, the lemma follows. d

Lemma 3.6. Given N cusps in M and a constant € > 0 small such that {Ml(;)E :1<i< N}
are disjoint components of the cuspidal part cuspyo(M). Suppose v : ¥ — M bounds an
irreducible collection of smooth loops Uf\il c;a;, where each «; is contained in the 2e-thinner

part MQ(? C Ml(;)E in each cusp component and is homologically non-trivial. Then
A1) > 4€é%.

Proof. Since the collection is irreducible and «a; is homologically non-trivial in its cusp
component (which might be homologically trivial in M), «(X) has to leave Mlgz We will
only focus on the region Uy := L_I(Ml(;z) as shown in Figure 2. If we denote Miel) C Ml(;g

the 4e-thinner part and 77 = Ml(;z\M AE:), then certainly we have
A(t) = A(eli=1(1y))-

So it suffices to give a lower bound on the area restricted to T region.

Similar to the proof of Lemma 3.5, we first choose the same perturbed Riemannian metric
on X as g = t*gy + €190, and for any € > 0, the estimate of (3.4) still works after choosing
€1 small enough. Thus, we have for any U C X,

(3.7) | voly(U) — A(e|p)] < €.
Denote o C 9% the boundary component which maps to cja; under ¢, and let ¢ be as
before the smooth function on ¥ such that

(1) p(x) =0 on o and p(x) > 0 on X\o.
(2) there exists a collar neighborhood V' of ¢ such that dp(x) # 0 when x € V\o.

We choose a smooth approximation ([GW79, Proposition 2.1]) of the injectivity radius
function on a neighborhood of +(X), denoted by j, such that

(1) 7> 0on (%),

(2) jis (1 4 €)-Lipschitz, and

(3) 15(y) —inj(y)| < € on +(X).
Choose a smooth bump function 0 < ¢ < 1 on X such that ) = 1 on ¢:~'(7}) and ¢ = 0 on
o. Since ¥ is compact, there exists K > 0 such that ||| < K and ||dy|| < K. We choose a
positive constant €2 < min{e,€'}/K. Now we define the smooth function f: ¥ — R by

f=ep+i-(jou).
By the construction of f, we see that f(z) > 0 on Uy and f~(0) = 0. When restricting

to Uy = (Th) = L_l(Ml(;Z\Miel)), the norm of its differential under metric g can be
estimated by

ldfllo, = [leadep + dj o du]|
(3.8) < ea||dpl| +[|dj|] - [|de]]
< (1+2€).
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FIGURE 2.

The first inequality follows from the fact that ¢» = 1 on ¢~(7}), and the last inequality uses
1-Lipschitzianity of + and also the choice of j and €3. Now we investigate the value of f on
Up, and apply the coarea formula to give a lower bound for the area of ¢|f-1(j4¢,5¢)n05-

Claim 1. The subset f~([4e,5¢]) N Uy is contained in Uy, and f~1(]0,5¢]) N Uy is disjoint
from 0Up\o.

Proof. For any x € Up\U; = L_I(Miel)), we have
f(z) = eap(x) + ¥ () - j ()
<e+j(zx))
< e+inj(e(z)) +€
< 4e.
This implies that f~!([4e, 5¢]) N Uy is contained in U;. Second, we notice that Uy consists
of o and other boundary components on which inj = 6e. For any = € dUy\o, we have
f(z) = eap(x) + () - j ()
> j(u(z))
> inj(u(x)) — €
> He.

This shows that for any t € [0, 5¢], f~1(t) (restricted on Up) does not intersect with dUy. [

As a consequence, for any regular values ¢t € [0,5¢], f~!(¢) is a union of smooth loops
that cobounds with f~!(0) = o, and in particular is homologous to o. Under the image of
1, it shows that «(f~1(t) N Up) is homologous to ¢(c) = c1[ai] # 0. Moreover, for regular
values t € (4¢,5¢), and any point y € «(f~1(t) N Up), we let = € f~1(t) N Uy C Uy be any
preimage of y. Then we have

inj(y) = inj(u())

> ju@)) —e

= f(x) —e2p(x) — € Y(z) =1 since x € Uy
>t — 2¢

> 2e.

