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Abstract

We study the Eisenstein series associated to the full rank cusps in a complete hyperbolic
manifold. We show that given a Kleinian group I' < Isom™ (H" 1), each full rank cusp
corresponds to a cohomology class in H™(I', V) where V is either the trivial coefficient
or the adjoint representation. Moreover, by computing the intertwining operator, we
show that different cusps give rise to linearly independent classes.
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1. Introduction

We say I' is a Kleinian group if it is a discrete isometry subgroup of G =
Isom™ (H"), the orientation preserving isometry group of H"™. One of the main
themes in hyperbolic geometry is to study the number of cusps in the associated
quotient manifold T'\H". When I' contains parabolic elements, every cusp corre-
sponds to a I'-conjugacy class of maximal parabolic subgroups in I". In dimension
3, the celebrated work of Sullivan [Sul81] shows that finitely generated Kleinian
groups always have finitely many cusps, and the number of cusps is bounded
by 5N — 4 where N denotes the number of generators in I'. (See also the work
of Kra [Kra84]). However, starting in dimension 4, cusp finiteness theorem fails.
The first example was due to Kapovich [Kap95], where he constructed a finitely
generated free Kleinian group I' < Isom™ (H*) that has infinitely many rank one
cusps. In a recent paper [IMM22], Italiano, Martelli and Migliorini constructed a
finitely generated Kleinian group I' < Isom™ (H") which has infinitely many full
rank cusps in dimensions 5 < n < 8. Moreover, I' can be made finitely presented
in dimension 7 and 8. On the other hand, it is proved in [LW20] that the number
of cusps is bounded by the first Betti number provided the critical exponent is
smaller than 1.

One general approach to show a cusp finiteness theorem is to first associate
each maximal parabolic subgroup I'; < T" with a cohomology class o; € H*(T', V)
after choosing a suitable coefficient module V', then to show the corresponding
cohomology classes for different cusps are linearly independent. Finally, if we
know the overall dimension of H*(T", V) is finite, then the number of cusps must
also be finite. For example, in Sullivan’s proof he chose V' to be the polynomial
space of degree at most 4, and constructed a cross homomorphism from I" to V/
(thus representing a class in H!'(T',V)) via the Borel series associated to each
cusp. Then he showed these representing classes are linearly independent, hence,
the number of cusps is bounded in terms of the first Betti number (number of
generators of T'). In analogous to the Borel series, we can use the Eisenstein series
to associate a cusp with a cohomology class in H*(T", V'). Much of work was done
by Harder [Har75, Har87], Schwermer [Sch94, Sch83] and many others when T is
an arithmetic lattice in a semisimple Lie group. Using the Borel-Serre compacti-
fication, the Eisenstein cohomology naturally arises from the cohomology of the
boundary, which has deep relations to the arithmetic aspects of I' such as the
special values of L-functions.

The main purpose of this note is to extend the Eisenstein construction to
the context of general Kleinian groups with full rank cusps. We make use of
the Poincaré series to obtain absolute convergence of the Eisenstein series. Thus,
each full rank cusp corresponds to a cohomology class on the quotient manifold.
In order to distinguish these cohomology classes arising from different cusps, we
compute the intertwining operators and use them to show that these cohomology
classes are indeed linearly independent. The computation of the intertwining
operators is very difficult in general. We follow the general approach of Harish-
Chandra [HC68] but instead use the Lie group decompositions over the reals
including the Bruhat and Langlands decompositions. In particular, our proof
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does not rely on the finite volume property or arithmeticity of I'. In the case of
trivial coefficient, we prove,

Theorem 1.1. Let I' < Isom™ (H"*1) be a torsion free discrete subgroup. If the
critical exponent §(I') < n or T is of convergence type, then for any parabolic sub-
group T'; < T of rankn, and any generating cohomology class o; € H™(I';,R) 2 R,
there is a harmonic form E(a;) on T\H"*! constructed via the Eisenstein series

such that

1. The restriction homomorphism H™(T',R) — H™(T';,R) sends [E(w;)] to «;.
2. If I';,T'; are not I'-conjugate, then the restriction homomorphism
H™(T,R) — H"(I';,R) sends [E(c)] to 0.

In the above theorem, the critical exponent §(I") of T is defined as

o(T") = inf{s : Z e 3U070) < 0},
yel’

Note that if I' C Isom(H"*1), then 0 < §(T") < n. For simplicity, we sometimes
write § for §(T") if the context is clear. The group T is said to be of convergence
type if the above infimum is achieved. The additional assumption on the critical
exponent or on the convergence type of I is to assure the absolute convergence
of the Eisenstein series. This is necessary for our theorem to hold because in
the case I' is a non-uniform lattice (where 6 = n and IT" is of divergence type),
the degree n-homology classes coming from the cusps form a linearly dependent
system, thus by Stokes’ theorem, the result in our Theorem 1.1 will never hold. To
our surprise, by examining the entire argument in our proof, the non-convergence
of the Eisenstein series is the only place where it fails. However, if we choose the
coefficient module to be the Lie algebra g of GG, equipped with the natural adjoint
action of I" inherited from G, then the absolute convergence issue will be resolved.
This does not contradict to the example of non-uniform lattices since we do not
have Stokes’ theorem for g coefficient. More precisely we prove,

Theorem 1.2. Let T' < Isom™ (H"*1) be a torsion free discrete subgroup. Then
for any parabolic subgroup I'; < T' of rank n, and any cohomology class a; €
H™ (T, Ad), there is a closed differential form E(c;) on T\H"*! constructed via
the Eisenstein series such that

1. The restriction homomorphism H™(T', Ad) — H™(T';, Ad) sends [E(a;)] to
;. In particular, there is a surjective homomorphism

H™(T,Ad) — H™(T;, Ad).

2. IfT';,I'; are not I'-conjugate, then the restriction homomorphism
H™(T',Ad) —» H"(T';, Ad) sends [E(w;)] to 0.

Both Theorem 1.1 and 1.2 give a way to control the number of full rank cusps
N on the quotient manifold. The case of trivial coefficient implies N < 3, (T")
(given that & < n or that T is of convergence type) where /3,,(I") denotes the n-th
betti number of I', but this is clear sincg a full rank cusp is always a topological



end and H"(T',T';,R) = 0 unless I is a cocompact lattice. So the surjectivity of
the restriction homomorphism H™(T',R) — H"(T';,R) follows immediately from
the long exact sequence for the pair (I',T;). In the case of adjoint representation,
we obtain a similar bound.

Corollary 1.3. Let I' < Isom™ (H"*!) be a torsion free discrete subgroup. Then
the number of full rank toric cusps of T\H"*! is bounded by

N < L dim(Em (T, Ad)).
n

Remark 1.4. The reason why we need to add the toric cusp condition is that
in general H™(T;, Ad) could be trivial (See Proposition 3.5 and Remark 3.6). If
the group T is LERF, then we can always pass onto a finite cover of T\H"*! to
assure a given full rank cusp is toric.

Organization of the paper

In Section 2, we review vector-valued differential forms, their equivalent perspec-
tive as functions on Lie groups, and the Lie algebra cohomology. In Section 3,
we construct a cohomology class for each full rank parabolic fixed point with the
coefficient either R or the Lie algebra of Isom™ (H"*!) with the adjoint represen-
tation. In Section 4, we construct the Eisenstein series and discuss its closeness
and convergence. In Section 5, we investigate the restriction of the Eisenstein
series to the horosphere corresponding to any given cusp. In Section 6, we prove
Theorem 1.1, 1.2 and Corollary 1.3.

