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Abstract

We show convergence of small eigenvalues for geometrically finite hyperbolic n-manifolds
under strong limits. For a class of convergent convex sets in a strongly convergent
sequence of Kleinian groups, we use the spectral gap of the limit manifold and the expo-
nentially mixing property of the geodesic flow along the strongly convergent sequence to
find asymptotically uniform counting formulas for the number of orthogeodesics between
the convex sets. In particular, this provides asymptotically uniform counting formulas
(with respect to length) for orthogeodesics between converging Margulis tubes, geodesic
loops based at converging basepoints, and primitive closed geodesics.
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1. Introduction

The critical exponent of a discrete isometry subgroup of the hyperbolic space Hn

is an important numerical invariant which relates the dynamical properties of the
group action to the measure theory and the spectrum of operators on the quotient
manifold via the celebrated work of Patterson and Sullivan [Pat76, Sul79, Sul84].
More explicitly, this invariant was shown to be equal to the Hausdor↵ dimension
of the limit set for any geometrically finite discrete isometry subgroup � [Sul79,
Sul84], and is related to the bottom spectrum �0 of the negative Laplace operator
for any nonelementary complete hyperbolic manifold [Sul87]. A natural line of
inquiry is to ask whether this quantitative invariant can be uniformly controlled
for a sequence of hyperbolic manifolds (Mk = H

n/�k)k2N, for example, sequences
of quasi-Fuchsian manifolds in Bers’ model for the Teichmüller space of a surface
S. It turns out that the critical exponent of �k, the Hausdor↵ dimension of the
limit set, and the bottom of the spectrum �0(Hn/�k), converge to the ones of the
limit group � < Isom(Hn) under the assumption that � is geometrically finite
and �(�) > (n � 1)/2 for strongly convergent sequences of hyperbolic manifolds
(Mk)k2N [CT99, McM99]. See Section 2.5 for the definition of strong convergence.

Besides the bottom spectrum of the quotient manifold, there are finitely many
small eigenvalues of the negative Laplace operator in the interval [�0, (n�1)2/4],
where (n � 1)2/4 is the bottom spectrum of the hyperbolic space H

n [LP82].
It is natural to ask whether these small eigenvalues converge to the ones of
�, respectively. We prove the convergence of small eigenvalues for strongly
convergent sequences of hyperbolic manifolds (Mk = H

n/�k)k2N. In particu-
lar, we give a uniform bound on the Lax-Phillips spectral gap s1 defined by
s1 := min{�1(M), (n� 1)2/4}� �0(M), where �1(M) is the smallest eigenvalue
of the negative Laplacian in (�0(M),1).

Theorem 1.1. Suppose that (Mk = Isom(Hn)/�k)k2N is a sequence of hyperbolic

manifolds which converges strongly to a geometrically finite hyperbolic manifold

M = H
n/�. The set of small eigenvalues in [�0(Mk), (n�1)2/4] converges to the

small eigenvalues of the limit manifold M , counting multiplicities. In particular,

the sequence of Lax-Phillips spectral gaps of (Mk)k2N converges to that of the

limit manifold M .

Remark 1.2. We explain what the convergence of the set of small eigenvalues

means in Section 3, and leave the precise statement in Theorem 3.3. The state-

ment of Theorem 1.1 for small eigenvalues holds for negatively pinched manifolds,

and the details are discussed in Section 3. The statement referring to Lax-Phillips

spectral gap is done in Theorem 3.4 for Kleinian groups. It could be possible that

the set of small eigenvalues is equal to the singleton {(n� 1)2/4} (or the empty

set by considering pinched negative manifolds), but it won’t a↵ect the statement

of the theorem.

Sequences of hyperbolic manifolds with uniform spectral gap are interesting to
study, as the uniform spectral gap sometimes controls the dynamical properties of
the geodesic flow of the manifold. For instance, following [EO21], uniform spectral
gaps of hyperbolic manifolds imply uniform exponential mixings of geodesic flows.
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In the same paper, they provided another family of hyperbolic manifolds with
uniform spectral gaps, coming from congruence subgroups of certain arithmetic
lattice of Isom(Hn).

The exponentially mixing geodesic flow can be used to find good estimates
for error in asymptotic approximations of counting functions, such as the esti-
mates available for orthogeodesic counting (as done in [PP17]). Namely, given
D�, D+ (locally) convex sets (or equivalently, ⇡1(M) precisely invariant convex
sets in the universal covering) in M , one can estimate ND�,D+(t), the number of
orthogeodesics between D� and D+ of length less than t > 0, by

ND�,D+(t) ⇡ Ae�t(1 +O(e�t))

where A, �, and O(.) depend on the geometric/dynamical features of
M,D�, D+, with exponential decay of correlations among these features. We
consider the following two interesting cases in this paper:

1. D± are connected components in the thin part of M , i.e. Margulis tubes or
cusps.

2. D+ = D� is an embedded ball at a given point x 2 M . That is, the lifts of
D± are su�ciently small balls of lifts of x in H

n.

The uniform orthogeodesic counting formula for strongly convergent sequences
in case (1) can be used in the study of the renormalized volume. Given a hyper-
bolic manifoldM , the renormalized volume is a function on the deformation space
ofM whose gradient flow has been of interest (see [BBB19], [BBP21]). In [BBP21]
it is shown that for M acylindrical the gradient flow of the renormalized volume
converges to the unique critical point. This involves discarding strong limits with
pinched rank-1 cusps by the use of the Gardiner formula. For such a method to
work one needs a uniform control of contributing terms in the Gardiner formula,
which would be provided by uniform orthogeodesic counting. The uniform ortho-
geodesic counting formula for case (2) gives a uniform asymptotic counting result
with uniform error term for geodesic loops based on a given point in M .

Motivated by these applications, we show that the parameters A, �, and O(.)
are uniform for strongly convergent sequences, and such parameters can be taken
arbitrarily close to the corresponding parameters of the geometrically finite limit.

Theorem 1.3. Let (Mk = H
n/�k)k2N be a sequence of hyperbolic manifolds

which strongly converges to a geometrically finite hyperbolic manifold M = H
n/�

with �(�) > (n� 1)/2.

1. Suppose that D±

k are connected components in the thin part of Mk, and

(D±

k )k2N converge strongly to connected components D±
in the thin part of

M . Then there is a uniform counting formula for orthogeodesics between D�

k
to D+

k for the sequence (Mk)k2N.

2. Suppose that (xk 2 Mk)k2N is a sequence of points converging to the point

x 2 M . Then there is a uniform counting formula for geodesic loops based

at xk for the sequence (Mk)k2N.
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Remark 1.4. We in fact prove the result for strongly convergent sequences

of well-positioned convex sets in a strongly convergent sequence of hyperbolic

manifolds (Theorem 5.3). We refer readers to Section 2.5 for the definitions of

well-positioned and strong convergence of convex sets in hyperbolic manifolds.

The counting of primitive closed geodesics follows from the counting of geodesic
loops in manifolds with negatively pinched curvatures [Rob03, Chapter 5]. Hence
we obtain the following asymptotic counting of primitive closed geodesics along
sequences of strongly convergent hyperbolic manifolds.

Corollary 1.5. Suppose that (Mk = H
n/�k)k2N is a sequence of hyperbolic

manifolds which strongly converges to a geometrically finite hyperbolic manifold

M = H
n/� with �(�) > (n � 1)/2. Then we can count the number of primitive

closed geodesics with length less than ` in Mk, denoted by #GMk
(`), uniformly,

in the sense that

#GMk
(`) ⇡

e�(�k)`

�(�k)`

up to a multiplicative error uniformly close to 1 along the sequence as ` gets larger
and limk �(�k) = �(�).

The proof of Theorem 1.3 involves the uniformity of the exponential mixing
and the convergence of certain measures for strongly convergent sequences. These
measures refer to the classical Patterson-Sullivan measures, the Bowen-Margulis
measure and the skinning measures. The convergence of Patterson-Sullivan mea-
sures has been proved for strongly convergent sequences under the assumption
that the limit manifold is geometrically finite and its critical exponent is greater
than (n�1)/2, [McM99]. The Bowen-Margulis measure and the skinning measures
are defined in terms of the Patterson-Sullivan measures. Answering an question
of Oh, we prove the convergence of these two measures, which could have its own
interest.

Proposition 1.6. Suppose that (Mk = H
n/�k)k2N is a sequence of hyperbolic

manifolds which are strongly convergent to a geometrically finite hyperbolic man-

ifold M = H
n/� with �(�) > (n � 1)/2. For r > 0 we denote by M<r

k ⇢

Mk,M<r
⇢ M the sets of points with injectivity radius less than r. Then

the Bowen-Margulis measures mk
BM

on T 1M<r
k converge to the one on T 1M<r

weakly. Moreover, we have the convergence of total masses.

Remark 1.7. The convergence of the Bowen-Margulis measures on T 1M<r
k

might be helpful for proving that the Benjamini-Schramm limit of (Mk)k2N is

also M (see for instance [ABB
+
17, Section 3.9] for a general definition of

Benjamini-Schramm convergence).

We now discuss the convergence of skinning measures �± for the special type
of well-positioned convex sets in hyperbolic manifolds. Geodesic balls with su�-
ciently small radii and the thin part in a hyperbolic manifolds are well-positioned.
We refer readers to Section 2.5 for the definition and detailed discussions.
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Corollary 1.8. Suppose that (Mk = H
n/�k)k2N is a sequence of hyperbolic

manifolds that strongly converges to a geometrically finite hyperbolic manifold

M = H
n/� with �(M) > (n � 1)/2. Let Dk ⇢ Mk, D ⇢ M be well-positioned

convex sets, so that (Dk)k2N strongly converges to D. Then

k�±

@Dk
k ! k�±

@Dk.

The relative result also holds for subsets ⌦k ✓ Dk, ⌦ ✓ D so that (⌦k)k2N

strongly converges to ⌦.

Organization of the paper. We review definitions of geometric finiteness,
the Bowen-Margulis measure, and skinning measures in Section 2.1, 2.3, 2.4,
respectively. Section 2.2 is about the relation between the critical exponent and
the bottom spectrum. Section 2.5 defines strong convergence of hyperbolic mani-
folds and the convergence of well-positioned convex sets. Section 3 discusses small
eigenvalues of the negative Laplacian on negatively pinched Hadamard manifolds
and gives a proof of Theorem 1.1. In Section 4, we prove the convergence results
of the Bowen-Margulis measure and the skinning measures, i.e. Proposition 1.6
and Corollary 1.8. The last section, Section 5, proves the uniform asymptotic
counting results of geodesic loops and orthogeodesics along strongly convergent
sequences, i.e., the proof of Theorem 1.3.

2. Background

2.1. Geometric finiteness

In this subsection, we let X denote an n-dimensional negatively pinched
Hadamard manifold whose sectional curvatures lie between �2 and �1 for some
 � 1. For any isometry � 2 Isom(X), we define its translation length ⌧(�) as
follows:

⌧(�) := inf
p2X

dX(p, �(p)),

where dX is the Riemannian distance function in X. Based on the translation
length, we can classify isometries in X into 3 types; we call � loxodromic if
⌧(�) > 0. In this case, the infimum is attained exactly when the points are on
the axis of �. The isometry � is called parabolic if ⌧(�) = 0 and the infimum is
not attained. The isometry � is elliptic if ⌧(�) = 0 and the infimum is attained.

