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Abstract
We study the complexity of proof systems augmenting resolution with inference rules that allow, given
a formula � in conjunctive normal form, deriving clauses that are not necessarily logically implied by
� but whose addition to � preserves satisfiability. When the derived clauses are allowed to introduce
variables not occurring in �, the systems we consider become equivalent to extended resolution.
We are concerned with the versions of these systems without new variables. They are called BC≠,
RAT≠, SBC≠, and GER≠, denoting respectively blocked clauses, resolution asymmetric tautologies,
set-blocked clauses, and generalized extended resolution. Each of these systems formalizes some
restricted version of the ability to make assumptions that hold “without loss of generality,” which is
commonly used informally to simplify or shorten proofs.

Except for SBC≠, these systems are known to be exponentially weaker than extended resolution.
They are, however, all equivalent to it under a relaxed notion of simulation that allows the translation
of the formula along with the proof when moving between proof systems. By taking advantage of
this fact, we construct formulas that separate RAT≠ from GER≠ and vice versa. With the same
strategy, we also separate SBC≠ from RAT≠. Additionally, we give polynomial-size SBC≠ proofs of
the pigeonhole principle, which separates SBC≠ from GER≠ by a previously known lower bound.
These results also separate the three systems from BC≠ since they all simulate it. We thus give an
almost complete picture of their relative strengths.
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1 Introduction

1.1 Properties of commonly studied proof systems
Most of the commonly studied rule-based propositional proof systems,1 such as resolution [3,
27], Frege [8], cutting planes [9], polynomial calculus [6], Lovász–Schrijver [23], are in several
senses well behaved. For instance, they are monotonic, strongly sound, and strongly closed
under restrictions.

A proof system P is monotonic if for all sets � and �Õ of formulas such that � ™ �Õ and
for every formula Ï we have

� „P Ï =∆ �Õ
„P Ï,

1 Throughout this paper, by “proof” we mean a refutation of satisfiability (i.e., a derivation of ‹ from a
set � of formulas, where ‹ denotes a contradiction such as the empty clause).
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101:2 Exponential Separations Using Guarded Extension Variables

where „P is the derivability relation for P . Since we often express a proof as a tree,
monotonicity naturally holds for most proof systems. It has the consequence that the
validity of an inference in the proof relies only on some subset of the previously derived
formulas as opposed to the entire set.
Strong soundness is the property of a proof system P that a formula Ï can be derived in
P from a set � of formulas only if Ï is logically implied by � (i.e., every total assignment
satisfying all formulas in � also satisfies Ï), written as

� „P Ï =∆ � |= Ï. (1)

Soundness is less strict than strong soundness in that it only requires (1) to hold for
Ï = ‹.
For a formula Ï and a partial assignment –, let Ï|– denote the formula obtained by
first replacing every assigned variable x occurring in Ï by –(x) and then recursively
simplifying all of the subformulas. For a set � of formulas, let �|– := {Â|– | Â œ �}. We
call Ï|– the restriction of Ï under –, and similarly for �. We say a proof system P is
strongly closed under restrictions if for every set � of formulas, for every formula Ï, and
for every partial assignment – that does not satisfy Ï, we have

� „P Ï =∆ �|– „P Ï|–. (2)

As in the case of soundness, (weak) closure under restrictions only requires (2) to hold for
Ï = ‹. Closure under restrictions is often also defined by the more quantitative condition
that for every P -proof � of � and every partial assignment – there exist a P -proof �Õ of
�|– of size polynomial in the size of �.

None of the above properties are necessary for soundness, and proof systems that do not
have them can be stronger since such systems are more permissive in terms of the kinds
of reasoning they allow. Possibly the most prominent example of such a system in proof
complexity is extended Frege [8]. When refuting a set � of formulas, extended Frege allows
(in addition to the axioms and the rules of the underlying Frege system) proof steps of the
form x ¡ Ï, where x is a variable and Ï is an arbitrary formula, with the condition that x
not occur in �, any of the preceding steps, or Ï. Another example is extended resolution [29],
which uses a similar rule although in a more restricted form since resolution works only
with clauses. With x a “new” variable as before and p, q literals, extended resolution allows
introducing x ¡ p · q via the following clauses, where the overline denotes negation:

x ‚ p x ‚ q x ‚ p ‚ q (3)

Extended Frege (and similarly extended resolution) has none of the above properties, although
the reasons are not particularly interesting:

Monotonicity fails to hold since we cannot necessarily derive x ¡ Ï from �Õ
´ � if x

already occurs in �Õ.
Strong soundness fails to hold since � may not imply x ¡ Ï under assignments – such
that –(x) ”= –(Ï). Nevertheless, extended Frege is sound because � and � fi {x ¡ Ï}

are equisatisfiable (i.e., � is satisfiable if and only if � fi {x ¡ Ï} is satisfiable), seen as
follows: if an assignment – satisfies � but falsifies x ¡ Ï, flipping –(x) gives a di�erent
assignment –Õ satisfying both � and x ¡ Ï.
Strong closure under restrictions fails to hold since otherwise we could choose a partial
assignment that only assigns x to True and conclude that every formula Ï can be derived
from �, which contradicts the soundness of extended Frege.
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In all of the above cases, the counterexamples rely crucially on the fact that x is a new
variable. This ability to abbreviate complex formulas by variables significantly increases
the di�culty of proving lower bounds for extended Frege and makes it one of the strongest
propositional proof systems. (Extended resolution is equivalent to it over refutations of sets
of clauses.) From this point on, we use “formula” and “set of clauses” interchangeably.

