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Abstract

We show convergence of small eigenvalues for geometrically finite hyperbolic n-manifolds
under strong limits. For a class of convergent convex sets in a strongly convergent
sequence of Kleinian groups, we use the spectral gap of the limit manifold and the expo-
nentially mixing property of the geodesic flow along the strongly convergent sequence to
find asymptotically uniform counting formulas for the number of orthogeodesics between
the convex sets. In particular, this provides asymptotically uniform counting formulas
(with respect to length) for orthogeodesics between converging Margulis tubes, geodesic
loops based at converging basepoints, and primitive closed geodesics.
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1. Introduction

The critical exponent of a discrete isometry subgroup of the hyperbolic space H"
is an important numerical invariant which relates the dynamical properties of the
group action to the measure theory and the spectrum of operators on the quotient
manifold via the celebrated work of Patterson and Sullivan [Pat76, Sul79, Sul84).
More explicitly, this invariant was shown to be equal to the Hausdorff dimension
of the limit set for any geometrically finite discrete isometry subgroup I' [Sul79,
Sul84], and is related to the bottom spectrum Aq of the negative Laplace operator
for any nonelementary complete hyperbolic manifold [Sul87]. A natural line of
inquiry is to ask whether this quantitative invariant can be uniformly controlled
for a sequence of hyperbolic manifolds (M}, = H"/T'})ken, for example, sequences
of quasi-Fuchsian manifolds in Bers’ model for the Teichmiiller space of a surface
S. It turns out that the critical exponent of I'y, the Hausdorff dimension of the
limit set, and the bottom of the spectrum Ao (H"/T'}), converge to the ones of the
limit group I' < Isom(H") under the assumption that I' is geometrically finite
and 0(T') > (n — 1)/2 for strongly convergent sequences of hyperbolic manifolds
(M) ken [CT99, McM99]. See Section 2.5 for the definition of strong convergence.

Besides the bottom spectrum of the quotient manifold, there are finitely many
small eigenvalues of the negative Laplace operator in the interval [\, (n —1)%/4],
where (n — 1)2/4 is the bottom spectrum of the hyperbolic space H" [LP82].
It is natural to ask whether these small eigenvalues converge to the ones of
T', respectively. We prove the convergence of small eigenvalues for strongly
convergent sequences of hyperbolic manifolds (M = H"/T')gen. In particu-
lar, we give a uniform bound on the Laz-Phillips spectral gap s1 defined by
51 := min{\; (M), (n — 1)2/4} — M\g(M), where \;(M) is the smallest eigenvalue
of the negative Laplacian in (Ao(M), 00).

Theorem 1.1. Suppose that (M = Isom(H")/Tk)ken s a sequence of hyperbolic
manifolds which converges strongly to a geometrically finite hyperbolic manifold
M =H"/T. The set of small eigenvalues in [No(Mg), (n—1)2/4] converges to the
small eigenvalues of the limit manifold M, counting multiplicities. In particular,
the sequence of Lax-Phillips spectral gaps of (My)ren converges to that of the
limit manifold M.

Remark 1.2. We explain what the convergence of the set of small eigenvalues
means in Section 3, and leave the precise statement in Theorem 3.3. The state-
ment of Theorem 1.1 for small eigenvalues holds for negatively pinched manifolds,
and the details are discussed in Section 3. The statement referring to Laz-Phillips
spectral gap is done in Theorem 3.4 for Kleinian groups. It could be possible that
the set of small eigenvalues is equal to the singleton {(n — 1)2/4} (or the empty
set by considering pinched negative manifolds), but it won’t affect the statement
of the theorem.

Sequences of hyperbolic manifolds with uniform spectral gap are interesting to
study, as the uniform spectral gap sometimes controls the dynamical properties of
the geodesic flow of the manifold. For instance, following [EO21], uniform spectral
gaps of hyperbolic manifolds imply uniform exponential mixings of geodesic flows.
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In the same paper, they provided another family of hyperbolic manifolds with
uniform spectral gaps, coming from congruence subgroups of certain arithmetic
lattice of Isom(H™).

The exponentially mixing geodesic flow can be used to find good estimates
for error in asymptotic approximations of counting functions, such as the esti-
mates available for orthogeodesic counting (as done in [PP17]). Namely, given
D=, D" (locally) convex sets (or equivalently, 71 (M) precisely invariant convex
sets in the universal covering) in M, one can estimate Np- p+(t), the number of
orthogeodesics between D~ and DV of length less than ¢ > 0, by

Np- p+(t) = Ae” (1 +O(e™))

where A,6,x and O(.) depend on the geometric/dynamical features of
M,D~, D", with exponential decay of correlations among these features. We
consider the following two interesting cases in this paper:

1. D¥ are connected components in the thin part of M, i.e. Margulis tubes or
cusps.

2. Dt = D~ is an embedded ball at a given point z € M. That is, the lifts of
D# are sufficiently small balls of lifts of = in H".

The uniform orthogeodesic counting formula for strongly convergent sequences
in case (1) can be used in the study of the renormalized volume. Given a hyper-
bolic manifold M, the renormalized volume is a function on the deformation space
of M whose gradient flow has been of interest (see [BBB19], [BBP21]). In [BBP21]
it is shown that for M acylindrical the gradient flow of the renormalized volume
converges to the unique critical point. This involves discarding strong limits with
pinched rank-1 cusps by the use of the Gardiner formula. For such a method to
work one needs a uniform control of contributing terms in the Gardiner formula,
which would be provided by uniform orthogeodesic counting. The uniform ortho-
geodesic counting formula for case (2) gives a uniform asymptotic counting result
with uniform error term for geodesic loops based on a given point in M.

Motivated by these applications, we show that the parameters A, §, x and O(.)
are uniform for strongly convergent sequences, and such parameters can be taken
arbitrarily close to the corresponding parameters of the geometrically finite limit.

Theorem 1.3. Let (M, = H"/T'y)ken be a sequence of hyperbolic manifolds
which strongly converges to a geometrically finite hyperbolic manifold M = H"™ /T’
with §(T) > (n —1)/2.

1. Suppose that D,:Ct are connected components in the thin part of My, and
(Df:)keN converge strongly to connected components DT in the thin part of
M. Then there is a uniform counting formula for orthogeodesics between D),
to D}t for the sequence (My)ken.

2. Suppose that (z; € My)ren 1S a sequence of points converging to the point
x € M. Then there is a uniform counting formula for geodesic loops based
at xy, for the sequence (My)ken.



Remark 1.4. We in fact prove the result for strongly convergent sequences
of well-positioned conver sets in a strongly convergent sequence of hyperbolic
manifolds (Theorem 5.3). We refer readers to Section 2.5 for the definitions of
well-positioned and strong convergence of conver sets in hyperbolic manifolds.

The counting of primitive closed geodesics follows from the counting of geodesic
loops in manifolds with negatively pinched curvatures [Rob03, Chapter 5]. Hence
we obtain the following asymptotic counting of primitive closed geodesics along
sequences of strongly convergent hyperbolic manifolds.

Corollary 1.5. Suppose that (M = H"/Ty)ren s a sequence of hyperbolic
manifolds which strongly converges to a geometrically finite hyperbolic manifold
M = H"/T with §(T) > (n — 1)/2. Then we can count the number of primitive
closed geodesics with length less than € in My, denoted by #Gus, (£), uniformly,
in the sense that

STkt

#Ga (0) ~ STyl

up to a multiplicative error uniformly close to 1 along the sequence as £ gets larger
and limy 6(T') = o(T).

The proof of Theorem 1.3 involves the uniformity of the exponential mixing
and the convergence of certain measures for strongly convergent sequences. These
measures refer to the classical Patterson-Sullivan measures, the Bowen-Margulis
measure and the skinning measures. The convergence of Patterson-Sullivan mea-
sures has been proved for strongly convergent sequences under the assumption
that the limit manifold is geometrically finite and its critical exponent is greater
than (n—1)/2, [McM99]. The Bowen-Margulis measure and the skinning measures
are defined in terms of the Patterson-Sullivan measures. Answering an question
of Oh, we prove the convergence of these two measures, which could have its own
interest.

Proposition 1.6. Suppose that (M = H"/Tk)ken s a sequence of hyperbolic
manifolds which are strongly convergent to a geometrically finite hyperbolic man-
ifold M = H"/T with 6(T') > (n — 1)/2. For r > 0 we denote by M;" C
My, M<" C M the sets of points with injectivity radius less than r. Then
the Bowen-Margulis measures m¥y; on T'M" converge to the one on T M<"
weakly. Moreover, we have the convergence of total masses.

Remark 1.7. The convergence of the Bowen-Margulis measures on TlM,f’"
might be helpful for proving that the Benjamini-Schramm limit of (My)ken s
also M (see for instance [ABBY17, Section 3.9] for a general definition of
Benjamini-Schramm convergence).

We now discuss the convergence of skinning measures o+ for the special type
of well-positioned convex sets in hyperbolic manifolds. Geodesic balls with suffi-
ciently small radii and the thin part in a hyperbolic manifolds are well-positioned.
We refer readers to Section 2.5 for the definition and detailed discussions.
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Corollary 1.8. Suppose that (M) = H"/Tj)ken is a sequence of hyperbolic
manifolds that strongly converges to a geometrically finite hyperbolic manifold
M = H"/T" with §(M) > (n —1)/2. Let Dy, C My, D C M be well-positioned
convezx sets, so that (Dy)ken strongly converges to D. Then

+ +
logp, I = lloapll-

The relative result also holds for subsets Qi C Dy, Q@ C D so that (Q)ken
strongly converges to €.