2. Preliminary
2.1. Vector-valued differential forms

Let V be a finite dimensional real vector space and p : G — Aut(V) be any
continuous (and hence smooth) representation. Since p restricts to any discrete
subgroup T', and I" naturally acts from the left on X = G/K where K is the
stabilizer of a point in G, it follows that I' also left acts on the trivial bundle
V x X via

v+ (v,z) = (p(7)(v), yT).

Endowed with the trivial connection on V' x X, it induces a flat bundle structure
on the quotient manifold M = I'\ X, which we denote by V,. It is known that
the cohomology with the associated local system H*(I',V,) can be computed
using the DeRham complex Q*(X,V)!', where the codifferential operator d :
QF(X,V) — QF1(X, V) is defined by

dW(Xl, --7Xk+1) = Z(—I)H_lXiw(Xl, ...,5(\1', ...,Xk+1)
+ Z(—l)“‘jw([Xi, Xj], X1, ...,X\i, ey X\j, ...7Xk+1>.

1<j
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To this end, any cohomology class in H*(I',V,) can be represented by a
T'-invariant V-valued closed differential form on X.

2.2. Matsushima-Murakami formalism

For the purpose of computations, it is convenient to view alternatively the above
mentioned vector valued differential forms as a smooth function from G to
Hom(A*g, V). We follow the original treatment in [MM63, Section 4].

Given any n € Q*(X,V)!', we can pull back the differential form to G' under
the projection 7 : G — X = G/K, followed by a twist of a G-action. Define a
differential form 77 € Q*(G, V) by

s == p(s (nom)s, VseG.

Then one can check n € Q*(X, V)V if and only if 7 satisfies

1. oLy =17 forany y €T,

2. o Ry, = p(k~1)7n for any k € K, and

3. i(Y)p=0forany Y € ¢,

where £ denotes the Lie algebra of K, and L., R, denote the left and right mul-
tiplications. Furthermore, we can view 7 as a function on G whose values are in
Hom(A*g, V) by identifying TsG with T.G = g via left translation, and the above
constraints then turn into

L. 7(vg) = 7(g) for any y € T and g € G,
2. 7(gk) = Ady(k~") @ p(k~")(7(g)) for any k € K and g € G, and
3. 4(Y)p=0for any Y € ¢.

where Adj is the dual adjoint representation of G on A*(g). Fix a basepoint on X,
we write g = £@p the Cartan decomposition. Then there is a natural identification
between Q*(X,V)! and functions ¢ € C°°(G/T', Hom(A*p, V)) which satisfies

o(gk) = Ady(k~") @ p(k~")(plg)), VkeK,geG.

Under such identification, the coboundary operator d : QF(X,V) —
QOF1(X,V) as described gives rise to the coboundary operator

d: C>®(G,Hom(A*g, V)) = C°°(G,Hom(A*+1g, V)

given by ([MMG63, Proof of Proposition 4.1])

(X1, Xi1) = 3 (=1)F(Xi + p(Xi))p(X1,ory Xy oy K1)

L L (1)
+ 3 (=) (X, X)Xy Xy Xy K1),

i<j

Here we abuse notation and still use p to denote the induced Lie algebra
representation p : g — End(V). Note that in the original statement of [MM63,
5



Proposition 4.1], the second term of the above equation (1) vanishes. This is
because their function ¢ is valued on Hom(A*p, V) and that [X;, X;] € ¢ for any
pair X;, X; € p. However, for the purpose of computation, besides the usual coset
model H" = G/K = SO (n,1)/S0(n), we will also use H" = P; /K¢, where P is
a maximal parabolic group for the parabolic fixed point £, and K¢ = P: N K. Let
us be a little more verbose here as this description is essential to the computations
of ¢¢ s in Section 3, 5 and 6.

Under the Langlands decomposition, we have Pr = NgA¢K¢, and accord-
ingly the Lie algebra splits as p¢ = ng © ag @ me. Thus from the above
discussions, any differential form n € QF(X,V) can be viewed as a function
7 € C°° (P, Hom(A*pe, V) which satisfies
L n(pm) = Ady, (m=1) @ p(m=1)(77(p)) for any m € K¢ and p € P, and
2. i(Y)n =0 for any Y € mg,
where the second property shows that we can further view 7 as in
C>(P¢,Hom(A*(ag & ng), V). If H < P, then n is H-invariant if and only if 7
is H-left invariant as a function. Note that the Lie bracket [a¢,ne] stays in ng,

so in particular the second term in (1) will possibly be nonzero. (See Proposition
3.3 and compare the proof of [Har75, Lemma 3.1].)

Remark 2.1. Our convention uses left action of G on X = G/K, which is
different from that in [Har75]. So there are sign differences in the expression of
the coboundary operators.

Lemma 2.2. For any g € G, if Ly denotes the left action on
C>®(G,Hom(A*g,V)), i.e. (Lyp)la = ¢lga for any ¢ € C®(G,Hom(A*g, V))
and any a € G, then

Lyod=doL,.

In particular, ¢ is closed if and only if Ly is closed, and ¢ is a coboundary if
and only if Ly is a coboundary.

Proof. For any a € G, ¢ € C®°(G,Hom(A*g,V)), and any X1, ..., Xp41 € g. We
do the following direct computations:

—~

d(Lgp)|a(X1, -y Xpp1) = Z(_ )H_l(X' + p(Xi))(Lgp)a(X1,s -y Xiy ooy Xiy1)

+Z D (L) (X, X1, X1y ey Xy ooy Xy ooy Xi1)

1<j

- Z l+1 X +p( A))Sp‘ga(Xh"'75.(\1'7"'7Xk+1)

+Z D) 0l g (X4, X1, X1y ey Xy ooy X ooy Xit1)
1<J
= d‘P|ga(X17---an+1)
= Lg(d‘p)‘a(Xlﬁé-an+l)'



Thus Lyod =do L. O

2.3. Lie algebra cohomology

Let g be a Lie algebra and p : g — End(V') be a Lie algebra representation. We
define the Chevalley—Eilenberg complex by

..+ = Hom(A*g, V) % Hom(AFHg, V) — ...

and the coboundary operator is given by
dp(X1, oo, Xps1) = D (—1)p(X)@(X1, oy Xi ooy X1

+ Z(—l)i-‘_j(p([Xi,XjLXl, ...,X\i, ...,5(\]‘, ...,Xk+1).

i<j

The cohomology induced by the above cochain complex is called the Lie algebra
cohomology with V-coefficient, denoted by H*(g, V).

Since we only work with specific Lie algebras and representations, we will make
simplifications by setting G' = Isom™ (H"*+1) = SO"(n + 1, 1), and setting either
V =g and p : G — End(g) the adjoint representation, or V.= R and p the
trivial representation. Let U < G be a maximal unipotent subgroup associated
to some chosen maximal abelian subgroup A < G such that U is expanding. In
the case of adjoint representation, we denote u, g the Lie algebra of U, G, and
p : u — End(g) the restriction of the adjoint representation p. Diagonalized
by the adjoint action of A, the vector space V (under the restricted root space
decomposition) decomposes as V = V_o® VBV, and that the Lie algebra u = V5.

Lemma 2.3. Following the same notations above, if {uy,...,u,} is a basis of u,
and v € V_q, then there is a natural isomorphism

J: Vo= H'(u,V,),
given by

v (Ui A AW @,
where {u¥, ...,uk} represents the dual basis on u*.