Proof systems that violate the above properties for more sophisticated reasons (i.e., not
simply due to the introduction of new variables) also exist. In this paper we compare the
proof complexity of four such systems that augment resolution with inference rules of varying
expressiveness. Given a set � of clauses, these rules allow deriving clauses that are not
necessarily logically implied by � but whose addition to � preserves satisfiability. We call
such clauses redundant. Deciding the redundancy of a clause with respect to a set of clauses
is coDP-complete2 [2], so we consider only the inference rules that rely on polynomial-time
verifiable syntactic conditions corresponding to restricted versions of redundancy. These rules
may be viewed as capturing the commonly used technique of making assumptions that hold
“without loss of generality” when writing informal mathematical proofs. Such assumptions
are not logically implied by the hypotheses at hand, but their use is justified by the fact
that they can be eliminated at the possible cost of an increase in the size of the proof. The
formal rules we study rely on syntactic criteria to justify such assumptions, with weaker
criteria allowing the introduction of stronger assumptions. In this way, these rules allow us to
directly express various kinds of informal reasoning that are otherwise di�cult to formalize.

From the perspective of the broader study of proof complexity, these systems are somewhat
unique in that Frege does not simulate even the weakest variant unless Frege and extended
Frege are equivalent [4, Corollary 2.5]. It would be interesting to determine whether some
variant of these systems, despite having the same limited syntax as resolution and no new
variables, simulates a subsystem of Frege stronger than resolution.

1.2 Related work

1.2.1 Proof complexity

The inference rules we study originate from the notion of blocked clauses, developed initially
by Kullmann [20, 21] to give improved deterministic algorithms for 3-SAT. We call a clause
C blocked with respect to a set � of clauses if there exists a literal p œ C such that all
possible resolvents of C on p against clauses from � are tautological (i.e., contain a literal and
its negation). Kullmann [22] showed that blocked clauses are redundant and thus considered
an inference rule that, given a set � of clauses, allows us to extend � with a clause that is
blocked with respect to �. This rule, along with resolution, gives the proof system called
blocked clauses (BC). As illustrated below, BC is not monotonic, not strongly sound, and not
strongly closed under restrictions.

I Example 1. The clause C = x ‚ y is blocked with respect to the set � = {x ‚ y, x ‚ y}.
Monotonicity fails to hold since we cannot derive C from �Õ = � fi {y} in BC: the set �Õ

is satisfiable but �Õ
fi {C} is unsatisfiable.

Strong soundness fails to hold since � does not imply C under assignments that set both
x and y to True.

2 The class DP = {L1 fl L2 | L1 œ NP, L2 œ coNP}, which is a superset of both NP and coNP, was defined
by Papadimitriou and Yannakakis [25].

ITCS 2023



101:4 Exponential Separations Using Guarded Extension Variables

Strong closure under restrictions fails to hold since for an assignment – that sets y to
True we cannot derive C|– = x from �|– = {x} in BC: the set �|– is satisfiable but
�|– fi {C|–} is unsatisfiable.
It is apparent from the definition of a blocked clause that deleting clauses from � enlarges

the set of clauses that are blocked with respect to �. With this observation at hand, Kullmann
defined a strengthening of BC called generalized extended resolution (GER) that allows the
temporary deletion of clauses from �. Arbitrary deletion of clauses does not necessarily
preserve satisfiability; however, since no subset of a satisfiable � is unsatisfiable, it is also
possible to further strengthen GER by allowing the arbitrary deletion of a clause as a proof
step. The resulting system is called deletion blocked clauses (DBC).

Conversely to the above point, the failure of monotonicity becomes particularly important
when deletion is not allowed since it implies that the validity of blocked clause additions
performed in sequence are order dependent. In particular, not every set of clauses that are
all blocked with respect to � can be derived from � by a sequence of blocked clause additions.
For this reason, proving upper bounds for generalizations of BC involves carefully ensuring
the validity of sequences of inferences.

Without any additional restrictions, the above systems all simulate extended resolution
since the clauses in (3) can be added in sequence as blocked clauses if we are allowed to
introduce new variables: starting with a set � of clauses not containing the variable x, we
can derive

x ‚ p followed by x ‚ q since no occurrence of the literal x precedes either step (so both
clauses are vacuously blocked), and then
x‚p‚q since its resolvents on x against x‚p and x‚q (i.e., the only preceding occurrences
of x) are tautological.

The study of these systems becomes interesting when we disallow new variables. A proof of �
is without new variables if it contains only the variables that already occur in �. Throughout
this paper, we denote a proof system variant that disallows new variables with the superscript
“≠” (e.g., BC≠ is BC without new variables). We denote a variant that allows arbitrary
deletion with the prefix D. All of those variants constitute examples of proof systems that
share the peculiarities of extended resolution from Section 1.1 without being allowed new
variables.

Kullmann [22] proved that extended resolution simulates GER. He also proved that GER≠

is exponentially stronger than resolution and exponentially weaker than extended resolution.
In later work, Järvisalo, Heule, and Biere [15] defined a di�erent generalization of BC by
essentially replacing “tautological” in the definition of a blocked clause with “implied by �
through unit propagation.” (Unit propagation is an automatizable but incomplete variant of
resolution.) The result is still a polynomial-time verifiable redundancy criterion since the
only important property of tautologies in the argument for the redundancy of a blocked
clause C with respect to � is that tautologies are implied by �. This generalization is called
resolution asymmetric tautologies (RAT). Yet another generalization of BC along a di�erent
axis is called set-blocked clauses (SBC), defined by Kiesl, Seidl, Tompits, and Biere [17]. We
call a clause C set-blocked with respect to a set � of clauses if there exists some nonempty
L ™ C such that for all D œ � with D fl L ”= ? and D fl L = ? the set