Organization of the paper. We review definitions of geometric finiteness,
the Bowen-Margulis measure, and skinning measures in Section 2.1, 2.3, 2.4,
respectively. Section 2.2 is about the relation between the critical exponent and
the bottom spectrum. Section 2.5 defines strong convergence of hyperbolic mani-
folds and the convergence of well-positioned convex sets. Section 3 discusses small
eigenvalues of the negative Laplacian on negatively pinched Hadamard manifolds
and gives a proof of Theorem 1.1. In Section 4, we prove the convergence results
of the Bowen-Margulis measure and the skinning measures, i.e. Proposition 1.6
and Corollary 1.8. The last section, Section 5, proves the uniform asymptotic
counting results of geodesic loops and orthogeodesics along strongly convergent
sequences, i.e., the proof of Theorem 1.3.

2. Background
2.1. Geometric finiteness

In this subsection, we let X denote an n-dimensional negatively pinched
Hadamard manifold whose sectional curvatures lie between —x2 and —1 for some
k > 1. For any isometry v € Isom(X), we define its translation length 7(v) as
follows:

() = plg)g dx (p,v(p)),

where dx is the Riemannian distance function in X. Based on the translation
length, we can classify isometries in X into 3 types; we call v lozodromic if
7(7y) > 0. In this case, the infimum is attained exactly when the points are on
the axis of 4. The isometry + is called parabolic if 7(v) = 0 and the infimum is
not attained. The isometry « is elliptic if 7(7) = 0 and the infimum is attained.

From now on, we consider torsion-free discrete isometry subgroups I' <
Isom(X), i.e. T contains no elliptic elements. If I' < Isom(H") is a torsion-free
discrete isometry subgroup, we call it a Kleinian group. Given 0 < € < €(n, k),
where e(n, k) is the Margulis constant depending on the dimension n and the
constant &, let 7.(T') be the set consisting of all points p € X such that there
exists an isometry v € I' with

d(p, 7157) <e.



It is an D-invariant set, and the quotient 7¢(T")/T is the thin part of the quotient
manifold M = X/T', denoted by M <¢.

A subgroup P < T is called parabolic if the fixed point set of P consists of a
single point £ € 05X, where 05 X is the visual boundary of X . Note that 7:(P) C
X is precisely invariant under P, i.e. stabp(7¢(P)) = P [Bow95, Corollary 3.5.6].
By abuse of notation, we can regard 7.(P) as a subset of M = X/T", which is
called a Margulis cusp. The union of all Margulis cusps consists of the cuspidal
part of M, denoted by cusp,(M).

The limit set A(T') of a discrete, torsion-free isometry subgroup I' < Isom(X)
is defined to be the set of accumulation points of a I'-orbit I'(p) in J,X for
any point p € X. We call T' elementary if A(T") is finite; Otherwise, we say I’
is monelementary. For any two points £ and 7 in 0., X, we use &n to denote the
unique geodesic in X connecting these two points. The convezr hull of A(T') C
050X is the smallest closed convex subset in X whose accumulation set is A(T),
denoted by Hull(T"). We let C(M) = Hull(I")/T" denote the convex core of quotient
manifold M = X/T. For any constant € > 0, we define the truncated core by

O(M)> = O(M) — M<-.

Given a constant 0 < € < €(n, k), a discrete isometry subgroup I' is geometri-
cally finite if the truncated core C'(M)~€ is compact in M = X/T'. If, in addition,
C (M) is compact, i.e. I" contains no parabolic isometries, then T is called convex
co-compact. Furthermore, if I' < Isom(X) is geometrically finite, the parabolic
fixed points in A(T") are bounded, defined as follows:

Definition 2.1. [Bow93] A parabolic fized point & € A(T') is bounded if (A(T) \
{p})/ stabr(p) is compact.

Given a point z € X and a discrete isometry group I' € Isom(X), the Poincaré
series is defined as

Py(T,0) = 3 esdx(@aa),
yel

The critical exponent of I is defined as
O(T) :=1inf{s | Ps(T",x) < oo}.

It is not hard to see that the definition of §(I") is independent of the choice of x.

2.2. Eigenvalues and spectrum

As in Section 2.1, we let M = X/T', where X is a negatively pinched Hadamard
manifold, and T is a torsion-free discrete isometry subgroup. Define the Sobolev
space H' (M) as the space obtained by the completion of C§°(M) with respect to

the norm || f|| = \/fM |12 + [, IV f]. This space can be also defined as functions

in L?(M) whose weak derivative (in the sense of distributions) is also in L2(M).
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Given f € HY(M), we define the Rayleigh quotient R(f) of f by

VP
Ju I

The Rayleigh quotient is closely related to the spectrum Spec(M) of the
negative Laplace operator. Namely, by posing the following minimization problem

R(f)

A= inf{R(f) ‘ fE€ Hl(M)}

we obtain a L? integrable smooth function f satisfying —Af = \f.

We let \o(M) denote the bottom of the spectrum, and we say that A €
Spec(M) is a small eigenvalue of M if A < (n—1)%/4. Moreover, given a constant
p < (n—1)%/4, we define Spec, (M) as the collection (counting multiplicities) of
eigenvalues of the negative Laplacian on M less than or equal to pu. The set of
small eigenvalues is a finite set (see [Ham04]).

In the rest of the subsection, we list several properties of the bottom of the
spectrum Ag(M). We will use these properties in Section 3 to prove the uni-
form spectral gap for strongly convergent sequences of geometrically finite groups
(Fk < ISOIH(X))keN.

Lemma 2.2. [Ham04] Let T' < Isom(X) be a torsion-free discrete elementary
isometry subgroup of a negatively pinched Hadamard manifold X with dimension
n. Then \o(X/T) > (n —1)?/4.

Lemma 2.3. [Ham04, Lemma 2.3] Suppose that T' < Isom(X) is a geometrically
finite discrete isometry subgroup of a negatively pinched Hadamard manifold X
with dimension n. Then for every r > 0 we have that ui(M \ B,(C(M))) >
(tanhr)?(n — 1)2/4, where M = X/U and p1(M \ B.(C(M))) denotes the
smallest Rayleigh quotient for all smooth functions f with compact support in
M\ B.(C(M)).

If X = H", we have the following result relating Ag(M) to the critical exponent
o(I).

Theorem 2.4. [Sul87] For any nonelementary complete hyperbolic manifold
M =H"/T, one has

(n—1)/2,

_Jn=1)*/4 if 6(1)
Ao(M) = { (n—1)/2.

6(T)(n—1—46(T)) if 6()

(AVARVAN

2.3. Patterson-Sullivan measure

Given a point p € H", and £ € 9,,H", the Busemann function B(z,£) on H"
with respect to p is defined by

B(x,€) = lim (d(z, pe(t)) 1)
7



where pe(t) is the unique geodesic ray from p to & The Busemann cocycle
Be(z,y) : H" x H" X OcH™ — R is defined by

Be(w,y) = lim (d(pe(t), 2) = d(pe(t),))-

=1l
t—o00

For a discrete isometry subgroup I' < Isom(H"™), there exists a family of finite
measures (fi;)zemm on OxH™ whose support is the limit set A(T") and satisfies
the following conditions:

1. Tt is T-invariant, i.e. v (fta) = flya-
2. The Radon-Nikodym derivatives exist for all x,y € H", and for all £ € 0, H"
they satisfy

dpte —5(r
) =e (T)Be(z.y)
dpiy

Such family of measures is a family of Patterson-Sullivan density of dimension
0(T") for T'. The Patterson-Sullivan measures have very nice properties when the
group I' is geometrically finite.

Theorem 2.5. [McM99, Theorem 3.1] Let T' < Isom(H"™) be a geometrically
finite Kleinian group. Then O, H™ carries a unique T'-invariant density p of
dimension 6(T') with total mass one; Moreover, | is nonatomic and supported
on A(T), and the Poincaré series diverges at §(T).

Theorem 2.6. [McM99, Theorem 1.2] Suppose that (T < Isom(H"))ren is a
sequence of Kleinian groups converging strongly to T' < Isom(H"). If T is geo-
metrically finite with §(I') > (n — 1)/2, then the Patterson-Sullivan densities py,
of 'y, converge to the Patterson-Sullivan density p of I' in the weak topology on
measures.

Remark 2.7. Theorem 1.2 in [McM99] is stated for the 3-dimensional hyperbolic
space. However, the proof works exactly the same for general hyperbolic spaces H™.

The proof Theorem 2.6 relies heavily on the analysis of the Poincaré series of
parabolic groups and its uniform convergence. This is also essential in the later
proof of the convergence of Bowen-Margulis measures and the uniform counting
formulas for orthogeodesics in the rest of the paper. For readers’ convenience,
we list the analytic properties of the Poincaré series corresponding to parabolic
groups in the section. The details can be found in [McM99, Section 6].

Let L < Isom(H™) be a torsion-free elementary isometry subgroup, which is
either a hyperbolic group, i.e. a cyclic group generated by a loxodromic isometry,
or a parabolic group. Given z € J,,H™ and s > 0, the absolute Poincaré series
for L is defined to be

P(L,z) = |¥(@),
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where the derivative is measured in the spherical measure. Given any open subset
U C 0,oH", define

R(LU2) = Y W@l

y(xz)eU

Suppose that (L < Isom(H"))ren is a sequence of torsion-free elementary isome-
try subgroups which converges geometrically to a parabolic group L < Isom(H")
with parabolic fixed point ¢, i.e., Ly converges to L in the Hausdorff topology on
closed subsets of Isom(H™). The Poincaré series for (Ly, s;) where s, > 0 con-
verges uniformly if for any compact subset K C 0H" \ {c} and € > 0, there is
a neighborhood U of ¢ such that for all z € K,

PSk (Lk, Uv7 l‘) <€

for k£ > 0 sufficiently large. By using the same argument of the proof of Theorem
6.1 in [McM99], we have the following:

Theorem 2.8. Suppose that (I'y < Isom(H"))xen is a sequence of torsion-free
discrete isometry subgroups which strongly converges to a geometrically finite
torsion-free group T' < Isom(H"™). Let L < T be a parabolic subgroup and (Lj <
Tk)ken be a sequence of elementary groups which converges to L geometrically. If

1 ifn=3, or
o) > {(n—2)/2 ifn >3,

then the Poincaré series for (Ly,d(Tk)) converges uniformly to the one of

(L, 6(I)).-

2.4. Bowen-Margulis measure

The Bowen-Margulis measure is a measure defined on the unit tangent bundle
T'H" of H" in terms of the Patterson-Sullivan measures. One can identify the
unit tangent bundle T'H" with the set of geodesic lines [ : R — H™ such that
the inverse map sends the geodesic line [ to its unit tangle vector Z(O) at t = 0.
Given a point 29 € H”, we can also identify TH” with 0,cH"” X OscH" x R via
the Hopf’s parametrization:

v— (v_,vy,t)

where v_, vy are the endpoints at —oo and oo of the geodesic line defined by v
and t is the signed distance of the closest point to zy on the geodesic line.