From now on, we consider torsion-free discrete isometry subgroups � <
Isom(X), i.e. � contains no elliptic elements. If � < Isom(Hn) is a torsion-free
discrete isometry subgroup, we call it a Kleinian group. Given 0 < ✏ < ✏(n,),
where ✏(n,) is the Margulis constant depending on the dimension n and the
constant , let T✏(�) be the set consisting of all points p 2 X such that there
exists an isometry � 2 � with

d(p, �p)  ✏.
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It is an �-invariant set, and the quotient T✏(�)/� is the thin part of the quotient
manifold M = X/�, denoted by M<✏.

A subgroup P < � is called parabolic if the fixed point set of P consists of a
single point ⇠ 2 @1X, where @1X is the visual boundary ofX. Note that T✏(P ) ⇢
X is precisely invariant under P , i.e. stab�(T✏(P )) = P [Bow95, Corollary 3.5.6].
By abuse of notation, we can regard T✏(P ) as a subset of M = X/�, which is
called a Margulis cusp. The union of all Margulis cusps consists of the cuspidal

part of M , denoted by cusp✏(M).
The limit set ⇤(�) of a discrete, torsion-free isometry subgroup � < Isom(X)

is defined to be the set of accumulation points of a �-orbit �(p) in @1X for
any point p 2 X. We call � elementary if ⇤(�) is finite; Otherwise, we say �
is nonelementary. For any two points ⇠ and ⌘ in @1X, we use ⇠⌘ to denote the
unique geodesic in X connecting these two points. The convex hull of ⇤(�) ⇢

@1X is the smallest closed convex subset in X whose accumulation set is ⇤(�),
denoted by Hull(�). We let C(M) = Hull(�)/� denote the convex core of quotient
manifold M = X/�. For any constant ✏ > 0, we define the truncated core by

C(M)>✏ = C(M)�M<✏.

Given a constant 0 < ✏ < ✏(n,), a discrete isometry subgroup � is geometri-

cally finite if the truncated core C(M)>✏ is compact in M = X/�. If, in addition,
C(M) is compact, i.e. � contains no parabolic isometries, then � is called convex

co-compact. Furthermore, if � < Isom(X) is geometrically finite, the parabolic
fixed points in ⇤(�) are bounded, defined as follows:

Definition 2.1. [Bow93] A parabolic fixed point ⇠ 2 ⇤(�) is bounded if (⇤(�) \
{p})/ stab�(p) is compact.

Given a point x 2 X and a discrete isometry group � 2 Isom(X), the Poincaré
series is defined as

Ps(�, x) =
X

�2�

e�sdX(x,�x).

The critical exponent of � is defined as

�(�) := inf{s | Ps(�, x) < 1}.

It is not hard to see that the definition of �(�) is independent of the choice of x.

2.2. Eigenvalues and spectrum

As in Section 2.1, we let M = X/�, where X is a negatively pinched Hadamard
manifold, and � is a torsion-free discrete isometry subgroup. Define the Sobolev
space H1(M) as the space obtained by the completion of C1

0
(M) with respect to

the norm kfk =
qR

M |f |2 +
R
M |rf |2. This space can be also defined as functions

in L2(M) whose weak derivative (in the sense of distributions) is also in L2(M).
6



Given f 2 H1(M), we define the Rayleigh quotient R(f) of f by

R(f) =

R
M |rf |2R
M |f |2

.

The Rayleigh quotient is closely related to the spectrum Spec(M) of the
negative Laplace operator. Namely, by posing the following minimization problem

� = inf

⇢
R(f)

���� f 2 H1(M)

�

we obtain a L2 integrable smooth function f satisfying ��f = �f .
We let �0(M) denote the bottom of the spectrum, and we say that � 2

Spec(M) is a small eigenvalue of M if � < (n�1)2/4. Moreover, given a constant
µ < (n� 1)2/4, we define Specµ(M) as the collection (counting multiplicities) of
eigenvalues of the negative Laplacian on M less than or equal to µ. The set of
small eigenvalues is a finite set (see [Ham04]).

In the rest of the subsection, we list several properties of the bottom of the
spectrum �0(M). We will use these properties in Section 3 to prove the uni-
form spectral gap for strongly convergent sequences of geometrically finite groups
(�k < Isom(X))k2N.

Lemma 2.2. [Ham04] Let � < Isom(X) be a torsion-free discrete elementary

isometry subgroup of a negatively pinched Hadamard manifold X with dimension

n. Then �0(X/�) � (n� 1)2/4.

Lemma 2.3. [Ham04, Lemma 2.3] Suppose that � < Isom(X) is a geometrically

finite discrete isometry subgroup of a negatively pinched Hadamard manifold X
with dimension n. Then for every r > 0 we have that µ1(M \ Br(C(M))) �

(tanh r)2(n � 1)2/4, where M = X/� and µ1(M \ Br(C(M))) denotes the

smallest Rayleigh quotient for all smooth functions f with compact support in

M \Br(C(M)).

If X = H
n, we have the following result relating �0(M) to the critical exponent

�(�).

Theorem 2.4. [Sul87] For any nonelementary complete hyperbolic manifold

M = H
n/�, one has

�0(M) =

(
(n� 1)2/4 if �(�)  (n� 1)/2,

�(�)(n� 1� �(�)) if �(�) � (n� 1)/2.

2.3. Patterson-Sullivan measure

Given a point p 2 H
n, and ⇠ 2 @1H

n, the Busemann function B(x, ⇠) on H
n

with respect to p is defined by

B(x, ⇠) = lim
t!1

(d(x, ⇢⇠(t))� t)

7



where ⇢⇠(t) is the unique geodesic ray from p to ⇠. The Busemann cocycle

�⇠(x, y) : Hn
⇥H

n
⇥ @1H

n
! R is defined by

�⇠(x, y) = lim
t!1

(d(⇢⇠(t), x)� d(⇢⇠(t), y)).

For a discrete isometry subgroup � < Isom(Hn), there exists a family of finite
measures (µx)x2Hn on @1H

n whose support is the limit set ⇤(�) and satisfies
the following conditions:

1. It is �-invariant, i.e. �⇤(µx) = µ�x.
2. The Radon-Nikodym derivatives exist for all x, y 2 H

n, and for all ⇠ 2 @1H
n

they satisfy

dµx

dµy
(⇠) = e��(�)�⇠(x,y).

Such family of measures is a family of Patterson-Sullivan density of dimension
�(�) for �. The Patterson-Sullivan measures have very nice properties when the
group � is geometrically finite.

Theorem 2.5. [McM99, Theorem 3.1] Let � < Isom(Hn) be a geometrically

finite Kleinian group. Then @1H
n

carries a unique �-invariant density µ of

dimension �(�) with total mass one; Moreover, µ is nonatomic and supported

on ⇤(�), and the Poincaré series diverges at �(�).

Theorem 2.6. [McM99, Theorem 1.2] Suppose that (�k < Isom(Hn))k2N is a

sequence of Kleinian groups converging strongly to � < Isom(Hn). If � is geo-

metrically finite with �(�) > (n� 1)/2, then the Patterson-Sullivan densities µk

of �k converge to the Patterson-Sullivan density µ of � in the weak topology on

measures.

Remark 2.7. Theorem 1.2 in [McM99] is stated for the 3-dimensional hyperbolic

space. However, the proof works exactly the same for general hyperbolic spaces H
n
.

The proof Theorem 2.6 relies heavily on the analysis of the Poincaré series of
parabolic groups and its uniform convergence. This is also essential in the later
proof of the convergence of Bowen-Margulis measures and the uniform counting
formulas for orthogeodesics in the rest of the paper. For readers’ convenience,
we list the analytic properties of the Poincaré series corresponding to parabolic
groups in the section. The details can be found in [McM99, Section 6].

Let L < Isom(Hn) be a torsion-free elementary isometry subgroup, which is
either a hyperbolic group, i.e. a cyclic group generated by a loxodromic isometry,
or a parabolic group. Given x 2 @1H

n and s � 0, the absolute Poincaré series
for L is defined to be

Ps(L, x) =
X

�2L

|�0(x)|s,
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where the derivative is measured in the spherical measure. Given any open subset
U ⇢ @1H

n, define

Ps(L,U, x) =
X

�(x)2U

|�0(x)|s.

Suppose that (Lk < Isom(Hn))k2N is a sequence of torsion-free elementary isome-
try subgroups which converges geometrically to a parabolic group L < Isom(Hn)
with parabolic fixed point c, i.e., Lk converges to L in the Hausdor↵ topology on
closed subsets of Isom(Hn). The Poincaré series for (Lk, sk) where sk � 0 con-

verges uniformly if for any compact subset K ⇢ @1H
n
\ {c} and ✏ > 0, there is

a neighborhood U of c such that for all x 2 K,

Psk(Lk, U, x) < ✏

for k � 0 su�ciently large. By using the same argument of the proof of Theorem
6.1 in [McM99], we have the following:

Theorem 2.8. Suppose that (�k < Isom(Hn))k2N is a sequence of torsion-free

discrete isometry subgroups which strongly converges to a geometrically finite

torsion-free group � < Isom(Hn). Let L < � be a parabolic subgroup and (Lk <
�k)k2N be a sequence of elementary groups which converges to L geometrically. If

�(�) >

(
1 if n = 3, or

(n� 2)/2 if n > 3,

then the Poincaré series for (Lk, �(�k)) converges uniformly to the one of

(L, �(�)).

2.4. Bowen-Margulis measure

The Bowen-Margulis measure is a measure defined on the unit tangent bundle
T 1

H
n of Hn in terms of the Patterson-Sullivan measures. One can identify the

unit tangent bundle T 1
H

n with the set of geodesic lines l : R ! H
n such that

the inverse map sends the geodesic line l to its unit tangle vector l̇(0) at t = 0.
Given a point x0 2 H

n, we can also identify T 1
H

n with @1H
n
⇥ @1H

n
⇥ R via

the Hopf’s parametrization:

v ! (v�, v+, t)

where v�, v+ are the endpoints at �1 and 1 of the geodesic line defined by v
and t is the signed distance of the closest point to x0 on the geodesic line.

We let ⇡ : T 1
H

n
! H

n denote the basepoint projection. The geodesic flow

on T 1
H

n is the smooth one-parameter group of di↵eomorphisms (gt)t2R of T 1
H

n

such that gt(l(s)) = l(s+t), for all l 2 T 1
H

n, and s, t 2 R. Similarly one can define
the geodesic flow on T 1M by replacing the geodesic lines l by locally geodesic
lines. The Kleinian group � acts on T 1

H
n via postcomposition, i.e. � � l, and it

commutes with the geodesic flow. For simplicity, we sometimes write �(�) as � if
the context is clear in the rest of the paper.

9



Given the Patterson-Sullivan density (µx)x2Hn and a point x0 2 H
n, one can

define the Bowen-Margulis measure m̃BM on T 1
H

n given by

dm̃BM(v) = e��(�v� (⇡(v),x0)+�v+ (⇡(v),x0))dµx0(v�)dµx0(v+)dt

= e�2�(v�|v+)x0dµx0(v�)dµx0(v+)dt.