In particular, £(¢(f~1(¢t)NUp)) > 2inj(y) > 4e. Since ¢ is 1-Lipschitz, we obtain £,(f~1(t) N
Up) > 4e for any regular values t € (4e, 5¢). Finally, we apply the coarea formula together
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with (3.7), (3.8) and obtain

A1) = Al -1 (esepnue) > volg(f ' ([4e,5¢]) N Up) — €
1

S ldf v, — ¢
1+ 2¢ /fl([4e,5e])mUo I

_ ! /5€£g(f—1(t)mU0)dt—e’

Since € > 0 is arbitrary, the lemma follows.

Now we are ready to prove (1) and (2) of Theorem 1.11.

Theorem 3.7. Suppose that I' < Isom(X) is a finitely generated, torsion-free, discrete
isometry subgroup of a negatively pinched (normalized to K < —1) Hadamard manifold X .
Let N(I') be the number of cusps in M, and B1(I") be the first Betti number of M. Suppose
0 < 1, then we have the following.

(1) N(I) < Au(I).

(2) If an integer k > B1(T') — N(I'), then for any family of closed geodesics {a, ..., ax}
that are mutually (2C(0) 4+ 1) apart, there exists at least one closed geodesic whose
normal injectivity radius is < C(d), where C(5) = 4/(1 — 9).

(3) M has bounded geometry.

Proof. For (1), suppose to the contrary N(I') > 8;(T") (N(I') could be infinite). We choose

e small enough so that the cuspidal part cusp;s. (M) consists of N(I') disjoint components

UZ]\L 1 Ml(;)e For each component Ml(;)e, the corresponding parabolic subgroup P; is infinite

cyclic by Proposition 2.3, so we can choose v; € P; < I" which represents a non-trivial torsion
free homology class in X/P; (not necessarily in M). Since N(I') > 1(I), {[n],--- [vynm)]}
is linearly dependent in H;(M). We can choose an irreducible subfamily containing [v1]
and without loss of generality we assume this to be {71, ..., } where & < 51(T') + 1 < cc.
Let ci,...,c; be the associated integers such that Zle ¢+ [vi] = 0 (with ¢4 # 0). On
each component Ml(;)e, we choose a thinner part Méﬁ) C Ml(;)e and let T; = Ml(;)E\M ﬁ). In
particular, T; are disjoint and for any = € T;, we have 2e < inj(x) < 6e. We choose a loop
a; C MQ(? representing [;] such that £(c;) is so small that Zle |cill(ci) < €2/C(6) [Bow95,
Proposition 1.1.11]. By Theorem 3.2, Ule c;oy; bounds a smooth surface ¢ : ¥ — M whose
area satisfies

k
(3.9) A(r) < C(6) (Z |ci|€(ai)> < e
=1

However, by Lemma 3.6, A(1) > 4¢2, which contradicts to (3.9). Hence, N(I') < p;(T).

For (2), suppose there are k = 3;(I') — N(I') 4+ 1 mutually (2C(§)+ 1) apart simple closed
geodesics ay, ..., o whose normal injectivity radii are > C(4). To illustrate the idea, we first
assume M has no cusps. Then [ay], ..., [ag] are linearly dependent on Hy(M). By Theorem
3.2, there exist integers cq, ..., ¢ such that U?Zl c;a; bounds a smooth surface f: ¥ - M
whose area satisfies

k
(3.10) A(f) £ C(9) (Z ciw(ai)) :
i=1
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Let R; = NJ(oy) and by the assumption R; > C(d), we can pick € > 0 small enough so
that € < 1/2 and C(0) + € < R; for all i. Denote T; the (C(9) + €)-tubular neighborhood of
a;, and since {a;} are mutually (2C(8) + 1) apart, {T;} are disjoint, and so are {f~1(T})}.
Therefore by Lemma 3.5, we have

k k
(3.11) A(f) 2 Y AUl p-1ay) 2 (C0) + o) (Z |c¢|f<ai>> :
=1 =1

This contradicts to (3.10).

