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Abstract
We study the Eisenstein series associated to the full rank cusps in a complete hyperbolic
manifold. We show that given a Kleinian group � < Isom+(Hn+1), each full rank cusp
corresponds to a cohomology class in H

n(�, V ) where V is either the trivial coe�cient
or the adjoint representation. Moreover, by computing the intertwining operator, we
show that di↵erent cusps give rise to linearly independent classes.
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1. Introduction

We say � is a Kleinian group if it is a discrete isometry subgroup of G =
Isom+(Hn), the orientation preserving isometry group of Hn. One of the main
themes in hyperbolic geometry is to study the number of cusps in the associated
quotient manifold �\Hn. When � contains parabolic elements, every cusp corre-
sponds to a �-conjugacy class of maximal parabolic subgroups in �. In dimension
3, the celebrated work of Sullivan [Sul81] shows that finitely generated Kleinian
groups always have finitely many cusps, and the number of cusps is bounded
by 5N � 4 where N denotes the number of generators in �. (See also the work
of Kra [Kra84]). However, starting in dimension 4, cusp finiteness theorem fails.
The first example was due to Kapovich [Kap95], where he constructed a finitely
generated free Kleinian group � < Isom+(H4) that has infinitely many rank one
cusps. In a recent paper [IMM22], Italiano, Martelli and Migliorini constructed a
finitely generated Kleinian group � < Isom+(Hn) which has infinitely many full
rank cusps in dimensions 5  n  8. Moreover, � can be made finitely presented
in dimension 7 and 8. On the other hand, it is proved in [LW20] that the number
of cusps is bounded by the first Betti number provided the critical exponent is
smaller than 1.

One general approach to show a cusp finiteness theorem is to first associate
each maximal parabolic subgroup �i < � with a cohomology class ↵i 2 H⇤(�, V )
after choosing a suitable coe�cient module V , then to show the corresponding
cohomology classes for di↵erent cusps are linearly independent. Finally, if we
know the overall dimension of H⇤(�, V ) is finite, then the number of cusps must
also be finite. For example, in Sullivan’s proof he chose V to be the polynomial
space of degree at most 4, and constructed a cross homomorphism from � to V
(thus representing a class in H1(�, V )) via the Borel series associated to each
cusp. Then he showed these representing classes are linearly independent, hence,
the number of cusps is bounded in terms of the first Betti number (number of
generators of �). In analogous to the Borel series, we can use the Eisenstein series
to associate a cusp with a cohomology class in H⇤(�, V ). Much of work was done
by Harder [Har75, Har87], Schwermer [Sch94, Sch83] and many others when � is
an arithmetic lattice in a semisimple Lie group. Using the Borel-Serre compacti-
fication, the Eisenstein cohomology naturally arises from the cohomology of the
boundary, which has deep relations to the arithmetic aspects of � such as the
special values of L-functions.

The main purpose of this note is to extend the Eisenstein construction to
the context of general Kleinian groups with full rank cusps. We make use of
the Poincaré series to obtain absolute convergence of the Eisenstein series. Thus,
each full rank cusp corresponds to a cohomology class on the quotient manifold.
In order to distinguish these cohomology classes arising from di↵erent cusps, we
compute the intertwining operators and use them to show that these cohomology
classes are indeed linearly independent. The computation of the intertwining
operators is very di�cult in general. We follow the general approach of Harish-
Chandra [HC68] but instead use the Lie group decompositions over the reals
including the Bruhat and Langlands decompositions. In particular, our proof
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does not rely on the finite volume property or arithmeticity of �. In the case of
trivial coe�cient, we prove,

Theorem 1.1. Let � < Isom+(Hn+1) be a torsion free discrete subgroup. If the
critical exponent �(�) < n or � is of convergence type, then for any parabolic sub-
group �i < � of rank n, and any generating cohomology class ↵i 2 Hn(�i,R) ⇠= R,
there is a harmonic form E(↵i) on �\Hn+1 constructed via the Eisenstein series
such that

1. The restriction homomorphism Hn(�,R) ! Hn(�i,R) sends [E(↵i)] to ↵i.
2. If �i,�j are not �-conjugate, then the restriction homomorphism

Hn(�,R) ! Hn(�j ,R) sends [E(↵i)] to 0.

In the above theorem, the critical exponent �(�) of � is defined as

�(�) = inf{s :
X

�2�

e�sd(O,�O) < 1}.

Note that if � ⇢ Isom(Hn+1), then 0  �(�)  n. For simplicity, we sometimes
write � for �(�) if the context is clear. The group � is said to be of convergence
type if the above infimum is achieved. The additional assumption on the critical
exponent or on the convergence type of � is to assure the absolute convergence
of the Eisenstein series. This is necessary for our theorem to hold because in
the case � is a non-uniform lattice (where � = n and � is of divergence type),
the degree n-homology classes coming from the cusps form a linearly dependent
system, thus by Stokes’ theorem, the result in our Theorem 1.1 will never hold. To
our surprise, by examining the entire argument in our proof, the non-convergence
of the Eisenstein series is the only place where it fails. However, if we choose the
coe�cient module to be the Lie algebra g of G, equipped with the natural adjoint
action of � inherited from G, then the absolute convergence issue will be resolved.
This does not contradict to the example of non-uniform lattices since we do not
have Stokes’ theorem for g coe�cient. More precisely we prove,

Theorem 1.2. Let � < Isom+(Hn+1) be a torsion free discrete subgroup. Then
for any parabolic subgroup �i < � of rank n, and any cohomology class ↵i 2

Hn(�i,Ad), there is a closed di↵erential form E(↵i) on �\Hn+1 constructed via
the Eisenstein series such that

1. The restriction homomorphism Hn(�,Ad) ! Hn(�i,Ad) sends [E(↵i)] to
↵i. In particular, there is a surjective homomorphism

Hn(�,Ad) ! Hn(�i,Ad).

2. If �i,�j are not �-conjugate, then the restriction homomorphism
Hn(�,Ad) ! Hn(�j ,Ad) sends [E(↵i)] to 0.

Both Theorem 1.1 and 1.2 give a way to control the number of full rank cusps
N on the quotient manifold. The case of trivial coe�cient implies N  �n(�)
(given that � < n or that � is of convergence type) where �n(�) denotes the n-th
betti number of �, but this is clear since a full rank cusp is always a topological
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end and Hn+1(�,�i,R) = 0 unless � is a cocompact lattice. So the surjectivity of
the restriction homomorphism Hn(�,R) ! Hn(�i,R) follows immediately from
the long exact sequence for the pair (�,�i). In the case of adjoint representation,
we obtain a similar bound.

Corollary 1.3. Let � < Isom+(Hn+1) be a torsion free discrete subgroup. Then
the number of full rank toric cusps of �\Hn+1 is bounded by

N 
1

n
dim(Hn(�,Ad)).

Remark 1.4. The reason why we need to add the toric cusp condition is that
in general Hn(�i,Ad) could be trivial (See Proposition 3.5 and Remark 3.6). If
the group � is LERF, then we can always pass onto a finite cover of �\Hn+1 to
assure a given full rank cusp is toric.

Organization of the paper

In Section 2, we review vector-valued di↵erential forms, their equivalent perspec-
tive as functions on Lie groups, and the Lie algebra cohomology. In Section 3,
we construct a cohomology class for each full rank parabolic fixed point with the
coe�cient either R or the Lie algebra of Isom+(Hn+1) with the adjoint represen-
tation. In Section 4, we construct the Eisenstein series and discuss its closeness
and convergence. In Section 5, we investigate the restriction of the Eisenstein
series to the horosphere corresponding to any given cusp. In Section 6, we prove
Theorem 1.1, 1.2 and Corollary 1.3.

2. Preliminary

2.1. Vector-valued di↵erential forms

Let V be a finite dimensional real vector space and ⇢ : G ! Aut(V ) be any
continuous (and hence smooth) representation. Since ⇢ restricts to any discrete
subgroup �, and � naturally acts from the left on X = G/K where K is the
stabilizer of a point in G, it follows that � also left acts on the trivial bundle
V ⇥X via

� · (v, x) = (⇢(�)(v), �x).

Endowed with the trivial connection on V ⇥X, it induces a flat bundle structure
on the quotient manifold M = �\X, which we denote by V⇢. It is known that
the cohomology with the associated local system H⇤(�, V⇢) can be computed
using the DeRham complex ⌦⇤(X,V )�, where the codi↵erential operator d :
⌦k(X,V ) ! ⌦k+1(X,V ) is defined by

d!(X1, .., Xk+1) :=
X

i

(�1)i+1Xi!(X1, ..., “Xi, ..., Xk+1)

+
X

i<j

(�1)i+j!([Xi, Xj ], X1, ..., “Xi, ..., “Xj , ..., Xk+1).
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To this end, any cohomology class in H⇤(�, V⇢) can be represented by a
�-invariant V -valued closed di↵erential form on X.