We let 7 : T'H™ — H" denote the basepoint projection. The geodesic flow
on TTH™ is the smooth one-parameter group of diffeomorphisms (g');er of TTH™
such that g*(I(s)) = I(s+t), for all | € T*H", and s,t € R. Similarly one can define
the geodesic flow on T'M by replacing the geodesic lines | by locally geodesic
lines. The Kleinian group I' acts on T H” via postcomposition, i.e. v o, and it
commutes with the geodesic flow. For simplicity, we sometimes write §(I") as ¢ if
the context is clear in the rest of the paé)er.



Given the Patterson-Sullivan density (uz)zecm» and a point xg € H", one can
define the Bowen-Margulis measure mpy on THH™ given by

deM(v) — 6_5([%* (”(”)710)+ﬁv+ (”(U)vro))d/uzo (U—)d,uzo (U+)dt
= 8—25(U—‘U+)10 d/”‘wo (’U—)d/’[’wo (U+)dt

Here we introduce the notation (v_|v4)s, = 5(Bu_ (¥, o) + Bu, (¥, o)), Where
y is any point in the geodesic joining v_, v4. It is not hard to verify that (v_|v )4,
does not depend on y.

The Bowen-Margulis measure mpy is independent of the choice of zq, and it
is invariant under both the action of the group I' and the geodesic flow. Hence, it
descends to a measure mgy on TP M invariant under the quotient geodesic flow,
which is called the Bowen-Margulis measure on T M.

Theorem 2.9. [Sul84, Bab02] Let T' < Isom(H"™) be a geometrically finite
Kleinian group. The Bowen-Margulis measure mgy has finite total mass, and
the geodesic flow is mixzing with respect to mpy.

Another related measure we consider in the paper is the so called skinning
measure. Let D be a nonempty proper closed convex subset in H”. We denote its
boundary by D and the set of points at infinity by 0., D. Let

Pp : H" U (9sH" \ 9:0D) — D (1)

be the closest point map. In particular, for points x € H", Pp(x) is the point
on D which minimizes the distance function d(y,x) for y € D, and for points
€ € OoH™ \ 05D, Pp(§) is the point y € D which minimizes the function
y — Be(y, zo) for a given .

The outer unit normal bundle 3}rD of the boundary of D is the topological
submanifold of T'H"™ consisting of the geodesic lines v : R — H" such that
Pp(vy) = v(0). Similarly, one can define the inner unit normal bundle 8 D
which consists of geodesic lines v such that Pp(v_) = v(0). Note that when D
is totally geodesic, 91D = 91 D. Given the Patterson-Sullivan density (15)zemn,
the outer skinning measure on 8J1rD is the measure 6j5 defined by

di(v) = e~ (PO gy (0,),
Similarly, one can define the inner skinning measure 5, on 01 D as follows:
dorp (v) = 00 PP Dm0 gy, (0,

For simplicity, we sometimes identify a precisely invariant subset C C M =

H" /T with its fundamental domain C' in the universal cover, and use the notation

o2 to denote the outer/inner skinning measure 5% on 9} C.
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2.5. Convergence of convex sets

In this subsection, we first define strong convergence that admits disconnected
limits. Suppose that ((Myg,gx))ken is a sequence of n-manifolds of pinched sec-
tional curvature —x2 < K < —1. We say that the sequence converges strongly to
a (possibly disconnected) geometrically finite n-manifold (N = U"N,, g) if the
following holds:

1. There exist points py; € My, p; € N; so that d(pg,i,pr,j) — +oo for i #
j and (My,pr,i) — (N, p;) geometrically, i.e., there exists an exhaustion
Ui C Ua; C ... of relatively compact open sets of (N;,p;) and smooth
maps ¢ ; : Uk = My, so that ¢y, ;(p;) = pr,; and gazﬂ-gk converges smoothly
in compact sets to g.

2. For any €, the truncated cores C(Mjy)~¢ converge to the disjoint union
U,C(N;)~¢. This means that for large k we have C(M})~¢ = U C(My,;)”¢
where C(My, ;)”¢ C Im(gpg,;) and @E%(C(MM)X) converges to C'(N;)”€ in
the Hausdorff topology of compact sets in V.

The definition accommodates situations like Dehn drilling and pinching closed
geodesics in hyperbolic 3-manifolds. The pinching case can result in disconnected
limit manifolds. If M} and N are hyperbolic manifolds, and N is connected, this
definition is equivalent to the one described in [McM99] for strong convergence.
Because of this, in the cases when N is connected we will simply omit the mention
of possibly disconnected, as well as the sub-index i from our notation.

Moreover, given a sequence (M}, )ren converging strongly to a possibly discon-
nected manifold N, we say that the sequence of functions (fr : My — R)gen
converges strongly to a function f: N — R if, with the notation above, we have
that for any basepoint p; the sequence (fi o ¥k i)ken converges smoothly in com-
pact sets to f. Similarly, if X, > are smooth properly embedded submanifolds
in My, N, we say that (3j)gen converges strongly to X if ¢, }(X) converges
smoothly in compact sets to 3. Since for any fixed compact set in NN; the maps
¢k,; are embeddings for k sufficiently large, we can define strong convergence of
functions and submanifolds of T' M), to T'M by composing the derivatives of
¢k,; with the projections from T™Mj, to T M.

Using the definition of strong convergence, we obtain a straightforward
corollary:

Corollary 2.10. Suppose that (My)en is a sequence of manifolds with negatively
pinched curvature which converges strongly to a (possibly disconnected) geomet-
rically finite manifold N with negatively pinched curvature. Then the manifolds
My, are also geometrically finite for sufficiently large k.

Proof. Suppose that N = U*N;. The truncated core C(N)~€ is compact for any
0 < € < ¢(n,k), since N is geometrically finite. By item (2) in the definition
of strong convergence, C'(M)~¢ is also compact for large k, since C(My,;)~¢ is
compact for large k, and all 1 < i < m. O

In Section 3, we work on sequences of manifolds of negatively pinched curva-
ture that converge strongly to (possibly disconnected) limit manifolds. Given an
11



n-dimensional manifold M with negatively pinched curvature (possibly discon-
nected) and a constant y < (n — 1)2/4, Spec, (M) is defined as the collection of
eigenvalues of the negative Laplacian on M less than u. If M is disconnected,
Spec,, (M) agrees with the union of Spec,, of each component of M (counting mul-
tiplicity). Specifically, a function f : M — R satisfies the equation —Af = \f if
and only if its restriction to each component of M is either an eigenfunction with
eigenvalue A, or 0. Moreover, while taking orthonormal eigenfunctions for M we
can consider that each eigenfunction has support in a unique component of M.

In Section 4 and Section 5, we focus on sequences of hyperbolic manifolds
strongly converging to connected limit manifolds. Suppose now M = H"/T is
an n-dimensional hyperbolic manifold. As we stated in the Introduction, locally
convex sets in M are in 1-to-1 correspondence with I'-precisely invariant convex
sets in H" by the projection map Proj : H®” — M. In particular, we sometimes
identify local convex sets with one of their lifts which are I'-precisely invariant,
and we don’t consider immersed locally convex sets, e.g. nonprimitive closed
geodesics. For simplicity, we will omit the word locally and plainly denote the
sets as convex.

We say that a convex set D in M is well-positioned if D is smooth, where D
denotes the lift of D to H?, and UgtD has compact support.

Example 2.11. Suppose that M is a geometrically finite hyperbolic manifold.
Embedded geodesic balls and the thin part of M are well positioned convex sets.

Proof. Geodesic balls with radii smaller than the injectivity radius of the center
and Margulis tubes are compact convex subsets, so they are well-positioned. The
lifts of a cusp neighbourhood D in M are horoballs whose boundaries are smooth.
Since M is geometrically finite, all parabolic fixed points are bounded. Hence,
the intersection of 0D with the convex core is compact. Thus, aaiD has compact
support and D is well-positioned.

O

Suppose that (M = H"/T'y)ken is a sequence of hyperbolic manifolds that
converges strongly to a geometrically finite hyperbolic manifold M = H"/T.
We say that well-positioned convex sets Dy C My strongly converge to a well-
positioned convex set D C M if

1. the boundary 9Dy converges strongly to 0D, or equivalently, the lifts of
@El(aDk) converge smoothly in compact sets to lifts of D, where ¢y :
Ui — Mj, are the smooth maps in the definition of strong convergence of
(M) ken,

2. ﬁ(supp(ang)) is contained in @y (Nl(ﬁ(supp(agD)))) for large k, where
7:T'M — M and N; denotes the 1-neighborhood.

Example 2.12. Let (M = H"/Tk)ken be a sequence of hyperbolic manifolds
that converges strongly to a geometrically finite hyperbolic manifold M = H"™/T.