For the general case, we pick non-trivial torsion free homology classes {[y1], .., [Yn ()]} on
each cusp component as in (1). This together with [a4], ..., [ag] form a linearly dependent
system on H;(M). We choose an irreducible system containing [a;], and without loss
of generality we assume it to be {[v1],..., [yam)]; [a1]; .-, [ax]}. Thus there are integers
b1, .-, by(r) and c1, ..., ¢ such that ZZ]'\;(P bi[vi] + Z;?:l ¢jlaj] = 0. Now we choose a loop
7; on each cusp component representing 7; such that ¢(n;) is sufficiently small so that
Zi]i(lr) |bill(ni) < e (Z?Zl |cj|€(ozj)) /C(0), where € is the same constant as above in the non-

cusp case. By Theorem 3.2, (Uf\;(lr) bmi) U (U§:1 cjaj) bounds a smooth surface f : ¥ — M

whose area satisfies
N(T) k
Ay <CE) [ D bilem) + > lejle(ay)
i=1 j=1

Thus we have

€

k k
A <) (1+ 505 ) | Lleltar) ) = @0 [ Lol
J=1 j=1

However, the area lower bound estimate in (3.11) still holds, and this gives a contradiction.

For (3), suppose M has unbounded geometry, that is, there exists a sequence of closed
geodesics {a;} with ¢(c;) — 0. When /(«;) is smaller than the Margulis constant, «;
determines a Margulis tube such that the length of every maximal radial arc tends to oo
as {(a;) — 0. (See for example [BCD93, Lemma 2.4].) In particular, the normal injectivity
radius NJ(a;) — oo. By passing to a subsequence, we can assume that the geodesics «; are
arbitrarily far apart and their normal injectivity radii are all > C(¢), which contradicts to
(2). O

Remark 3.8. The assumption § < 1 is crucial in Theorem 3.7 (which also traces back to
Theorem 3.2). Indeed, the main strategy of the proof is to apply an area-decreasing map
on the (approximated) area-minimizing surfaces which are bounded either by tiny loops in
different cusps or by far apart closed geodesics. The existence of such map follows from a
construction of Besson-Courtois-Gallot (Theorem 2.9) where § < 1 has been used to obtain
the area decreasing.

In general, there are examples [Kap95] of finitely generated Kleinian groups I' < Isom(H?)
with infinitely many (rank one) cusps, and by construction it is clear that ¢ € [2,3]. Thus,
for every n > 4, one can construct, via the totally geodesic embedding H* — H"”, a Kleinian
group I' < Isom(H") of the same critical exponent which contains infinitely many cusps. In
a recent preprint [IMM20], Italiano-Martelli-Migliorini constructed new examples of finitely
generated Kleinian groups I' G < Isom(H") (5 < n < 8) with infinitely many cusps, where
G is a lattice and G/T" = Z. Hence it follows that 6(I') = §(G) = n — 1. We believe that
finitely generated Kleinian groups must have finitely many cusps if § < 2.
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We end this section by the following corollary which turns out to be essential to our
proofs of the main theorems. It is a direct consequence of (2) of Theorem 3.7. Roughly
speaking, if § < 1, then closed geodesics asymptotically have uniformly bounded tubular
neighborhoods.

Corollary 3.9. Suppose 6 < 1, and M has a sequence of escaping closed geodesics. Then
there exists a subsequence of escaping closed geodesics whose normal injectivity radii are

< C(6).

3.3. Decomposing a closed geodesic. Suppose « is a closed geodesic in M with NJ(«) <
C(9). By definition, there exists xg € M achieving the normal injectivity radius such that
it projects to a in two different geodesic minimizing paths. The two geodesic paths have
an angle of m. Thus we can decompose « into two piecewise geodesic loops o’ and o as
shown in Figure 3. It is clear that their lengths satisfy £(a’) + £(a”) < l(a) + 4C(6).

FIGURE 3.

Equivalently, in the universal cover (as shown in Figure 4), there exists an isometry g € T’
and g € X such that