2.2. Matsushima-Murakami formalism

For the purpose of computations, it is convenient to view alternatively the above
mentioned vector valued di↵erential forms as a smooth function from G to
Hom(⇤⇤g, V ). We follow the original treatment in [MM63, Section 4].

Given any ⌘ 2 ⌦⇤(X,V )�, we can pull back the di↵erential form to G under
the projection ⇡ : G ! X = G/K, followed by a twist of a G-action. Define a
di↵erential form e⌘ 2 ⌦⇤(G, V ) by

e⌘s := ⇢(s�1)(⌘ � ⇡)s, 8s 2 G.

Then one can check ⌘ 2 ⌦⇤(X,V )� if and only if e⌘ satisfies

1. e⌘ � L� = e⌘ for any � 2 �,
2. e⌘ �Rk = ⇢(k�1)e⌘ for any k 2 K, and
3. i(Y )e⌘ = 0 for any Y 2 k,

where k denotes the Lie algebra of K, and L� , Rk denote the left and right mul-
tiplications. Furthermore, we can view e⌘ as a function on G whose values are in
Hom(⇤⇤g, V ) by identifying TsG with TeG ⇠= g via left translation, and the above
constraints then turn into

1. e⌘(�g) = e⌘(g) for any � 2 � and g 2 G,
2. e⌘(gk) = Ad⇤g(k

�1)⌦ ⇢(k�1)(e⌘(g)) for any k 2 K and g 2 G, and
3. i(Y )e⌘ = 0 for any Y 2 k.

where Ad⇤g is the dual adjoint representation of G on ⇤⇤(g). Fix a basepoint on X,
we write g = k�p the Cartan decomposition. Then there is a natural identification
between ⌦⇤(X,V )� and functions ' 2 C1(G/�,Hom(⇤⇤p, V )) which satisfies

'(gk) = Ad⇤p(k
�1)⌦ ⇢(k�1)('(g)), 8k 2 K, g 2 G.

Under such identification, the coboundary operator d : ⌦k(X,V ) !

⌦k+1(X,V ) as described gives rise to the coboundary operator

d : C1(G,Hom(⇤kg, V )) ! C1(G,Hom(⇤k+1g, V ))

given by ([MM63, Proof of Proposition 4.1])

d'(X1, ..., Xk+1) =
X

i

(�1)i+1(Xi + ⇢(Xi))'(X1, ..., “Xi, ..., Xk+1)

+
X

i<j

(�1)i+j'([Xi, Xj ], X1, ..., “Xi, ..., “Xj , ..., Xk+1),
(1)

Here we abuse notation and still use ⇢ to denote the induced Lie algebra
representation ⇢ : g ! End(V ). Note that in the original statement of [MM63,
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Proposition 4.1], the second term of the above equation (1) vanishes. This is
because their function ' is valued on Hom(⇤⇤p, V ) and that [Xi, Xj ] 2 k for any
pair Xi, Xj 2 p. However, for the purpose of computation, besides the usual coset
model Hn = G/K = SO+(n, 1)/ SO(n), we will also use Hn = P⇠/K⇠, where P⇠ is
a maximal parabolic group for the parabolic fixed point ⇠, and K⇠ = P⇠ \K. Let
us be a little more verbose here as this description is essential to the computations
of �⇠,s in Section 3, 5 and 6.

Under the Langlands decomposition, we have P⇠ = N⇠A⇠K⇠, and accord-
ingly the Lie algebra splits as p⇠ = n⇠ � a⇠ � m⇠. Thus from the above
discussions, any di↵erential form ⌘ 2 ⌦k(X,V ) can be viewed as a function
e⌘ 2 C1(P⇠,Hom(⇤kp⇠, V )) which satisfies

1. e⌘(pm) = Ad⇤p⇠
(m�1)⌦ ⇢(m�1)(e⌘(p)) for any m 2 K⇠ and p 2 P⇠, and

2. i(Y )e⌘ = 0 for any Y 2 m⇠,

where the second property shows that we can further view e⌘ as in
C1(P⇠,Hom(⇤k(a⇠ � n⇠), V )). If H < P⇠, then ⌘ is H-invariant if and only if e⌘
is H-left invariant as a function. Note that the Lie bracket [a⇠, n⇠] stays in n⇠,
so in particular the second term in (1) will possibly be nonzero. (See Proposition
3.3 and compare the proof of [Har75, Lemma 3.1].)

Remark 2.1. Our convention uses left action of G on X = G/K, which is
di↵erent from that in [Har75]. So there are sign di↵erences in the expression of
the coboundary operators.

Lemma 2.2. For any g 2 G, if Lg denotes the left action on
C1(G,Hom(⇤⇤g, V )), i.e. (Lg')|a = '|ga for any ' 2 C1(G,Hom(⇤kg, V ))
and any a 2 G, then

Lg � d = d � Lg.

In particular, ' is closed if and only if Lg' is closed, and ' is a coboundary if
and only if Lg' is a coboundary.

Proof. For any a 2 G, ' 2 C1(G,Hom(⇤kg, V )), and any X1, ..., Xk+1 2 g. We
do the following direct computations:

d(Lg')|a(X1, ..., Xk+1) =
X

i

(�1)i+1(Xi + ⇢(Xi))(Lg')|a(X1, ..., “Xi, ..., Xk+1)

+
X

i<j

(�1)i+j(Lg')|a([Xi, Xj ], X1, ..., “Xi, ..., “Xj , ..., Xk+1)

=
X

i

(�1)i+1(Xi + ⇢(Xi))'|ga(X1, ...,cXi, ..., Xk+1)

+
X

i<j

(�1)i+j'|ga([Xi, Xj ], X1, ...,cXi, ...,”Xj , ..., Xk+1)

= d'|ga(X1, ..., Xk+1)

= Lg(d')|a(X1, ..., Xk+1).
6



Thus Lg � d = d � Lg.

2.3. Lie algebra cohomology

Let g be a Lie algebra and ⇢ : g ! End(V ) be a Lie algebra representation. We
define the Chevalley–Eilenberg complex by

· · · ! Hom(⇤kg, V )
d
�! Hom(⇤k+1g, V ) ! . . .

and the coboundary operator is given by

d'(X1, ..., Xk+1) =
X

i

(�1)i+1⇢(Xi)'(X1, ..., “Xi, ..., Xk+1)

+
X

i<j

(�1)i+j'([Xi, Xj ], X1, ..., “Xi, ..., “Xj , ..., Xk+1).

The cohomology induced by the above cochain complex is called the Lie algebra
cohomology with V -coe�cient, denoted by H⇤(g, V⇢).

Since we only work with specific Lie algebras and representations, we will make
simplifications by setting G = Isom+(Hn+1) ⇠= SO+(n+ 1, 1), and setting either
V = g and ⇢ : G ! End(g) the adjoint representation, or V = R and ⇢ the
trivial representation. Let U < G be a maximal unipotent subgroup associated
to some chosen maximal abelian subgroup A < G such that U is expanding. In
the case of adjoint representation, we denote u, g the Lie algebra of U,G, and
⇢ : u ! End(g) the restriction of the adjoint representation ⇢. Diagonalized
by the adjoint action of A, the vector space V (under the restricted root space
decomposition) decomposes as V = V�2�V0�V2 and that the Lie algebra u = V2.

Lemma 2.3. Following the same notations above, if {u1, ..., un} is a basis of u,
and v 2 V�2, then there is a natural isomorphism

J : V�2
⇠= Hn(u, V⇢),

given by

v 7! (u⇤

1
^ ... ^ u⇤

n
)⌦ v,

where {u⇤

1
, ..., u⇤

n
} represents the dual basis on u⇤.

Proof. Since n = dim u, the cochain complex stops in dimension n, so (u⇤

1
^ ... ^

u⇤

n
)⌦v is automatically closed. For the injectivity of J , it su�ces to show that for

any nonzero v 2 V�2, the closed form (u⇤

1
^ ...^u⇤

n
)⌦v does not lie in the image of

d : Hom(⇤n�1u, V ) ! Hom(⇤nu, V ).

We write an arbitrary element in Hom(⇤n�1u, V ) as

' =
nX

i=1

Ä
u⇤

1
^ ... ^cu⇤

i
^ ... ^ u⇤

n

ä
⌦Ai,
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for some Ai 2 V . Then we compute

d' = (u⇤

1
^ ... ^ u⇤

n
)⌦

 
nX

i=1

(�1)i+1⇢(ui)Ai

!
.