1. Suppose that (x)ren s a sequence of points in My, that converges to x €
M. The geodesic balls around the fcf with radius v converge strongly to the



geodesic ball of x with the same radius, where r is smaller than the injectivity
radius of x.

2. Gz’zen 0 < € < €(n, k), the thin parts M= converge strongly to the thin part
M<e.

3. Convergence of small eigenvalues

In this section, we study the convergence of small eigenvalues and prove the
uniform spectral gap for strongly convergent sequences of geometrically finite
n-manifolds of negatively pinched curvature —x? < K < —1.

Proposition 3.1. Let M be a geometrically finite Riemannian n-manifold of
pinched sectional curvature —k2< K< —1landlete = e(n, k) > 0 be the Marqulis
constant. Given u < (n —1)2/4, there exists a sufficiently large constant r(u) =
r > 0 and some constant n(u,r) =n > 0, so that if f € H*(M) with R(f) < u,

then fBz,«(C(M)>f) IfI? > nfM |f|?. Moreover, one can take n — (1 — (niium as
r — +00.

Proof. Since C§°(M) is dense in H' (M), we can assume without loss of generality
that f is compactly supported with [, f* = 1.
Observe that we can find C* functions g, h : R — [0, 1] so that

o ¢*(x) + h%(z) =1 for any x € R,
o supp(g) C (—o0, 1], supp(h) € (0, +oc].

Given a positive constant r > 0, we define u := u,(z),a := a,(z) € CH(M)
satisfying the following properties, by using scalings of g, h along equidistant sets

to 0C(M):

0<u,a<l

supp(u) C Ban(C(M))

supp(a) € int(By(C(M)))

uw?+a?t=1

|Vul, |[Va| < € everywhere in M, for some constant C independent of r and

G W=

Similarly, for the thick-thin decomposition of M we define functions v :=
v(2),8 == Br(x) € CHM) along equidistant sets to OM>¢ satisfying the
following properties

L 0<v,8<1

supp(v) € B (M~°)

supp(B) C int(By(M>*))

v+ B2 =1

|Vol, V3| < % everywhere in M, for some constant C' independent of r and
M.

Define then f; := wvf, fo := uBf, f3 := af which are in C}(M). By the
definitions of u, a, v, 3 we have

Ol

13



supp(f1) C Bar(M=<NC(M))
supp(f2) C By (M=)

supp(f3) € By (C(M))
R+B+f=r

We can expand R(f1) as

Ll o

R(fy) = (/M P2V (@0)? + 2u0 £V (w), V f) + 0 v2|Vf|2)/</Mu2v2f2>.

Since V(uv) = uVv+vVu then it follows that |V (uv)| < %, and subsequently

/ v < 2

By Cauchy-Schwarz, we also have that

/M2uvf<V(uv),Vf>’ < 2/M (Y (u0), VI < =

4C

R(f)-

Collecting these inequalities and defining a := [ v f? for convenience, we arrive

to
2
R(f1) < (40 + g\/ +/ 02|Vf|2>/a. (2)
Similarly, define b := [, f3, ¢:= [,, f3. Then
2
R(f2) < (40 VR [ %wﬁ) / b 3)
R(fs) < (402 + 2Ry GEys 2|Vf|2)/c- (4

By doing a(2) + b(3) +

aR(f1) +bR(f2) + cR(f3) < ( 2

_ (1202

r2

(1202

12C?
+

¢(4) we obtain

120

12C

R(f) + /M(u2v2 +u?B? + a2)|Vf|2>

120 :
+2ZEVR - [ i)

—&—f—ku)

(5)

Since supp(f2) C int(BE(M~¢)), supp(f3) C int(BS(C(M))) we have by Lem-
mas 2.2 and 2.3 (or more precisely, by applying a combination of the Lemmas on
14



each component of M) that R(f2) > (tanhr)?(n — 1)2/4, R(f3) > (tanhr)?(n —
1)2/4. Using these bounds together with the obvious bound aR(f;) > 0 we arrive
to

(tanhr)?(n — 1)? < 12C%  12C

(b+c) 4 S5t Vi i,
4 1202  12C
(b+e)< (tanh7)2(n —1)2 ( 2T G M)-

By the fact that a + b+ ¢ = 1 we obtain

@2 (tanhr)2(n — 1)2

4 tanhr)2(n —1)2 1202 12C
(Lnbrinof 126" 120 o)

The result follows from observing that for the left-hand side we have

fBz,.(M>€ﬂC(M)) f? > a, whereas the right hand side depends only on su,r and

converges to 1 — (7167”1)2 >0 as r — 4o0.
O

Now we use Proposition 3.1 to take limits of eigenfunctions with small eigen-
values along a strongly convergent sequence of manifolds with negatively pinched
curvature.

Lemma 3.2. Suppose that (My)ren is a sequence of n-manifolds of pinched
curvature —k?> < K < —1 that converges strongly to a (possibly disconnected)
geometrically finite n-manifold M. Let p < (n—1)%/4 and for each My, let fi, be
an eigenfunction of the negative Laplacian so that R(fy) < p and ka Ifil? = 1.
Then, after possibly taking a subsequence, we have that f converges strongly to
f, a non-zero eigenfunction of the negative Laplacian in M with R(f) < .

Proof. By Proposition 3.1 there exist » > 0 and n > 0 independent of k so that
fx|> > n. By elliptic regularity and strong convergence, we have

fB2r(C(Mk)>E)
that the Sobolev norms

[ ficllw.e( By, (c(a1)>))

are uniformly bounded for any given ¢. By the Rellich-Kondrachov compactness
theorem, we can take a convergent subsequence with limit f in Bo,.(C(M)~€) in
any W2*¢ norm. Taking 7 — +o0o and doing a Cantor diagonal argument, we have
that R(f) < p, —Anf = R(f)f, [, |fI* = n, which concludes the Lemma. [

Recall that Spec, (M) denotes the collection of eigenvalues of the negative
Laplacian on the negatively pinched manifold M which are smaller than pu,
where for convenience we assume that g < (n — 1)?/4 is not an eigenvalue of
M (this is possible for all < (n —1)?/4 with the exception of finitely many val-
ues). Suppose that (My)gen is a sequen1c5e of negatively pinched manifolds which



converges strongly to a geometrically finite n-manifold M. Given any small eigen-
value A € Spec, (M), we can use the discreteness of small eigenvalues to take
e > 0 small enough so that (A — e, A + €) N Spec, (M) = {A}. We have then
that (A — €, A\ + ¢€) N Spec,, (M) is either empty or accumulates to A as k — oo,
where we desire to prove the later case. Let then m be the multiplicity of A and
my,, be the cardinality of (A — €, A + €) N Spec, (My) (counting multiplicities).
We say Spec,(My) converges to Specy, (M), if limy_,oc my x = my for any small
eigenvalue X € Spec,(M).

Theorem 3.3. Suppose that (My)ken is a sequence of n-manifolds of pinched
curvature —k? < K < —1 that converges strongly to a (possibly disconnected) geo-
metrically finite n-manifold M. Then for any given i < (n—1)%/4 not in Spec(M)
we have that Spec,(My,) converges (counting multiplicities) to Spec,,(M).

Proof. To prove the theorem, we will show the convergence of eigenspaces.
Namely, let Vi,V denote the linear spaces of functions generated by the eigen-
functions with eigenvalues in Spec, (M) and Spec, (M), which have a natural
orthogonal decomposition by the eigenspaces of Spec,(M}) and Spec,(M). We
show that V;, — V, in the following sense:

1. Any function f € V can be obtained as the limit of a strongly convergent
sequence (fr € Vi)ken.

2. Any sequence of families (fix C Vi)gen of orthonormal functions in
M, converges strongly (after possibly taking a subsequence) to a linearly
independent family of functions in M.

Item (1) implies that liminfy oo myr > my, and Item (2) implies that
lim supy,_, o max < my. Thus, it suffices to prove the convergence of eigenspaces.
We first show item (2). Suppose that fi , ... fi,r are orthonormal eigenfunctions

of M. By Lemma 3.2 we can assume they converge in compact sets to f1,..., fi.
If the functions fi,..., fi are not linearly independent in L2?(M), there exist
real numbers a4, ..., q; not all vanishing so that a1 f; + ...+ a;fi = 0. Hence,

gk = a1f1k+...4+afi are functions in H*(M},) with norm \/of + ... + af #0.
We can normalize ||gx||2(ary = 1 so that R(gx) < p, and since the limit of g in
compact sets is not identically zero from Proposition 3.1, we have a contradiction.

Now we prove Item (1). Assume that not all functions in V' are obtained as
limits of functions in Vj. Let V'’ be the proper maximal space in V, consisting
of functions that can be obtained as limits. Assume that there exists an eigen-
function f of M with eigenvalue A, such that f is orthogonal to V’. Approximate
fin HY(M) by a compactly supported function fy, which is normalized so that
Jas | fol? = 1 and R(f) is close to A. It follows that [, fog = [,,(fo — f)g can
be taken uniformly small for all g € V/ with [}, | g|?> = 1. Let f¥ be the pullback
of fo in M}, by the maps ¢ ; from the definition of strong convergence. Then for
sufficiently large k we have that (after identifying the compact cores) |, My T
can be also taken uniformly small for any gi € Vj, with [ My lgr|?> = 1 by Propo-

sition 3.1. For large k we also have that in M the Rayleigh quotient R(f¥) is
close to A. Denote then by fg ;. the projection of f¥ perpendicular to Vj. Then

R(fo,r) is also very close to A for sufficiently large k. Hence, this contributes to
16



an eigenfunction in M} which does not belong to V. However, by construction,
Vi is the linear space of functions generated by eigenfunctions with eigenvalues
in Spec,, (Mj,), which gives a contradiction. Therefore, any function f € V' can
be obtained as the limit of a strongly convergent sequence (f € V).