Proof. Since n = dimu, the cochain complex stops in dimension n, so (uj A ... A
u)) ®v is automatically closed. For the injectivity of .J, it suffices to show that for
any nonzero v € V_o, the closed form (uf A...Au))®v does not lie in the image of

d : Hom(A" 'u, V) — Hom(A™u, V).

We write an arbitrary element in Hom(A" " 1u, V) as

n

o= E (u’{/\.../\ﬂf/\.../\ui)@Am
i=1
7



for some A; € V. Then we compute
dp= (WA Aut) @ (Z(—l)”lp(ui)Ai) .
i=1

Since [V, V2] = Vi @ Va, we see that (Zle(—l)i“p(ui)Ai) € Vo @& Vo, and in
particular it does not lie in V_s. Thus (u} A ... Au}) ®v is not a coboundary, and
it represents a nontrivial cohomology class. This shows the map J is injective.

To show J is surjective, we need to show any element (uj A ... Au}) ® v where
v € Vy@ Vs is a coboundary. Since [V, Va] = V& Vs, we can write v = 1, [u;, v;]
for some v; € V. Now if we set

0= Z (uf A e A &f A A u;) ® (—1)"t; € Hom(A" 1, V),
i=1

then dy = (uj A ... Au)) ®v. This proves that (uj A... Au)) ® v is a coboundary.
Thus J is surjective. O

One important aspect of the Lie algebra cohomology is that it sometimes
relates to the group cohomology of a Lie group G, and those classes can be
identified with certain G-invariant differential forms which are harmonic. We will
use the following Van-Est isomorphism theorem in the context of abelian Lie
groups.

Theorem 2.4. [VE58] Let U be an n-dimensional Lie group isomorphic to R™,
and Z < U be a torsion-free cocompact lattice. Let p : U — Aut(V') be a repre-
sentation which induces the Lie algebra representation p' : u — End(V). Then
there is an natural isomorphism

®: H*(Z,V,) = H*(u,V,),

explicitly given by the following, for any Z-invariant closed differential form w €
O (U,V,), set

o) = | @),

where dy is the Haar measure on U/Z. Thus, ®(w) is an U-invariant differential
form that can be identified with an element in Hom(A*(u), V).

3. Construction of cohomology classes from a cusp

Suppose that G = Isom™ (H"*!) = SO"(n + 1,1), and T' < G is a torsion-
free discrete subgroup. For each cusp on the quotient manifold I'\H"™!, when
lifted to the universal cover, it associates to a I'-orbit I'¢ on O, H"*!, for some
¢ € sH™1. The fundamental group of the cusp is isomorphic to T = T'N P
where P = stabg(§) < G is the real paléabolic subgroup at &.



Fix a base point O € H"!, and let H¢(1) be the horosphere of the parabolic
fixed point £ through O. Under the induced Riemannian metric, it is isometric
to the standard Euclidean space R". It is known that I'¢ preserves and acts
isometrically on H¢(1) and in fact by Bieberbach’s theorem it acts cocompactly
on a k-dimensional Euclidean subspace E’g of R™ = H¢(1). It follows that I'¢ has a
finite index abelian normal subgroup Z¢ which acts on E’g by translations. We call
k the rank of the cusp at £. For the purpose of this paper, we will only consider
the full rank case k£ = n, and from now on all cusps are assumed to be full rank.

Under the Langlands decomposition, the real parabolic subgroup decomposes
as Pr = N¢AcKe, where A¢ is the maximal abelian subgroup which acts by
translation on the geodesic connecting O and . Geometrically, K¢ = SO(n)
and N¢ = R"™ are the rotations and translations on H¢(1) respectively. Denote
K¢Ne = NeKe by Pe(1). Then it is indeed the orientation preserving isometry
group of H¢(1), so I'¢ is a discrete subgroup in P:(1). We say the cusp is toric
if I'¢ is isomorphic to Z™ since under the quotient the cusp is homeomorphic to
T" x [0, 00).

For each cusp, we lift to the universal cover and choose an arbitrary parabolic
fixed point & € O, H"*! representing the cusp. For the convenience, we will
describe the following construction under the upper-half plane model H*+! =
{(y, 71, ..., 2n) € RT x R*}. We assume O = (1,0,...,0) and ¢ is in the positive
infinity of the y-axis, thus Hs(1) = {(y,21,...,2,) : y = 1}. For a different
¢ € 0,oH" T the construction differs by a k(&,£')-conjugate where k(&,¢') € K
is any element which sends ¢ to &'

3.1. Trivial coefficients

In the case of trivial representation V = R, we define ¢¢ to be the canonical
volume form on H¢ (1), that is,

(¢§)x =dri A ... Ndx,

for any @ € H¢(1). It is convenient (for the purpose of computation) to view ¢
also as a function in C* (Pg(l), A"ng) according to the discussion in Section 2.1.

We choose the orthonormal frame {u1,...,u,} on ng normalized so that each u;
exponentiates to the unit translation on H¢(1) = R™ along the z;-axis. Thus ¢¢
satisfies,

L. ¢e(n) = ¢e(1) = (uf A ... Auj), for all n € Ng,
2. ¢e(pm) = Ady, (m~")(¢e(p)) for all m € K¢ and p € Pe(1),

where u} € n¢ is the dual vector of u;. We wish to extend the differential form
to the entire H" !, or equivalently, extend ¢¢ € C> (P5(1)7 A”nZ) to a function

in C* <P§7 A"(ag & nZ)) Following [Har75], we introduce the following degree s

extension ¢¢ s of ¢¢. Let t¢ : Ac — R be the character that corresponds to the
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positive root on ag, that is, for any a € A¢ and v € g, we have

ti(a)v  ifv e ga
Ad(a)v=1<0 ifvegy , (2)
tg2(a)v ifvego,

where g = g2 ® go @ g—2 is the root space decomposition corresponding to Ag
(take £ to be the positive direction). Therefore, if T' € a; is the vector such that
[T,u] = 2u for all u € ng, then we have (dt¢)o(T) = te(a), or that dte/te is dual
to T'. We also write t¢ , for t¢(a) when convenient, and omit the subscript £ when
there is no confusion in the context. Now we define the degree s extension ¢¢ s

of d)g by

1. ¢es(n) = de(1) = (uf A ... Auj), for all n € Ng,

2. ¢¢s(p) = Ady, (m ™) (e(1))tg ,, for all p = nam € N¢AgKe under the unique
Langlands decomposition.

Thus in view of Section 2.1, ¢¢ € C™ (Pg,A”(aZ @ng)) represents an Ng-

invariant differential form on H™*!.

Proposition 3.1. In case of trivial representation, ¢¢ s is closed when s = 2n.
The proof is deferred in Proposition 3.3.

Remark 3.2. It is much easier to find this unique closed N¢-invariant differential
form ¢¢ s when it is viewed as in Q" (H" T, R)Ne | which is simply the pull back
form of ¢¢ under the natural projection H" 1 — H¢(1). In other words, it is the
harmonic form

(g,5)e = dr1 A ... Ndzy,

for any x € H" "1, However, when it comes to the computation of intertwining
operators, Treating ¢¢ s as a function will be more convenient for us.