Since [V, V2] = V0 � V2, we see that
ÄP

k

i=1
(�1)i+1⇢(ui)Ai

ä
2 V0 � V2, and in

particular it does not lie in V�2. Thus (u⇤

1
^ ...^u⇤

n
)⌦ v is not a coboundary, and

it represents a nontrivial cohomology class. This shows the map J is injective.
To show J is surjective, we need to show any element (u⇤

1
^ ...^ u⇤

n
)⌦ v where

v 2 V0�V2 is a coboundary. Since [V, V2] = V0�V2, we can write v =
P

n

i=1
[ui, vi]

for some vi 2 V . Now if we set

' =
nX

i=1

Ä
u⇤

1
^ ... ^cu⇤

i
^ ... ^ u⇤

n

ä
⌦ (�1)i+1vi 2 Hom(⇤n�1u, V ),

then d' = (u⇤

1
^ ...^ u⇤

n
)⌦ v. This proves that (u⇤

1
^ ...^ u⇤

n
)⌦ v is a coboundary.

Thus J is surjective.

One important aspect of the Lie algebra cohomology is that it sometimes
relates to the group cohomology of a Lie group G, and those classes can be
identified with certain G-invariant di↵erential forms which are harmonic. We will
use the following Van-Est isomorphism theorem in the context of abelian Lie
groups.

Theorem 2.4. [VE58] Let U be an n-dimensional Lie group isomorphic to R
n,

and Z < U be a torsion-free cocompact lattice. Let ⇢ : U ! Aut(V ) be a repre-
sentation which induces the Lie algebra representation ⇢0 : u ! End(V ). Then
there is an natural isomorphism

� : H⇤(Z, V⇢) ⇠= H⇤(u, V⇢0),

explicitly given by the following, for any Z-invariant closed di↵erential form ! 2

⌦⇤(U, V⇢), set

�(!) =

Z

U/Z

!(x)dµ(x),

where dµ is the Haar measure on U/Z. Thus, �(!) is an U -invariant di↵erential
form that can be identified with an element in Hom(⇤⇤(u), V⇢0).

3. Construction of cohomology classes from a cusp

Suppose that G = Isom+(Hn+1) ⇠= SO+(n + 1, 1), and � < G is a torsion-
free discrete subgroup. For each cusp on the quotient manifold �\Hn+1, when
lifted to the universal cover, it associates to a �-orbit �⇠ on @1H

n+1, for some
⇠ 2 @1H

n+1. The fundamental group of the cusp is isomorphic to �⇠ = � \ P⇠

where P⇠ = stabG(⇠) < G is the real parabolic subgroup at ⇠.
8



Fix a base point O 2 H
n+1, and let H⇠(1) be the horosphere of the parabolic

fixed point ⇠ through O. Under the induced Riemannian metric, it is isometric
to the standard Euclidean space R

n. It is known that �⇠ preserves and acts
isometrically on H⇠(1) and in fact by Bieberbach’s theorem it acts cocompactly
on a k-dimensional Euclidean subspace Ek

⇠
of Rn ⇠= H⇠(1). It follows that �⇠ has a

finite index abelian normal subgroup Z⇠ which acts on E
k

⇠
by translations. We call

k the rank of the cusp at ⇠. For the purpose of this paper, we will only consider
the full rank case k = n, and from now on all cusps are assumed to be full rank.

Under the Langlands decomposition, the real parabolic subgroup decomposes
as P⇠ = N⇠A⇠K⇠, where A⇠ is the maximal abelian subgroup which acts by
translation on the geodesic connecting O and ⇠. Geometrically, K⇠

⇠= SO(n)
and N⇠

⇠= R
n are the rotations and translations on H⇠(1) respectively. Denote

K⇠N⇠ = N⇠K⇠ by P⇠(1). Then it is indeed the orientation preserving isometry
group of H⇠(1), so �⇠ is a discrete subgroup in P⇠(1). We say the cusp is toric
if �⇠ is isomorphic to Z

n since under the quotient the cusp is homeomorphic to
T
n
⇥ [0,1).
For each cusp, we lift to the universal cover and choose an arbitrary parabolic

fixed point ⇠ 2 @1H
n+1 representing the cusp. For the convenience, we will

describe the following construction under the upper-half plane model Hn+1 =
{(y, x1, ..., xn) 2 R

+
⇥ R

n
}. We assume O = (1, 0, ..., 0) and ⇠ is in the positive

infinity of the y-axis, thus H⇠(1) = {(y, x1, ..., xn) : y = 1}. For a di↵erent
⇠0 2 @1H

n+1, the construction di↵ers by a k(⇠, ⇠0)-conjugate where k(⇠, ⇠0) 2 K
is any element which sends ⇠ to ⇠0.

3.1. Trivial coe�cients

In the case of trivial representation V = R, we define �⇠ to be the canonical
volume form on H⇠(1), that is,

(�⇠)x = dx1 ^ ... ^ dxn

for any x 2 H⇠(1). It is convenient (for the purpose of computation) to view �⇠
also as a function in C1

Ä
P⇠(1),⇤nn⇤

⇠

ä
according to the discussion in Section 2.1.

We choose the orthonormal frame {u1, ..., un} on n⇠ normalized so that each ui

exponentiates to the unit translation on H⇠(1) ⇠= R
n along the xi-axis. Thus �⇠

satisfies,

1. �⇠(n) = �⇠(1) = (u⇤

1
^ ... ^ u⇤

n
), for all n 2 N⇠,

2. �⇠(pm) = Ad⇤n⇠
(m�1)(�⇠(p)) for all m 2 K⇠ and p 2 P⇠(1),

where u⇤

i
2 n⇠ is the dual vector of ui. We wish to extend the di↵erential form

to the entire H
n+1, or equivalently, extend �⇠ 2 C1

Ä
P⇠(1),⇤nn⇤

⇠

ä
to a function

in C1

Ä
P⇠,⇤n(a⇤

⇠
� n⇤

⇠
)
ä
. Following [Har75], we introduce the following degree s

extension �⇠,s of �⇠. Let t⇠ : A⇠ ! R be the character that corresponds to the
9



positive root on a⇠, that is, for any a 2 A⇠ and v 2 g, we have

Ad(a)v =

8
><

>:

t2
⇠
(a)v if v 2 g2

0 if v 2 g0
t�2

⇠
(a)v if v 2 g�2

, (2)

where g = g2 � g0 � g�2 is the root space decomposition corresponding to A⇠

(take ⇠ to be the positive direction). Therefore, if T 2 a⇠ is the vector such that
[T, u] = 2u for all u 2 n⇠, then we have (dt⇠)a(T ) = t⇠(a), or that dt⇠/t⇠ is dual
to T . We also write t⇠,a for t⇠(a) when convenient, and omit the subscript ⇠ when
there is no confusion in the context. Now we define the degree s extension �⇠,s
of �⇠ by

1. �⇠,s(n) = �⇠(1) = (u⇤

1
^ ... ^ u⇤

n
), for all n 2 N⇠,

2. �⇠,s(p) = Ad⇤n⇠
(m�1)(�⇠(1))ts⇠,a, for all p = nam 2 N⇠A⇠K⇠ under the unique

Langlands decomposition.

Thus in view of Section 2.1, �⇠,s 2 C1

Ä
P⇠,⇤n(a⇤

⇠
� n⇤

⇠
)
ä

represents an N⇠-

invariant di↵erential form on H
n+1.

Proposition 3.1. In case of trivial representation, �⇠,s is closed when s = 2n.

The proof is deferred in Proposition 3.3.

Remark 3.2. It is much easier to find this unique closed N⇠-invariant di↵erential
form �⇠,s when it is viewed as in ⌦n(Hn+1,R)N⇠ , which is simply the pull back
form of �⇠ under the natural projection H

n+1
! H⇠(1). In other words, it is the

harmonic form

(�⇠,s)x = dx1 ^ ... ^ dxn

for any x 2 H
n+1. However, when it comes to the computation of intertwining

operators, Treating �⇠,s as a function will be more convenient for us.

3.2. Adjoint representation

Now we assume V = g and ⇢ is the adjoint representation. We first define a har-
monic form on H⇠(1). By Lemma 2.3, in order to obtain non-trivial cohomology
classes, we need to take V�2 sections. Let v⇠ 2 V�2 be an arbitrary non-zero vec-
tor. We construct the unique (left) N⇠-invariant n-form �⇠ on H⇠(1) by setting
the initial value

(�⇠)O := (dx1 ^ ... ^ dxn)⌦ v⇠.