O

Recall that the Lax-Phillips spectral gap s1 = min{\; (M), (n—1)?/4} —X\o(M)
for a hyperbolic manifold M = H"/T". We obtain the following convergence result
of spectral gap for strongly convergent sequences of hyperbolic manifolds.

Theorem 3.4. Suppose that (My = Isom(H")/Tk)ken s a sequence of hyperbolic
manifolds which converges strongly to a geometrically finite hyperbolic manifold
M =H"/T. Then the sequence of Lax-Phillips spectral gaps s1(My) converges to

Proof. By [McM99, Theorem 1.5 and Theorem 2.4 we have that
limg 00 Ao(My) = Xo(M). By Theorem 3.3, if \{(M) > (n — 1)2/4, then
liminf A\; (Mj) > (n — 1)?/4 for sufficiently large k, or if \; (M) < (n —1)2/4, we
have that limg_,oo A (My) = M (M) > Ao(M) for sufficiently large k. In either
case, the convergence of s1(Mjy) to s1(M) follows. O

Proof of Theorem 1.1: The proof follows from Theorem 3.3 and Theorem 3.4.

4. Uniform convergence of measures

In this section, we prove convergence for skinning measures and the Bowen-
Margulis measure under strong convergence. We assume that M is a hyperbolic
n-manifold, and by M<¢ we denote the e-thin part of M for a constant e
smaller than the n-dimensional Margulis constant. We first prove that the
Bowen-Margulis measure of the thin part is (uniformly) relatively small.

Proposition 4.1. Suppose (M = H"/T'y)ren is a sequence of hyperbolic man-
ifolds that strongly converges to a geometrically finite hyperbolic manifold M =
H" /T with 6(T') > (n—1)/2. Let m¥&y\;, mpn be the Bowen-Margulis measures on
T M, and T*M, respectively. Then for any o > 0 there exist € > 0 and N > 0
so that for ¢ <€ and k > N we have that

k
/ . dmpy < a.
T M

Proof. This follows Dalbo-Otal-Peigne’s proof [DOP00] on the finiteness of mpy;.
We first let € > 0 be a constant which is smaller than the shortest geodesic in M.
Take a fundamental domain F' for the convex core of M in the universal cover
H", and divide F' as the thin part F<¢ (i.e., the intersection of F' with the thin
part of M) and the thick part F~¢. Consider a component D of F<¢, which must
be a cuspidal component. Suppose that H is the corresponding horoball based at
the parabolic fixed point &, so that D is a fundamental domain for the parabolic

subgroup P < m1 (M) that preserves H.
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As detailed in [DOPOO, page 118] we can bound mpy in D by

(D) <Y [ etanar) [ i,
pep / DxpD (m=nt)NH

where ¢(dn~dnt) = e~ 200 e gy (7 )dug (nT) for a given point 2 € H”
and D C 0,.H™\ {¢} is a compact set such that {pD},cp covers A(M)\{{}. The
existence of the compact set D is ensured by the assumption that M is geomet-
rically finite, hence the parabolic fixed point £ is bounded [Bow93]. Now, let Py
be the elementary group in M) that converges to P, which is either parabolic or
loxodromic. We discuss the proof that when the groups Py are loxodromic. The
argument for parabolic subgroups is similar.

Let Hj; be a neighborhood of the geodesic & §k preserved by Pi so that
Hi — H, fk — &. Since M}, converges to M strongly, by [McM99] we can take
D large enough so that {pD},ep, covers A(My)\ {&, &} Hence it follows that

M (T (Hi/Pr)) < D / ! (dn~dn™) / dt.
DXpD (m=nT)NHy

PEPK

Assume without loss of generality that we can take a common point x € Hy, H.
There exist compact set K C H" and open neighbourhood V' C H" of ¢ so that for
k large, if the (oriented) geodesic n~n™ with = € DNA(T'y) and nt € pDNA(Ty)
intersects Hy, then the point of entry belongs to K NOH,, and p~'x belongs to V.
In particular such geodesic n~n* verifies 0 < (™ |n"), < diam(K). Moreover, we
have that | fn oy A — d(z,px)| < 2diam(K). Hence there exists a constant

C > 0 depending only on diam(K) so that

min (T (H/Pi)) < C | Y plh (D)l (pD)(d(x,pz) + C) |,
pEP;,

where p” denotes the Patterson-Sullivan measure on M}, and Pj, is the subset
of {p € P |[p~'z € V} so that the summand [5, »ci(dn~dn™) [, -, 1 g, dtis
1ON-Z€ro.

Recall that

— 71ww
u’i(pD)=/De ORI By (0w w) K (),

so we would like to estimate B, (p~'x,z). Observe that as Hy, is preserve by Py,
we have that if n~ 7" is a geodesic with n~ € DN A(T'y) and n™ € pD N A(Ty)
that intersects Hj, then the exit point of n~n* from H; belongs to pK N OHy.
By triangular inequality we have that under such conditions | [ (n=n+)niy, A =
B, (z,px)| < 2diam(K). Hence for p € P, have |B,(p~'z,z) — d(p~ 'z, z)| <
4diam(K). Combining this with our previous inequality (and making the domain
of the sum bigger if necessary) we get



min (T (Hi/Pr)) < C o (D)) T e (3, pa) + O)

pEPk,p lzeV

for some C' > 0 independent of € and k.

We claim that the above discussion holds for smaller e corresponding to a
smaller neighborhood V (e) for the same basepoint . Consider a smaller thin part
corresponding to € < e. The sets Hy, K vary with €, although it is clear that
Hi(e') C Hi(e) and diam (K (€')) < diam(K (€)). Hence after taking a basepoint
y € K(€') we have

ming (T (Hi(e)/Pr)) < C ST (uE(D))2e 0T ) (d(y, py) + C)

PEPL,p~LyeV (e')

for a constant C' > 0 independent of ¢’ and k.

The neighborhood V (¢’) is smaller and smaller as ¢’ — 0, as if 7 n* intersects
Hy (') then it has to intersect Hy(€). Then for the p summands considered for ¢’
we have

d(y,py) < d(z,px) +C', pk(D) < e TRA@v) k(D)

for C’ constant independent of ¢’ and k. We always have the bound d(y, py) >
d(x,px) — 2d(x,y) by triangular inequality and the fact that p is an isometry.
Putting altogether, we have that

mn (T (Hi(€')/Pr)) < C"(15(D))? > e 0TI 2 (45 pr) + C")
pEPk,p~tzeV(e)
(6)

for a constant C” > 0 independent of ¢ and k. Recall that when §(T'y) is
strictly bigger than (n — 1)/2, by [McM99, Theorem 6.1], the tails of the series

Y v e~9(Cw)d(p™"2,2) are uniformly small. Specifically, for any 1 > 0 there exists
a neighborhood U C H" of £ so that

Z e—é(Fk)d(zflw,w) <,
PEP, pxCU

for k sufﬁcientl}l/ large. We also have that the tails of the series

> pepy e 0P 2.2) (d(z px) + C") are uniformly small, as d(z,pz) is uni-

formly dominated by ecd®™'w2) for any ¢ > 0. Hence by taking € sufficiently

small, the right hand side of (6) corresponds to a smaller tail of the series

ZpePk o~ 8(Tw)d(p " z.z) (d(x, px) + C"). Thus, by applying [McM99, Theorem 6.2]
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for the sequence of exponents 6(T';) — ¢, the right hand side of will be arbitrarily
small for ¢ sufficiently small and k sufficiently large.
O

Next we use Proposition 4.1 to prove the convergence of the Bowen-Margulis
measures. The following proposition is a restatement of Proposition 1.6.

Proposition 4.2. Suppose that (M = H"/Tj)ren is a sequence of hyper-
bolic manifolds which is strongly convergent to a geometrically finite hyperbolic
manifold M = H"/T with §(T) > (n — 1)/2. Let mky;, mpm be the Bowen-
Margulis measures on T'M,, and T'M, respectively. For r > 0 we denote by
ME" C My, M<" C M the set of points with injectivity radius less than r. Then
for any r > 0 we have

lim dmby, — dmpm.
k—oo J1 Mk<r TLM<T

Moreover, by taking r sufficiently large we have that
ImEall = llmeml-

Proof. Denote M®? = M>*NM<°. Take Uy, ...U,, C M balls with compact clo-
sure, whose union covers C'(M)®" = C(M) N M*". Take @1,..., @y partition of
unity subordinated to Uy, ... U,,, in the sense that ¢ = Z:’;l ; has support con-
tained in M€~"+" and is identically equal to 1 in C(M)®", for some arbitrarily
small n > 0. Let U; be a lift of U; in H™ such that the union covers a fundamen-
tal domain of M. We denote ¢; a compactly supported function subordinated to
U; such that ¢; = @; o Proj.