Here we introduce the notation (v�|v+)x0 = 1

2
(�v�(y, x0)+�v+(y, x0)), where

y is any point in the geodesic joining v�, v+. It is not hard to verify that (v�|v+)x0

does not depend on y.
The Bowen-Margulis measure m̃BM is independent of the choice of x0, and it

is invariant under both the action of the group � and the geodesic flow. Hence, it
descends to a measure mBM on T 1M invariant under the quotient geodesic flow,
which is called the Bowen-Margulis measure on T 1M .

Theorem 2.9. [Sul84, Bab02] Let � < Isom(Hn) be a geometrically finite

Kleinian group. The Bowen-Margulis measure mBM has finite total mass, and

the geodesic flow is mixing with respect to mBM.

Another related measure we consider in the paper is the so called skinning

measure. Let D be a nonempty proper closed convex subset in H
n. We denote its

boundary by @D and the set of points at infinity by @1D. Let

PD : Hn
[ (@1H

n
\ @1D) ! D (1)

be the closest point map. In particular, for points x 2 H
n, PD(x) is the point

on D which minimizes the distance function d(y, x) for y 2 D, and for points
⇠ 2 @1H

n
\ @1D, PD(⇠) is the point y 2 D which minimizes the function

y ! �⇠(y, x0) for a given x0.
The outer unit normal bundle @1

+
D of the boundary of D is the topological

submanifold of T 1
H

n consisting of the geodesic lines v : R ! H
n such that

PD(v+) = v(0). Similarly, one can define the inner unit normal bundle @1
�
D

which consists of geodesic lines v such that PD(v�) = v(0). Note that when D
is totally geodesic, @1

+
D = @1

�
D. Given the Patterson-Sullivan density (µx)x2Hn ,

the outer skinning measure on @1
+
D is the measure �̃+

D defined by

d�̃+

D(v) = e���v+ (PD(v+),x0)dµx0(v+).

Similarly, one can define the inner skinning measure �̃�

D on @1
�
D as follows:

d�̃�

D(v) = e���v� (PD(v�),x0)dµx0(v�).

For simplicity, we sometimes identify a precisely invariant subset C ⇢ M =
H

n/� with its fundamental domain C̃ in the universal cover, and use the notation
�±

@C to denote the outer/inner skinning measure �̃±

C̃
on @1

±
C̃.
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2.5. Convergence of convex sets

In this subsection, we first define strong convergence that admits disconnected

limits. Suppose that ((Mk, gk))k2N is a sequence of n-manifolds of pinched sec-
tional curvature �2  K  �1. We say that the sequence converges strongly to
a (possibly disconnected) geometrically finite n-manifold (N = [

m
i Ni, g) if the

following holds:

1. There exist points pk,i 2 Mk, pi 2 Ni so that d(pk,i, pk,j) ! +1 for i 6=
j and (Mk, pk,i) ! (Ni, pi) geometrically, i.e., there exists an exhaustion
U1,i ⇢ U2,i ⇢ . . . of relatively compact open sets of (Ni, pi) and smooth
maps 'k,i : Uk,i ! Mk so that 'k,i(pi) = pk,i and '⇤

k,igk converges smoothly
in compact sets to g.

2. For any ✏, the truncated cores C(Mk)>✏ converge to the disjoint union
[iC(Ni)>✏. This means that for large k we have C(Mk)>✏ = [

m
i=1

C(Mk,i)>✏

where C(Mk,i)>✏ ⇢ Im('k,i) and '
�1

k,i(C(Mk,i)>✏) converges to C(Ni)>✏ in
the Hausdor↵ topology of compact sets in Ni.

The definition accommodates situations like Dehn drilling and pinching closed
geodesics in hyperbolic 3-manifolds. The pinching case can result in disconnected
limit manifolds. If Mk and N are hyperbolic manifolds, and N is connected, this
definition is equivalent to the one described in [McM99] for strong convergence.
Because of this, in the cases when N is connected we will simply omit the mention
of possibly disconnected, as well as the sub-index i from our notation.

Moreover, given a sequence (Mk)k2N converging strongly to a possibly discon-
nected manifold N , we say that the sequence of functions (fk : Mk ! R)k2N

converges strongly to a function f : N ! R if, with the notation above, we have
that for any basepoint pi the sequence (fk �'k,i)k2N converges smoothly in com-
pact sets to f . Similarly, if ⌃k,⌃ are smooth properly embedded submanifolds
in Mk, N , we say that (⌃k)k2N converges strongly to ⌃ if '�1

k,i(⌃k) converges
smoothly in compact sets to ⌃. Since for any fixed compact set in Ni the maps
'k,i are embeddings for k su�ciently large, we can define strong convergence of
functions and submanifolds of T 1Mk to T 1M by composing the derivatives of
'k,i with the projections from T ⇤Mk to T 1Mk.

Using the definition of strong convergence, we obtain a straightforward
corollary:

Corollary 2.10. Suppose that (Mk)k2N is a sequence of manifolds with negatively

pinched curvature which converges strongly to a (possibly disconnected) geomet-

rically finite manifold N with negatively pinched curvature. Then the manifolds

Mk are also geometrically finite for su�ciently large k.

Proof. Suppose that N = [
m
i Ni. The truncated core C(N)>✏ is compact for any

0 < ✏ < ✏(n,), since N is geometrically finite. By item (2) in the definition
of strong convergence, C(Mk)>✏ is also compact for large k, since C(Mk,i)>✏ is
compact for large k, and all 1  i  m.

In Section 3, we work on sequences of manifolds of negatively pinched curva-
ture that converge strongly to (possibly disconnected) limit manifolds. Given an

11



n-dimensional manifold M with negatively pinched curvature (possibly discon-
nected) and a constant µ < (n� 1)2/4, Specµ(M) is defined as the collection of
eigenvalues of the negative Laplacian on M less than µ. If M is disconnected,
Specµ(M) agrees with the union of Specµ of each component ofM (counting mul-
tiplicity). Specifically, a function f : M ! R satisfies the equation ��f = �f if
and only if its restriction to each component of M is either an eigenfunction with
eigenvalue �, or 0. Moreover, while taking orthonormal eigenfunctions for M we
can consider that each eigenfunction has support in a unique component of M .

In Section 4 and Section 5, we focus on sequences of hyperbolic manifolds
strongly converging to connected limit manifolds. Suppose now M = H

n/� is
an n-dimensional hyperbolic manifold. As we stated in the Introduction, locally
convex sets in M are in 1-to-1 correspondence with �-precisely invariant convex
sets in H

n by the projection map Proj : Hn
! M . In particular, we sometimes

identify local convex sets with one of their lifts which are �-precisely invariant,
and we don’t consider immersed locally convex sets, e.g. nonprimitive closed
geodesics. For simplicity, we will omit the word locally and plainly denote the
sets as convex.

We say that a convex set D in M is well-positioned if @D̃ is smooth, where D̃
denotes the lift of D to H

3, and �±

@D has compact support.

Example 2.11. Suppose that M is a geometrically finite hyperbolic manifold.

Embedded geodesic balls and the thin part of M are well positioned convex sets.

Proof. Geodesic balls with radii smaller than the injectivity radius of the center
and Margulis tubes are compact convex subsets, so they are well-positioned. The
lifts of a cusp neighbourhood D in M are horoballs whose boundaries are smooth.
Since M is geometrically finite, all parabolic fixed points are bounded. Hence,
the intersection of @D with the convex core is compact. Thus, �±

@D has compact
support and D is well-positioned.

Suppose that (Mk = H
n/�k)k2N is a sequence of hyperbolic manifolds that

converges strongly to a geometrically finite hyperbolic manifold M = H
n/�.

We say that well-positioned convex sets Dk ⇢ Mk strongly converge to a well-
positioned convex set D ⇢ M if

1. the boundary @Dk converges strongly to @D, or equivalently, the lifts of
'�1

k (@Dk) converge smoothly in compact sets to lifts of @D, where 'k :
Uk ! Mk are the smooth maps in the definition of strong convergence of
(Mk)k2N,

2. ⇡̄(supp(�±

@Dk
)) is contained in 'k

�
N1(⇡̄(supp(�

±

@D)))
�
for large k, where

⇡̄ : T 1M ! M and N1 denotes the 1-neighborhood.

Example 2.12. Let (Mk = H
n/�k)k2N be a sequence of hyperbolic manifolds

that converges strongly to a geometrically finite hyperbolic manifold M = H
n/�.

1. Suppose that (xk)k2N is a sequence of points in Mk that converges to x 2

M . The geodesic balls around the xk with radius r converge strongly to the
12



geodesic ball of x with the same radius, where r is smaller than the injectivity

radius of x.
2. Given 0 < ✏ < ✏(n,), the thin parts M<✏

k converge strongly to the thin part

M<✏
.

3. Convergence of small eigenvalues

In this section, we study the convergence of small eigenvalues and prove the
uniform spectral gap for strongly convergent sequences of geometrically finite
n-manifolds of negatively pinched curvature �2  K  �1.

Proposition 3.1. Let M be a geometrically finite Riemannian n-manifold of

pinched sectional curvature �2  K  �1 and let ✏ = ✏(n,) > 0 be the Margulis

constant. Given µ < (n� 1)2/4, there exists a su�ciently large constant r(µ) =
r > 0 and some constant ⌘(µ, r) = ⌘ > 0, so that if f 2 H1(M) with R(f)  µ,

then
R
B2r(C(M)>✏)

|f |2 � ⌘
R
M |f |2. Moreover, one can take ⌘ !

✓
1� 4µ

(n�1)2

◆
as

r ! +1.

Proof. Since C1

0
(M) is dense inH1(M), we can assume without loss of generality

that f is compactly supported with
R
M f2 = 1.

Observe that we can find C1 functions g, h : R ! [0, 1] so that

• g2(x) + h2(x) = 1 for any x 2 R,
• supp(g) ✓ (�1, 1], supp(h) ✓ (0,+1].

Given a positive constant r > 0, we define u := ur(x),↵ := ↵r(x) 2 C1
0
(M)

satisfying the following properties, by using scalings of g, h along equidistant sets
to @C(M):

1. 0  u,↵  1
2. supp(u) ✓ B2r(C(M))
3. supp(↵) ✓ int(Bc

r(C(M)))
4. u2 + ↵2

⌘ 1
5. |ru|, |r↵|  C

r everywhere in M , for some constant C independent of r and
M .

Similarly, for the thick-thin decomposition of M we define functions v :=
vr(x),� := �r(x) 2 C1

0
(M) along equidistant sets to @M>✏ satisfying the

following properties

1. 0  v,�  1
2. supp(v) ✓ B2r(M>✏)
3. supp(�) ✓ int(Bc

r(M
>✏))

4. v2 + �2
⌘ 1

5. |rv|, |r�|  C
r everywhere in M , for some constant C independent of r and

M .

Define then f1 := uvf, f2 := u�f, f3 := ↵f which are in C1
0
(M). By the

definitions of u,↵, v,� we have
13



1. supp(f1) ✓ B2r(M>✏
\ C(M))

2. supp(f2) ✓ Bc
r(M

>✏)
3. supp(f3) ✓ Bc

r(C(M))
4. f2

1
+ f2

2
+ f2

3
= f2.