3.2. Adjoint representation

Now we assume V = g and p is the adjoint representation. We first define a har-
monic form on H¢(1). By Lemma 2.3, in order to obtain non-trivial cohomology
classes, we need to take V_s sections. Let v¢ € V_3 be an arbitrary non-zero vec-
tor. We construct the unique (left) Ng-invariant n-form ¢¢ on He(1) by setting
the initial value

((;55)0 = (dxl VARPAN dil'n) & ve.
Since ve does not commute with n¢, the Ng-action will twist the fibre as we vary

the point on the horosphere. More precisely, the differential n-form ¢, can be
globally defined as

(Pg)uo = (dzy A ... A dxl,b) ® p(u)(ve), Vu € Ne.



Alternatively, we can view ¢¢ as a function in C'*° (P¢(1), Hom(A"ng, V')) which
satisfies,

1. ¢e(n) = ¢e(1) = (uf A ... Au)) @ g, for all n € Ng,
2. de(pm) = Ady, (m™") @ p(m~")(¢¢(p)) for all m € K¢ and p € Pe(1),

where again u; € u¢ is the unique vector that exponentiates the unit translation
in x;, and u; is its dual vector. Now we define the degree s extension ¢¢ , of ¢¢ by

L. ¢es(n) = de(l) = (uf Ao AUl) @ g, for all n € Ng,
2. ¢e.s(p) = e s(nam) = Ady (m™) @ p(m™")(¢e (1))t ,, for all p € Pe.

Thus ¢¢ s € C* (P:,Hom(A"pe, V')) represents an Ng-invariant V-valued differ-
ential form on H" ™!, where p; is the Lie algebra of P:. The following proposition
computes the differential of ¢¢ s in the most generality (for later use in Section
6), and in particular it characterizes when ¢¢ , is closed. This is essentially proved
in [Har75, Lemma 3.1], but for completeness we add it here.

Proposition 3.3. Let ¢¢ s be the degree s extension of ¢¢ where ¢¢ is defined
as above except now we allow ve € Vy for £ € {—2,0,2}, and V is either with the
trivial representation or with the adjoint representation. Then

dt
(s—2n+1¢)- ZEA ¢es  if p is adjoint representation
te

d¢£,s -

A Pe.s if p is trivial representation

(s —2n) - die
te

where te : A = R is the character corresponds to the positive root on ag defined
as in (2).

Proof. Let Xy,---,Xni1 € pe = ¥ @ ac @ ng, we need to compute
doe,s (X1, -+, Xnt1). Recall that

doe (X1, Xnt1) = Z(— X + p(X0))de,s(Xas - Xiy e+ Xng1)

+Z Z+j¢£s X27X]X17"‘,X\ia"'vk\ja"'vXn+1)~

1<j

The form ¢ is a closed n-form on the horosphere #H¢(1). It suffices to only consider
the term doe (T, X1, -- , X,,) where T € ac and X; € ng since all the other terms
vanish. (See [MM63, (4.10)].) We choose X; = u; € n¢ and normalize T such that
[T, X;] =2X;,ie T is dual to dt¢/te. Then at any point p = na € N¢A¢, we have

d¢§7S(T7X1"" » Xn ): (T—Fp(T))d)g S(le"' 7X'VL>
+Z Ve, ([T, X], X1, Koy, Xn).
11



The second term can be simplified as

Z(_l)i¢f,s([T7Xi]uX17“' 75(\757"' 7X’n) = _2Z¢§,S(X17"' 7Xi7"' aXn)
% =1

=—-2n- ¢€,S(X1a T 7Xn)
Furthermore, we compute

- ¢e (X, -+ ,X,) if pis adjoint representation
P(T)be (X1, -\ Xn) = { el )

0 if p is trivial representation

and

T¢§,S(X17' o aXYL) =S5 d)f,S(Xla e 7X7L)'

Therefore,

dt
(s—2n+1)- TE A ¢es if p is adjoint representation
3

de. = e .
(s —2n) - - N be.s if p is trivial representation
3

O

Corollary 3.4. In case of adjoint representation and ve € V_o, ¢¢ s is closed
when s = 2n + 2.

3.3. Non-toric cusps

In the case of toric cusps, we know I'c < IV¢, hence the above constructed differ-
ential form ¢¢ (hence also its extension ¢ ;) is automatically I'c-invariant, and by
the Van-Est isomorphism (Theorem 2.4) every cohomology class in H”(I'¢, Ad)
can be represented this way. For a general non-toric cusp, I'c is a Bieber-
bach group. With trivial coefficient, we still have H™"(T'¢,R) = H"(Z¢,R) =
H"™(u,R) = R, and the canonical volume form is I'¢-invariant.

However, with adjoint representation it is less clear. Since Z¢ is a finite index
normal subgroup of ¢, the transfer map ¢ : H*(Z¢, Ad) — H*(T'¢, Ad), given by
taking the average over the finite group action of Z¢\I'¢, is a left inverse of the
restriction map ¢*. That is, the following composition

H*(T¢, Ad) 5 H*(Ze, Ad) % H*(T¢, Ad)
is the identity map. In particular, ¢* is injective and ¢ is surjective. Therefore, we
can identify cohomology classes of H*(T¢, Ad) with their images in H*(Z¢, Ad).
Proposition 3.5. For any cohomology class o € H"(IT'¢,Ad), there

is a wunique Ne-invariant, Le¢-invariant closed differential form v, €
12



C> (P¢(1),Hom(A"ng, V) representing o whose initial value satisfies,
Pa(l) = (i A Auy) @

for some v € V_o. Moreover, ©Ov must be fized by I'c under the adjoint action
where © : g — g is the Cartan involution associated with the base point O. Thus,
H"(T¢, Ad) # 0 if and only if T'¢ fizes a nontrivial vector in ne.

Proof. We first choose the harmonic representative of i*(«) in H™(Z¢, Ad) =
H"(ng,ad) under the Van-Est isomorphism, and we denote it by 1,. Then by
Lemma 2.3, we can choose an N¢-invariant form ¢, € C* (P¢(1), Hom(A"n¢, V)
such that 1, (1) = (ui A+ Au)) @ v, for some v, € V_y. Since 1, is a top form,
it is closed. We denote 1, the image of 1, under the transfer map, hence by
definition we have

Ya(p) = — Z Ya (Vi - P);

[vi]€Ze\Te

where D = [T¢ : Z¢]. By Lemma 2.2, 1, is closed. Clearly it is T'¢-invariant, and

since ¢ 0i* = Id, 1), represents . To see it is also N¢-invariant we compute for
any u € N¢ and p € P(1)

Ya(up) = = Z Ya (Vi - up)

[vil€Ze\De

== > tCalviuy " -vip)

[vil€Ze\le
=5 D valvp)
[vileZe\l'e
=Ya(p),
where the third equality uses the N¢-invariance of 1, together with the fact that
P¢(1) normalizes Ne.
To compute 1), (1) we can write ; uniquely as n;m; € Pe¢(1), then by the
N¢-invariance of 1, we obtain

=y Y ulm)

[vi]€Ze\Te

= Y Adlm ) @ ) (i A A ) )

— (Wi A ) @ (}Vzipm;l)(va)) ,

where the last equality uses the fact that K¢ acts isometrically on H¢(1) so in

particular it preserves its volume form. Since A¢ commutes with Ky, it is clear
13



that

( X >ev2

The uniqueness of v follows from the injectivity of i*. Finally, to see why Qv
is fixed by T'¢, we first note that the collection of {m;} form a group. Thus
p(m;)v = v for every m;. Since © fixes the Lie algebra of K¢, it commutes with
p(m;) for all m;. It follows that p(m;)(©v) = Ov for all m;. Since Ov € ng, T
fixes Ow. O

Remark 3.6. The proposition is an explicit realization of the isomorphism
H"(T¢, Ad) = (H™(Z¢, Ad))'e obtained for example via the spectral sequence. In
the example of Kleinian group with infinitely many cusps constructed by Italiano,
Martelli and Migliorini [IMMZ22], they are toric. However, there are in general
non-toric examples (See [FKS21]) where T'¢ does not fix any nontrivial vector in
ng, hence H" (¢, Ad) = 0.