Since v⇠ does not commute with n⇠, the N⇠-action will twist the fibre as we vary
the point on the horosphere. More precisely, the di↵erential n-form �⇠ can be
globally defined as

(�⇠)uO := (dx1 ^ ... ^ dxn)⌦ ⇢(u)(v⇠), 8u 2 N⇠.
10



Alternatively, we can view �⇠ as a function in C1 (P⇠(1),Hom(⇤nn⇠, V )) which
satisfies,

1. �⇠(n) = �⇠(1) = (u⇤

1
^ ... ^ u⇤

n
)⌦ v⇠, for all n 2 N⇠,

2. �⇠(pm) = Ad⇤n⇠
(m�1)⌦ ⇢(m�1)(�⇠(p)) for all m 2 K⇠ and p 2 P⇠(1),

where again ui 2 u⇠ is the unique vector that exponentiates the unit translation
in xi, and u⇤

i
is its dual vector. Now we define the degree s extension �⇠,s of �⇠ by

1. �⇠,s(n) = �⇠(1) = (u⇤

1
^ ... ^ u⇤

n
)⌦ v⇠, for all n 2 N⇠,

2. �⇠,s(p) = �⇠,s(nam) = Ad⇤n⇠
(m�1)⌦ ⇢(m�1)(�⇠(1))ts⇠,a, for all p 2 P⇠.

Thus �⇠,s 2 C1 (P⇠,Hom(⇤np⇠, V )) represents an N⇠-invariant V -valued di↵er-
ential form on H

n+1, where p⇠ is the Lie algebra of P⇠. The following proposition
computes the di↵erential of �⇠,s in the most generality (for later use in Section
6), and in particular it characterizes when �⇠,s is closed. This is essentially proved
in [Har75, Lemma 3.1], but for completeness we add it here.

Proposition 3.3. Let �⇠,s be the degree s extension of �⇠ where �⇠ is defined
as above except now we allow v⇠ 2 V` for ` 2 {�2, 0, 2}, and V is either with the
trivial representation or with the adjoint representation. Then

d�⇠,s =

8
>><

>>:

(s� 2n+ `) ·
dt⇠
t⇠

^ �⇠,s if ⇢ is adjoint representation

(s� 2n) ·
dt⇠
t⇠

^ �⇠,s if ⇢ is trivial representation
.

where t⇠ : A⇠ ! R is the character corresponds to the positive root on a⇠ defined
as in (2).

Proof. Let X1, · · · , Xn+1 2 p⇠ = k⇠ � a⇠ � n⇠, we need to compute
d�⇠,s(X1, · · · , Xn+1). Recall that

d�⇠,s(X1, · · · , Xn+1) =
X

i

(�1)i+1(Xi + ⇢(Xi))�⇠,s(X1, · · · , “Xi, · · · , Xn+1)

+
X

i<j

(�1)i+j�⇠,s([Xi, Xj ], X1, · · · , “Xi, · · · , “Xj , · · · , Xn+1).

The form �⇠ is a closed n-form on the horosphereH⇠(1). It su�ces to only consider
the term d�⇠,s(T,X1, · · · , Xn) where T 2 a⇠ and Xi 2 n⇠ since all the other terms
vanish. (See [MM63, (4.10)].) We choose Xi = ui 2 n⇠ and normalize T such that
[T,Xi] = 2Xi, i.e. T is dual to dt⇠/t⇠. Then at any point p = na 2 N⇠A⇠, we have

d�⇠,s(T,X1, · · · , Xn) = (T + ⇢(T ))�⇠,s(X1, · · · , Xn)

+
X

i

(�1)i�⇠,s([T,Xi], X1, · · · , “Xi, · · · , Xn).

11



The second term can be simplified as

X

i

(�1)i�⇠,s([T,Xi], X1, · · · , “Xi, · · · , Xn) = �2
nX

i=1

�⇠,s(X1, · · · , Xi, · · · , Xn)

= �2n · �⇠,s(X1, · · · , Xn).

Furthermore, we compute

⇢(T )�⇠,s(X1, · · · , Xn) =

®
` · �⇠,s(X1, · · · , Xn) if ⇢ is adjoint representation

0 if ⇢ is trivial representation

and

T�⇠,s(X1, · · · , Xn) = s · �⇠,s(X1, · · · , Xn).

Therefore,

d�⇠,s =

8
>><

>>:

(s� 2n+ `) ·
dt⇠
t⇠

^ �⇠,s if ⇢ is adjoint representation

(s� 2n) ·
dt⇠
t⇠

^ �⇠,s if ⇢ is trivial representation
.

Corollary 3.4. In case of adjoint representation and v⇠ 2 V�2, �⇠,s is closed
when s = 2n+ 2.

3.3. Non-toric cusps

In the case of toric cusps, we know �⇠ < N⇠, hence the above constructed di↵er-
ential form �⇠ (hence also its extension �⇠,s) is automatically �⇠-invariant, and by
the Van-Est isomorphism (Theorem 2.4) every cohomology class in Hn(�⇠,Ad)
can be represented this way. For a general non-toric cusp, �⇠ is a Bieber-
bach group. With trivial coe�cient, we still have Hn(�⇠,R) ⇠= Hn(Z⇠,R) ⇠=
Hn(u,R) ⇠= R, and the canonical volume form is �⇠-invariant.

However, with adjoint representation it is less clear. Since Z⇠ is a finite index
normal subgroup of �⇠, the transfer map ◆ : Hk(Z⇠,Ad) ! Hk(�⇠,Ad), given by
taking the average over the finite group action of Z⇠\�⇠, is a left inverse of the
restriction map i⇤. That is, the following composition

Hk(�⇠,Ad)
i
⇤

�! Hk(Z⇠,Ad)
◆
�! Hk(�⇠,Ad)

is the identity map. In particular, i⇤ is injective and ◆ is surjective. Therefore, we
can identify cohomology classes of Hk(�⇠,Ad) with their images in Hk(Z⇠,Ad).

Proposition 3.5. For any cohomology class ↵ 2 Hn(�⇠,Ad), there
is a unique N⇠-invariant, �⇠-invariant closed di↵erential form  ↵ 2
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C1 (P⇠(1),Hom(⇤nn⇠, V )) representing ↵ whose initial value satisfies,

 ↵(1) = (u⇤

1
^ · · · ^ u⇤

n
)⌦ v

for some v 2 V�2. Moreover, ⇥v must be fixed by �⇠ under the adjoint action
where ⇥ : g ! g is the Cartan involution associated with the base point O. Thus,
Hn(�⇠,Ad) 6= 0 if and only if �⇠ fixes a nontrivial vector in n⇠.

Proof. We first choose the harmonic representative of i⇤(↵) in Hn(Z⇠,Ad) ⇠=
Hn(n⇠, ad) under the Van-Est isomorphism, and we denote it by  ↵. Then by
Lemma 2.3, we can choose an N⇠-invariant form  ↵ 2 C1 (P⇠(1),Hom(⇤nn⇠, V ))
such that  ↵(1) = (u⇤

1
^ · · ·^u⇤

n
)⌦ v↵ for some v↵ 2 V�2. Since  ↵ is a top form,

it is closed. We denote  ↵ the image of  ↵ under the transfer map, hence by
definition we have

 ↵(p) =
1

D

X

[�i]2Z⇠\�⇠

 ↵(�i · p),

where D = [�⇠ : Z⇠]. By Lemma 2.2,  ↵ is closed. Clearly it is �⇠-invariant, and
since ◆ � i⇤ = Id,  ↵ represents ↵. To see it is also N⇠-invariant we compute for
any u 2 N⇠ and p 2 P⇠(1)

 ↵(up) =
1

D

X

[�i]2Z⇠\�⇠

 ↵(�i · up)

=
1

D

X

[�i]2Z⇠\�⇠

 ↵(�iu�
�1

i
· �ip)

=
1

D

X

[�i]2Z⇠\�⇠

 ↵(�ip)

=  ↵(p),

where the third equality uses the N⇠-invariance of  ↵ together with the fact that
P⇠(1) normalizes N⇠.

To compute  ↵(1) we can write �i uniquely as nimi 2 P⇠(1), then by the
N⇠-invariance of  ↵, we obtain

 ↵(1) =
1

N

X

[�i]2Z⇠\�⇠

 ↵(mi)

=
1

N

X

i

Ad(m�1

i
)⌦ ⇢(m�1

i
) ((u⇤

1
^ · · · ^ u⇤

n
)⌦ v↵)

= (u⇤

1
^ · · · ^ u⇤

n
)⌦

 
1

N

X

i

⇢(m�1

i
)(v↵)

!
,

where the last equality uses the fact that K⇠ acts isometrically on H⇠(1) so in
particular it preserves its volume form. Since A⇠ commutes with K⇠, it is clear
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that

v :=

 
1

N

X

i

⇢(m�1

i
)(v↵)

!
2 V�2.

The uniqueness of v follows from the injectivity of i⇤. Finally, to see why ⇥v
is fixed by �⇠, we first note that the collection of {mi} form a group. Thus
⇢(mi)v = v for every mi. Since ⇥ fixes the Lie algebra of K⇠, it commutes with
⇢(mi) for all mi. It follows that ⇢(mi)(⇥v) = ⇥v for all mi. Since ⇥v 2 n⇠, �⇠

fixes ⇥v.