We can expand R(f1) as

R(f1) =

✓Z

M
f2

|r(uv)|2 + 2uvfhr(uv),rfi+ u2v2|rf |2
◆�✓Z

M
u2v2f2

◆
.

Since r(uv) = urv+vru then it follows that |r(uv)|  2C
r , and subsequently

Z

M
f2

|r(uv)|2 
4C2

r2
.

By Cauchy-Schwarz, we also have that

����
Z

M
2uvfhr(uv),rfi

����  2

Z

M
|hfr(uv),rfi| 

4C

r

p
R(f).

Collecting these inequalities and defining a :=
R
M f2

1
for convenience, we arrive

to

R(f1) 

✓
4C2

r2
+

4C

r

p
R(f) +

Z

M
u2v2|rf |2

◆�
a. (2)

Similarly, define b :=
R
M f2

2
, c :=

R
M f2

3
. Then

R(f2) 

✓
4C2

r2
+

4C

r

p
R(f) +

Z

M
u2�2

|rf |2
◆�

b, (3)

R(f3) 

✓
4C2

r2
+

4C

r

p
R(f) +

Z

M
↵2

|rf |2
◆�

c. (4)

By doing a(2) + b(3) + c(4) we obtain

aR(f1) + bR(f2) + cR(f3) 

✓
12C2

r2
+

12C

r

p
R(f) +

Z

M
(u2v2 + u2�2 + ↵2)|rf |2

◆

=

✓
12C2

r2
+

12C

r

p
R(f) +

Z

M
|rf |2

◆



✓
12C2

r2
+

12C

r

p
µ+ µ

◆
.

(5)
Since supp(f2) ✓ int(Bc

r(M
>✏)), supp(f3) ✓ int(Bc

r(C(M))) we have by Lem-
mas 2.2 and 2.3 (or more precisely, by applying a combination of the Lemmas on

14



each component of M) that R(f2) � (tanh r)2(n� 1)2/4, R(f3) � (tanh r)2(n�

1)2/4. Using these bounds together with the obvious bound aR(f1) � 0 we arrive
to

(b+ c)
(tanh r)2(n� 1)2

4


12C2

r2
+

12C

r

p
µ+ µ,

(b+ c) 
4

(tanh r)2(n� 1)2

✓
12C2

r2
+

12C

r

p
µ+ µ

◆
.

By the fact that a+ b+ c = 1 we obtain

a �
4

(tanh r)2(n� 1)2

✓
(tanh r)2(n� 1)2

4
�

12C2

r2
�

12C

r

p
µ� µ

◆
.

The result follows from observing that for the left-hand side we haveR
B2r(M>✏\C(M))

f2
� a, whereas the right hand side depends only on µ, r and

converges to 1� 4µ
(n�1)2

> 0 as r ! +1.

Now we use Proposition 3.1 to take limits of eigenfunctions with small eigen-
values along a strongly convergent sequence of manifolds with negatively pinched
curvature.

Lemma 3.2. Suppose that (Mk)k2N is a sequence of n-manifolds of pinched

curvature �2  K  �1 that converges strongly to a (possibly disconnected)

geometrically finite n-manifold M . Let µ < (n� 1)2/4 and for each Mk, let fk be

an eigenfunction of the negative Laplacian so that R(fk)  µ and
R
Mk

|fk|2 = 1.
Then, after possibly taking a subsequence, we have that fk converges strongly to

f , a non-zero eigenfunction of the negative Laplacian in M with R(f)  µ.

Proof. By Proposition 3.1 there exist r > 0 and ⌘ > 0 independent of k so thatR
B2r(C(Mk)

>✏)
|fk|2 � ⌘. By elliptic regularity and strong convergence, we have

that the Sobolev norms

kfkkW 2,`(B2r(C(Mk)
>✏))

are uniformly bounded for any given `. By the Rellich-Kondrachov compactness
theorem, we can take a convergent subsequence with limit f in B2r(C(M)>✏) in
any W 2,` norm. Taking r ! +1 and doing a Cantor diagonal argument, we have
that R(f)  µ, ��Mf = R(f)f,

R
M |f |2 � ⌘, which concludes the Lemma.

Recall that Specµ(M) denotes the collection of eigenvalues of the negative
Laplacian on the negatively pinched manifold M which are smaller than µ,
where for convenience we assume that µ < (n � 1)2/4 is not an eigenvalue of
M (this is possible for all µ < (n� 1)2/4 with the exception of finitely many val-
ues). Suppose that (Mk)k2N is a sequence of negatively pinched manifolds which

15



converges strongly to a geometrically finite n-manifold M . Given any small eigen-
value � 2 Specµ(M), we can use the discreteness of small eigenvalues to take
✏ > 0 small enough so that (� � ✏,� + ✏) \ Specµ(M) = {�}. We have then
that (� � ✏,� + ✏) \ Specµ(Mk) is either empty or accumulates to � as k ! 1,
where we desire to prove the later case. Let then m� be the multiplicity of � and
m�,k be the cardinality of (� � ✏,� + ✏) \ Specµ(Mk) (counting multiplicities).
We say Specµ(Mk) converges to Specµ(M), if limk!1 m�,k = m� for any small
eigenvalue � 2 Specµ(M).

Theorem 3.3. Suppose that (Mk)k2N is a sequence of n-manifolds of pinched

curvature �2  K  �1 that converges strongly to a (possibly disconnected) geo-

metrically finite n-manifold M . Then for any given µ < (n�1)2/4 not in Spec(M)
we have that Specµ(Mk) converges (counting multiplicities) to Specµ(M).

Proof. To prove the theorem, we will show the convergence of eigenspaces.
Namely, let Vk, V denote the linear spaces of functions generated by the eigen-
functions with eigenvalues in Specµ(Mk) and Specµ(M), which have a natural
orthogonal decomposition by the eigenspaces of Specµ(Mk) and Specµ(M). We
show that Vk ! V , in the following sense:

1. Any function f 2 V can be obtained as the limit of a strongly convergent
sequence (fk 2 Vk)k2N.

2. Any sequence of families (fl,k ⇢ Vk)k2N of orthonormal functions in
Mk converges strongly (after possibly taking a subsequence) to a linearly
independent family of functions in M .

Item (1) implies that lim infk!1 m�,k � m�, and Item (2) implies that
lim supk!1

m�,k  m�. Thus, it su�ces to prove the convergence of eigenspaces.
We first show item (2). Suppose that f1,k, . . . fl,k are orthonormal eigenfunctions
of Mk. By Lemma 3.2 we can assume they converge in compact sets to f1, . . . , fl.
If the functions f1, . . . , fl are not linearly independent in L2(M), there exist
real numbers ↵1, . . . ,↵l not all vanishing so that ↵1f1 + . . . + ↵lfl ⌘ 0. Hence,
gk = ↵1f1,k+. . .+↵lfl,k are functions in H1(Mk) with norm

p
↵2
1
+ . . .+ ↵2

k 6= 0.
We can normalize kgkkL2(M) = 1 so that R(gk)  µ, and since the limit of gk in
compact sets is not identically zero from Proposition 3.1, we have a contradiction.

Now we prove Item (1). Assume that not all functions in V are obtained as
limits of functions in Vk. Let V 0 be the proper maximal space in V , consisting
of functions that can be obtained as limits. Assume that there exists an eigen-
function f of M with eigenvalue �, such that f is orthogonal to V 0. Approximate
f in H1(M) by a compactly supported function f0, which is normalized so thatR
M |f0|2 = 1 and R(f0) is close to �. It follows that

R
M f0g =

R
M (f0 � f)g can

be taken uniformly small for all g 2 V 0 with
R
M |g|2 = 1. Let fk

0
be the pullback

of f0 in Mk by the maps 'k,i from the definition of strong convergence. Then for
su�ciently large k we have that (after identifying the compact cores)

R
Mk

fk
0
gk

can be also taken uniformly small for any gk 2 Vk with
R
Mk

|gk|2 = 1 by Propo-

sition 3.1. For large k we also have that in Mk the Rayleigh quotient R(fk
0
) is

close to �. Denote then by f0,k the projection of fk
0
perpendicular to Vk. Then

R(f0,k) is also very close to � for su�ciently large k. Hence, this contributes to
16



an eigenfunction in Mk which does not belong to Vk. However, by construction,
Vk is the linear space of functions generated by eigenfunctions with eigenvalues
in Specµ(Mk), which gives a contradiction. Therefore, any function f 2 V can
be obtained as the limit of a strongly convergent sequence (fk 2 Vk).

Recall that the Lax-Phillips spectral gap s1 = min{�1(M), (n�1)2/4}��0(M)
for a hyperbolic manifold M = H

n/�. We obtain the following convergence result
of spectral gap for strongly convergent sequences of hyperbolic manifolds.

Theorem 3.4. Suppose that (Mk = Isom(Hn)/�k)k2N is a sequence of hyperbolic

manifolds which converges strongly to a geometrically finite hyperbolic manifold

M = H
n/�. Then the sequence of Lax-Phillips spectral gaps s1(Mk) converges to

s1(M).

Proof. By [McM99, Theorem 1.5] and Theorem 2.4 we have that
limk!1 �0(Mk) = �0(M). By Theorem 3.3, if �1(M) � (n � 1)2/4, then
lim inf �1(Mk) � (n� 1)2/4 for su�ciently large k, or if �1(M) < (n� 1)2/4, we
have that limk!1 �1(Mk) = �1(M) > �0(M) for su�ciently large k. In either
case, the convergence of s1(Mk) to s1(M) follows.

Proof of Theorem 1.1: The proof follows from Theorem 3.3 and Theorem 3.4.

4. Uniform convergence of measures

In this section, we prove convergence for skinning measures and the Bowen-
Margulis measure under strong convergence. We assume that M is a hyperbolic
n-manifold, and by M<✏ we denote the ✏-thin part of M for a constant ✏
smaller than the n-dimensional Margulis constant. We first prove that the
Bowen-Margulis measure of the thin part is (uniformly) relatively small.

Proposition 4.1. Suppose (Mk = H
n/�k)k2N is a sequence of hyperbolic man-

ifolds that strongly converges to a geometrically finite hyperbolic manifold M =
H

n/� with �(�) > (n�1)/2. Let mk
BM

,mBM be the Bowen-Margulis measures on

T 1Mk and T 1M , respectively. Then for any ↵ > 0 there exist ✏ > 0 and N > 0
so that for ✏0 < ✏ and k > N we have that

Z

T 1M<✏0
k

dmk
BM

< ↵.

Proof. This follows Dalbo-Otal-Peigne’s proof [DOP00] on the finiteness of mBM.
We first let ✏ > 0 be a constant which is smaller than the shortest geodesic in M .
Take a fundamental domain F for the convex core of M in the universal cover
H

n, and divide F as the thin part F<✏ (i.e., the intersection of F with the thin
part of M) and the thick part F>✏. Consider a component D of F<✏, which must
be a cuspidal component. Suppose that H is the corresponding horoball based at
the parabolic fixed point ⇠, so that D is a fundamental domain for the parabolic
subgroup P < ⇡1(M) that preserves H.
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As detailed in [DOP00, page 118] we can bound m̃BM in D by

m̃BM(T 1D) 
X

p2P

Z

D⇥pD
cµ(d⌘�d⌘+)

Z

(⌘�⌘+)\H

dt,

where cµ(d⌘�d⌘+) = e�2�(�)(⌘�|⌘+)xdµx(⌘�)dµx(⌘+) for a given point x 2 H
n

and D ✓ @1H
n
\{⇠} is a compact set such that {pD}p2P covers ⇤(M)\{⇠}. The

existence of the compact set D is ensured by the assumption that M is geomet-
rically finite, hence the parabolic fixed point ⇠ is bounded [Bow93]. Now, let Pk

be the elementary group in Mk that converges to P, which is either parabolic or
loxodromic. We discuss the proof that when the groups Pk are loxodromic. The
argument for parabolic subgroups is similar.