!
C \ L

"
fi

!
D \ L

"
is

tautological. A blocked clause is the special case where L is a singleton, so set-blockedness
expands the scope of the literals in C that we consider. Deciding the set-blockedness of a
clause with respect to a set of clauses is NP-complete [17]. To ensure that an SBC proof
is polynomial-time verifiable, every step in the proof that adds a clause C as set-blocked
is expected to indicate the subset L ™ C for which C is set-blocked. With that said, to
reduce clutter, we leave this requirement out of our definitions and indicate those subsets
only informally throughout this paper.
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Subsequent works [13, 16] defined further generalizations, showed simulations between
some variants, and gave polynomial-size proofs (without new variables) of the pigeonhole
principle in a variant called set-propagation redundancy (SPR≠) that combines SBC≠ and
RAT≠. Recently, Buss and Thapen [4] initiated a systematic study of the proof complexity of
the many generalizations of BC≠. Among other results, they showed that the bit pigeonhole
principle, parity principle, clique-coloring principle, and Tseitin tautologies have polynomial-
size SPR≠ proofs. They also showed that SPR≠ can undo (with polynomial-size derivations)
the e�ects of or-ification, xor-ification, and lifting with index gadgets. In view of these results,
SPR≠ appears to be surprisingly strong.3 Buss and Thapen also proved an exponential size
lower bound for RAT≠, separating DRAT≠ and SPR≠ from it. Superpolynomial lower bounds
for SPR≠ or even SBC≠ are currently open.

1.2.2 SAT solving
As the use of SAT solvers in propositional theorem proving increased, it became standard to
expect a solver to produce a proof alongside an unsatisfiability claim. Modern SAT solvers
are based on conflict-driven clause learning (CDCL) [24] and essentially search for resolution
proofs. As a result, the initial proof systems developed to help verify the outputs of CDCL
SAT solvers were based on resolution [10, 31]. However, most of the current SAT solvers
go beyond CDCL and employ an array of inprocessing techniques [15] that transform the
formula during the search. These techniques are often not strongly sound, and resolution falls
short for expressing them. Järvisalo, Heule, and Biere [15] observed that DRAT simulated all
of the common techniques used at the time, and, following the implementation of a practical
verifier [32], DRAT became the de facto standard proof system used in SAT solvers. Extended
resolution could also be used for verification; however, it is only known to simulate DRAT
with polynomial overhead [16, Section 4.5], whereas DRAT simulates extended resolution
with no overhead. There are also a few examples of DRAT enabling significant gains over the
smallest known extended resolution proofs (see, e.g., [16, Table 1]), which is important for
practical purposes.

Another practical motivation for studying these systems is their potential usefulness in
proof search due to the surprising strength of the variants without new variables. Recent
works have introduced a SAT solving paradigm called satisfaction-driven clause learning
(SDCL) [14, 12] that can fully automatically discover small proofs of the pigeonhole principle.
Its usefulness remains limited, though, since it was observed to improve upon CDCL only
on specific classes of formulas. Exploiting the power of these systems might be a promising
avenue for the research that aims to improve the performance of practical SAT solvers. To
this end, it is important to understand the relative strengths of these systems.

1.3 Results
We prove some results concerning the relative strengths of BC≠, RAT≠, SBC≠, and GER≠,
continuing the line of work [22, 13, 16, 4] on the proof complexity of generalizations of BC≠.
Figure 1 summarizes the state of the proof complexity landscape surrounding these systems
after our results.

3 As remarked by Buss and Thapen [4, Section 4], the apparent strength of SPR≠ stems from the ability
to exploit symmetries, which are abundant in the combinatorial principles used for proving lower bounds
against the commonly studied proof systems. Other interesting examples of systems that easily prove
such combinatorial principles are the variants of Krishnamurthy’s symmetric resolution [19, 30, 1, 28],
obtained by augmenting resolution with rules that explicitly support reasoning about symmetries.

ITCS 2023
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BC≠

SBC≠

RAT≠

SPR≠

GER≠ DBC≠

DSBC≠

DRAT≠

DSPR≠

Figure 1 In the above diagram, the proof systems are placed in three-dimensional space with
BC≠ at the origin. Moving away from the origin along each axis corresponds to a particular way of
generalizing a proof system. For systems P and Q, we use P Q to denote that P simulates Q;
(and P Q to indicate an “interesting” simulation, where P is not simply a generalization of Q);
P Q to denote that P is exponentially separated from Q (i.e., there exists an infinite sequence
of formulas admitting polynomial-size proofs in P while requiring exponential-size proofs in Q); and
P Q to denote that P both simulates Q and is exponentially separated from Q. Arrows in red
indicate the relationships that are new in this paper. To reduce clutter, some relationships that are
implied by transitivity are not displayed (e.g., DBC≠ simulates RAT≠ and is exponentially separated
from it through DRAT≠).

Our first main result is a two-way separation between RAT≠ and GER≠.

I Theorem 2. There exists an infinite sequence (�n)Œ
n=1

of formulas such that �n admits
RAT≠ proofs of size nO(1) but requires GER≠ proofs of size 2�(n). Conversely, there exists
an infinite sequence (�n)Œ

n=1
of formulas such that �n admits GER≠ proofs of size nO(1) but

requires RAT≠ proofs of size 2�(n).

Since both RAT≠ and GER≠ are generalizations of BC≠, the above result also separates
both systems from BC≠. It was already understood that GER≠ is between BC≠ and DBC≠

in strength, and GER≠ is in fact “strictly” between BC≠ and DBC≠ by Theorem 2.
For both directions of the separation, we follow a strategy that exploits the equivalence

of BC≠ (without new variables) to extended resolution under e�ective simulations [11, 26],
which allow the translation of the formula (in a satisfiability-preserving way) along with the
proof when moving between proof systems. In particular, Kullmann [22, Lemma 8.4] and
Buss and Thapen [4] observed that it is possible to incorporate new variables into a formula
� in such a way that BC≠, while still technically only using the variables occurring in the
formula, simulates an extended resolution proof of �.