Then since the Patterson-Sullivan measures u,’;() converge weakly to
Mo, the critical exponents & = ('y) converge to d = (),
and we can express the Bowen-Margulis measures as dmfy(v) =
e Ok (Bo (”(")’IOHBH(”(”)’IO))duﬁo (v_)dpk (vy)dt, then for k sufficiently large we
have

’/ ~ @idmgM —/ ~ @ideM’ <, (7)
TWU; TWU;

for some small a > 0.
By Proposition 4.1 we have that [, ,,<c dmy, [71,< dmey < a, and by
k
construction we have that

m
‘/ dmpnm 72/ . (pidﬁlBM‘ </ deM+/ dmgpn. (8)
TIN<T o1 TU; T1pf<e TN r+n

Now, since M converges strongly to M, for k large we have that
ity Jrip, pidimgyy is bounded between (1 — «) leM;ﬂ,Pn dm%y; and (1 +

k
a) leM;_”’T‘H’ dmf,;. Hence
20



By a similar partition of unity argument, we can show that for any 0 < a < b
there exists ny > 0 sufficiently small so that for any k > 1 sufficiently large we
have that

/ dm]l%M < 2/ dmpm. (10)
T1 M,‘:’b T1 pfa—ng,b+ng

Finally, we have to see that the function (a,b) — [1 4. dmfy, is con-
tinuous. Because of monotonicity this reduces to prove that for any r > 0,
Jrrons<r dmpy = 0. Indeed, the lift OM<" C H" is contained the union of tubes
around closed geodesics of length < r (considering parabolic cusps correspond-
ing to 0 length geodesics). For core geodesics of length strictly less than r, these
tubes are strictly convex and hence the boundaries intersect any geodesic in a
discrete set. If we happen to have a geodesic of length r, then the intersection
of M <" with any geodesic is a discrete set, unless the geodesic is equal to the
geodesic axis. In either case, the set @M <" C H" has zero measure for the Bowen-
Margulis measure dimpyn(v) = e~ 200=1"Hz0dp, (v_)dpug, (vy )dt, as for almost
every geodesic line ¢ the intersection M <" N ¢ has length 0.

Applying the triangular inequality, replacing equations (7), (8), (9), and then
using Proposition 4.1, (10) (for sufficiently large k and n sufficiently small) we
have that

m
< ’/ dmigyg — E / _ pidimfy
THMET i=1 /T Ui

/ pidmfy —/ _ pidmpy
T, T,

i

/ dm’ng — / deM
T1 Mk<7‘ TN <7

m
+
i=1

m
/ dmpm — E / _ pidmpym
TIN<T i—1 TlUi

+

+ ma + / dmpm + / dmpm
T1M<‘ Ter,r+n

< (m+2)a+2a/ dmpm +3/ dmpm

TN <r+n TN T—mn,7+2n

(11)

O

which goes to 0 as k — 400, and a,n — 0.
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The last part of the section is to prove the convergence of skinning measures.

Proof of Corollary 1.8: Observe that since we have strong convergence for well-
positioned convex sets Dy — D, we can take lifts Dy, D c H™ and compact sets
E) C 0Dy, E C 8D so that Ej, E are fundamental domains for the support of
Jaka , aaiD (respectively) and Fj, converges strongly to E. We can further assume
there exists a set ' C S"~! so that Pp, (F), Pp(F) cover Ey, and E (respectively)
on its interior, see (1) for the definition of the maps Pp, and Pp. Under this
assumptions we have

logp, | < 65 (Pp, (F)) = 65 (Pp(F)).

Reducing the set F' so that 5% (Pp, (F)\ Ev), 6;; (Pp(F)\ E) are arbitrarily
k
small, we then have

+ ~+ ~+ +
oD, | = 05 (Bk) = 0 5(E) = llogpll;

which proves the first statement
The relative result for subsets €, is proved by taking the fundamental
domains E} C 0Dy, E' C dD for the support of Uaiﬂk,aaig (respectively) and
arguing as above.
O

5. Application: uniform orthogeodesic counting

In this section, we use the results of uniform spectral gap and convergence of
the Bowen-Margulis and skinning measures in Section 3 and Section 4 to prove
Theorem 1.3. Suppose that D¥, D~ are well-positioned convex subsets of a hyper-
bolic manifold M = H"/T". A common perpendicular from D~ to D7 is a locally
geodesic path in M which starts perpendicularly from D~ and arrives perpen-
dicularly to D*. For any t > 0, let Np- p+(t) be the cardinality of the set of
common perpendiculars from D~ to DT with length at most ¢.

As before, (M = H"/Tk)ken is a sequence of hyperbolic manifolds which
converges strongly to a geometrically finite manifold M = H"/T', so that we have
well-positioned convex subsets le C M, that strongly converge to D* c M.
Before the proof, we need to introduce the following notations.

Given v € TYH", the strong stable/unstable manifold is defined as

WE(v) = {v/ € T'H" : d(v(t),v'(t)) — 0 as t — +o0},

which is equipped with Hamenstddt’s distance function dyy+(,), see [Ham89,
PP17]. Then given any constant r > 0, for all v € T'H", we can define the
open ball of radius r centered at v in the strong stable/unstable manifold in the
following

BE(v,7) = {v' € WE(v) : dyyr= (o) (v,0)) < 7}
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Given any v € T'H", and 1,7’ > 0, let

Vaww = U ¢'B= (0.
s€[—n,m]

Given a proper closed convex subset D of H™, for all subsets Q= of aiD and QT

of 0L D, let
i | |
7”7 Q V,nn

veNE

By using the projection map 7 : T'H™ — H", the strong stable/unstable
manifold W*(v) projects to the stable/unstable horosphere of v centered at v,
and v_, denoted by Hx (v) = (W= (v)). The corresponding horoball bounded by
H, (v) is denoted by H By (v). Following the notation in [PP17], we let

Bwte) = O0pp oy and  pw-() = Tip (v)

denote the skinning measures on the strong stable/unstable manifolds W+ (v).

Definition 5.1. Given a discrete isometry subgroup I' < Isom(H"), we say
(H™,T') has radius-continuous strong stable/unstable ball masses if, for every
€ >0, and r > 1 close enough to 1,

fiw () (B (v, 7)) < e pw oy (B (v, 1)),
for all v € T'H™ where B*(v,1) meets the support of PW = (v) -

The following proposition proves that the radius-continuous property of the
strong stable/unstable ball masses can be taken uniformly along a strongly
convergent sequence of geometrically finite hyperbolic manifolds.

Proposition 5.2. Suppose (M = H" /Ty )ken is a sequence of hyperbolic mani-
folds which strongly converges to a geometrically finite hyperbolic manifold M =
H"™/T" with §(T') > (n —1)/2. Let (D, C My)ren be a sequence of well-positioned
conver subsets in My which strongly converges to a well-positioned convex subset
D, with lifts to H" denoted by Dy, D, respectively. Let QF C 01Dy, QF C 8iD be
compact sets so that QU converges strongly to QF . Then there exists sufficiently
large R > 0 so that for any € we have n =n(e, R) > 0 satisfying that

1y () (B (0, (1 +7)R)) < € iy () (B (v, R))

for anyv e QF, 0 <r <.

Proof. Let’s prove that case for QT, and the proof for 1~ is similar. As done in
the proof of [Rob03, Proposition 6.2] (using [Rob00, Section 3.1]), the function
(v,R) = pw()(BE(v,R)) is continuous for v € TTH", R > 0, as well as I'-
invariant. Moreover, since Q% is compact, there exists R > 0 sufficiently large
so that the function v — uwf(v)(B_(géR)) is a uniformly continuous positive



function in some neighborhood of Q7. It suffices then to prove the statement for
sufficiently large k.

Denote by A(v,R,r) = B~ (v,(1+r)R)\ B~ (v,R) C W~ (v) the annulus in
W~ (v) with center v between radius R, (1 4+ r)R. We will show that there exists
m > 0 and function n(e) > 0 so that for k large, v € V,, ,(Q7) and 0 < r < 1 the
following two statements hold

1. u";,,(v)(B_(v,R)) >m,
2. u’;V_(v)(A(U,R,r)) <e.

Then it is clear that the statement follows from (1) and (2) by making € arbitrarily
small. Now we prove items (1) and (2) respectively.

1. For a vector u € T'H", we define a function P, : W~ (u) — 0o H" where
P, (v) is the endpoint of the bi-infinite geodesic u_7(v) different from u_ as
shown in Figure 5.1. Since V,, ,, (") has compact closure, we can take finitely
many v; € V,, (1) so that for any u € V, ,(Q"), there exists v; such that

P 'P, (B~ (v, R/2)) C B~ (u, R).

Moreover, we can assume that the conformal factor between u@v,(vi) and
u"},,(u) at the sets B~ (v;, R/2), P, 1P, (B~ (v;, R/2)) is between 1/2 and
2. This can be done uniformly for all k by following [Rob03, Subsection
1.H]. By taking 7 small we can assume that gy -,y (B~ (vs, R/2)) > 2m for
some fixed m > 0 and for any v; € V,,,(2"). Then by weak-convergence of
measures, we have that for any v; (and large k) ,u"iv,(vi)(Bf(vi, R/2)) > 2m.
Then it follows that

13— (uy (B~ (1 R)) = piiy— (9 (P ' P, (B™ (03, R/2))) > %NI;V*(W)(B_(UZ'7R/2)) > m.

2. Since V, ,(2%) has compact closure and 6(I') > (n — 1)/2, given € > 0
we can take 7 small enough so that for v € V,,(Q") we have that
pw () (A(v, R,51)) < e. We will take again a finite collection of vectors
v, although now they need to satisfy the following list of properties.

e The finite collection of v; is taken so that B~ (v;,4n) C A(v, R, 5n) for
some v € V, (7). Denote their total number by Cs,
e For any v € V,,(Q") and any B~ (u,2n) C A(v, R, 5n) we have that

Pu_1 v (B_<vi’477)) 2 B_(U,Q’I])

i

with conformal factor bounded between % and 2.

Take sufficiently large k& so that u’év_(vi)(B’(Ui, 4n)) <
Pw— (vy) (B~ (v5,4n)) + ¢ for ¢ small still to be determined.
Let v € V,,(QT). Cover A(v,R,n) by finitely many disjoint measurable

sets Bj, so that each Bj; is contained in a ball B~ (u;, 2n) inside of A(v, R, 57).
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Figure 5.1. .