Let Hk be a neighborhood of the geodesic ⇠�k ⇠
+

k preserved by Pk so that
Hk ! H, ⇠±k ! ⇠. Since Mk converges to M strongly, by [McM99] we can take
D large enough so that {pD}p2Pk

covers ⇤(Mk) \ {⇠
�

k , ⇠+k }. Hence it follows that

mk
BM

(T 1(Hk/Pk)) 
X

p2Pk

Z

D⇥pD
cµk(d⌘

�d⌘+)

Z

(⌘�⌘+)\Hk

dt.

Assume without loss of generality that we can take a common point x 2 Hk,H.
There exist compact setK ⇢ H

n and open neighbourhood V ✓ H
n of ⇠ so that for

k large, if the (oriented) geodesic ⌘�⌘+ with ⌘� 2 D\⇤(�k) and ⌘+ 2 pD\⇤(�k)
intersects Hk, then the point of entry belongs to K\@Hk and p�1x belongs to V .
In particular such geodesic ⌘�⌘+ verifies 0  (⌘�|⌘+)x  diam(K). Moreover, we
have that |

R
(⌘�⌘+)\Hk

dt� d(x, px)| < 2diam(K). Hence there exists a constant

C > 0 depending only on diam(K) so that

mk
BM

(T 1(Hk/Pk))  C

0

@
X

p2P
0
k

µk
x(D)µk

x(pD)(d(x, px) + C)

1

A ,

where µk
x denotes the Patterson-Sullivan measure on Mk and P

0

k is the subset
of {p 2 Pk | p�1x 2 V } so that the summand

R
D⇥pD cµk(d⌘

�d⌘+)
R
(⌘�⌘+)\Hk

dt is
non-zero.

Recall that

µk
x(pD) =

Z

D

e��(�k)B⌘(p
�1x,x)µk

x(d⌘),

so we would like to estimate B⌘(p�1x, x). Observe that as Hk is preserve by Pk,
we have that if ⌘�⌘+ is a geodesic with ⌘� 2 D \ ⇤(�k) and ⌘+ 2 pD \ ⇤(�k)
that intersects Hk, then the exit point of ⌘�⌘+ from Hk belongs to pK \ @Hk.
By triangular inequality we have that under such conditions |

R
(⌘�⌘+)\Hk

dt �

B⌘(x, px)| < 2diam(K). Hence for p 2 P
0

k have |B⌘(p�1x, x) � d(p�1x, x)| 
4diam(K). Combining this with our previous inequality (and making the domain
of the sum bigger if necessary) we get
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mk
BM

(T 1(Hk/Pk))  C

0

@
X

p2Pk,p�1x2V

(µk
x(D))2e��(�k)d(p

�1x,x)(d(x, px) + C)

1

A .

for some C > 0 independent of ✏ and k.
We claim that the above discussion holds for smaller ✏ corresponding to a

smaller neighborhood V (✏) for the same basepoint x. Consider a smaller thin part
corresponding to ✏0 < ✏. The sets Hk,K vary with ✏0, although it is clear that
Hk(✏0) ⇢ Hk(✏) and diam(K(✏0)) < diam(K(✏)). Hence after taking a basepoint
y 2 K(✏0) we have

mk
BM

(T 1(Hk(✏
0)/Pk))  C

0

@
X

p2Pk,p�1y2V (✏0)

(µk
y(D))2e��(�k)d(p

�1y,y)(d(y, py) + C)

1

A

for a constant C > 0 independent of ✏0 and k.
The neighborhood V (✏0) is smaller and smaller as ✏0 ! 0, as if ⌘�⌘+ intersects

Hk(✏0) then it has to intersect Hk(✏). Then for the p summands considered for ✏0

we have

d(y, py)  d(x, px) + C 0, µk
y(D)  C 0e��(�k)d(x,y)µk

x(D)

for C 0 constant independent of ✏0 and k. We always have the bound d(y, py) �

d(x, px)� 2d(x, y) by triangular inequality and the fact that p is an isometry.
Putting altogether, we have that

mk
BM

(T 1(Hk(✏
0)/Pk))  C 00(µk

x(D))2

0

@
X

p2Pk,p�1x2V (✏0)

e��(�k)d(p
�1x,x)(d(x, px) + C 00)

1

A

(6)
for a constant C 00 > 0 independent of ✏0 and k. Recall that when �(�k) is
strictly bigger than (n � 1)/2, by [McM99, Theorem 6.1], the tails of the seriesP

p2Pk
e��(�k)d(p

�1x,x) are uniformly small. Specifically, for any ⌘ > 0 there exists
a neighborhood U ⇢ H

n of ⇠ so that

X

p2Pk, px⇢U

e��(�k)d(p
�1x,x) < ⌘,

for k su�ciently large. We also have that the tails of the seriesP
p2Pk

e��(�k)d(p
�1x,x)(d(x, px) + C 00) are uniformly small, as d(x, px) is uni-

formly dominated by ecd(p
�1x,x) for any c > 0. Hence by taking ✏0 su�ciently

small, the right hand side of (6) corresponds to a smaller tail of the seriesP
p2Pk

e��(�k)d(p
�1x,x)(d(x, px)+C 00). Thus, by applying [McM99, Theorem 6.2]
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for the sequence of exponents �(�k)� c, the right hand side of will be arbitrarily
small for ✏0 su�ciently small and k su�ciently large.

Next we use Proposition 4.1 to prove the convergence of the Bowen-Margulis
measures. The following proposition is a restatement of Proposition 1.6.

Proposition 4.2. Suppose that (Mk = H
n/�k)k2N is a sequence of hyper-

bolic manifolds which is strongly convergent to a geometrically finite hyperbolic

manifold M = H
n/� with �(�) > (n � 1)/2. Let mk

BM
,mBM be the Bowen-

Margulis measures on T 1Mk and T 1M , respectively. For r > 0 we denote by

M<r
k ⇢ Mk,M<r

⇢ M the set of points with injectivity radius less than r. Then

for any r > 0 we have

lim
k!1

Z

T 1M<r

k

dmk
BM

!

Z

T 1M<r

dmBM.

Moreover, by taking r su�ciently large we have that

kmk
BM

k ! kmBMk.

Proof. Denote Ma,b = M>a
\M<b. Take U1, . . . Um ⇢ M balls with compact clo-

sure, whose union covers C(M)✏,r = C(M) \M ✏,r. Take '̄1, . . . , '̄m partition of
unity subordinated to U1, . . . Um, in the sense that '̄ =

Pm
i=1

'̄i has support con-
tained in M ✏�⌘,r+⌘ and is identically equal to 1 in C(M)✏,r, for some arbitrarily
small ⌘ > 0. Let Ũi be a lift of Ui in H

n such that the union covers a fundamen-
tal domain of M . We denote 'i a compactly supported function subordinated to
Ũi such that 'i = '̄i � Proj.

Then since the Patterson-Sullivan measures µk
x0

converge weakly to
µx0 , the critical exponents �k = �(�k) converge to � = �(�),
and we can express the Bowen-Margulis measures as dm̃k

BM
(v) =

e��k(�v� (⇡(v),x0)+�v+ (⇡(v),x0))dµk
x0
(v�)dµk

x0
(v+)dt, then for k su�ciently large we

have

����
Z

T 1Ũi

'idm̃
k
BM

�

Z

T 1Ũi

'idm̃BM

���� < ↵, (7)

for some small ↵ > 0.
By Proposition 4.1 we have that

R
T 1M<✏

k

dmk
BM

,
R
T 1M<✏ dmBM < ↵, and by

construction we have that

����
Z

T 1M<r

dmBM �

mX

i=1

Z

T 1Ũi

'idm̃BM

���� <
Z

T 1M<✏

dmBM +

Z

T 1Mr,r+⌘

dmBM. (8)

Now, since Mk converges strongly to M , for k large we have thatPm
i=1

R
T 1Ũi

'idm̃k
BM

is bounded between (1 � ↵)
R
T 1M✏+⌘,r�⌘

k

dmk
BM

and (1 +

↵)
R
T 1M✏�⌘,r+⌘

k

dmk
BM

. Hence
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����
Z

T 1M<r

k

dmk
BM

�

mX

i=1

Z

T 1Ũi

'idm̃
k
BM

���� <
Z

T 1M<✏

k

dmk
BM

+↵

Z

T 1M✏,r

k

dmk
BM

+

Z

T 1Mr,r+⌘

k

dmk
BM

.

(9)
By a similar partition of unity argument, we can show that for any 0 < a < b

there exists ⌘0 > 0 su�ciently small so that for any k � 1 su�ciently large we
have that

Z

T 1Ma,b

k

dmk
BM

< 2

Z

T 1Ma�⌘0,b+⌘0

dmBM. (10)

Finally, we have to see that the function (a, b) 7!
R
T 1Ma,b dmk

BM
is con-

tinuous. Because of monotonicity this reduces to prove that for any r > 0,R
T 1@M<r dmk

BM
= 0. Indeed, the lift @M̃<r

✓ H
n is contained the union of tubes

around closed geodesics of length  r (considering parabolic cusps correspond-
ing to 0 length geodesics). For core geodesics of length strictly less than r, these
tubes are strictly convex and hence the boundaries intersect any geodesic in a
discrete set. If we happen to have a geodesic of length r, then the intersection
of @M̃<r with any geodesic is a discrete set, unless the geodesic is equal to the
geodesic axis. In either case, the set @M̃<r

✓ H
n has zero measure for the Bowen-

Margulis measure dm̃BM(v) = e�2�(v�|v+)x0dµx0(v�)dµx0(v+)dt, as for almost
every geodesic line ` the intersection @M̃<r

\ ` has length 0.
Applying the triangular inequality, replacing equations (7), (8), (9), and then

using Proposition 4.1, (10) (for su�ciently large k and ⌘ su�ciently small) we
have that

����
Z

T 1M<r

k

dmk
BM

�

Z

T 1M<r

dmBM

���� <
����
Z

T 1M<r

k

dmk
BM

�

mX

i=1

Z

T 1Ũi

'idm̃
k
BM

����

+
mX

i=1

����
Z

T 1Ũi

'idm̃
k
BM

�

Z

T 1Ũi

'idm̃BM

����

+

����
Z

T 1M<r

dmBM �

mX

i=1

Z

T 1Ũi

'idm̃BM

����

<

Z

T 1M<✏

k

dmk
BM

+ ↵

Z

T 1M✏,r

k

dmk
BM

+

Z

T 1Mr,r+⌘

k

dmk
BM

+m↵+

Z

T 1M<✏

dmBM +

Z

T 1Mr,r+⌘

dmBM

< (m+ 2)↵+ 2↵

Z

T 1M<r+⌘

dmBM + 3

Z

T 1Mr�⌘,r+2⌘

dmBM

(11)
which goes to 0 as k ! +1, and ↵, ⌘ ! 0.
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The last part of the section is to prove the convergence of skinning measures.