4. construction of Eisenstein series

In Section 3, we constructed I'¢-invariant V-valued (V' = R or g) n-forms ¢¢ s on
H"*! out from any full rank parabolic fixed point ¢ € O,,H"*!. In this section,
we will further construct from each ¢¢ s a I-invariant n-form on H"'!, i.e. an
element in Q" (H"*! V)T, by the process of Eisenstein series. Since we will need
I-actions on the differential forms, we want to first extend our definition of ¢¢ s to
a function that supports on the entire G, but of course this is uniquely determined
because ¢ s is already a form on H"*!. By the discussion in Section 2.1 and in
view of its value on P, the unique extension ¢¢ s € C*° (G, Hom(A™(as @ ne), V)
satisfies for any g € G,

L es(9) = pes(n-a-k) = Adg(k™") @ p(k~ ") (e s(n)) - t5,
2. ¢es(n) = e (1) = (uf A--- ANujy) @ ve,

where g = nak € N¢A¢K is the unique Iwasawa decomposition, and v¢ is any
vector in V_o if V = g. From Proposition 3.5, we know that any cohomology class
in H*(T'¢, Ad) can be represented by the above ¢¢ s which is (left) Ne-invariant
and I'¢-invariant. We now define

¢f 9,8 Z ¢§5 ’Yg

’YEFE\F

to be the Eisenstein series associated with ¢¢ (with degree s). We will see later
there is a unique s such that E(¢, g, s) is closed so we will not emphasize on the
dependence of s. By the construction, it is [-invariant. But it is unclear whether
it converges or not.

Proposition 4.1. Let & be a full rank parabolic fixed point. The FEisen-
stein series E(¢g,g,s) absolutely converges if the Poincaré series Pg5(0) =
Zwer e~ (8/2AO00) converges for some O € HH,

14



Proof. Fix any g € G, by the Iwasawa decomposition, we have vg = nya,k, €
N¢A¢K where K is the stabilizer of O. We can write each term

Pe,s(79) = be,s(nyayky) = Ad;(k»;l) ® P(k»;l)ﬁb&(l) : tfyv

where we set t, = t(a). If we fix any norm on Hom(A"(ag @ n¢), V) then we can
estimate

1B(@e,9.5)1 < D Noes(ro)ll = D I1AdG(k") @ p(k e (1)]] - 85

YETE\D YETE\D

Since K is compact, Adj(k;") ® p(k!)¢e(1) is uniformly bounded in A"g* ® V
hence also uniformly bounded when projected onto A"(az &) nz) ® V. So for the
absolute convergence of the Eisenstein series, it suffices to consider the series

>

’YEF&\F

and show its convergence. Note that the above series is well-defined since ., does
not depend on the choice of v in the coset I'¢\I'. Indeed, if 70 € I'e = T'N P
is any element, then vy € NegK¢ so that we can write 79 = mnomg. Since
mo commutes with a, and normalizes N¢, we have y9vg = nomonyayk, =
no(mon,mg *)a,mok., which gives rises to the N¢ A¢ K-Twasawa decomposition.
This shows that the A¢ component does not change when replacing v by o7,
thus ¢, is independent on the choice of v in the coset.

Next, we want to relate the series to the Poincaré series. Note that since
¢ is a full rank parabolic fixed point, I'c acts cocompactly on H¢(1), so there
exists a constant C' such that a fundamental domain of I's\H¢(1) is contained in
the metric ball B(O, C/2). Thus for any coset I'¢y, there exists a representative
4 € T'¢ry such that under the Iwasawa decomposition yg = n,a~k,, the unipotent
component n., translates O at most C, i.e. d(n,0,0) < C. Now we can estimate
the Poincaré series

P‘;(gO) _ Z efsd(O,'ng) > Z efsd(O,n,ya,yO)
el [(YIET\D
> Z e—s(d(O,na,O)+d(n7O,na,aa,O))
[(YI€T\D
> e—sC Z e—sd(Om@O)’
[Fler:\T

where the first inequality makes the particular choice of ¥ described above, the
second inequality uses the triangle inequality, and the last inequality uses the left
invariance of the metric.

Observe that a,O is on the geodesic connecting O and {. By hyperbolic geo-
metric computation, d(O, a,0) = |Int2|, and ¢, > 1 if and only if a,O lies inside
the horoball of H¢(1). In fact, the computation can be carried out within a totally
geodesic copy H? C H"*! which contai1n55 &, O where a, acts by isometry. Then



without loss of generality, we can use the upper half plane model and assume
O =i, £ = ico, and a, = diag(a,a™*) € SLy(R). The mobius transformation
gives a,i = a?i, hence d(O,a,0) = d(i,a) = In|a?|. On the other hand, from
the definition of the character (2), we know that ¢, = t(a,) = a by the following
matrix computation

()0 () =2 (65)

By the geometry of cusps (essentially the Margulis lemma), we know that there
are only finitely many I'c\I'-orbits that lie inside any horoball B(§) at &, that is,
the cardinality of I':\I'O N B(§) (which makes sense since B(§) is I'c-invariant)
is always finite. So are finitely many I'¢c\I'g-orbits (I':\I'¢O N B(§)) according to
triangle inequality. Hence, up to a finite error, we have

PS(QO) > e—sC Z e2811{1tW _ e—sC Z t’2ys.

[’Y]el—‘g\r‘ ['y]el"g\l"

Note that d(O,a,0) = —2In(t,) if and only if ¢, < 1, which holds for all but
finitely many [y] € T'¢\T', since all but finitely many [y]gO lie outside the horoball
of He(1). Hence up to passing finite many terms, the above inequality holds.
Note that the convergence of the Poincaré series doesn’t depend on the
basepoint. Thus, if P;/2(O) converges, then the Eisenstein series E(¢¢,g,s)
converges. O

In view of Proposition 3.3 and Corollary 3.4 we obtain
Corollary 4.2. Let £ € H*! be any full rank parabolic fized point.

1. If V = g is the adjoint representation, then the Fisenstein series
E(¢¢,9,2n+2) is always an absolutely convergent closed form.

2. If V=R is the trivial representation, and in addition if either T is of
convergence type or §(I') < n, then the Eisenstein series E(¢¢, g,2n) is an
absolutely convergent closed form.

Proof. The absolute convergence follows from Proposition 4.1. To see it is closed,
we have

dE(¢e,g,8) =d | Y des(v9) | = D does(rg) =0.

[V]ele\I [V]ele\I

Here ¢¢ s is closed by Corollary 3.4 if V = g. If V = R, ¢, is automatically
closed since it is a top form. The absolute convergence of both series ensures the
interchanging of the differential operator d with the infinite sum in the second
equality. The last equality follows fromlgemma 2.2. O



5. Intertwining operators

In this section, we assume that all the cusps are full rank, and V' =R or g. Let
E(¢er, g, s) be the Eisenstein series corresponding to the parabolic fixed point &’.
In order to see which cohomology class the Eisenstein series E(¢¢, g, s) restricts
toin H"(T'¢, V) =2 H™(ug, V), we need to look at the image of E(¢¢,g,s) under
the map Is ory (See the following commutative diagram), which is equivalent to
trace along ro 0 I5.