I Lemma 3 ([4, Lemma 2.2]). Suppose that a formula � has an extended resolution proof of
size m and that � and the set X = {y ‚ x1 ‚ · · · ‚ xm, y} of clauses have no variables in
common. Then � fi X has a BC≠ proof of size O(m).
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To separate RAT≠ and GER≠, we incorporate new variables into formulas in ways that
are useful to only one of the two systems. We achieve this by “guarding” the new variables by
clauses instead of providing them as in Lemma 3. Recall that, for a clause to be redundant
with respect to a formula according to some syntactic criterion in this paper, every clause in
the formula has to satisfy a certain condition. We take advantage of this fact to include the
new variables within a strategically chosen set X of guard clauses alongside an unsatisfiable
formula �. With a suitable choice of X , we are able to impose enough limitations upon the
redundant clauses derivable in a system to ensure that the new variables can essentially be
ignored in a proof of � fi X .

For each direction of the separation, when proving the upper bound for one of the two
systems, we show that it can e�ciently work through the guard clauses and use the new
variables to simulate the extended resolution proof. When proving the lower bound for the
other system, we show essentially that it is closed under restrictions4 for the specific formulas
and partial assignments that we construct. (Neither system is closed under restrictions in
general.) In other words, the guard clauses make it impossible for the system to e�ciently
“access” the new variables, thus preventing it from achieving any speedup. This allows us to
use the existing separations of extended resolution from RAT≠ and GER≠ to separate the two
systems without needing to prove lower bounds entirely from scratch. The main di�culty is
in coming up with the appropriate ways of incorporating new variables into formulas.

As our next main result, we separate SBC≠ from RAT≠ (and hence BC≠) with the same
strategy. In fact, we reuse the formulas separating GER≠ from RAT≠ and show that SBC≠

can also e�ciently work through the guard clauses in them, although in a di�erent manner
than GER≠.

I Theorem 4. There exists an infinite sequence (�n)Œ
n=1

of formulas such that �n admits
SBC≠ proofs of size nO(1) but requires RAT≠ proofs of size 2�(n).

Finally, we give polynomial-size SBC≠ proofs of the pigeonhole principle, which exponen-
tially separates SBC≠ from GER≠ by a lower bound due to Kullmann [22, Lemma 9.4].

I Theorem 5. There exists an infinite sequence (�n)Œ
n=1

of formulas such that �n admits
SBC≠ proofs of size nO(1) but requires GER≠ proofs of size 2�(n).

Along the way to our main results, we prove a partial simulation of RAT≠ by BC≠. It is
partial in the sense that the size of the produced BC≠ proof is not always a polynomial in
the size of the RAT≠ proof (which is impossible due to Theorem 2). It also has the property
that, although the produced proof may sometimes be small, the simulation cannot necessarily
be carried out in time polynomial in the size of the produced proof. This is because the
simulation involves generating satisfying assignments to certain formulas obtained in the
process. To our knowledge, all of the “natural” simulations between the commonly studied
proof systems are e�cient, so the partial simulation of RAT≠ by BC≠ is an odd example.
Another notable aspect of the simulation is that it directly informed the construction of the
formulas that we use for separating RAT≠ from GER≠. We discuss this further at the end of
Section 4. Due to the technical nature of the simulation, we do not state it here in detail.

1.4 Open questions
We leave open the following.

I Question 6. Is RAT≠ exponentially separated from SBC≠?

4 We use closure under restrictions here in the quantitative sense described in Section 1.

ITCS 2023
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I Question 7. Is GER≠ exponentially separated from SBC≠?

Answering these questions will complete the picture of the relative strengths of the
weakest generalizations of BC≠ along each axis in Figure 1. However, we do not even have
any superpolynomial lower bounds for SBC≠. If a separation of extended resolution from
SBC≠ is shown, it might be possible to relatively easily separate RAT≠ and GER≠ from
SBC≠ by tailoring guarded extension variables that SBC≠ cannot access (in the manner of
the current paper).

As an aside, the formulas that we use for the separations in this paper are arguably
“artificial” in that they do not encode any combinatorial principles. Separations with “natural”
formulas give more intuitive insight into the relative capabilities of the proof systems being
considered, so it is desirable to reprove Theorems 2 and 4 using formulas that encode some
combinatorial principles. On the other hand, those artificial formulas enable relatively simple
and modular proofs of the separations. An interesting open question is whether our strategy
of separating two proof systems P and Q, both of which e�ectively simulate a strong system
R, through syntactic manipulations of formulas that separate R from P and Q is more
generally applicable.

Another desirable goal is to establish tighter connections between the more commonly
studied proof systems and the generalizations of BC≠. As mentioned earlier, Frege does not
simulate BC≠ unless it also simulates extended Frege. Additionally, it is already known that
bounded-depth Frege does not simulate BC≠ [4, Corollary 2.3]. We naturally wonder about
the converse direction.

I Question 8. Is there a subsystem of Frege stronger than resolution that DBC≠ simulates?

2 Preliminaries

We denote the set of positive integers by N+. For n œ N+, we let [n] := {1, . . . , n}. For a
sequence S = (x1, . . . , xn), its length is n and we denote it by |S|. We use ÈxÍ to compactly
denote an infinite sequence (xn)Œ

n=1
.