Proof of Corollary 1.8: Observe that since we have strong convergence for well-
positioned convex sets Dk ! D, we can take lifts fDk, D̃ ⇢ H

n and compact sets
Ek ⇢ @fDk, E ⇢ @D̃ so that Ek, E are fundamental domains for the support of
�±

@Dk
,�±

@D (respectively) and Ek converges strongly to E. We can further assume
there exists a set F ⇢ S

n�1 so that PDk
(F ), PD(F ) cover Ek and E (respectively)

on its interior, see (1) for the definition of the maps PDk
and PD. Under this

assumptions we have

k�±

@Dk
k  �̃±

fDk

(PDk
(F )) ! �̃±

D̃
(PD(F )).

Reducing the set F so that �̃±

fDk

(PDk
(F ) \Ek), �̃

±

D̃
(PD(F ) \E) are arbitrarily

small, we then have

k�±

@Dk
k = �̃±

fDk

(Ek) ! �̃±

D̃
(E) = k�±

@Dk,

which proves the first statement
The relative result for subsets ⌦k,⌦ is proved by taking the fundamental

domains E0

k ⇢ @fDk, E0
⇢ @D̃ for the support of �±

@⌦k
,�±

@⌦ (respectively) and
arguing as above.

5. Application: uniform orthogeodesic counting

In this section, we use the results of uniform spectral gap and convergence of
the Bowen-Margulis and skinning measures in Section 3 and Section 4 to prove
Theorem 1.3. Suppose thatD+, D� are well-positioned convex subsets of a hyper-
bolic manifold M = H

n/�. A common perpendicular from D� to D+ is a locally
geodesic path in M which starts perpendicularly from D� and arrives perpen-
dicularly to D+. For any t � 0, let ND�,D+(t) be the cardinality of the set of
common perpendiculars from D� to D+ with length at most t.

As before, (Mk = H
n/�k)k2N is a sequence of hyperbolic manifolds which

converges strongly to a geometrically finite manifold M = H
n/�, so that we have

well-positioned convex subsets D±

k ⇢ Mk that strongly converge to D±
⇢ M .

Before the proof, we need to introduce the following notations.
Given v 2 T 1

H
n, the strong stable/unstable manifold is defined as

W±(v) = {v0 2 T 1
H

n : d(v(t), v0(t)) ! 0 as t ! ±1},

which is equipped with Hamenstädt’s distance function dW±(v), see [Ham89,
PP17]. Then given any constant r > 0, for all v 2 T 1

H
n, we can define the

open ball of radius r centered at v in the strong stable/unstable manifold in the
following

B±(v, r) = {v0 2 W±(v) : dW±(v)(v, v
0) < r}.
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Given any v 2 T 1
H

n, and ⌘, ⌘0 > 0, let

V ±

v,⌘,⌘0 =
[

s2[�⌘,⌘]

gsB±(v, ⌘0).

Given a proper closed convex subset D of Hn, for all subsets ⌦� of @1
+
D and ⌦+

of @1
�
D, let

V⌘,⌘0(⌦
±) =

[

v2⌦±

V ⌥

v,⌘,⌘0 .

By using the projection map ⇡ : T 1
H

n
! H

n, the strong stable/unstable
manifold W±(v) projects to the stable/unstable horosphere of v centered at v+
and v�, denoted by H±(v) = ⇡(W±(v)). The corresponding horoball bounded by
H±(v) is denoted by HB±(v). Following the notation in [PP17], we let

µW+(v) = �̃�

HB+(v) and µW�(v) = �̃+

HB�(v)

denote the skinning measures on the strong stable/unstable manifolds W±(v).

Definition 5.1. Given a discrete isometry subgroup � < Isom(Hn), we say

(Hn,�) has radius-continuous strong stable/unstable ball masses if, for every

✏ > 0, and r � 1 close enough to 1,

µW±(v)(B
±(v, r))  e✏µW±(v)(B

±(v, 1)),

for all v 2 T 1
H

n
where B±(v, 1) meets the support of µW±(v).

The following proposition proves that the radius-continuous property of the
strong stable/unstable ball masses can be taken uniformly along a strongly
convergent sequence of geometrically finite hyperbolic manifolds.

Proposition 5.2. Suppose (Mk = H
n/�k)k2N is a sequence of hyperbolic mani-

folds which strongly converges to a geometrically finite hyperbolic manifold M =
H

n/� with �(�) > (n� 1)/2. Let (Dk ✓ Mk)k2N be a sequence of well-positioned

convex subsets in Mk which strongly converges to a well-positioned convex subset

D, with lifts to H
n
denoted by fDk, eD, respectively. Let ⌦⌥

k ✓ @1
±
fDk, ⌦⌥

✓ @1
±
eD be

compact sets so that ⌦⌥

k converges strongly to ⌦⌥
. Then there exists su�ciently

large R > 0 so that for any ✏ we have ⌘ = ⌘(✏, R) > 0 satisfying that

µk
W±(v)(B

±(v, (1 + r)R))  e✏µk
W±(v)(B

±(v,R))

for any v 2 ⌦⌥

k , 0 < r < ⌘.

Proof. Let’s prove that case for ⌦+, and the proof for ⌦� is similar. As done in
the proof of [Rob03, Proposition 6.2] (using [Rob00, Section 3.1]), the function
(v,R) 7! µW±(v)(B

±(v,R)) is continuous for v 2 T 1
H

n, R > 0, as well as �-
invariant. Moreover, since ⌦+ is compact, there exists R > 0 su�ciently large
so that the function v 7! µW�(v)(B

�(v,R)) is a uniformly continuous positive
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function in some neighborhood of ⌦�. It su�ces then to prove the statement for
su�ciently large k.

Denote by A(v,R, r) = B�(v, (1 + r)R) \ B�(v,R) ⇢ W�(v) the annulus in
W�(v) with center v between radius R, (1 + r)R. We will show that there exists
m > 0 and function ⌘(✏) > 0 so that for k large, v 2 V⌘,⌘(⌦+) and 0 < r < ⌘ the
following two statements hold

1. µk
W�(v)(B

�(v,R)) � m,

2. µk
W�(v)(A(v,R, r)) < ✏.

Then it is clear that the statement follows from (1) and (2) by making ✏ arbitrarily
small. Now we prove items (1) and (2) respectively.

1. For a vector u 2 T 1
H

n, we define a function Pu : W�(u) ! @1H
n where

Pu(v) is the endpoint of the bi-infinite geodesic u�⇡(v) di↵erent from u� as
shown in Figure 5.1. Since V⌘,⌘(⌦+) has compact closure, we can take finitely
many vi 2 V⌘,⌘(⌦+) so that for any u 2 V⌘,⌘(⌦+), there exists vi such that

P�1

u Pvi
(B�(vi, R/2)) ✓ B�(u,R).

Moreover, we can assume that the conformal factor between µk
W�(vi)

and

µk
W�(u) at the sets B�(vi, R/2), P�1

u Pvi(B
�(vi, R/2)) is between 1/2 and

2. This can be done uniformly for all k by following [Rob03, Subsection
1.H]. By taking ⌘ small we can assume that µW�(vi)(B

�(vi, R/2)) > 2m for
some fixed m > 0 and for any vi 2 V⌘,⌘(⌦+). Then by weak-convergence of
measures, we have that for any vi (and large k) µk

W�(vi)
(B�(vi, R/2)) > 2m.

Then it follows that

µk
W�(u)(B

�(u,R)) � µk
W�(u)(P

�1

u Pvi(B
�(vi, R/2))) �

1

2
µk
W�(vi)

(B�(vi, R/2)) > m.

2. Since V⌘,⌘(⌦+) has compact closure and �(�) > (n � 1)/2, given ✏ > 0
we can take ⌘ small enough so that for v 2 V⌘,⌘(⌦+) we have that
µW�(v)(A(v,R, 5⌘)) < ✏. We will take again a finite collection of vectors
vi, although now they need to satisfy the following list of properties.

• The finite collection of vi is taken so that B�(vi, 4⌘) ⇢ A(v,R, 5⌘) for
some v 2 V⌘,⌘(⌦+). Denote their total number by C2,

• For any v 2 V⌘,⌘(⌦+) and any B�(u, 2⌘) ⇢ A(v,R, 5⌘) we have that

P�1

u Pvi
(B�(vi, 4⌘)) ◆ B�(u, 2⌘)

with conformal factor bounded between 1

2
and 2.

Take su�ciently large k so that µk
W�(vi)

(B�(vi, 4⌘)) 

µW�(vi)(B
�(vi, 4⌘)) + ⇣ for ⇣ small still to be determined.

Let v 2 V⌘,⌘(⌦+). Cover A(v,R, ⌘) by finitely many disjoint measurable
setsBj , so that eachBj is contained in a ballB�(uj , 2⌘) inside of A(v,R, 5⌘).
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Figure 5.1. .

Then by the second bullet point, for each uj we choose vi so that

P�1

uj
Pvi(B

�(vi, 4⌘)) ◆ B�(uj , 2⌘).

Observe that each vi can only be repeatedly selected less than C3 times,
for some constant C3 depending only on the dimension n. Then we have
the following chain of inequalities, which follow from the covering {Bj} of
A(v,R, r), the inclusion P�1

uj
Pvi(B

�(vi, 4⌘)) ◆ B�(uj , 2⌘) ◆ Bj , the bound

on the conformal factor of P�1
u Pvi

, the convergence µk
W�(v) ! µW�(v), the

inclusion B�(vi, 4⌘) ⇢ A(v,R, 5⌘), and the bound on the cardinality of the
finite set of vi’s.

µk
W�(v)(A(v,R, r)) 

X

j

µk
W�(v)(Bj)  C3

X

i

µk
W�(v)(P

�1

uj
Pvi(B

�(vi, 4⌘)))

 2C3

X

i

µk
W�(v)(B

�(vi, 4⌘))  2C3

X

i

�
µW�(v)(B

�(vi, 4⌘)) + ⇣
�

 4C3

X

i

�
µW�(v)(A(v,R, 5⌘)) + ⇣

�
 4C2C3(✏+ ⇣)

(12)
which is arbitrarily small for ⌘ small and k large.

Now we state and sketch the general uniform orthogeodesic counting for con-
vergent sequences of convex sets in strongly convergent hyperbolic n-manifolds.
For a thorough presentation, we refer the reader to Theorem 5.5 in the Appendix.

Theorem 5.3. Suppose that (Mk = H
n/�k)k2N is a sequence of hyperbolic

manifolds which strongly converges to a geometrically finite hyperbolic manifold

M = H
n/� with �(�) > (n� 1)/2. Let (D±

k )k2N be a sequence of well-positioned

convex subsets in Mk which converges strongly to a well-positioned convex subset

D±
in M , respectively. Then we can count ND�

k
,D+

k

(t) uniformly, in the sense
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that

ND�
k
,D+

k

(t) ⇡
||�+

D�
k

|| · ||��

D+
k

||

�(�k)||mk
BM

||
e�(�k)t

up to a multiplicative error uniformly close to 1 along the sequence as t gets larger,
and with ||�⌥

D±
k

||, ||mk
BM

||, �(�k) converging to ||�±

D⌥ ||, ||mBM||, �(�), respectively.