d(&0, A,) < C(8),  d(F0,97"(A,)) < C(6),

where A, is a lift of a in X. Let #, 7 be the projection of & onto g~*(A,) and A, respec-
tively, which will realize the shortest distance between g=1(A,) and A, (so £(Zg) < 2C(9)).
Under the projection map 7 : X — M, the consecutive geodesic segments connecting g(z),
¥, T maps to o’ and the one connecting Z, g, v - g() maps to o/, where ~ translates along
A, and corresponds to a. From Figure 3, we see that o/ represents the isometry g and o
represents the isometry - g which are nontrivial elements in I'. We claim that the group
(g,7-g) is nonelementary. Otherwise, (g,7-g) is parabolic or loxodromic. If (g,~-g) is par-
abolic, then both g and 7 - g are parabolic and they have the same fixed point, which implies
that v has the same fixed point as the one of the parabolic isometry g and it contradicts to
the assumption that I" is discrete by [Bow93, Lemma 3.1.2]. (The proof of Lemma 3.1.2 can
be applied to the case of negatively pinched Hadamard manifolds directly). If (g, - g) is
loxodromic, then g and ~y - g are both loxodromic and they preserve an axis setwise, which
means that v will preserve the same axis as g. However, note that - preserves the axis A,
which is not preserved by g.
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FiGURE 4.

It is possible that xg projects to the same point on «, in which case o is the entire
transverse geodesic loop, and o is the concatenation o/~ *a. It is also possible that a may
have a transverse self-intersection, in which case the above decomposition coincides with
the obvious separation at the self-intersection. Note that non-transverse self-intersection of
a closed geodesic a can only occur when « is a multiple of some primitive closed geodesic
@, in which case the above decomposition on « can essentially be treated on @. We remark
that in all the above mentioned “exceptional” cases, the decomposition as described always
exists.

We can extend the above decomposition to a piecewise geodesic loop.

Lemma 3.10. Let u C M be a piecewise geodesic loop consisting of at most two geodesics,
and let « C M be the closed geodesic free homotopic to u with NJ(«) < C(4), and ¢(a) > e.
Then there exist points p, q € u (which could be the same) and a geodesic segment w connect-
ing p,q whose length is bounded above by Cy = 2C(§) +2D(€). Here D(e) is the constant in
Proposition 2.1. Moreover, the two piecewise geodesic loops under the decomposition similar
to Figure 3 are homotopically nontrivial.

Zo 9(&0) Y(Zo)

Lg c(5) L? ()

FIGURE 5.

Proof. We write u as the union of two geodesic segments in M which starts and ends at O.
Let @ be a lift of w in X consisting of two geodesic segments from the lift O to (O) as in
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Figure 5, where v € I is represented by u. We denote the axis of v by A, which is a lift of a.
Since NJ(a) < C(6), by the discussion above there exists a point Zp € X and a nontrivial
element g € I with g # ~, such that o and g(Zo) project onto A, at two points ¥, g(Z)
(which could be the same point) satisfying d(Zo,y) < C(d) and d(g(Zo), (%)) < C(0), see
Figure 4.

By Proposition 2.1, there exist p,¢ € u such that d(y,p) < D(e) and d(g(Z),q) < D(e).
Thus, the piecewise geodesic consecutively connecting p, 7, To together with the one connect-
ing g(%o), g(%), q projects to a piecewise geodesic path connecting 7(p) = p,n(q) =q€ M
whose total length is < 2C(d) + 2D(e). Finally, there is a unique geodesic segment w
connecting p,q which is homotopic to this piecewise geodesic path and it is clear that
l(w) < 2C(0) 4+ 2D(e).

The geodesic segment w divides the piecewise geodesic loop u into two parts u; and
uo. The concatenation of u; with the geodesic segment w gives two piecewise geodesic
loops under this decomposition where ¢ = 1,2. If the two piecewise geodesic loops are
homotopically trivial, then Zy = g(Zo) = y(Z¢). By our construction, g # v and g # 1.
Hence, they are homotopically nontrivial.

O

3.4. Injectivity radius and convex cocompactness. In this section, we prove (3) of
Theorem 1.11. We start by introducing the definition of a bow which will be used later in
the proof.

Definition 3.11. Given a closed geodesic «, we say B = pg * qp is a bow on « if

(1) B consists of 2 edges pg and gp where p, ¢ are 2 distinct points on a,
(2) Pq is a minimizing geodesic connecting p to ¢ on M, which might not lie on «,
(3) gp is a geodesic segment on « connecting ¢ to p, which might not be length mini-
mizing, see Figure 6.
We say a bow B = pq * qp is C-thin if d(p,q) < C, and we say B is non-trivial if the loop
pq * qp of B is homotopically non-trivial in M. The length of a bow B = pq * qp is the
length of the loop pg * qp.

B = [pq]

FIGURE 6.