Remark 3.6. The proposition is an explicit realization of the isomorphism
Hn(�⇠,Ad) ⇠= (Hn(Z⇠,Ad))�⇠ obtained for example via the spectral sequence. In
the example of Kleinian group with infinitely many cusps constructed by Italiano,
Martelli and Migliorini [IMM22], they are toric. However, there are in general
non-toric examples (See [FKS21]) where �⇠ does not fix any nontrivial vector in
n⇠, hence Hn(�⇠,Ad) = 0.

4. construction of Eisenstein series

In Section 3, we constructed �⇠-invariant V-valued (V = R or g) n-forms �⇠,s on
H

n+1 out from any full rank parabolic fixed point ⇠ 2 @1H
n+1. In this section,

we will further construct from each �⇠,s a �-invariant n-form on H
n+1, i.e. an

element in ⌦n(Hn+1, V )�, by the process of Eisenstein series. Since we will need
�-actions on the di↵erential forms, we want to first extend our definition of �⇠,s to
a function that supports on the entire G, but of course this is uniquely determined
because �⇠,s is already a form on H

n+1. By the discussion in Section 2.1 and in
view of its value on P⇠, the unique extension �⇠,s 2 C1 (G,Hom(⇤n(a⇠ � n⇠), V ))
satisfies for any g 2 G,

1. �⇠,s(g) = �⇠,s(n · a · k) = Ad⇤g(k
�1)⌦ ⇢(k�1)(�⇠,s(n)) · tsa,

2. �⇠,s(n) = �⇠,s(1) = (u⇤

1
^ · · · ^ u⇤

n
)⌦ v⇠,

where g = nak 2 N⇠A⇠K is the unique Iwasawa decomposition, and v⇠ is any
vector in V�2 if V = g. From Proposition 3.5, we know that any cohomology class
in Hn(�⇠,Ad) can be represented by the above �⇠,s which is (left) N⇠-invariant
and �⇠-invariant. We now define

E(�⇠, g, s) =
X

�2�⇠\�

�⇠,s(�g)

to be the Eisenstein series associated with �⇠ (with degree s). We will see later
there is a unique s such that E(�⇠, g, s) is closed so we will not emphasize on the
dependence of s. By the construction, it is �-invariant. But it is unclear whether
it converges or not.

Proposition 4.1. Let ⇠ be a full rank parabolic fixed point. The Eisen-
stein series E(�⇠, g, s) absolutely converges if the Poincaré series Ps/2(O) :=P

�2�
e�(s/2)d(O,�O) converges for some O 2 H

n+1.
14



Proof. Fix any g 2 G, by the Iwasawa decomposition, we have �g = n�a�k� 2

N⇠A⇠K where K is the stabilizer of O. We can write each term

�⇠,s(�g) = �⇠,s(n�a�k�) = Ad⇤g(k
�1

�
)⌦ ⇢(k�1

�
)�⇠(1) · t

s

�
,

where we set t� = t(a�). If we fix any norm on Hom(⇤n(a⇠ � n⇠), V ) then we can
estimate

||E(�⇠, g, s)|| 
X

�2�⇠\�

||�⇠,s(�g)|| =
X

�2�⇠\�

||Ad⇤g(k
�1

�
)⌦ ⇢(k�1

�
)�⇠(1)|| · t

s

�
.

Since K is compact, Ad⇤g(k
�1
�

)⌦ ⇢(k�1
�

)�⇠(1) is uniformly bounded in ⇤ng⇤ ⌦ V
hence also uniformly bounded when projected onto ⇤n(a⇤

⇠
� n⇤

⇠
) ⌦ V . So for the

absolute convergence of the Eisenstein series, it su�ces to consider the series

X

�2�⇠\�

ts
�

and show its convergence. Note that the above series is well-defined since t� does
not depend on the choice of � in the coset �⇠\�. Indeed, if �0 2 �⇠ = � \ P⇠

is any element, then �0 2 N⇠K⇠ so that we can write �0 = n0m0. Since
m0 commutes with a� and normalizes N⇠, we have �0�g = n0m0n�a�k� =
n0(m0n�m

�1

0
)a�m0k� , which gives rises to the N⇠A⇠K–Iwasawa decomposition.

This shows that the A⇠ component does not change when replacing � by �0�,
thus t� is independent on the choice of � in the coset.

Next, we want to relate the series to the Poincaré series. Note that since
⇠ is a full rank parabolic fixed point, �⇠ acts cocompactly on H⇠(1), so there
exists a constant C such that a fundamental domain of �⇠\H⇠(1) is contained in
the metric ball B(O,C/2). Thus for any coset �⇠�, there exists a representative
�̄ 2 �⇠� such that under the Iwasawa decomposition �̄g = n�a�k� , the unipotent
component n� translates O at most C, i.e. d(n�O,O)  C. Now we can estimate
the Poincaré series

Ps(gO) =
X

�2�

e�sd(O,�gO)
�

X

[�̄]2�⇠\�

e�sd(O,n�a�O)

�

X

[�̄]2�⇠\�

e�s(d(O,n�O)+d(n�O,n�a�O))

� e�sC
X

[�̄]2�⇠\�

e�sd(O,a�O),

where the first inequality makes the particular choice of �̄ described above, the
second inequality uses the triangle inequality, and the last inequality uses the left
invariance of the metric.

Observe that a�O is on the geodesic connecting O and ⇠. By hyperbolic geo-
metric computation, d(O, a�O) = | ln t2

�
|, and t� > 1 if and only if a�O lies inside

the horoball of H⇠(1). In fact, the computation can be carried out within a totally
geodesic copy H

2
⇢ H

n+1 which contains ⇠, O where a� acts by isometry. Then
15



without loss of generality, we can use the upper half plane model and assume
O = i, ⇠ = i1, and a� = diag(a, a�1) 2 SL2(R). The mobius transformation
gives a�i = a2i, hence d(O, a�O) = d(i, a2i) = ln |a2|. On the other hand, from
the definition of the character (2), we know that t� = t(a�) = a by the following
matrix computation

Å
a
a�1

ãÅ
0 1
0 0

ãÅ
a
a�1

ã�1

= a2
Å
0 1
0 0

ã
.

By the geometry of cusps (essentially the Margulis lemma), we know that there
are only finitely many �⇠\�-orbits that lie inside any horoball B(⇠) at ⇠, that is,
the cardinality of �⇠\�O \ B(⇠) (which makes sense since B(⇠) is �⇠-invariant)
is always finite. So are finitely many �⇠\�g-orbits (�⇠\�gO \B(⇠)) according to
triangle inequality. Hence, up to a finite error, we have

Ps(gO) � e�sC
X

[�]2�⇠\�

e2s ln t� = e�sC
X

[�]2�⇠\�

t2s
�
.

Note that d(O, a�O) = �2 ln(t�) if and only if t�  1, which holds for all but
finitely many [�] 2 �⇠\�, since all but finitely many [�]gO lie outside the horoball
of H⇠(1). Hence up to passing finite many terms, the above inequality holds.

Note that the convergence of the Poincaré series doesn’t depend on the
basepoint. Thus, if Ps/2(O) converges, then the Eisenstein series E(�⇠, g, s)
converges.

In view of Proposition 3.3 and Corollary 3.4 we obtain

Corollary 4.2. Let ⇠ 2 H
n+1 be any full rank parabolic fixed point.

1. If V = g is the adjoint representation, then the Eisenstein series
E(�⇠, g, 2n+ 2) is always an absolutely convergent closed form.

2. If V = R is the trivial representation, and in addition if either � is of
convergence type or �(�) < n, then the Eisenstein series E(�⇠, g, 2n) is an
absolutely convergent closed form.

Proof. The absolute convergence follows from Proposition 4.1. To see it is closed,
we have

dE(�⇠, g, s) = d

Ñ
X

[�]2�⇠\�

�⇠,s(�g)

é
=

X

[�]2�⇠\�

d�⇠,s(�g) = 0.

Here �⇠,s is closed by Corollary 3.4 if V = g. If V = R, �⇠,s is automatically
closed since it is a top form. The absolute convergence of both series ensures the
interchanging of the di↵erential operator d with the infinite sum in the second
equality. The last equality follows from Lemma 2.2.
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5. Intertwining operators

In this section, we assume that all the cusps are full rank, and V = R or g. Let
E(�⇠0 , g, s) be the Eisenstein series corresponding to the parabolic fixed point ⇠0.
In order to see which cohomology class the Eisenstein series E(�⇠0 , g, s) restricts
to in Hn(�⇠, V ) ⇠= Hn(u⇠, V ), we need to look at the image of E(�⇠0 , g, s) under
the map I2 � r1 (See the following commutative diagram), which is equivalent to
trace along r2 � I1.