In particular, for n = 3, there exist constants A > 0, 0 < b < 2 so that

ND�
k
,D+

k

(t)  Aebt

Proof. There is an explicit counting formula of ND�,D+(t) for orthogeodesic arcs
between two convex sets D± given in [PP17, Theorem 3]:

ND�,D+(t) =
||�+

D� || · ||�
�

D+ ||

�||mBM||
e�(�)t(1 +O(e�t)).

This formula holds under the assumption that (Hn,�) has radius-continuous
strong stable/unstable masses. The constantO(·) and the parameter  depends on
�, the convex sets D±, the speed of mixing, and the property of radius-continuous
strong stable/unstable masses.

By Proposition 4.2 and Corollary 1.8, the Bowen-Margulis measure and the
skinning measures converge to the ones of the limit manifold M weakly. The crit-
ical exponent �(�k) converges to �(�) [McM99, Theorem 1.5]. The convergence
of the speed of mixing is controlled by the spectral gap [EO21]. Hence this quan-
tity also converges to the one of the limit manifold by Theorem 1.1. Therefore, it
su�ces to prove the sequence �k and the limit � have uniform radius-continuous
strong stable/unstable ball masses property, which follows from Proposition 5.2.

Remark 5.4. Careful readers might notice that [PP17, Theorem 3] has

the assumption that the manifold has radius-Hölder-continuous strong sta-
ble/unstable ball masses, which is not satisfied by the strongly convergent sequence

of hyperbolic manifolds Mk and the limit manifold M . However, this assump-

tion can be replaced by the property of radius-continuous strong stable/unstable

masses [PP17, Lemma 11], and the uniform radius-continuity su�ces to control

the error term in our setting. We write down the details about the replacement

in the Appendix for readers’ convenience, and most of the arguments follow from

[PP17].

Proof of Theorem 1.3: By Example 2.12, connected components D±

k in the
thin part ofMk are well-positioned convex sets that are strongly convergent to the
well-positioned convex sets D± (respectively). By Theorem 5.3, there is a uniform
counting formula for orthogeodesics between D�

k to D+

k along the sequence. This
proves item (1). Similarly, for small r > 0, the radius r embedded balls centered
at xk are well-positioned convex subsets which are strongly convergent to the
embedded r-ball centered at x. In that case, let D+

k = D�

k be the radius r ball
at xk, and D+ = D� be the radius r ball at x. Observe that if we change the
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radius r > 0 to a radius s > 0, s < r we have a one-to-one correspondence
between the set of orthogeodesics by extending/shortening the geodesic arcs.
Such correspondence takes an orthogeodesic of length ` to its extension of length
`+2(r�s). Hence applying Theorem 5.3 again and making s arbitrarily small (or
equivalently, translating by 2r the counting function for the balls of radius r), we
obtain the uniform counting for geodesic loops based at xk along the sequence.

Proof of Corollary 1.5: As explained for instance by Roblin in [Rob03, Chap-
ter 5], one can deduce an asymptotic counting of closed primitive geodesics in
manifolds with negative pinched curvature from the asymptotic counting of orbit
distance (i.e., geodesic loops), which only depends on the geometry of the univer-
sal cover. Namely, if GM (`) is the set of closed primitive geodesics in M of length
less than ` > 0, then [Rob03, Corollary 5.3]

#GM (`) ⇡
e�`

�`
as `! +1.

Combining with the uniform counting of geodesic loops (Theorem 1.3), we
obtain the uniform counting of closed primitive geodesics along a strongly
convergent sequence of hyperbolic manifolds.

Appendix

Let’s start with notations needed in the Appendix. Recall that PD : Hn
[(@1H

n
\

@1D) ! D is the closest point map defined in Section 2.4 for any nonempty
proper closed convex subset D in H

n. Let P+

D denote the inverse of the restriction
to @1

+
D of the positive endpoint map v 7! v+, which is a homeomorphism from

@1H
n
\ @1D to @1

+
D. It is a natural lift of PD such that ⇡ � P+

D = PD on
@1H

n
\ @1D where ⇡ : T 1

H
n
! H

n. Similarly, one can define P�

D = ◆ � P+

D ,
where ◆ : T 1

H
n
! T 1

H
n is the antipodal flip map given by ◆v = �v.

Define

U
±

D = {v 2 T 1
H

n : v± /2 @1D}.

This is an open set in T 1
H

n which is invariant under the geodesic flow and satisfies
the U

±

�D = �U±

D for any � 2 Isom(Hn). Define a fibration f+

D : U+

D ! @1
+
D as the

composition of the positive endpoint map and P+

D . Given w 2 @1
+
D, the fiber of

w for f+

D is the set

W 0+(w) = {v 2 T 1
H

n : v+ = w+}.

Similarly, one can define a fibration f�

D = ◆ � f+

D � ◆ : U�

D ! @1
�
D and the fiber

W 0�(w) = {v 2 T 1
H

n : v� = w�}.
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Suppose that D± are two well-positioned convex subsets in M = H
n/�, and

 ±
2 C1

0
(T 1M) are compactly supported functions. Let

N �, +(t) =
X

�,0<`�t

 �(v�� ) 
+(v+� )

where the sum is taken over all common perpendiculars � between D� and D+

whose initial vector v�� belongs to @1
+
D� and the terminal vector v+� belongs to

@1
�
D+, and the length `�  t.
In order to count orthogeodesics between D� and D+, we can parametrize

the set of orthogeodesics by a quotient of � up to a choice of basepoint. Denote

by gD± the lifts of D± in H
n, and distinguish two components D±

0
⇢ gD±. Then

for each � 2 � we can consider the projection to M of the unique orthogeodesic
between D�

0
and �D+

0
such that the closures of D�

0
and �D+

0
in H

n
[@1H

n have
empty intersection. It is a simple exercise to see that �1, �2 2 � map to the same
orthogeodesic if and only if there exists g± 2 Stab(D±

0
) so that �1 = g��2g+.

Hence we can parametrize orthogeodesic by taking the quotient �/ ⇠:= �/{�1 =
g��2g+, g± 2 Stab(D±

0
)}. Although this labeling depends on the choice of D±

0
,

we will always work once this decision has been made. We use v⌥� 2 @1
±
D⌥ to

denote the unit tangent vector of � at the start/end.

Theorem 5.5. Suppose that (Mk = H
n/�k)k2N is a sequence of hyperbolic

manifolds which strongly converges to a geometrically finite hyperbolic manifold

M = H
n/� with �(�) > (n� 1)/2. Let (D±

k )k2N be a sequence of well-positioned

convex subsets in Mk which strongly converges to D±
in M , respectively. Let as

well ( ±

k 2 C1

0
(T 1Mk))k2N,  ±

2 C1

0
(T 1M) be compactly supported functions

so that  ±

k converges strongly to  ±
, respectively. Then for any ✏ > 0 there exists

t0 = t0(✏), k0 = k0(✏) > 0 so that for any t > t0, k > k0 we have that

�+

D�
k

( �

k ) · �
�

D+
k

( +

k )

�(�k)||mk
BM

||
� ✏ 

N �
k
, +

k

(t)

e�(�k)t


�+

D�
k

( �

k ) · �
�

D+
k

( +

k )

�(�k)||mk
BM

||
+ ✏. (13)

Here �+

D�
k

( �

k ) =
R
@1
+D�

k

 �

k d�
+

k , and �
�

D+
k

( +

k ) is similarly defined.

Proof. Since both terms in (13) are bilinear in  ±

k , we can assume without lose
of generality that, by using a partition of unity, the support of  ±

k is contained in
a small relatively compact open set U±

k in T 1Mk, and there is a small relatively

compact open set gU±

k in T 1
H

n such that the restriction of the quotient map

qk : T 1
H

n
! T 1Mk to gU±

k is a di↵eomorphism to U±

k . Define f ±

k 2 C1

0
(T 1

H)

with support in gU±

k and coinciding with  ±
� qk on gU±

k . Similarly, we can define

a compactly supported function  ̃ 2 C1

0
(T 1

H) corresponding to  . Observe that

we can choose the lifts gU±

k and f ±

k appropriately such that f ±

k converges strongly
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to f ± and Z

@1
±
gD⌥

k

f ⌥

k d�
±

gD⌥
k

=

Z

@1
±D⌥

k

 ⌥

k d�
±

@D⌥
k

,

where gD±

k are lifts ofD±

k . From now on, we will distinguish components of gD±

k . By

abuse of notation we still denote by D±

k a connected component of gD±

k , which we

assume is the only connected component of gD±

k so that the intersection of @1
⌥
D±

k

with gU±

k is non-empty by using partition of unity. Observe that then we can label
other components by �k left action � 7! �D±

k . These labels are redundant (i.e.
label the same set) if and only if ��1

1
�2 belongs to the stabilizer of D±

k .
Take ⌘, R > 0 and k su�ciently large so that the statement of Proposition

5.2 applies for the sequence of convergent precompact subsets (⌦±

k := @1
⌥

gD±

k \

supp(f ±

k ))k2N. We will fix R > 0 from now on, but will keep taking smaller
(independent of k) ⌘. Observe that for small, fixed ⌧ > 0 we have the inclusion

V⌘e�⌧ ,Re�⌧ (⌦±

k ) ⇢ V⌘,R(⌦
±

k )

is precompact in each slice V ±

w,⌘,R, and converges as a whole to V⌘e�⌧ ,Re�⌧ (⌦±) ⇢
V⌘,R(⌦±) in the usual sense. If by A we denote the characteristic function of
a set A, then we can construct smooth functions �±

k 2 C1(T 1
H

n) so that the
following items hold

1. For w 2 ⌦±

k , v 2 W 0⌥(w)

V
⌘e�⌧ ,Re�⌧ (⌦

±
k
)
(v)  �±

k (v)  V⌘,R(⌦
±
k
)
(v).

2. The Sobolev norms k�±

k k� are uniformly bounded (i.e. independent of k),
where � is the Sobolev norm appearing in the statement of [EO21, Theorem
1.1].

3. For any w 2 ⌦±

k we have that

e�✏⌫±w (V ⌥

w,⌘,R) 

Z

V ⌥
w,⌘,R

�±

k d⌫
±

w  ⌫±w (V ⌥

w,⌘,R)

for ✏ > 0 independent of k, where d⌫±w := dsdµW⌥(w).

In order to define the test functions to apply exponential mixing, we start with

the functions H±

k : @1
⌥

gD±

k ! R defined by

H±

k (w) =
1R

V ⌥
w,⌘,R

�±

k d⌫
±
w
.