Then by the second bullet point, for each u; we choose v; so that

PPy, (B~ (vi,4n)) 2 B~ (uy, 2n).
Observe that each v; can only be repeatedly selected less than C3 times,
for some constant C3 depending only on the dimension n. Then we have
the following chain of inequalities, which follow from the covering {B;} of
A(v, R,r), the inclusion Pu_ijvi(B_(vi,éln)) D B~ (uj,2n) 2 Bj, the bound
on the conformal factor of P, !P,,, the convergence MI;V,(U) — Uw - (v), the
inclusion B~ (v;,4n) C A(v, R,5n), and the bound on the cardinality of the
finite set of v;’s.

13y - (o) (A(v, R, 7)) < Zug{/*(v)(Bj) <Cs Zﬂlévf(y)(Plepm (B~ (vi,4m)))
J i

<2C3 ZH@V—(U)(Bf(Uu‘lU)) <203 Z (1w - (o) (B~ (v3,4n)) +¢)

2

<4C3 ) (1w () (A0, R,5m)) + () < 4C2Cs(e + ()

K3
(12)
which is arbitrarily small for n small and k large.

O

Now we state and sketch the general uniform orthogeodesic counting for con-
vergent sequences of convex sets in strongly convergent hyperbolic n-manifolds.
For a thorough presentation, we refer the reader to Theorem 5.5 in the Appendix.

Theorem 5.3. Suppose that (M = H"/Ti)ren is a sequence of hyperbolic

manifolds which strongly converges to a geometrically finite hyperbolic manifold

M =H"/T with §(T') > (n —1)/2. Let (Dif)xen be a sequence of well-positioned

convex subsets in My which converges strongly to a well-positioned convex subset

D¥* in M, respectively. Then we can count ND;,D; (t) uniformly, in the sense
25



that
T
ok, 11 o |

() lImipgll

Np-pt(t) = .

up to a multiplicative error uniformly close to 1 along the sequence ast gets larger,
and with ||O’E§||, [lmEll,0(Tx) converging to H%iﬁH, [|msuml||, 6(T), respectively.
In particular, for n = 3, there exist constants A > 0,0 < b < 2 so that

Np-pt(t) < Ae

Proof. There is an explicit counting formula of Np- p+(t) for orthogeodesic arcs
between two convex sets D¥ given in [PP17, Theorem 3]:

N, _ HJzS—H ) HUE)+|| §(I)t — kit
p-.p+(t) = We (1+0(e™")).

This formula holds under the assumption that (H™,T") has radius-continuous
strong stable/unstable masses. The constant O(-) and the parameter x depends on
I, the convex sets D, the speed of mixing, and the property of radius-continuous
strong stable/unstable masses.

By Proposition 4.2 and Corollary 1.8, the Bowen-Margulis measure and the
skinning measures converge to the ones of the limit manifold M weakly. The crit-
ical exponent 6(I'y) converges to §(I") [McM99, Theorem 1.5]. The convergence
of the speed of mixing is controlled by the spectral gap [EO21]. Hence this quan-
tity also converges to the one of the limit manifold by Theorem 1.1. Therefore, it
suffices to prove the sequence I'y, and the limit I have uniform radius-continuous
strong stable/unstable ball masses property, which follows from Proposition 5.2.

O

Remark 5.4. Careful readers might notice that [PP17, Theorem 3] has
the assumption that the manifold has radius-Holder-continuous strong sta-
ble/unstable ball masses, which is not satisfied by the strongly convergent sequence
of hyperbolic manifolds My and the limit manifold M. However, this assump-
tion can be replaced by the property of radius-continuous strong stable/unstable
masses [PP17, Lemma 11], and the uniform radius-continuity suffices to control
the error term in our setting. We write down the details about the replacement
in the Appendix for readers’ convenience, and most of the arguments follow from

[PP17].

Proof of Theorem 1.3: By Example 2.12, connected components D,f in the
thin part of M}, are well-positioned convex sets that are strongly convergent to the
well-positioned convex sets DF (respectively). By Theorem 5.3, there is a uniform
counting formula for orthogeodesics between D, to D,j along the sequence. This
proves item (1). Similarly, for small > 0, the radius r embedded balls centered
at xj are well-positioned convex subsets which are strongly convergent to the
embedded r-ball centered at x. In that case, let D,j = D, be the radius r ball
at 2, and DT = D~ be the radius r %36all at x. Observe that if we change the



radius r > 0 to a radius s > 0,s < r we have a one-to-one correspondence
between the set of orthogeodesics by extending/shortening the geodesic arcs.
Such correspondence takes an orthogeodesic of length ¢ to its extension of length
£+2(r—s). Hence applying Theorem 5.3 again and making s arbitrarily small (or
equivalently, translating by 2r the counting function for the balls of radius r), we
obtain the uniform counting for geodesic loops based at xj along the sequence.
O

Proof of Corollary 1.5: As explained for instance by Roblin in [Rob03, Chap-
ter 5], one can deduce an asymptotic counting of closed primitive geodesics in
manifolds with negative pinched curvature from the asymptotic counting of orbit
distance (i.e., geodesic loops), which only depends on the geometry of the univer-
sal cover. Namely, if Gy (¢) is the set of closed primitive geodesics in M of length
less than ¢ > 0, then [Rob03, Corollary 5.3]

Y4

e
#Gp(0) ~ 57 & { — +oo.

Combining with the uniform counting of geodesic loops (Theorem 1.3), we
obtain the uniform counting of closed primitive geodesics along a strongly
convergent sequence of hyperbolic manifolds.

O

Appendix

Let’s start with notations needed in the Appendix. Recall that Pp : H"U (0o H™\
O0xxD) — D is the closest point map defined in Section 2.4 for any nonempty
proper closed convex subset D in H". Let Pg denote the inverse of the restriction
to 8iD of the positive endpoint map v — vy, which is a homeomorphism from
OsoH"™ \ 05D to 8_1~_D. It is a natural lift of Pp such that 7 o Pg = Pp on
OscH"™ \ 850D where m : TTH™ — H". Similarly, one can define P, = 1o PE,
where ¢ : TVH® — T'H" is the antipodal flip map given by v = —v.
Define

UE = {ve T'H" : vy ¢ 05D}

This is an open set in T'H™ which is invariant under the geodesic flow and satisfies
the Z/{WiD = WZ/{E for any v € Isom(H™). Define a fibration f]er : Ug — ﬁiD as the
composition of the positive endpoint map and Pg . Given w € (‘ﬂD, the fiber of
w for f}) is the set

W (w) = {v e T'H" : v, = w, }.
Similarly, one can define a fibration f;, = to f}, ov: Uy — 9L D and the fiber

WO (w) ={veTH" :v_ = w_}. o7



Suppose that D* are two well-positioned convex subsets in M = H" /T, and
Yt € Cg°(T M) are compactly supported functions. Let

Np-pe®) =D = ()t (o))

A0<lx<t

where the sum is taken over all common perpendiculars A between D~ and Dt
whose initial vector vy belongs to 8_1FD_ and the terminal vector v;\”‘ belongs to
0! D* and the length £, < t.

In order to count orthogeodesics between D~ and DT, we can parametrize
the set of orthogeodesics by a quotient of I' up to a choice of basepoint. Denote
by D* the lifts of D* in H”, and distinguish two components D(jf C D*. Then
for each v € T" we can consider the projection to M of the unique orthogeodesic
between Dy and vDg such that the closures of Dy and vDg in H" U9, H" have
empty intersection. It is a simple exercise to see that v;,v2 € I' map to the same
orthogeodesic if and only if there exists g* € Stab(DT) so that y; = g~ 72g™.
Hence we can parametrize orthogeodesic by taking the quotient I'/ ~:=T'/{y =
g 291, gF € Stab(DF)}. Although this labeling depends on the choice of DF,
we will always work once this decision has been made. We use v € 01 DT to
denote the unit tangent vector of -y at the start/end.

Theorem 5.5. Suppose that (M, = H"/Ti)ren s a sequence of hyperbolic
manifolds which strongly converges to a geometrically finite hyperbolic manifold
M =H"/T with §(T) > (n —1)/2. Let (D8 )xen be a sequence of well-positioned
convex subsets in M, which strongly converges to D* in M, respectively. Let as
well (YiE € C(T'My,))ken, ¥F € C2(T M) be compactly supported functions
so that v~ converges strongly to Y, respectively. Then for any € > 0 there exists
to = to(€), ko = ko(€) > 0 so that for any t > to, k > ko we have that

7o (Vi) o (V1) Ny wi®) _ o (V) o5, W) (13)
—e< < €.
S(Te)lIml| e (Th)t 3(Tw)lImEl|
Here U;,( )= fal p- w,;dalj, and O’B+ (@/J,j) is similarly defined.

Proof. Since both terms in (13) are bilinear in 1", we can assume without lose
of generality that, by using a partition of unity, the support of wk is contained in
a small relatively compact open set U, 13: in T!' M}, and there is a small relatively

compact open set U U in T'H" such that the restriction of the quotlent map
: THH™ — Tle to U,f is a diffeomorphism to Ui Define o € C5°(TH)

w1th support in U . and coinciding with * o g, on Uk . Similarly, we can define
a compactly supported function ¢ € C§°(T*H) corresponding to 1. Observe that

we can choose the lifts U ,f and z/;,:f appropriately such that w,f converges strongly
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to 12); and
:Fd0~ = Fdot .
/81 DF Vi Dy /a;D¥ vk opf

where D,f are lifts of D,f. From now on, we will distinguish components of D,f. By
abuse of notation we still denote by D,f a connected component of Df, which we
assume i is the only connected component of D,f so that the intersection of 81 Di

with U,,C is non-empty by using partition of umty Observe that then we can label
other components by I'y left action fy — 'yD These labels are redundant (i.e.
label the same set) if and only if v, 15 belongs to the stabilizer of DjE

Take n, R > 0 and k sufficiently large so that the statement of Propogi\t_i/on

5.2 applies for the sequence of convergent precompact subsets (Qf = 831FD§ N

supp(izg))keN. We will fix R > 0 from now on, but will keep taking smaller
(independent of k) 7. Observe that for small, fixed 7 > 0 we have the inclusion

V’r]e** Re*"(Qf) C Vn,R(Qf)

is precompact in each slice V R and converges as a whole to V, -+ pe—~ OF) c
V,.r(QF) in the usual sense. If by 14 we denote the characteristic function of
a set A, then we can construct smooth functions Xk € C*°(T'H") so that the
followmg items hold

1. For w € Qf,v € WOF (w)
+
]lvne_",Re—T(Qki)<v) S Xk (U) S lva(Qki-)(’U)'

2. The Sobolev norms |xi ||s are uniformly bounded (i.e. independent of k),
where $ is the Sobolev norm appearing in the statement of [EO21, Theorem
1.1].