⌦⇤(Hn+1, V )� ⌦⇤(Hn+1, V )N⇠

⌦⇤(H⇠(1), V )�⇠ ⌦⇤(H⇠(1), V )N⇠

I1

r1 r2

I2

To obtain the image under I1, we define the intertwining operator from ⇠0 to
⇠ as

E⇠(�⇠0 , g, s) =

Z

u2�⇠\N⇠

E(�⇠0 , ug, s)du,

where du is the Haar measure normalized such that vol(�⇠\N⇠) = 1. Then
by restricting the integral to the horosphere H⇠(1), we obtain an element in
⌦⇤(H⇠(1), V )N⇠ which is exactly the image of E(�⇠0 , g, s) under r2 � I1. The main
goal of this section is to compute explicitly E⇠(�⇠0 , g, s). We will follow the general
approach in [HC68, Chapter II]. For the convenience, we introduce the following
notation: for any g, h 2 G, we write gh to denote the conjugate of h by g, that
is, hg = ghg�1. We will need the following two lemmas.

Lemma 5.1. For any g 2 G and a 2 A⇠, one has

�⇠,s(ag) = ts
a
· �⇠,s(g).

Proof. Let g = ngagkg. By definition,

�⇠,s(ag) = �⇠,s(angagkg) = �⇠,s(
angaagkg) = ts

a
ts
g
�⇠(

angkg) = ts
a
ts
g
�⇠(kg).

where the last equality follows from the N⇠-invariance of �⇠. We also have

�⇠,s(g) = �⇠,s(ngagkg) = ts
g
�⇠(ngkg) = ts

g
�⇠(kg).

Therefore, �⇠,s(ag) = ts
a
�⇠,s(g).

Lemma 5.2. (Geometric Bruhat decomposition) Let G = SO+(n+1, 1) and fix a
basepoint O 2 H

n+1. For any ⇠, ⇠0 2 @1H
n+1, G decomposes as a disjoint union

G =

®
P⇠ [N⇠wP⇠ if ⇠ = ⇠0

kP⇠ [N⇠0kwP⇠ if ⇠ 6= ⇠0
,

where w 2 K is any isometry that reflects the geodesic O⇠, and k 2 K is any
isometry that sends ⇠ to ⇠0.
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Proof. The case ⇠ = ⇠0 is just the classical Bruhat decomposition. For ⇠ 6= ⇠0,
and for any k 2 K that sends ⇠ to ⇠0, using the classical Bruhat decomposition
we have,

G = kG = kP⇠ [ kN⇠wP⇠ = kP⇠ [N⇠0kwP⇠,

where the last equality uses kN⇠k�1 = N⇠0 .

Although we started with �⇠,s whose value is in C1(P⇠,Hom(⇤nn⇠, V )), after
taking the Eisenstein series and intertwining operator, even though it is still N⇠-
invariant, the value could lie in a bigger space C1(P⇠,Hom(⇤n(n⇠�a⇠), V )). For
this reason, we introduce the extended space ⌦

n

(H⇠(1), V ) � ⌦n(H⇠(1), V ) to
be the restriction of V -valued forms on H

n+1 to the horosphere H⇠(1), without
projecting to its (co)tangent space. In other words, forms in ⌦

n

(H⇠(1), V ) may
look like (dy ^ dx1 ^ · · · ^ dxn�1)⌦ v. Now we can state our theorem.

Theorem 5.3. Let E(�⇠, g, s), E(�⇠0 , g, s) denote the Eisenstein series corre-
sponding to the rank n parabolic fixed points ⇠, ⇠0 respectively. Then for any
g 2 P⇠, we have

E⇠(�⇠0 , g, s) = ✏�⇠0,s(g) + cs(�⇠0)�s+2n(g)

where

✏ =

®
0 if �⇠ and �⇠0 are not �-conjugate

1 if ⇠ = ⇠0
,

and cs : ⌦n(H⇠0(1), V )N⇠0 ! ⌦
n

(H⇠(1), V )N⇠ is a linear operator.

Proof. By the definition,

E⇠(�⇠0 , g, s) =

Z

u2�⇠\N⇠

E(�⇠0 , ug, s)du =
X

�2�⇠0\�

Z

u2�⇠\N⇠

�⇠0,s(�ug)du.

By assumptions, the Eisenstein series is absolutely convergent and this ensures
the interchanging between the integral and the infinite summation. This shows up
several times in the rest computations, but we emphasize that all the summations
appear are absolutely dominated by the Eisenstein series (which is absolutely
convergent), thus interchanging the summation with the integral simply causes
no problem by Fubini’s theorem.

We first prove the case when ⇠ = ⇠0. By the Bruhat decomposition, we have

G = SO+(n+ 1, 1) = P⇠ [N⇠wP⇠.

Hence, elements in � is either represented by elements in P⇠ or by the ones in
N⇠wP⇠. We denote the set of former elements by �1 which is exactly �⇠ and the
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set of latter one by �w. Now we split the summation of E⇠(�⇠, g, s) into two kinds,

E⇠(�⇠, g, s) =
X

�2�⇠\�1

Z

u2�⇠\N⇠

�⇠,s(�ug)du+
X

�2�⇠\�w

Z

u2�⇠\N⇠

�⇠,s(�ug)du

= E1 + E2,

where �⇠\�w makes sense since � = �⇠[�w and it denotes the set of all non-trivial
right cosets of �⇠ in �. It is clear that

E1 =

Z

u2�⇠\N⇠

�⇠,s(ug)du = �⇠,s(g),

where the last equality follows from the N⇠-invariance of �⇠,s. To simplify E2, we
will need the following lemma.

Lemma 5.4. �⇠ acts on �⇠\�w from the right with trivial stabilizer, hence the
quotient is the double coset �⇠\�w/�⇠.

Proof. Given any �w 2 �w and a 2 �⇠ such that �⇠�w · a = �⇠�w, it su�ces to
show a = 1. From the identity, we obtain �wa��1

w
2 �⇠, or that a 2 ��w⇠. Hence,

a 2 �⇠ \ ��w⇠.

Since �w /2 �⇠, we know �w⇠ 6= ⇠ hence �⇠ \ ��w⇠ = 1. Therefore a = 1 and the
action has trivial stabilizer.

Now we can simplify E2 as

X

�2�⇠\�w

Z

u2�⇠\N⇠

�⇠,s(�ug)du =
X

�2�⇠\�w/�⇠

X

�⇠2�⇠

Z

u2�⇠\N⇠

�⇠,s(��⇠ug)du

=
X

�2�⇠\�w/�⇠

Z

u2N⇠

�⇠,s(�ug)du,

where the last equality uses the fact that N⇠ is abelian and du is the bi-invariant
Haar measure. We compute further E2.
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E2 =
X

�2�⇠\�w/�⇠

Z

u2N⇠

�⇠,s(�ug)du

=
X

�2�⇠\�w/�⇠

Z

u2N⇠

�⇠,s(u�wp�ug)du � = u�wp� 2 N⇠wP⇠

=
X

�2�⇠\�w/�⇠

Z

u2N⇠

�⇠,s(wp�ungagmg)du �⇠,s is N⇠-invariant

=
X

�2�⇠\�w/�⇠

Z

u2N⇠

�⇠,s(wm�a�n�ungagmg)du p� = m�a�n� 2 K⇠A⇠N⇠

=
X

�2�⇠\�w/�⇠

Z

u02N⇠

�⇠,s(wm�a�u
0
agmg)du

0 set u0 = n�ung, du
0 = du

=
X

�2�⇠\�w/�⇠

Z

u02N⇠

�⇠,s(wa�agm� (u0)a
�1
g mg)du

0
K⇠ commutes with A⇠

=
X

�2�⇠\�w/�⇠

Z

u002N⇠

�⇠,s(wa�agm�u
00
mg)du

00 · t2ng set u00 = (u0)a
�1
g , du

00 = t
�2n
g du

0

=
X

�2�⇠\�w/�⇠

Z

u002N⇠

�⇠,s(a
�1
� a

�1
g wm�u

00
mg)du

00 · t2ng w inverses A⇠

=
X

�2�⇠\�w/�⇠

Z

u002N⇠

�⇠,s(wm�u
00
mg)du

00
t
�s
� t

2n�s
g by Lemma 5.1

= Ad⇤g(m
�1
g )⌦ ⇢(m�1

g )

Ñ
X

�2�⇠\�w/�⇠

Z

u002N⇠

�⇠,s(wm�u
00)du00t�s

�

é
t
2n�s
g

= Ad⇤g(m
�1
g )⌦ ⇢(m�1

g )(C0(�⇠,s)) · t2n�s
g ,

where in the last line C0(�⇠,s) is just a constant (independent of g) in
Hom(⇤n(a⇠ � p⇠), V ). Hence, if we write the variable g = ngagmg, then we
can regard E2 as the di↵erential form constructed via the extension (with degree
2n�s) of the N⇠-invariant form whose initial value is exactly C0(�⇠,s). We denote
cs : ⌦n(H⇠(1), V )N⇠ ! ⌦

n

(H⇠(1), V )N⇠ the unique operator given by the initial
value cs(�⇠)(1) = C0(�⇠,s). From the expression, it is clear that cs is linear.
Therefore we obtain,

E⇠(�⇠, g, s) =

Z

u2�⇠\N⇠

E(�⇠, ug, s)du = �⇠(ngmg)t
s

g
+ cs(�⇠)(ngmg)t

2n�s

g

= �⇠,s(g) + cs(�⇠)(2n�s)(g)

Next, we assume ⇠ and ⇠0 are not �-conjugate. Then similar to Lemma 5.4, we
have,

Lemma 5.5. Suppose ⇠ and ⇠0 are not �-conjugate, then �⇠ acts on �⇠0\� from
the right with trivial stabilizer, hence the quotient is the double set �⇠0\�/�⇠.
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Proof. For any � 2 � and a 2 �⇠ such that �⇠0� · a = �⇠0�, we have �a��1
2 �⇠0 ,

or that a 2 ��⇠0 . Hence,

a 2 �⇠ \ ��⇠0 .