2.1 Propositional logic
For notation we mostly follow Buss and Thapen [4].

We use 0 and 1 to denote False and True, respectively. A literal is a propositional variable
or its negation. A set of literals is tautological if it contains a pair of complementary literals
x and x. A clause is the disjunction of a nontautological set of literals. We denote by V, L,
and C respectively the sets of all variables, all literals, and all clauses. A conjunctive normal
form formula (CNF) is a conjunction of clauses. We identify clauses with sets of literals and
CNFs with sets of clauses. In the rest of this section we use C, D to denote clauses and �, �
to denote CNFs.

When we know C fi D to be nontautological, we write it as C ‚ D. We write C ‚̇ D to
indicate a disjoint disjunction, where C and D have no variables in common. We sometimes
write � fi {C} as � · C.

We denote by var(�) the set of all the variables occurring in �. We say C subsumes D,
denoted C ˆ D, if either D is tautological or C ™ D. For CNFs, we say � subsumes �,
denoted � ˆ �, if for all D œ � there exists some C œ � such that C ˆ D. We take the
disjunction of a clause and a CNF as C ‚� := {C ‚D | D œ � and C fiD is nontautological}.
We say � and � are equisatisfiable, denoted � ©sat �, if they are either both satisfiable or
both unsatisfiable. With respect to �, a clause C is redundant if � \ {C} ©sat � ©sat � fi {C}.
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A partial assignment – is a partial function – : V Ô {0, 1}, which also acts on literals
by letting –(x) := –(x). We identify – with the set {p œ L | –(p) = 1}, consisting of all the
literals it satisfies. For a set L of literals, we let L := {x | x œ L}. In particular, we use C to
denote the smallest partial assignment that falsifies all the literals in C. We say – satisfies
C, denoted – |= C, if there exists some p œ C such that –(p) = 1. We say – satisfies � if
for all C œ � we have – |= C. For C that – does not satisfy, the restriction of C under – is
C|– := C \ {p œ C | –(p) = 0}. Extending the above to CNFs, the restriction of � under – is
�|– := {C|– | C œ � and – ”|= C}.

2.2 Proof complexity
We recall the definition of a proof system (in the sense of Cook and Reckhow [8]) and the basic
notions of proof complexity, which can also be found in the recent textbook by Krají�ek [18,
Chapter 1].

In the rest of this section we think of � as a formula and � as a proof, each encoded by a
string over some finite alphabet.

I Definition 9. A proof system is a polynomial-time computable binary relation P such that
the following hold.

Soundness: For all � and �, if P (�, �) holds then � is unsatisfiable.
Completeness: For all unsatisfiable �, there exists some � such that P (�, �) holds.

We call any � satisfying P (�, �) a P -proof of �.

Proof complexity is concerned with the sizes (or lengths) of proofs. For a proof system P
and a formula �, we define sizeP (�) := min{|�| | � is a P -proof of �} if � is unsatisfiable
and sizeP (�) := Œ otherwise.

I Definition 10. A proof system P simulates Q if for all unsatisfiable � we have sizeP (�) =
sizeQ(�)O(1). Additionally, P polynomially simulates Q if there exists a polynomial-time
algorithm for converting a Q-proof of � into a P -proof of �.

I Definition 11. Proof systems P and Q are equivalent if they simulate each other. Addi-
tionally, P and Q are polynomially equivalent if they polynomially simulate each other.

We say P is exponentially separated from Q if there exists some sequence È�Í of formulas
such that sizeP (�n) = nO(1) while sizeQ(�n) = 2�(n). We call such È�Í easy for P and hard
for Q.

2.3 Resolution
I Definition 12. The resolution rule is

A ‚̇ x B ‚̇ x
A ‚ B

,

where A, B are clauses and x is a variable. We call A ‚ B the resolvent of A ‚ x and B ‚ x
on x.

I Definition 13. The weakening rule is

A
A ‚ B

,

where A and B are clauses. We call A ‚ B a weakening of A.
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We define a resolution proof in a slightly di�erent form than usual: as a sequence of
CNFs instead of a sequence of clauses.

I Definition 14. A resolution proof of a CNF � is a sequence � = (�1, . . . , �N ) of CNFs
such that �1 = �, ‹ œ �N , and, for all i œ [N ≠ 1], we have �i+1 = �i fi {C}, where

C is a resolvent of two clauses D, E œ �i or
C is a weakening of some clause D œ �i.

The size of � is N .

We write Res to denote the resolution proof system. A well known fact is that resolution
proofs are preserved under restrictions: if (�1, �2, . . . , �N ) is a resolution proof of �, then, for
every partial assignment –, the sequence (�1|–, �2|–, . . . , �N |–) contains a resolution proof
of �|–. This implies in particular the following.

I Lemma 15. For every CNF � and every partial assignment –, we have sizeRes(�|–) Æ

sizeRes(�).

We next define a weakened version of resolution that comes up often in the study of
decision algorithms for satisfiability.

I Definition 16. A unit propagation proof is a resolution proof where each use of the
resolution rule is of the form

A ‚̇ x x
A

.

Unit propagation is not complete. With �, � CNFs and L = {p1, . . . , pk} a set of literals,
we define � · L := � · p1 · · · · · pk and write

� „1 ‹ to denote that there exists a unit propagation proof of �,
� „1 L to denote

!
� · L

"
„1 ‹,

� „1 � to denote that for all D œ � we have � „1 D.
Note that � „1 � implies � |= �. Moreover, whether � „1 � holds can be decided in
polynomial time. This makes it useful as a component in defining inference rules.

As in the case of resolution, unit propagation proofs are preserved under restrictions.

I Lemma 17. For every CNF �, every set L of literals, and every partial assignment – such
that – ”|= L, if � „1 L, then �|– „1 L|–.

Proof. The proof is available in the full version. J

From this point on, we discuss some strengthenings of the resolution proof system.