3. For any w € Qf we have that

—e +
ey (anR)</; dl/ <1/(VJWR)
w,n, R
for € > 0 independent of k, where duﬂf = dsdpw = (w)-
In order to define the test functions to apply exponential mixing, we start with

the functions Hi" : 8#D,f — R defined by

1

Hif(w) = 5=
fvuj‘r_’w X Wi
Let ®F : T'H™ — R defined by

B = (HEE) o 13k
29



By construction, we have that ||<I>,f|| s are uniformly bounded and have support
inV,, R(Qf). Moreover, ®;- are non-negative, measurable functions satisfying

[ etanty = [ vfas (14)
T1H" oL DF

1
F7k

Following [PP17], we will estimate in two ways the quantity

T
WT) = [0S [ (@ eg )@ 0gor dilyde  (15)
0 ~eT, Y THH”

By [EO21, Theorem 1.1] and Theorem 1.1 there exist uniform x > 0, O(.) such
that

T
1 ~ - —k _
Iu(T) = / em”( . O, dinfy / O, dinfyy + Ole t||<1>k|ﬂ||<1>;:||g>)dt
0 HmBMH T1Hn T1Hn

e rT +q + ’ S(Tp)t t +
_ wda—/ Wt do +/ ST (=R D 5| B7 || 5)dt
STllmppll Jorpz " F ooy T T o L

= OT)T
S(T) mll

T
oDt / ST (e 5 || B || )t
(16)

where we used (14) for the second equality. Observe in the final line that we can
make the error term e~ ()T fOT STtO(e= | @, || 5]| @) || g)dt arbitrarily small
for any T > Ty, where Ty sufficiently large and independent of k.

Now we use a second way to compute this integral Ij,(T'). Let d; = 6(T'x). We
interchange the integral over ¢ and the summation over . Then

T
I(T)= > /0 et /T . (B, 09~ *)(®F 0 g% oy~ )dinfidt.

YElK
Suppose that if v € T*H" belongs to the support of (®; 0g~t/2)(®; 0 gt/ 0y71),
then
v € ¢'?V, r(OLD;) N g™V, r(vOLD}).

Then by [PP17, Lemma 7], which is proved by using hyperbolic geometry in H",
we have the following

d(w, vE) = O(n+ e H/?) (17)

where w, = fgk (v), w,‘: = fw_D,j (v), v$ are endpoints of the common perpendic-

ular between D, and 'yD,j, and £, is the length of the common perpendicular.
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Since the Lipschitz norm of 1/)k are uniformly bounded, and in particular bounded
by the 8 Sobolev norm of wk , we have

WE (wi) — vE )] = O((n + e~ /2) [0 5).

If we define é’ki = H,;t o fgki Xf so that @f = (w,f o fgg)@f, by applying the

previous equation we obtain

I(T) = Y [y (03)05 (0F) + O((n+ e~ )l llgl[if 1))

RESIOA
[ e g ) (7 g )i (o)t
ueTlH"

(18)
for O(.) independent of k.
We now related another test function to @ki following [PP17, Lemma 8]. Let
hi : TYH™ — [0, 00] be the T'j-invariant measurable map defined by

1
2npyy 2 (B=(w, R))

if ftw () (B (w, R)) > 0, and hif (w) = 0 otherwise. We define the test function
OF = 0] o+ TH" = [0,00] by

hif(w) = (19)

F_pF ot
r =My Ofle]lvn,R(Q;F)'

By the properties of xf, we have

+ —e 5t +
d)ne_f,Re—T,a}FQfe < (I)k < ¢k ’

Hence, it suffices to consider the integral

i(T) = Y Wi (0 )i () + O + eIy sl 1]s)]

YET K

T
/ 6‘3”/ (65 0 g /) (o) 0 g"? oy )dink .
O TlHn

(20)
By the definition of ¢, the right hand side of (20) is equal to
D Wi ) (0F) + O((n + e[y llsllvi lls)]
vEl
[ [ o 5 P nE o 5,67 % Ly 670y iy 070
(21)
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By the I'-invariance of hf, one has

h,; o f;; (gft/Q,U) _ ei(sk(t/z)h];eftMR(gt/ka_)’

hE o f (37 1g%0) = =5H0/nt

k,e—t/QR(g_t/Qer)

where w, = f;; (v), w,‘i‘ = fV_D;T- (v) = ngzf (y~1v), and h;’eft/zR is defined the

same as in (19) except we replace R by e t/2R . Therefore,
higof f (g™ P)hifofo. (v 9" 0) = e iy (6 Pwi ) hf e (97! Pw]).

The remaining part ]lvan(Q;)(g_t/%)Ilvn R(Qkf)('y_lgt/%) if nonzero if and
only if '

v e gt/QVn,R(Q;) N 'yg_t/QV,%R(QZ) = Vn’e—t/2R(gt/QQ];) N Vn’e—t/2R(’}/g_t/2Q;§).

By [PP17, Lemma 7], there exist constants to > 0 and ¢y (independent of k),
such that if ¢ > tg, the followings holds: there exists a common perpendicular a.
from D, to v(D;) with

L |6, —t] <20+ coe™t/2,
2. d(ﬁ(vf),ﬂ(wf)) < coe /2,
3. d(m(g*t?w), m(v)) < n+ coe /2.

For all v € 'y, and T > tg, we define
Ak,’Y(T) = {(t,’U) € [to,T}XTlHn HECRS V’r],e*"/zR(gt/ZQIz)mVn,e*t/QR(rygit/QQg)L
and the integral

jkﬂ(T) = // h;;76—t/2R(gt/2w]:)hze—t/QR(g_t/lej)dtdm%M(U)
(t,v) €Ak, (T)

dtdm® ,, (v)

1 //
(277)2 (t,v)€AL ~(T) :uw-%—(wt—)(B (wt 71t))l’[/W_(wt+)(B (wt ) )t))
(22)

where

o —t)2 - t/2. — + . —t/2. +
re=e /R, wy fg/wk, w =g /wk.

There exists then a constant ¢j > 0 (independent of k) such that for T' > ¢,
one has 39



—cj + > [WEW)WE D) + O+ e /)|y sl 18) ik (T)

76FT—()(17+<372'V/2),—0(71+67£7/2),7€

< Zk(T) <

co + > [ ()05 () + O((n + e~ ") [y 151193 1))k (T + O

Ve Ot /2) 0(mte= /2 k

(23)
where I's ;) = {y € Tglto +2+¢co < 4y < s, v$ € N,QF} for all 5,7 € R.

Claim 5.6. For any € > 0, if  is small enough and L., is large enough, then

O(n+e_£7/2)eo(e"‘/) (2n + O(eff“f/Q))z
(2n)? ’

Jen(T) =

for ¢ > 0 independent of k.

Proof. Since (H",T)) has radius-continous strong stable/unstable ball masses.
By [PP17, Lemma 11], for every € > 0 and every (t,v) € Ay 4(T'), one has

:F

:“Wi(wf)(Bi(wt i) = eo(e)ﬂwi(uw)(Bi(vaew))

if i is small enough and Z, is large enough, independent of k. Here v., denote the
midpoint of the common perpendicular from D, to v(D;"). Hence,

B [ [yean., ) ddmy (v)
Hw+ (o) (BT (Uy, 7, ) ) = (0,) (B~ (vy,72,)))

jk,'y(T)
By [PP17, Lemma 10], for every (¢,v) € Ay ~(T), one has
dtdinf (v) = eC T Datdsdpgy -,y (0 )dpyy+ (o, (0"t

where v/ = f;B_(vw)(v) and v” = fI;BJr(UV)(v). By [PP17, Lemma 9], the dis-

tances d(v, v,),d(v',v,) and d(v", v,) are O(n+e~*/?). Combining these equations
together, the claim follows. O

Applying then Claim 5.6 in equation (23) we get
() = 3 W05 ) ash)] + Olne), o)
YET K

for t sufficiently large independent of k, and O(.) independent of k,n. Then by
multiplying e~ to equations (16), (2%)3we get that for fixed n > 0



() opp (W) Ny @) o () o, (8)
STl [mEl] V=T emor = T ST [mba]

for ¢ sufficiently large independent of k and O(.) independent of &, n, from where
the result follows.

+0(n) (25)

O

More about the proof of Theorem 5.3: As (D )keN is a sequence of well-
positioned convex sets in M}, which converges strongly to a well-positioned set D*
in M, we can select Q/Jk € C (T My,), v* € C(T* M) be compactly supported

functlons so that (’(/Jk )ken converges strongly to ¥* and wk =1 in supp(o aDi)

Hence in the notation of Theorem 5.5
+
Nog st @ = Npz pe (®), o5 (85) = lloe |l

5oy )

6(Fk)|‘m]3mll
Theorem 5.3 by a multiplicative error uniformly close to 1 along the sequence as

t gets larger.

and in particular # 0. Then we can restate the conclusion of

O
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