Since ⇠ and ⇠0 are not �-conjugate, we know �⇠0 6= ⇠ hence �⇠\��⇠0 = 1. Therefore
a = 1 and the action has trivial stabilizer.

Using the lemma, we can simplify

E⇠(�⇠0 , g, s) =
X

�2�⇠0\�

Z

u2�⇠\N⇠

�⇠0,s(�ug)du

=
X

�2�⇠0\�/�⇠

Z

u2N⇠

�⇠0,s(�ug)du

= E.

Also by the Bruhat decomposition (Lemma 5.2), for any � 2 �, either � 2 kP⇠ or
� 2 N⇠0kwP⇠. If � 2 kP⇠, then k�1� 2 P⇠, so k�1�⇠ = ⇠, or that �⇠ = k⇠ = ⇠0,
contradiction to that ⇠ and ⇠0 are not �-conjugate. Thus � 2 N⇠0kwP⇠. We now
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further compute E.

E =
X

�2�⇠0\�/�⇠

Z

u2N⇠

�⇠0,s(�ug)du

=
X

�2�⇠0\�/�⇠

Z

u2N⇠

�⇠0,s(n
0
�kwp�ug)du � = n

0
�kwp� 2 N⇠0kwP⇠

=
X

�2�⇠0\�/�⇠

Z

u2N⇠

�⇠0,s(kwp�ug)du �⇠0,s is N⇠0 -invariant

=
X

�2�⇠0\�/�⇠

Z

u2N⇠

�⇠0,s(kwm�a�n�ungagmg)du (1)

=
X

�2�⇠0\�/�⇠

Z

u02N⇠

�⇠0,s(kwm�a�u
0
agmg)du

0 set u0 = n�ung, du
0 = du

=
X

�2�⇠0\�/�⇠

Z

u02N⇠

�⇠0,s(kwa�agm� (u0)a
�1
g mg)du

0
K⇠ commutes with A⇠

=
X

�2�⇠0\�/�⇠

Z

u002N⇠

�⇠0,s(kwa�agm�u
00
mg)du

00 · t2ng set u00 = (u0)a
�1
g , du

00 = t
�2n
g du

0

=
X

�2�⇠0\�/�⇠

Z

u002N⇠

�⇠0,s( (a�1
� a

�1
g )k

kwm�u
00
mg)du

00 · t2ng w inverses A⇠

=
X

�2�⇠0\�/�⇠

Z

u002N⇠

�⇠0,s(kwm�u
00
mg)du

00
t
�s
� t

2n�s
g (2)

= Ad⇤(m�1
g )⌦ ⇢(m�1

g )

Ñ
X

�2�⇠0\�w/�⇠

Z

u002N⇠

�⇠0,s(kwm�u
00)du00t�s

�

é
t
2n�s
g (3)

= Ad⇤(m�1
g )⌦ ⇢(m�1

g )(C0(�⇠0,s)) · t2n�s
g ,

where in (1), we apply the Langlands decompositions p� = m�a�n� 2

M⇠A⇠N⇠, g = ngagmg 2 N⇠A⇠M⇠. In (2), we use ka�1
�

a�1
g

k�1
2 A⇠0 and the fact

that k is an isometry which send character t⇠ to t⇠0 . Then we apply Lemma 5.1.
In (3), we use the property of �⇠,s and the fact that mg 2 K. Hence, if we denote
cs : ⌦n(H⇠0(1), V )N⇠0 ! ⌦

n

(H⇠(1), V )N⇠ the unique operator given by the initial
value cs(�⇠0)(1) = C0(�⇠0,s), then E⇠(�⇠0 , g, s) = cs(�⇠0)(ngmg)t�s+2n

g
.

6. cohomology classes associated to cusps

In this section, we study the cohomology class of the restriction of the Eisen-
stein series E(�⇠0 , g, s) to the cusp associated to the parabolic fixed point ⇠.
Throughout the section we assume s = 2n + 2 if V = g and s = 2n If V = R.
We also assume the Eisenstein series converges at s. By Corollary 4.2, we have
dE(�⇠0 , g, s) = 0. Then

dE⇠(�⇠0 , g, s) = d

Z

u2�⇠\N⇠

E(�⇠0 , ug, s)du =

Z

u2�⇠\N⇠

dE(�⇠0 , ug, s)du = 0.
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As before, the absolute convergence of the Eisenstein series ensures the inter-
changing of di↵erential and integral, and the last equality follows from Lemma 2.2.
We will use the computation of E⇠(�⇠, g, s) in Section 5 to see which cohomology
class [E⇠(�⇠0 , g, s)]|H⇠(1)

represents in Hn(�⇠, V ).

Proposition 6.1. Let ⇠ and ⇠0 be full rank parabolic fixed points. Then

[E⇠(�⇠0 , g, s)]|H⇠(1)
= [�⇠] 2 Hn(�⇠, V )

if ⇠ = ⇠0. If ⇠ and ⇠0 are not �-conjugate, then

[E⇠(�⇠0 , g, s)]|H⇠(1)
= 0 2 Hn(�⇠, V ).

Proof. By Theorem 5.3,

E⇠(�⇠0 , g, s) = ✏�⇠0,s(g) + cs(�⇠0)�s+2n(g).

Since dE⇠(�⇠0 , g, s) = 0, and d�⇠0,s(g) = 0, we obtain

d(cs(�⇠0)�s+2n)(g) = 0.

Hence, it su�ces to prove that

[cs(�⇠0)�s+2n(g)]|H⇠(1)
= 0 2 Hn(�⇠, V ).

We first consider the case that V = g. Recall that we can regard the extended
form cs(�⇠0) 2 ⌦(H⇠(1), V )N⇠ as a function in C1(P⇠(1),Hom(⇤n(a⇠ � n⇠), V )).
Since V = V�2�V0�V2 and cs(�⇠0) is N⇠-invariant, we can decompose cs(�⇠0)(1)
as

cs(�⇠0)(1) = A2 +A0 +A�2 +
dt

t
^A0

2
+

dt

t
^A0

0
+

dt

t
^A0

�2
,

where Ai 2 ⇤nn⇤
⇠
⌦Vi, and A0

i
2 ⇤n�1n⇤

⇠
⌦Vi for i 2 {�2, 0, 2}. For each i, we con-

struct an N⇠-invariant V -valued form ci(�⇠0) (or c0i(�⇠0)) on the horosphere H⇠(1)
whose initial value is Ai (or A0

i
), that is, ci(�⇠0) 2 C1(P⇠(1),Hom(⇤nn⇠, V ))

satisfies:

1. ci(�⇠0)(n) = ci(�⇠0)(1) = Ai,
2. ci(�⇠0)(pm) = Ad⇤a⇠�n⇠

(m�1)⌦ ⇢(m�1)(ci(�⇠0)(p)) for all m 2 K⇠ and p 2

P⇠(1).

And c0
i
(�⇠0) is defined similarly. Following the construction in Section 3, we can

define degree 2n� s extensions of ci(�⇠0) and c0
i
(�⇠0) in C1(P⇠,Hom(⇤np⇠, V )),

denoted by (ci(�⇠0))2n�s and (c0
i
(�⇠0))2n�s respectively. It follows that

cs(�⇠0)2n�s =
X

i

(ci(�⇠0))2n�s +
X

i

dt

t
^ (c0

i
(�⇠0))2n�s.
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By Proposition 3.3,

0 = d(cs(�⇠0)2n�s) = (2n� s+ 2� 2n)
dt

t
^ c2(�⇠0)2n�s + (2n� s� 2n)

dt

t
^ c0(�⇠0)2n�s

+ (2n� s� 2� 2n)
dt

t
^ c�2(�⇠0)2n�s +

X

i

dt

t
^ (dc0

i
(�⇠0)2n�s),

where i 2 {�2, 0, 2}. Observe that

dt

t
^ ci(�⇠0)2n�s(1) 2

dt

t
^Hom(⇤nn⇠, Vi)

and by the proof of Lemma 2.3,

dt

t
^ d(c0

i
(�⇠0)2n�s)(1) 2

dt

t
^Hom(⇤nn⇠, Vi+2)

for i 2 {�2, 0, 2}. Therefore, by comparing their components in V2, V0, and V�2

respectively, we obtain

dt

t
^ (2n� s+ 2� 2n)c2(�⇠0)2n�s(1) +

dt

t
^ d(c0

0
(�⇠0))2n�s(1) = 0,

dt

t
^ (2n� s� 2n)c0(�⇠0)2n�s(1) +

dt

t
^ d(c0

�2
(�⇠0))2n�s(1) = 0,

dt

t
^ (2n� s� 2� 2n)c�2(�⇠0)2n�s(1) = 0.