Lemma 3.12. Suppose that § < 1 and the injectivity radius on M is bounded by some
constant €y/2 > 0 from below. Then there does not exist closed geodesic « in M which
satisfies the following two conditions:

(1) « has normal injectivity radius at most C(6);

(2) all points of a have injectivity radii greater than 4Cy + 1, where Cy is the constant
i Lemma 3.10.

Proof. Suppose that there exists such a closed geodesic « in M. We consider the set
B = B(a,2C)) that consists of all non-trivial 2Cp-thin bows on «. The set is never empty.
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Indeed, choose p, g € a sufficiently close and choose ¢p the longer segment on « connecting
q to p, such that £(pq) < ¢(gp) and £(pg) < 2Cp. This gives a nontrivial 2Cy-thin bow on a.
Let t = inf{{(B) : B € B}. We choose B = pq * qp € B to be a bow whose length < ¢ + 1.
Since B is a 2-piecewise geodesic path, by Lemma 3.10, there exist r, s € B and a geodesic
segment w C M connecting r, s such that

(3.12) 0(75) = 6(w) < C

and that w splits B non-trivially. Although Lemma 3.10 by itself does not assure w is length
minimizing, and r, s might even be the same point, we claim this is not the case. Indeed,
since £(pq) < 2Cy, r must be contained in the Cp-neighborhood of «. By the assumption
on the injectivity radius, all the points on a have injectivity radius > 4Cy + 1. Since the
injectivity radius function is 1-Lipschitz, we have inj(r) > 3Cy + 1. This implies that any
geodesic segment emanating from r whose length is at most 3Cy+1 must be uniquely length
minimizing. In particular, w is uniquely length minimizing and r # s.
Based on the positions of r and s, we now discuss in the following three cases separately:

(1) r, s are both on pg,

(2) r,s are both on ¢p,

(3) 7 € pg and s € qp.

QI

FiGURE 7.

Observe that (1) is impossible since both w and pg are uniquely length minimizing, so w
has to be entirely contained in pg, which contradicts to the fact that w splits B non-trivially.
Case (2) is also impossible. To see this, we assume without loss of generality that g, s,r,p
are in cyclic order in ¢p as in Figure 7, and r, s cuts ¢p into three geodesic segments, denoted
by @s, s7,7p. By the assumption, the bow B’ = 75 % s7 is a non-trivial Cy-thin (of course
also 2Cp-thin) bow on «a. So by the choice of B we have {(B’) +1 >t + 1 > ¢(B) hence

(3.13) ((rs) +1 = {(rp) + £(pg) + £(q3).

Since w splits B non-trivially, we have obtained a homotopically non-trivial piecewise geo-
desic loop n = 78 * 5q * qp * pr whose total length can be estimated as

t(n) = £(T5) + £(sq) + L(qp) + £(pr)
< 20(7s) + 1 by (3.13)
<2Cp)+1 by (3.12).
This contradicts to the assumption on injectivity radius.
For Case (3), note that ¢(pg) < 2Cy, so r is Cp close to either p or ¢, and without loss
of generality we assume it is closer to q. Therefore by the triangle inequality, we have

d(q,s) < £(7q) + (w) < 2Cy. Now we consider the bow B” = 5g x g5 where ¢s is the
geodesic segment on «. The bow is nontrivial. Otherwise, 5¢ coincides with ¢s, which
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indicates that £(gs) < 2Cp. Then we have a piecewise geodesic loop 57 * 7q * ¢ with length
< 4Cy. By the injectivity radius assumption, it must represent a trivial element, which
contradicts to the fact that w cuts B; nontrivially. Hence, B” € B. By the choice of B,
we have {(B")+1>t+ 1 > ¢(B) hence £(5q) + 1 > {(5p) + £(pg). So we have obtained a
piecewise geodesic loop 7' = @S * sp * pq whose total length satisfies

((n') = £(gs) + £(5p) + £(pq)
<20(gs)+1
<4Cy + 1.

So i’ must be homotopically trivial according to the injectivity radius assumption. Since w
splits B; non-trivially, the piecewise geodesic loop 75 * sp * pr is homotopically non-trivial,
and therefore differing by an 7/, the geodesic triangle n” = 75 * 5 * g7 is also homotopically
non-trivial. On the other hand, we have

(") = £(T8) + £(5q) + L(qT) < 4Co,

which contradicts to the injectivity radius assumption.