Q*(HnJrl,V)F 2! Q*(Hn+1,V)N5

”l lrz

O (He(1), V)T —L (M, (1), V) Ve
To obtain the image under I;, we define the intertwining operator from ¢’ to
& as
E£(¢§’7gvs) = / E(¢§/7u9as)duv
u€Te\Ne

where du is the Haar measure normalized such that vol(T'¢\Ng) = 1. Then
by restricting the integral to the horosphere He(1), we obtain an element in
Q*(He (1), V)Ne which is exactly the image of E(¢¢r, g, s) under ro o I;. The main
goal of this section is to compute explicitly E¢ (¢¢r, g, 5). We will follow the general
approach in [HC68, Chapter II]. For the convenience, we introduce the following
notation: for any g,h € G, we write Yh to denote the conjugate of h by g, that
is, 9h = ghg~'. We will need the following two lemmas.

Lemma 5.1. For any g € G and a € A¢, one has
Pe.s(ag) = to - Pe.s(9)-
Proof. Let g = ngaqk,. By definition,
be,s(ag) = de s(angagky) = de s(“ngaagky) = totg0e(“ngky) = t3tg e (k).
where the last equality follows from the N¢-invariance of ¢¢. We also have
be,s(9) = bes(ngaghy) = type(ngky) = t;0e(ky).

Therefore, ¢¢ s(ag) = t5¢e.s(g)- O

Lemma 5.2. (Geometric Bruhat decomposition) Let G = SO1 (n+1,1) and fir a
basepoint O € H™L. For any &, &' € O, H™ Y, G decomposes as a disjoint union

q = JPeUNewh if§¢=¢
kP: UNgkwP: if € #E ’

where w € K is any isometry that reflects the geodesic O, and k € K is any

isometry that sends £ to £'. 17



Proof. The case £ = £’ is just the classical Bruhat decomposition. For & # £/,
and for any k € K that sends £ to £, using the classical Bruhat decomposition
we have,

G=kG=EkP: UEN;wP; = kP: U N kwP,
where the last equality uses kN¢k™ = Ng/. O

Although we started with ¢¢ , whose value is in C*°(P¢, Hom(A™ng, V), after
taking the Eisenstein series and intertwining operator, even though it is still /Ve-
invariant, the value could lie in a bigger space C*° (P, Hom(A™(ne G ag),V)). For
this reason, we introduce the extended space Q" (He(1),V) D Q*(He(1),V) to
be the restriction of V-valued forms on H"*! to the horosphere H¢(1), without
projecting to its (co)tangent space. In other words, forms in ﬁn(’;‘-lg(l), V) may
look like (dy Adxy A -+ Adx,—1) ® v. Now we can state our theorem.

Theorem 5.3. Let E(¢¢,g,s), E(¢er, g,8) denote the Eisenstein series corre-
sponding to the rank n parabolic fized points £,& respectively. Then for any
g € Pe, we have

E5(¢§/7g, 5) = 69255’,3(9) =+ Cs(¢£/)—s+2n(g)

where

b

|0 fT¢ and T'¢r are not I'-conjugate
1 oife=¢

and ¢, : Q" (He (1), V)N = Q" (He(1),V)Ne is a linear operator-
Proof. By the definition,

E€(derrg,5) = / B(ge,ug,s)du= 3 / o G
u £ 3

u€le\Ne YET\T

By assumptions, the Eisenstein series is absolutely convergent and this ensures
the interchanging between the integral and the infinite summation. This shows up
several times in the rest computations, but we emphasize that all the summations
appear are absolutely dominated by the Eisenstein series (which is absolutely
convergent), thus interchanging the summation with the integral simply causes
no problem by Fubini’s theorem.

We first prove the case when £ = £’. By the Bruhat decomposition, we have

G:SO+(H+1,1):P§UN5U}P£.

Hence, elements in I' is either represented by elements in P or by the ones in

NewP;. We denote the set of former elements by I'; which is exactly I'¢ and the
18



set of latter one by I',,. Now we split the summation of E5(¢5, g, s) into two kinds,

E(¢e,9,8) = > / e,s(yug)du +
~ET\T, u€le\ N¢

= ¢ + &,

/ b« (ug)du
~ET\T u€l e\ Ne

where I'¢\I',, makes sense since I = I':UT",, and it denotes the set of all non-trivial
right cosets of I'z in I'. It is clear that

¢ = / ¢§,s(u9)du = ¢§,S(g)7
u€le \ N

where the last equality follows from the N¢-invariance of ¢¢ . To simplify &;, we
will need the following lemma.

Lemma 5.4. T'¢ acts on T'¢\I'y, from the right with trivial stabilizer, hence the
quotient is the double coset T¢\I'y, /T¢.

Proof. Given any v, € I'y, and a € I'¢ such that I'cy, - @ = I'¢v., it suffices to
show a = 1. From the identity, we obtain v,,ay,' € ¢, or that a € I', ¢. Hence,

a € Fg n F,wa.

Since vy ¢ T'¢, we know v,§ # & hence I'e N T, ¢ = 1. Therefore ¢ = 1 and the
action has trivial stabilizer. O

Now we can simplify &5 as

be,s(yug)du = / be,s(Yyveug)du
[JGFg\Ng 5 Z Z UGFE\NE g 5

YETe\w /T ve €L

= > /uENgqﬁg,s(vug)duv

'YEFg\Fw/Fg

“/EFg\Fw

where the last equality uses the fact that N¢ is abelian and du is the bi-invariant
Haar measure. We compute further (‘32.19



&y = Z /uENg be,s(yug)du

YEL\T'w /Tg

- /e Pg,o syt ug) s Y = uywpy € NgwP;
’YEF&\FH,/Fg uENg

= Z / b¢,s(wpyungagmg)du ¢¢,s is Ne-invariant
NET e\, /T ¥ WENe

= Z / N e,s(wmyaynyungagmg)du Py = Myayny € KeAeN
~YET\T, /T " “ENe

= Z / en bg,s(wmyayu agmg)d ' set u' = nyung,du’ = dn
YEL\Ly /Te 3

71
= Z / g, s (wayagmy“o (u'ymg)du’ K¢ commutes with Ag
N
YETE\Ty /T 7 e
—1

= Z / de,s(wayagmqyu "mg)du’" - t_gn set u =% (u),du =
’Yer‘&\r‘w/ré €N€

= Z /"EN Pe.s (ay ag 1wm7u mg)du” : t?;n w inverses Ag¢
YEL\Ty /Te ¢

= Z / e, (wmau mg)du’t5° 2n ® by Lemma 5.1
YETE\Ty, /T ” v €N

—adymg e pmg) (S [ bestomp i )

YETE\D,, /T W ENe

= Adj(my ") ® plmy ") (Colde,s)) - tg" ",

where in the last line Cy(¢es) is just a constant (independent of g) in
Hom(A™(ag & pe), V). Hence, if we write the variable ¢ = ngagmg, then we
can regard €5 as the differential form constructed via the extension (with degree
2n—s) of the N¢-invariant form whose initial value is exactly Co(¢¢,s). We denote

o QP (He(1),V)Ne — Q" (He(1), V)Ne the unique operator given by the initial
value cg(¢¢)(1) = Co(¢e,s). From the expression, it is clear that ¢y is linear.
Therefore we obtain,

Eg(d’gagas) = /eF W E(¢¢,ug, s)du = ¢£(”gmg)t; + C‘e(ﬁb&)(ngmg)tﬁnis
u€T ¢\ Ng
= ¢¢,s(9) + cs(D¢) 2n—s)(9)

Next, we assume £ and &’ are not I'-conjugate. Then similar to Lemma 5.4, we
have,

Lemma 5.5. Suppose £ and & are not I'-conjugate, then T'¢ acts on Te\I' from

the right with trivial stabilizer, hence the quotient is the double set T'¢/\I'/T'¢.
20



Proof. For any v € I' and a € I'¢ such that I'¢y-a = I'e/y, we have yay~l € Ler,
or that a € I'y¢/. Hence,

a € Fg ﬂl‘wg.