I Definition 18. Let � be a CNF and p, q be arbitrary literals. Consider a new variable x
(i.e., not occurring in any one of �, p, q). We call {x ‚ p, x ‚ q, x ‚ p ‚ q} a set of extension
clauses for �. In this context, we refer to x as the extension variable.

I Definition 19. A CNF � is an extension for a CNF � if there exists a sequence (⁄1, . . . , ⁄t)
such that � =

t
t

i=1
⁄i, and, for all i œ [t], we have that ⁄i is a set of extension clauses for

� fi
t

i≠1

j=1
⁄j.

I Definition 20. An extended resolution proof of a CNF � is a pair (�, �), where � is
an extension for � and � is a resolution proof of � fi �. The size of (�, �) is defined to be
|�| + |�|.

We write ER to denote the extended resolution proof system.
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3 Inference rules

We recall the redundancy criteria that lead to the inference rules we use to augment resolution
proofs. The definitions are adapted from previous works [22, 15, 17, 13, 4].

I Definition 21. A clause C = p ‚̇ C Õ is a blocked clause (BC) for p with respect to a CNF
� if, for every clause D of the form p ‚̇ DÕ in �, the set C Õ

fi DÕ is tautological.

A strict generalization of the notion of a blocked clause is a resolution asymmetric
tautology, defined as follows.

I Definition 22. A clause C = p ‚̇ C Õ is a resolution asymmetric tautology (RAT) for p
with respect to a CNF � if, for every clause D of the form p ‚̇ DÕ in �, we have � „1 C Õ

fi DÕ.

Another strict generalization of a blocked clause is a set-blocked clause.5

I Definition 23. A clause C is a set-blocked clause (SBC) for a nonempty L ™ C with
respect to a CNF � if, for every clause D œ � with D fl L ”= ? and D fl L = ?, the set!
C \ L

"
fi

!
D \ L

"
is tautological.

We say C is a BC with respect to � if there exists a literal p œ C for which C is a BC
with respect to �, and similarly for RAT and SBC. Note that the above definitions do not
prohibit BCs, RATs, or SBCs with respect to � from containing variables not occurring in �.

It was shown by Kullmann [22], Järvisalo, Heule, and Biere [15], and Kiesl, Seidl, Tompits,
and Biere [17] that BCs, RATs, and SBCs are redundant, which makes it possible to use
them to define proof systems.

I Theorem 24. If a clause C is a BC, RAT, or SBC with respect to a CNF �, then
� \ {C} ©sat � ©sat � fi {C}.

I Definition 25. A blocked clauses proof of a CNF � is a sequence � = (�1, . . . , �N ) of
CNFs such that �1 = �, ‹ œ �N , and, for all i œ [N ≠ 1], we have �i+1 = �i fi {C}, where
either

C is a resolvent of two clauses D, E œ �i,
C is a weakening of some clause D œ �i, or
C is a blocked clause with respect to �i.

The size of � is N .

We write BC to denote the blocked clauses proof system. Replacing “blocked clause” by
“resolution asymmetric tautology” in the above definition gives the resolution asymmetric
tautologies proof system, which we denote by RAT. Replacing it by “set-blocked clause” gives
the set-blocked clauses proof system, which we denote by SBC.

RAT and SBC are two generalizations of BC, and we now define another, designed to
overcome the dependence of the validity of BC inferences on the order of clause additions
(see [22, Section 1.3]).

For a CNF � and a set V of variables, we let

BV (�) := {C œ C | C is a BC for a literal of some x œ V with respect to �}.

We also let

5 We define a set-blocked clause in a slightly di�erent, although equivalent, way compared with the
original [17, Definition 4.1].
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B(�) := BV(�),
Bin(�) := B(�) fl �,
B≠

V
(�) := {C œ BV (�) | var(C) ™ var(�)},

B≠(�) := B≠
var(�)

(�).

Before proceeding, we observe the below result, which follows immediately from the
definition of a blocked clause.

I Lemma 26. For all CNFs � and � such that � ™ �, we have B(�) ´ B(�).

Thus, we may assume without loss of generality that all of the blocked clause additions
in a BC proof are performed before any resolution steps. (A similar assumption does not
necessarily hold for RAT proofs.)

I Definition 27. A sequence (C1, . . . , Cm) of some clauses from a CNF � is a maximal
blocked sequence for � if for all i œ [m] the clause Ci is blocked with respect to � \

t
i≠1

j=1
{Cj}

and Bin(� \
t

m

i=1
{Ci}) is empty.

For a CNF �, a maximal blocked sequence is unique up to the ordering of its clauses [22,
Lemma 6.1], which makes the following notion well defined.

I Definition 28. Let (C1, . . . , Cm) be a maximal blocked sequence for a CNF �. The kernel
of � is ker(�) := � \

t
m

i=1
{Ci}.

I Definition 29. A CNF � is a blocked extension for a CNF � if ker(� fi �) = ker(�).

I Definition 30. A generalized extended resolution proof of a CNF � is a pair (�, �), where
� is a blocked extension for � and � is a resolution proof of � fi �. The size of (�, �) is
defined to be |�| + |�|.

We write GER to denote the generalized extended resolution proof system. The relationship
between GER and BC is made clear by the following characterization of blocked extensions.

I Lemma 31 ([22, Lemma 6.5]). A CNF � is a blocked extension for a CNF � if and only if
there exists a CNF �Õ

™ � and an ordering (C1, . . . , Cm) of all the clauses in � fi (� \ �Õ)
such that for all i œ [m] the clause Ci is blocked with respect to �Õ

fi
t

i≠1

j=1
{Cj}.

This result gives a view of GER as a version of BC that allows the temporary deletion of
clauses from the initial formula (i.e., clauses can be deleted as long as they are added back
later).