0

The following is a restatement of (3) of Theorem 1.11, which gives an alternative geometric
characterization of convex compactness under the assumption that § < 1.

Theorem 3.13. If § < 1, then ' is convex cocompact if and only if the injectivity radius
function inj : M — R is proper.

Proof. We start with the “only if” part which does not need the condition § < 1. Since
I" is convex cocompact, it consists of only loxodromic isometries. Note that all the closed
geodesics are in the compact convex core since their lifts in X are in Hull(A(T")). Therefore,
the length of all closed geodesics in M is uniformly bounded from below. Otherwise, there
is an escaping sequence of closed geodesics (whose length tends to 0) inside the convex core,
contradicting to the compactness. Suppose the injectivity radius function is not proper, then
there exists an escaping sequence of points z; € M whose injectivity radii are uniformly
bounded by some constant R. At each point z;, we choose a geodesic loop w; whose length
satisfies £(w;) = 2inj(x;) < 2R. By Proposition 2.1, the closed geodesic free homotopic to
w; is within D-neighborhood of w; for some constant D, hence we get an escaping sequence
of closed geodesics in the convex core of M, and this contradicts to the compactness.

To show the “if” part, we first note that properness of the injectivity radius function
automatically implies that M has no cusps, and there is a uniform lower bound €y on the
length of closed geodesics in M. Suppose that I' is not convex cocompact, i.e. geometrically
infinite. By Theorem 2.4 there is an escaping sequence of closed geodesics {a;} C M. By
Corollary 3.9, there is a subsequence of closed geodesics whose normal injectivity radii are
all at most C(0). For the convenience, we still denote it by {a;}. Now we fix a constant
Co =2C(9) +2D(ep) as in Lemma 3.10. Since the injectivity radius function is proper and
the sequence {«; } is escaping, all points on a; have injectivity radii greater than 4Cy+1 when
i is sufficiently large. Hence, there exists a closed geodesic in M whose normal injectivity
radius is at most C(d), and all points on the geodesic have injectivity radii greater than
4Cy + 1, contradicting to Lemma 3.12. Therefore, I" is convex cocompact.

O
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4. PROOFS OF THE MAIN THEOREMS

Theorem 4.1. For each n and k, there exists a positive constant D(n, k) < 1/2 with the
following property that, for any finitely generated, torsion-free discrete isometry subgroup
I' <Isom X. If either

(1) 6 < D(n, k), or
(2) T is free and 6 < 1/16,

then the injectivity radius function on M 1is proper.

Proof. Since D(n,k) < 1/2, there are no parabolic isometries in I' by Proposition 2.3.
Suppose that the injectivity radius function is not proper. By the same argument as in
the first paragraph of the proof of Theorem 3.13, there exists an escaping sequence of
closed geodesics {«;} of uniformly bounded length in M. Let G be the set of all escaping
sequences of closed geodesics in M, and let ¢ = inf{liminf; ;o ¢(c;) : {a;} € G*=}. From
the previous discussion, we see that t < co. On the other hand, M has bounded geometry
according to Theorem 3.7, so t > 0.

We claim that ¢ < 4C(d). Suppose t > 4C(d). Then there exists an escaping sequence
of closed geodesics a; with liminf; o ¢(a;) = s € (t,t + €p), where ¢ is a fixed positive
number smaller than (¢ —4C(9))/2. By Corollary 3.9 there exists a subsequence, which by
abuse of notation we still denote by {a;}, such that lim; , ¢(a;) = s and NJ(a;) < C(9)
for all i. Without loss of generality, we assume ¢(«;) € (¢, + €) for all i. By Section 3.3,
each a; can be decomposed into two nontrivial loops o} and « such that £(c)) + £(c)) <
{(c;) +4C(8). So the shorter one, which we assume to be o, has length < 1¢(;) +2C(6),
and it represents a nontrivial isometry in I'. There is a closed geodesic v; free homotopic to
o) with length < 1¢(a;) +2C(6). Since M has bounded geometry, v; is inside a uniformly
bounded neighborhood of «} by Proposition 2.1. Thus, we have found another escaping
sequence of closed geodesics v;, which satisfies

%E(ai) +20(5)

< %(t +eo) + 20(5)

0(vi) < €(ar)

IN

< % (t + % (t— 40(5))) +20(5)

3

= Jt+0().