Since £ and ¢’ are not I'-conjugate, we know ¢’ # £ hence I'eNI',¢r = 1. Therefore
a = 1 and the action has trivial stabilizer. O

Using the lemma, we can simplify

Bé(dergs)= 3 / b a(yug)du
’yngx\F u€le\Ne

> / e s (Yug)du
YET\T/T¢ 7V uENe
= ¢.

Also by the Bruhat decomposition (Lemma 5.2), for any v € I', either v € kP or

vy € NerkwPe. If v € kP, then k™'y € P, so k=lné = €, or that v& = kE = &,

contradiction to that £ and ¢ are not I'-conjugate. Thus v € NgkwP:. We now
21



further compute ¢.

€= / Per,s(yug)du

werg,\r/rg ueNe

= /eN Per s (nﬂ/kwpyug)d v = n/ﬁ/kwpy € Nekw!
»yerg,\r/rE uciNe

= / (Z)g/ (kwp»yug)d ¢§',S
werg,\r/r£ u€Ne

= > / et s (kwmyaynyungagmg)du 1
Y€\ /T T uENe

= Z / en ber s (kwm~ayu' agmg)du’ set u' = nyung, du’ =
Y€ \I/Te ¢

= Z / ¢er s (kwayagmy ;l(u/)mg)du/ K¢ commutes with Ag
yer\I/r, /W ENe

= Z / Per s (kwayagm~u'"mg)du” - tf,n set u”’
yerg\I/r, /v ENe

_ Z k-1 —1 " "no,2n .

= der s("(ay “ag ) kwmau mg)du” -ty w inverses Ag¢
yer\I/re /v ENe

= Z / be s (kwmyu mg)du'"t5 tgn_s (2)
yer \I/re /U ENe

= Ad*(my ") @ p(my ") > / ) der s (kwmyu)du"t5° | 2775 (3)

YET\Ty /Te u'"€Ng
1 2
= Ad*(my ") @ p(mg ) (Colder ) - 5" 7,
where in (1), we apply the Langlands decompositions Dy = Mya N, €

M¢A¢Ne, g = ngagmg € NeA¢Me. In (2), we use ka;'a; k™" € Ag and the fact
that k is an isometry which send character t¢ to t¢/. Then we apply Lemma 5.1.
In (3), we use the property of ¢, ; and the fact that m, € K. Hence, if we denote
st QM (He (1), V)Ne — Q" (He(1), V)Ne the unique operator given by the initial
value ¢s(¢e)(1) = Co(¢e ), then E*(¢er, g, s) = cs(der)(ngmg)t, *T2". O

6. cohomology classes associated to cusps

In this section, we study the cohomology class of the restriction of the Eisen-
stein series E(¢¢r,g,s) to the cusp associated to the parabolic fixed point .
Throughout the section we assume s =2n+2if V =gand s =2n If V = R.
We also assume the Eisenstein series converges at s. By Corollary 4.2, we have
dE(¢er,g,s) = 0. Then

dE§(¢§/7gaS):d E(¢§'au975)du:/ dE(¢§/7ug,8)dU:O

’U.GFg\Ng ’LLGFg\Ng
22
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As before, the absolute convergence of the Eisenstein series ensures the inter-
changing of differential and integral, and the last equality follows from Lemma 2.2.
We will use the computation of E¢(¢g, g, s) in Section 5 to see which cohomology
class [E*(¢¢r, 9, 5)] | (1) represents in H™" (T, V).

Proposition 6.1. Let & and & be full rank parabolic fized points. Then

[ES(¢¢r, 9. 8) e 1) = [de] € H (T, V)

if E=¢. If € and & are not T'-conjugate, then

[E§(¢€'7g?8)]‘7{5(1) =0¢ Hn(F€7v)

Proof. By Theorem 5.3,

E(¢er,9,8) = €der 5(9) + cs(der) —s2n(9)-

Since dE*(¢¢r, g,s) = 0, and doer 5(g) = 0, we obtain

d(cs(der)—s+2n)(g) = 0.

Hence, it suffices to prove that

[CS(Q/)E’)fer?n(g)”Hg(l) =0¢€ H”(Fg, V)-

We first consider the case that V' = g. Recall that we can regard the extended
form cs(per) € QHe (1), V)Ne as a function in C°(Pe(1), Hom(A" (ag © ng), V).
Since V =V_o®Vy & Vs and ¢s(¢per) is Ne-invariant, we can decompose ¢, (¢ )(1)
as

dt dt dt
Cs(¢§/)(1) =As+Ag+A o+ ? /\A/Q + ? /\A6 + ? /\A/,Q,

where A; € A"nf@V;, and A} € A"~ 'nf®@V; for i € {~2,0,2}. For each 4, we con-

struct an Ne-invariant V-valued form ¢;(¢¢/) (or ¢}(¢e¢r)) on the horosphere He(1)

whose initial value is A; (or A}), that is, ¢;(¢e) € C(Pe(1), Hom(A"ng, V)

satisfies:

L ci(ger)(n) = ci(¢er)(1) = A,

2. ci(ger)(pm) = Adg g, (m™") @ p(m™")(ci(¢e ) (p)) for all m € K¢ and p €
Pe(1).

And ¢(¢¢r) is defined similarly. Following the construction in Section 3, we can

define degree 2n — s extensions of ¢;(¢¢/) and ¢}(¢er) in C°(Pe, Hom(A"pe, V),

denoted by (c;(¢¢))2n—s and (¢;(¢Per))an—s respectively. It follows that

(0200 = 3 (esl0eans + 30 T A 06 ns.
i 923 i



By Proposition 3.3,
dt dt
0=d(cs(¢e)an—s) =(2n—s+2— Zn)? Aco(@e)on—s + (2n — s — 2n)7 A co(@er)an—s

dt dt
+ (2n —s—2- 2”)7 A C—Q(¢f/)2n—s + Z 7 A (dc;(qbf/)Qn—s)v

where i € {—2,0,2}. Observe that

dt dt
? A Ci(¢§’)2n—s(1) S 7 A HOH](Anﬂg7 ‘/,L)

and by the proof of Lemma 2.3,

dt dt

LN (el (66 )an-0)(1) € T A Hom(A"ng, Vi)

for i € {—2,0,2}. Therefore, by comparing their components in Vo, Vp, and V_q
respectively, we obtain

L on—s+2 - m)ea(e)on+(1) + % A dch(0e))ano(1) =0

A o s~ 2m)eo(6e)on-a(1) + L A dle5(00))2na(1) = 0

dt

7 A(2n—s—2—2n)c_o(de)on—s(1) = 0.
Note that s = 2 4 2n, the coefficients in the above equalities are nonzero. Thus
we have

c2(ger)(1) = %&?(1)7
o(ge)(1) = A2 P

S

c-2(0¢)(1) = 0.