In this paper, we study the variants of BC, RAT, SBC, and GER that disallow the use of
new variables. We say that a proof of a CNF � is without new variables if all the variables
occurring in the proof are in var(�). In the case of GER, this constraint applies to the
blocked extension. We use BC≠, RAT≠, SBC≠, and GER≠ to denote the variants without
new variables.

3.1 Useful facts
We conclude this section with a few standalone results that we will refer back to later. We
defer their proofs to the full version.

I Lemma 32. For every CNF � such that ker(�) = �, we have sizeGER≠(�) = sizeBC≠(�).

I Lemma 33. For every CNF �, we have sizeBC≠(�) Ø sizeRes(� fi B≠(�)).
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I Definition 34. The projection of a CNF � onto a literal p is the CNF projp(�) := {C \{p} |

C œ � and p œ C}.

This definition plays a role in both our (partial) simulation of RAT≠ by BC≠ and our
GER≠ lower bounds. In particular, we use the following fact, which was already observed by
Kullmann [22, Section 4].

I Lemma 35. A clause C = p ‚̇ C Õ is a BC for p with respect to a CNF � if and only if the
partial assignment C Õ satisfies projp(�).

The next result is essentially due to Chang [5, Theorem 1]. Although its original form is
slightly weaker, the exact statement below can be obtained by a modification of Chang’s
proof. We provide its proof in the full version.

I Lemma 36. For every CNF � and every clause C such that � „1 C, there exists a
resolution derivation (�1, . . . , �N ) with N Æ |var(�)| + 1 such that �1 = �, C œ �N , and
� fi {C} ˆ �N .

The following gives a simple condition under which we regain monotonicity.

I Lemma 37 ([4, Lemma 1.20]). Let � and � be CNFs such that � ™ � and � ˆ �. If a
clause is a BC, RAT, or SBC with respect to �, then it is a BC, RAT, or SBC with respect
to �.

4 Partial simulation of RAT≠ by BC≠

We will show how to convert a RAT addition into a sequence of BC additions and resolution
steps. Assume that all the BCs and RATs in this section are without new variables.

I Definition 38. The nonblocking CNF of a clause C for a literal p œ C with respect to a
CNF � is NB�

p
(C) :=

)
D \ C

-- D œ projp(�) and (C \ {p}) fi D is nontautological
*

.

As a consequence of the above definition, we have var
1

NB�

p
(C)

2
fl var(C) = ?.

We say an assignment – minimally satisfies a CNF �, denoted – |=min �, if – satisfies �
while no proper subset –Õ ( – satisfies �. We let µ(�) :=

)
E œ C

-- E |=min �
*

. Since two
di�erent minimally satisfying assignments cannot contain one another, no clause E œ µ(�) is
contained in a di�erent clause EÕ

œ µ(�).

I Example 39. Let � = {x, y ‚ z}. This CNF has two minimally satisfying assignments:
{x, y} and {x, z}. We thus have µ(�) = {x ‚ y, x ‚ z}.

Noting that � fi µ(�) is unsatisfiable for every CNF �, we let s(�) := |µ(�)| + sizeRes(� fi

µ(�)). When � is unsatisfiable, we simply have s(�) = sizeRes(�).

I Theorem 40. Let C = p ‚̇ C Õ be a RAT for p with respect to a CNF �. There exists a
BC≠ derivation (�1, . . . , �N ) such that �1 = �, C œ �N , and � fi {C} ˆ �N , where, letting
� = NB�

p
(C) and letting n = |var(�)|, we have N Æ |�|(n + 1) + s(�).

Proof. Since C is a RAT for p, for all D œ NB�

p
(C) we have � „1 C Õ

‚̇ D, which implies in
particular that � „1 C ‚̇ D. Then, using Lemma 36, for all D œ NB�

p
(C) we derive C ‚̇ D

from � in resolution using at most n + 1 steps. More formally, we derive �Õ
fi

1
C ‚̇ NB�

p
(C)

2

from �, where �Õ is the set of intermediate clauses, guaranteed by Lemma 36 to satisfy
{C} ˆ �Õ.

We proceed di�erently depending on the satisfiability of NB�

p
(C).
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Case 1 (NB�

p
(C) is unsatisfiable.) There exists a resolution proof � = (�1, . . . , �m), where

�1 = NB�

p
(C) and ‹ œ �m. Suppose � is a minimum-size proof, so it does not use

weakening. Consider the sequence �Õ = (C ‚ �1, . . . , C ‚ �m). This sequence is a valid
resolution derivation of C from C ‚̇ NB�

p
(C), seen as follows:

By the definition of NB�

p
(C), it has no variables in common with C. Since we assumed

that � does not use weakening, no subsequent CNF in � has any variables in common
with C either.
Let i œ [m ≠ 1]. The sequence � is a resolution proof, so we have �i+1 = �i fi {E},
where E is a resolvent of some F, G œ �i. Since �i has no variables in common with
C, it is not possible to resolve F and G on a variable of C. Then the clause C ‚̇ E is a
resolvent of C ‚̇ F and C ‚̇ G, which are in C ‚ �i. This proves by induction that �Õ

is a valid resolution derivation.
Finally, since ‹ œ �m, we have C œ (C ‚ �m).

Thus, resolution can derive C from � in at most
---NB�

p
(C)

---(n + 1) + sizeRes
1

NB�

p
(C)

2

steps.
Case 2 (NB�

p
(C) is satisfiable.) Let � = � fi �Õ

fi

1
C ‚̇ NB�

p
(C)

2
(i.e., the current CNF).

Since C ˆ (�\�), the literal p does not occur in �\�. Then we have projp(�) = projp(�),
and, consequently, NB�

p
(C) = NB�

p
(C).