The last two inequalities follow from the choices of {a;} and ¢y. Hence liminf; ;o ¢(v;) <
3¢+ C(8) < t. This contradicts to the choice of t. Therefore, we have ¢ < 4C(9).

It means that for any € > 0, there exists a primitive closed geodesic, denoted by ag,
such that £(ag) < t + € < 4C(J) + €, and that NJ(ag) < C(J). By Section 3.3, ap can
be decomposed to two nontrivial loops « and af, and again we assume «, is the shorter
one. So £(oy)) < 4C(0) + €. Let zg be a common point of ap and af,. Note that o and oy
represent two loxodromic elements 7o, v, € m1 (M, z9) = I', which generate a non-elementary
subgroup (y0,7,) = T'o < T.

Recall that for any group G with finite generating set S, its entropy is defined as:

: <
—00

where dg is the Cayley graph metric determined by S.
If we are in case (2) that ' is free, then I') must be a free subgroup isomorphic to
Fy. So h(T,S) = In3 for S = {7,7(}. Note that the lengths of geodesic loops from
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representing vy and 7, are both bounded by 4C(0) + €. We conclude that the orbit map
vy - g gives a (4C(0) + €)-Lipschitz injection from (I'g,dg) to (X, d). This implies

1 In3
0=0() 2 0T0) 2 gy Mo 5) = g e
The last inequality follows from (2.1). By choosing € small enough and assuming § < 1/16,
one can check that the above inequality cannot hold. The contradiction implies that the
injectivity radius is proper.

If we are in case (1), then according to [DKL19, Theorem 1.1], there is a free subgroup
I'l, < Ty generated by two elements g, g), whose word lengths measured in (I, S) are
bounded above by some universal constant C(n, ) depending only on the dimension and
lower sectional curvature of X. Denote Sy = {go, g} Therefore, the orbit map (I, ds,) —
(X,d) through the inclusion I'j — T’y is a (4C(d) + €)C(n, )-Lipschitz injection. This
implies

1 , In3
G0+ a0 %) = Gem T octn)
Thus, there exists a constant D(n, k) which is smaller than 1/2 such that by choosing €
small enough and assuming § < D(n, k), the above inequality fails. The contradiction again
implies that the injectivity radius is proper.

0> >

0

Remark 4.2. For case (1), instead of passing to a rank 2 free subgroup, one can also apply
the result of [BCG11] to give a uniform lower bound on the entropy of T'y.

Now we can finish the proofs of our main results in the introduction.

Proofs of Theorem 1.2 and Theorem 1.8: Theorem 1.2 follows from Theorem 3.13
and Theorem 4.1. For the proof of Theorem 1.8, there exists a finite index free subgroup
IV < T such that §(I") = §(T') < 1/16. Then I is convex cocompact by Theorem 3.13 and
Theorem 4.1, which implies that I' is also convex co-compact. (|

Proof of Corollary 1.6: Let D(n) be the constant D(n, ) in Theorem 1.2 with x = 1.
Suppose that I' < Isom(H") is a finitely generated discrete isometry subgroup with 6(I") <
D(n) < 1/2. By Selberg lemma, there exists a finite index torsion-free subgroup IV < T’
with 6(I'") = 6(T') < D(n) < 1/2. By Theorem 1.2, I is convex cocompact. Hence, the
Hausdorff dimension of the limit set equals §(I) [BJ97] which is smaller than 1. Note
that since the limit set is a second countable, compact metric space (hence also locally
compact and Hausdorff), its topological dimension equals the small inductive dimension,
which is bounded above by its Hausdorff dimension, hence must be zero. This implies
that the limit set is totally disconnected (in fact a Cantor set). Then we apply a result of
Kulkarni [Kul78, Theorem 6.11], which states that if the limit set of a finitely generated
Kleinian group is totally disconnected, then the group splits as a free amalgamation of a
free group with virtually abelian groups corresponding to the parabolic subgroups. Since
the condition §(I") < 1 excludes all free abelian factors of higher rank, we conclude I'' must
be free. Therefore, I' is virtually free. O
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