By Lemma 2.2,

ca(ger) = 761(626(_(;52,)) :



We see that co(¢g¢) + c2(¢¢) is a coboundary, which equals the restriction (in
the strong sense, i.e. also project the (co)tangent space) of cs(d¢/)on—s to the
horosphere #H¢(1). Hence

[es(der)—st2nllmey = 0 € H™(T¢, Ad).

The argument is similar for the case that V = R. In this case, we write

csloe) = a(be) + 5 Aealse)

where  ¢1(¢¢r) € C*®(P¢(1),Hom(A"ne,R))  and  co(oer) €
C>(Pe(1), Hom(A™ 'ng, R)). By Proposition 3.3,

dt
0= d(cs((bf’)Zn—s) = (271 —S5—= 2”)? Acy (d)ﬁ’)%z—m
which implies that ¢1(¢¢/) = 0. Hence

[es(d¢')—st2nlre(1y = 0 € H*(T¢, R).

Now we are ready to prove Theorem 1.1, 1.2 and Corollary 1.3.

Proof of Theorem 1.1, 1.2

Since every full rank parabolic subgroup corresponds to a parabolic fixed point
& € H™t!, it follows immediately from Proposition 6.1. Also, the harmonicity of
the Eisenstein series E(¢¢) in the case of trivial coefficient is clear since it is the
(absolutely convergent) sum of harmonic forms (See Remark 3.2). O

Proof of Corollary 1.3

Let Ci,...,Cn be N toric cusps. For each cusp C;, choose a correspond-
ing parabolic subgroup I'; = Z"™ (unique up to conjugate). By Lemma 2.3
and Theorem 2.4, the dimension of the cohomology group H"(I';,Ad) is n.
Thus, in view of Theorem 1.2, they in total correspond to nN linearly inde-
pendent Eisenstein cohomology classes in H™(T', Ad). So the corollary follows
immediately. O

7. Further discussions

Our work seems to suggest that the classical method of Eisenstein series should
also fit in a broader context for certain problems, and this paper only focuses
on a specific aspect of that, namely the cusp counting problem for hyperbolic
manifolds. Before discussing possible directions of extensions of our results, we
first give some examples where our theorems can be applied to. Nevertheless, we
would like to point out that the dimeggion of group cohomology is often very



hard to compute, so it is unclear how sharp the inequality in Corollary 1.3 is in
general.

Non-uniform lattices

As is mentioned in the introduction, non-uniform lattices do not satisfy the
assumption and conclusion of Theorem 1.1. In this case, 6(I') = n, T is of
divergent type, and cohomology classes (with trivial coefficient) arising from
cusps cannot be linearly independent. However, our Theorem 1.2 and Corollary
1.3 both apply, thus giving an explicit upper bound on the number of cusps.
One type of explicit constructions of lattices comes from arithmetic (e.g. take
I' =SO(n+1,1;Z) < SO(n+1,1) up to finite index to kill the torsion). The num-
ber of cusps thus is closely related to the arithmetic feature of the construction
(e.g. the ideal class group of the corresponding number field). There are also non-
arithmetic constructions of lattices due to the work of Gromov—Piatetski-Shapiro
[GPS88], and our results are potentially more useful in these examples.

Geometrically finite Kleinian groups

The simplest such example arises from the Schottky-type construction. Take a
rank n parabolic subgroup I'; 2 Z" < Isom™ (H"*!) and an elementary subgroup
generated by a single hyperbolic translation I'y & Z < Isom™ (H"*!), then up to
a choice of conjugates of I'y,I's, the group I' :=< I'y,I's > is isomorphic to the
free amalgamation I'y * I's by Maskit’s Klein combination theorem [Mas64]. The
resulting Kleinian group is then geometrically finite and have exactly one cusp.
On the other hand, the critical exponent satisfies §(I") < n, so in this case both
our Theorems hold. It is clear that the n-th betti number is 1, but H™(I", Ad)
will depend on the representation of T' in Isom™ (H"*!). Thus, our corollary gives
a uniform lower bound on dim H™(T', Ad), i.e., dim H"(T', Ad) > n, and in fact it
holds for all geometrically finite Kleinian groups I' = Z" x Z.

Geometrically infinite Kleinian groups

As we mentioned in Remark 3.6, the Kleinian groups I' < Isom™ (H"*1)
(4 < n < 7) constructed in [IMM22] has infinitely many full rank toric cusps.
It is a finitely generated (also finitely presented in the case n = 6,7) normal
subgroup of a lattice, which is constructed from an algebraic fibration of the
lattice over Z. It follows that 6(I') = n [Rob05]. As a consequence of Corollary
1.3, the cohomology group H"(T', Ad) has infinite dimension. On the other hand,
Kapovich’s example [Kap95] of Kleinian group T' < Isom™ (H*) has infinitely
many rank 1 cusps, and the critical exponent satisfies 6(I") € [2,3]. Our results
do not cover this example since the cusp is not full rank, but it would be very
interesting to see a generalization of the results to lower degrees.
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By carefully examining all these examples, we believe that there might be inter-
esting general relations between the value of critical exponent and the number of
cusps for a Kleinian group.

Conjecture 7.1. Given a finitely generated Kleinian group T' < Isom™ (H"*1), if
0(T') < k for a positive integer k < n, then I has only finitely many rank k cusps.

We now proceed to discuss possible extensions of our results.

Other coefficient modules

To possibly extend our main results, one can try to consider other I'-coefficient
modules V. We believe this should be straightforward. First, to construct a coho-
mology classes in H"(T'¢, V), one takes the V_ sections where A denotes the
highest weight of the representation. Second, the absolute convergence of Eisen-
stein series follows a similar argument provided A > 0, which is automatic if V' is
not the trivial representation. Finally, the computation of the intertwining oper-
ators in Section 5 works verbatim, and the argument in Section 6 also works very
similarly. Our Theorem 1.2 is thus expected to hold for any non-trivial coefficient
module. However, one cautionary point is that our Lemma 2.3 may not hold any
more.

Other degrees

One can also consider lower degree Eisenstein cohomology classes in H*(T', V).
But the construction of cohomology classes in H¥(I'¢, V) is more delicate. For
example, the Lie algebra cohomology H¥(u, V) might be zero. When it is non-
zero, then one can construct the Eisenstein series and it is absolutely convergent
if the weights of the constructed cohomology classes are small enough (negative
large) in terms of k and the critical exponent of I'. The rest computation of the
intertwining operators follows similarly. It would be very interesting to see if one
can construct an absolutely convergent Eisenstein cohomology class in H!(T, V).
This would lead to a cusp finiteness theorem since finitely generated groups always
satisfy dim H1(T', V) < oo.

Rank & cusps

When TI'¢ is a rank & parabolic group, there are natural classes in H k(Fg, V).
Under the same construction, the Eisenstein series is comparable to the Poincaré
series if the parabolic fixed point is bounded. Thus, the absolute convergence again
depends on the weights of the class constructed in H*(T'¢, V), the value k, and
the critical exponent of I'. However, the most difficult part is the computation
of the intertwining operators. Our method fails when ¢¢ s is not Ng-invariant.
One needs to further analyze the behavior of the function ¢¢ . in the orthogonal
directions to the subspace where it is invariant.
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