Note that s = 2 + 2n, the coe�cients in the above equalities are nonzero. Thus
we have

c2(�⇠0)(1) =
d(c0

0
(�⇠0))(1)

2� s
,

c0(�⇠0)(1) =
d(c0

�2
(�⇠0))(1)

�s
,

c�2(�⇠0)(1) = 0.

By Lemma 2.2,

c2(�⇠0) =
d(c0

0
(�⇠0))

2� s
,

c0(�⇠0) =
d(c0

�2
(�⇠0))

�s
,

c�2(�⇠0) = 0.
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We see that c0(�⇠0) + c2(�⇠0) is a coboundary, which equals the restriction (in
the strong sense, i.e. also project the (co)tangent space) of cs(�⇠0)2n�s to the
horosphere H⇠(1). Hence

[cs(�⇠0)�s+2n]|H⇠(1)
= 0 2 Hn(�⇠,Ad).

The argument is similar for the case that V = R. In this case, we write

cs(�⇠0) = c1(�⇠0) +
dt

t
^ c2(�⇠0)

where c1(�⇠0) 2 C1(P⇠(1),Hom(⇤nn⇠,R)) and c2(�⇠0) 2

C1(P⇠(1),Hom(⇤n�1n⇠,R)). By Proposition 3.3,

0 = d(cs(�⇠0)2n�s) = (2n� s� 2n)
dt

t
^ c1(�⇠0)2n�s,

which implies that c1(�⇠0) = 0. Hence

[cs(�⇠0)�s+2n]|H⇠(1)
= 0 2 Hn(�⇠,R).

Now we are ready to prove Theorem 1.1, 1.2 and Corollary 1.3.

Proof of Theorem 1.1, 1.2

Since every full rank parabolic subgroup corresponds to a parabolic fixed point
⇠ 2 H

n+1, it follows immediately from Proposition 6.1. Also, the harmonicity of
the Eisenstein series E(�⇠) in the case of trivial coe�cient is clear since it is the
(absolutely convergent) sum of harmonic forms (See Remark 3.2).

Proof of Corollary 1.3

Let C1, ..., CN be N toric cusps. For each cusp Ci, choose a correspond-
ing parabolic subgroup �i

⇠= Z
n (unique up to conjugate). By Lemma 2.3

and Theorem 2.4, the dimension of the cohomology group Hn(�i,Ad) is n.
Thus, in view of Theorem 1.2, they in total correspond to nN linearly inde-
pendent Eisenstein cohomology classes in Hn(�,Ad). So the corollary follows
immediately.

7. Further discussions

Our work seems to suggest that the classical method of Eisenstein series should
also fit in a broader context for certain problems, and this paper only focuses
on a specific aspect of that, namely the cusp counting problem for hyperbolic
manifolds. Before discussing possible directions of extensions of our results, we
first give some examples where our theorems can be applied to. Nevertheless, we
would like to point out that the dimension of group cohomology is often very

25



hard to compute, so it is unclear how sharp the inequality in Corollary 1.3 is in
general.

Non-uniform lattices

As is mentioned in the introduction, non-uniform lattices do not satisfy the
assumption and conclusion of Theorem 1.1. In this case, �(�) = n, � is of
divergent type, and cohomology classes (with trivial coe�cient) arising from
cusps cannot be linearly independent. However, our Theorem 1.2 and Corollary
1.3 both apply, thus giving an explicit upper bound on the number of cusps.
One type of explicit constructions of lattices comes from arithmetic (e.g. take
� = SO(n+1, 1;Z) < SO(n+1, 1) up to finite index to kill the torsion). The num-
ber of cusps thus is closely related to the arithmetic feature of the construction
(e.g. the ideal class group of the corresponding number field). There are also non-
arithmetic constructions of lattices due to the work of Gromov–Piatetski-Shapiro
[GPS88], and our results are potentially more useful in these examples.

Geometrically finite Kleinian groups

The simplest such example arises from the Schottky-type construction. Take a
rank n parabolic subgroup �1

⇠= Z
n < Isom+(Hn+1) and an elementary subgroup

generated by a single hyperbolic translation �2
⇠= Z < Isom+(Hn+1), then up to

a choice of conjugates of �1,�2, the group � :=< �1,�2 > is isomorphic to the
free amalgamation �1 ⇤ �2 by Maskit’s Klein combination theorem [Mas64]. The
resulting Kleinian group is then geometrically finite and have exactly one cusp.
On the other hand, the critical exponent satisfies �(�) < n, so in this case both
our Theorems hold. It is clear that the n-th betti number is 1, but Hn(�,Ad)
will depend on the representation of � in Isom+(Hn+1). Thus, our corollary gives
a uniform lower bound on dimHn(�,Ad), i.e., dimHn(�,Ad) � n, and in fact it
holds for all geometrically finite Kleinian groups � ⇠= Z

n
⇤ Z.

Geometrically infinite Kleinian groups

As we mentioned in Remark 3.6, the Kleinian groups � < Isom+(Hn+1)
(4  n  7) constructed in [IMM22] has infinitely many full rank toric cusps.
It is a finitely generated (also finitely presented in the case n = 6, 7) normal
subgroup of a lattice, which is constructed from an algebraic fibration of the
lattice over Z. It follows that �(�) = n [Rob05]. As a consequence of Corollary
1.3, the cohomology group Hn(�,Ad) has infinite dimension. On the other hand,
Kapovich’s example [Kap95] of Kleinian group � < Isom+(H4) has infinitely
many rank 1 cusps, and the critical exponent satisfies �(�) 2 [2, 3]. Our results
do not cover this example since the cusp is not full rank, but it would be very
interesting to see a generalization of the results to lower degrees.
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By carefully examining all these examples, we believe that there might be inter-
esting general relations between the value of critical exponent and the number of
cusps for a Kleinian group.

Conjecture 7.1. Given a finitely generated Kleinian group � < Isom+(Hn+1), if
�(�) < k for a positive integer k  n, then � has only finitely many rank k cusps.

We now proceed to discuss possible extensions of our results.

Other coe�cient modules

To possibly extend our main results, one can try to consider other �-coe�cient
modules V . We believe this should be straightforward. First, to construct a coho-
mology classes in Hn(�⇠, V ), one takes the V�� sections where � denotes the
highest weight of the representation. Second, the absolute convergence of Eisen-
stein series follows a similar argument provided � > 0, which is automatic if V is
not the trivial representation. Finally, the computation of the intertwining oper-
ators in Section 5 works verbatim, and the argument in Section 6 also works very
similarly. Our Theorem 1.2 is thus expected to hold for any non-trivial coe�cient
module. However, one cautionary point is that our Lemma 2.3 may not hold any
more.

Other degrees

One can also consider lower degree Eisenstein cohomology classes in Hk(�, V ).
But the construction of cohomology classes in Hk(�⇠, V ) is more delicate. For
example, the Lie algebra cohomology Hk(u, V ) might be zero. When it is non-
zero, then one can construct the Eisenstein series and it is absolutely convergent
if the weights of the constructed cohomology classes are small enough (negative
large) in terms of k and the critical exponent of �. The rest computation of the
intertwining operators follows similarly. It would be very interesting to see if one
can construct an absolutely convergent Eisenstein cohomology class in H1(�, V ).
This would lead to a cusp finiteness theorem since finitely generated groups always
satisfy dimH1(�, V ) < 1.

Rank k cusps

When �⇠ is a rank k parabolic group, there are natural classes in Hk(�⇠, V ).
Under the same construction, the Eisenstein series is comparable to the Poincaré
series if the parabolic fixed point is bounded. Thus, the absolute convergence again
depends on the weights of the class constructed in Hk(�⇠, V ), the value k, and
the critical exponent of �. However, the most di�cult part is the computation
of the intertwining operators. Our method fails when �⇠,s is not N⇠-invariant.
One needs to further analyze the behavior of the function �⇠,s in the orthogonal
directions to the subspace where it is invariant.
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