Let �±

k : T 1
H

n
! R defined by

�±

k = (H±

k
f ±

k ) � f
⌥

D±
k

�±

k .
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By construction, we have that k�±

k k� are uniformly bounded and have support
in V⌘,R(⌦

±

k ). Moreover, �±

k are non-negative, measurable functions satisfying

Z

T 1Hn

�±

k dm̃
k
BM

=

Z

@1
⌥D±

k

 ±

k d�
⌥

k (14)

Following [PP17], we will estimate in two ways the quantity

Ik(T ) :=

Z T

0

e�(�k)t
X

�2�k

Z

T 1Hn

(��

k � g�t/2)(�+

k � gt/2 � ��1)dm̃k
BM

dt (15)

By [EO21, Theorem 1.1] and Theorem 1.1 there exist uniform  > 0, O(.) such
that

Ik(T ) =

Z T

0

e�(�k)t

✓
1

kmk
BM

k

Z

T 1Hn

��

k dm̃
k
BM

Z

T 1Hn

�+

k dm̃
k
BM

+O(e�tk��

k k�k�
+

k k�)

◆
dt

=
e�(�k)T

�(�k)kmk
BM

k

Z

@1
�D�

k

 �d��

k

Z

@1
+D+

k

 +d�+

k +

Z T

0

e�(�k)tO(e�tk��

k k�k�
+

k k�)dt

= e�(�k)T

0

@
�+

D�
k

( �

k ) · �
�

D+
k

( +

k )

�(�k)kmk
BM

k
+ e��(�k)T

Z T

0

e�(�k)tO(e�tk��

k k�k�
+

k k�)dt

1

A

(16)

where we used (14) for the second equality. Observe in the final line that we can

make the error term e��(�k)T
R T
0
e�(�k)tO(e�tk��

k k�k�
+

k k�)dt arbitrarily small
for any T > T0, where T0 su�ciently large and independent of k.

Now we use a second way to compute this integral Ik(T ). Let �k = �(�k). We
interchange the integral over t and the summation over �. Then

Ik(T ) =
X

�2�k

Z T

0

e�kt
Z

T 1Hn

(��

k � g�t/2)(�+

k � gt/2 � ��1)dm̃k
BM

dt.

Suppose that if v 2 T 1
H

n belongs to the support of (��

k �g�t/2)(�+

k �gt/2 ���1),
then

v 2 gt/2V⌘,R(@
1

+
D�

k ) \ g�t/2
V⌘,R(�@

1

�
D+

k ).

Then by [PP17, Lemma 7], which is proved by using hyperbolic geometry in H
n,

we have the following

d(w±

k , v
±

� ) = O(⌘ + e�`�/2) (17)

where w�

k = f+

Dk
(v), w+

k = f�

�D+
k

(v), v±� are endpoints of the common perpendic-

ular between D�

k and �D+

k , and `� is the length of the common perpendicular.
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Since the Lipschitz norm of f ±

k are uniformly bounded, and in particular bounded
by the � Sobolev norm of  ±

k , we have

|
f ±

k (w
±

k )�
f ±

k (v
±

� )| = O((⌘ + e�`�/2)|| ±

k ||�).

If we define �̂±

k = H±

k � f⌥

D±
k

�±

k so that �±

k = (f ±

k � f⌥

D±
k

)�̂±

k , by applying the

previous equation we obtain

Ik(T ) =
X

�2�k

[ ±

k (v
�

� ) 
±

k (v
+

� ) +O((⌘ + e�`�/2)|| �

k ||� || 
+

k ||�)]⇥

Z T

0

e�kt
Z

v2T 1Hn

�̂�

k (g
�t/2v)�̂+

k (�
�1gt/2v)dm̃k

BM
(v)dt,

(18)
for O(.) independent of k.

We now related another test function to �̂±

k following [PP17, Lemma 8]. Let
h±

k : T 1
H

n
! [0,1] be the �k-invariant measurable map defined by

h⌥

k (w) =
1

2⌘µW±
w
(B±(w,R))

(19)

if µW±(w)(B
±(w,R)) > 0, and h±

k (w) = 0 otherwise. We define the test function
�⌥k = �⌥

⌘,R,⌦±
k

: T 1
H

n
! [0,1] by

�⌥k = h⌥

k � f±

D⌥
k

V⌘,R(⌦
⌥
k
)
.

By the properties of �±

k , we have

�±
⌘e�⌧ ,Re�⌧ ,@1

⌥⌦
±
k

e�✏  �̂±

k  �±k .

Hence, it su�ces to consider the integral

ik(T ) =
X

�2�k

[ ±

k (v
�

� ) 
±

k (v
+

� ) +O((⌘ + e�`�/2)|| �

k ||� || 
+

k ||�)]⇥

Z T

0

e�kt
Z

T 1Hn

(��k � g�t/2)(�+k � gt/2 � ��1)dm̃k
BM

dt.

(20)

By the definition of �±k , the right hand side of (20) is equal to

X

�2�k

[ ±

k (v
�

� ) 
±

k (v
+

� ) +O((⌘ + e�`�/2)|| �

k ||� || 
+

k ||�)]⇥

Z T

0

e�kt
Z

T 1Hn

h�

k � f+

D�
k

(g�t/2v)h+

k � f�

D+
k

(��1gt/2v)⇥
V⌘,R(⌦

�
k
)
(g�t/2v)

V⌘,R(⌦
+
k
)
(��1gt/2v)dm̃k

BM
dt.

(21)
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By the �-invariance of h±

k , one has

h�

k � f+

D�
k

(g�t/2v) = e��k(t/2)h�

k,e�t/2R
(gt/2w�

k ),

h+

k � f�

D+
k

(��1gt/2v) = e��k(t/2)h+

k,e�t/2R
(g�t/2w+

k )

where w�

k = f+

D�
k

(v), w+

k = f�

�D+
k

(v) = �f�

D+
k

(��1v), and h�

k,e�t/2R
is defined the

same as in (19) except we replace R by e�t/2R . Therefore,

h�

k �f
+

D�
k

(g�t/2v)h+

k �f
�

D+
k

(��1gt/2v) = e��kth�

k,e�t/2R
(gt/2w�

k )h
+

k,e�t/2R
(g�t/2w+

k ).

The remaining part
V⌘,R(⌦

�
k
)
(g�t/2v)

V⌘,R(⌦
+
k
)
(��1gt/2v) if nonzero if and

only if

v 2 gt/2V⌘,R(⌦
�

k ) \ �g
�t/2

V⌘,R(⌦
+

k ) = V⌘,e�t/2R(g
t/2⌦�

k ) \ V⌘,e�t/2R(�g
�t/2⌦+

k ).

By [PP17, Lemma 7], there exist constants t0 > 0 and c0 (independent of k),
such that if t � t0, the followings holds: there exists a common perpendicular ↵�
from D�

k to �(D+

k ) with

1. |`� � t|  2⌘ + c0e�t/2,
2. d(⇡(v±� ),⇡(w

±

k ))  c0e�t/2,

3. d(⇡(g±t/2w⌥

k ),⇡(v))  ⌘ + c0e�t/2.

For all � 2 �k and T � t0, we define

Ak,�(T ) = {(t, v) 2 [t0, T ]⇥T 1
H

n : v 2 V⌘,e�t/2R(g
t/2⌦�

k )\V⌘,e�t/2R(�g
�t/2⌦+

k )},

and the integral

jk,�(T ) =

Z Z

(t,v)2Ak,�(T )

h�

k,e�t/2R
(gt/2w�

k )h
+

k,e�t/2R
(g�t/2w+

k )dtdm̃
k
BM (v)

=
1

(2⌘)2

Z Z

(t,v)2Ak,�(T )

dtdm̃k
BM (v)

µW+(w�
t
)
(B+(w�

t , rt))µW�(w+
t
)
(B�(w+

t , rt))

(22)
where

rt = e�t/2R, w�

t = gt/2w�

k , w+

t = g�t/2w+

k .

There exists then a constant c00
0
> 0 (independent of k) such that for T � t0,

one has
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�c00
0
+

X

�2�
T�O(⌘+e

�`�/2),�O(⌘+e
�`�/2),k

[ ±

k (v
�

� ) 
±

k (v
+

� ) +O((⌘ + e�`�/2)|| �

k ||� || 
+

k ||�)]jk,�(T )

 ik(T ) 

c00
0
+

X

�2�
T+O(⌘+e

�`�/2),O(⌘+e
�`�/2),k

[ ±

k (v
�

� ) 
±

k (v
+

� ) +O((⌘ + e�`�/2)|| �

k ||� || 
+

k ||�)]jk,�(T +O(⌘ + e�`�/2)),

(23)

where �s,r,k = {� 2 �k|t0 + 2 + c0  `�  s, v±� 2 Nr⌦±
} for all s, r 2 R.

Claim 5.6. For any ✏ > 0, if ⌘ is small enough and `� is large enough, then

jk,�(T ) = eO(⌘+e�`�/2
)eO(✏c

0
)
(2⌘ +O(e�`�/2))2

(2⌘)2
,

for c0 > 0 independent of k.

Proof. Since (Hn,�k) has radius-continous strong stable/unstable ball masses.
By [PP17, Lemma 11], for every ✏ > 0 and every (t, v) 2 Ak,�(T ), one has

µW±(w⌥
t
)
(B±(w⌥

t , rt)) = eO(✏)µW±(v�)(B
±(v� , r`� ))

if ⌘ is small enough and `� is large enough, independent of k. Here v� denote the
midpoint of the common perpendicular from D�

k to �(D+

k ). Hence,

jk,�(T ) =
eO(✏)

R R
(t,v)2Ak,�(T )

dtdm̃k
BM

(v)

µW+(v�)(B
+(v� , r`� ))µW�(v�)(B

�(v� , r`� ))

By [PP17, Lemma 10], for every (t, v) 2 Ak,�(T ), one has

dtdm̃k
BM

(v) = eO(⌘+e�`�/2
)dtdsdµW�(v�)(v

0)dµW+(v�)(v
00)dt

where v0 = f+

HB�(v�)
(v) and v00 = f�

HB+(v�)
(v). By [PP17, Lemma 9], the dis-

tances d(v, v�), d(v0, v�) and d(v00, v�) areO(⌘+e�t/2). Combining these equations
together, the claim follows.

Applying then Claim 5.6 in equation (23) we get

Ik(t) =
X

�2�k

[ ±

k (v
�

� ) 
±

k (v
+

� )] +O(⌘e�kt), (24)

for t su�ciently large independent of k, and O(.) independent of k, ⌘. Then by
multiplying e��kt to equations (16), (24) we get that for fixed ⌘ > 0
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�+

D�
k

( �

k ) · �
�

D+
k

( +

k )

�(�k)||mk
BM

||
�O(⌘) 

N �
k
, +

k

(t)

e�(�k)t


�+

D�
k

( �

k ) · �
�

D+
k

( +

k )

�(�k)||mk
BM

||
+O(⌘) (25)

for t su�ciently large independent of k and O(.) independent of k, ⌘, from where
the result follows.

More about the proof of Theorem 5.3: As (D±

k )k2N is a sequence of well-
positioned convex sets inMk which converges strongly to a well-positioned setD±

in M , we can select  ±

k 2 C1

0
(T 1Mk),  ±

2 C1

0
(T 1M) be compactly supported

functions so that ( ±

k )k2N converges strongly to  ± and  ±

k ⌘ 1 in supp(�⌥

@D±
k

).

Hence in the notation of Theorem 5.5

N �
k
, +

k

(t) = ND�
k
,D+

k

(t), �⌥

D±
k

( ±

k ) = k�⌥

D±
k

k,

and in particular
�+

D
�
k

( �
k
)·��

D
+
k

( +
k
)

�(�k)||mk

BM||
6= 0. Then we can restate the conclusion of

Theorem 5.3 by a multiplicative error uniformly close to 1 along the sequence as
t gets larger.
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