Let E be a clause such that var(E) fl var(C) = ?. By Lemma 35, the clause p ‚̇ C Õ
‚̇ E

is a BC for p with respect to � if and only if the partial assignment C Õ ‚̇ E satisfies
projp(�). By the definition of a nonblocking CNF, C Õ already satisfies projp(�)\NB�

p
(C),

so p ‚̇ C Õ
‚̇ E is a BC for p with respect to � if and only if E satisfies NB�

p
(C).

Let us write µ for µ
1

NB�

p
(C)

2
. All clauses in C ‚̇ µ are blocked for p with respect to �,

and the addition of each such clause of the form C ‚̇ E rules out, for C ‚̇ NB�

p
(C), every

partial assignment – containing C fi E. Then we have
1

C ‚̇ NB�

p
(C)

2
fi (C ‚̇ µ) |= C,

where every partial assignment containing C falsifies the left-hand side (i.e., NB�

p
(C) fi µ

is unsatisfiable). Also, no clause E œ µ contains p and no clause E œ µ is a subset of a
di�erent clause EÕ

œ µ. This implies in particular that, for every subset µÕ
™ µ and for

every clause E œ µ \ µÕ, if E |= NB�

p
(C), then E |= NB�

p
(C) fi µÕ. We thus derive C ‚̇ µ

from � by a sequence of blocked clause additions.
As in the previous case, attaching C to a resolution proof of NB�

p
(C)fiµ gives a resolution

derivation of C, so we derive C from
1

C ‚̇ NB�

p
(C)

2
fi (C ‚̇ µ) in resolution.

In the end, BC≠ can derive C from � in at most
--NB�

p (C)
--(n+1)+ |µ|+sizeRes

!
NB�

p (C) fi µ
"

steps. J

Given a RAT≠ proof, we can apply the above theorem to recursively replace the earliest
RAT addition in the proof by a BC≠ derivation. The intermediate clauses in the derivation
replacing the addition of a RAT C are all subsumed by C, which ensures by Lemma 37 that
the validity of later RAT additions are preserved. We can thus translate an entire RAT≠

proof to a BC≠ proof.
In the above simulation, when NB�

p
(C) is unsatisfiable, we do not use any blocked clause

additions. By Lemma 35, no blocked clause for p exists, and since the RAT addition by itself
only gives useful information about the clauses containing p, a simulation where we add a
clause that is blocked for a di�erent literal needs to be more sophisticated. In particular,
such a simulation is unlikely to be local in the sense of the output consisting of a sequence
of derivations that each simulate a single step in the input. (Most simulations in proof
complexity are local.) Assuming that the above simulation is the best possible, if every RAT
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addition in a RAT≠ proof � has an unsatisfiable nonblocking CNF, then BC≠ essentially
falls back to refuting the nonblocking CNFs for locally simulating �. This observation hints
at the transformation in (4) for separating RAT≠ from GER≠.

5 Incomparability of RAT≠ and GER≠

We now show that RAT≠ is exponentially separated from GER≠ and vice versa, which also
exponentially separates both systems from BC≠. For both directions, we follow a strategy
similar at a high level to the one that Kullmann [22, Lemma 8.4] used to prove an exponential
separation of BC≠ from resolution.

Let P and Q be proof systems (without new variables) that simulate BC≠. To separate P
from Q, we take a sequence È�Í of CNFs separating ER from Q and we incorporate extension
variables into the formulas in a way that allows P to simulate the ER proof while preventing
Q from achieving any speedup. This strategy is made possible by the fact that BC≠ e�ectively
simulates ER. See also the discussion by Buss and Thapen [4, Section 2.2].

From this point on, given a CNF �, we use (�ú, �ú) to denote a minimum-size ER proof
of �, where �ú is the union of a sequence of t(�) := |�ú

|/3 sets of extension clauses such
that the ith set ⁄i is of the form {xi ‚ pi, xi ‚ qi, xi ‚ pi ‚ qi}. Thus, we implicitly reserve)

x1, . . . , xt(�)

*
as the set of extension variables used in �ú. We assume without loss of

generality that the variables of pi and qi are in var(�) fi {x1, . . . , xi≠1} for all i œ [t(�)].

5.1 Exponential separation of RAT≠ from GER≠

Let � be a CNF and (�ú, �ú) be a minimum-size ER proof of � as described above. Consider
the transformation

G(�) := � fi

t(�)€

i=1

#
(xi ‚ �) fi (xi ‚ �)

$
, (4)

where x1, . . . , xt(�) are the extension variables used in �ú. When � is unsatisfiable, each
extension variable above is “locked” behind the projection �, which RAT≠ can overcome but
BC≠ cannot.

I Lemma 41. For every CNF �, we have sizeRAT≠(G(�)) Æ sizeER(�).

Proof. We will show that the minimum-size ER proof (�ú, �ú) of � directly gives a RAT≠

proof of G(�) of the same size.
We write t for t(�). Let (⁄1, . . . , ⁄t) be the sequence of t sets of extension clauses that

make up �ú. Consider an arbitrary i œ [t], and suppose that we have derived
t

i≠1

j=1
⁄j from

G(�) by a sequence of RAT additions, so the current CNF is � = G(�) fi
t

i≠1

j=1
⁄j . We will

introduce the clauses in ⁄i = {xi ‚ pi, xi ‚ qi, xi ‚ pi ‚ qi} by a sequence of RAT additions.
Note that, since ⁄i is a set of extension clauses for � fi

t
i≠1

j=1
⁄j , so far the variable xi occurs

only in G(�) \ �.
1. The clause xi ‚ pi is a RAT for xi with respect to � because all earlier occurrences of

xi are clauses of the form xi ‚ D, where D œ �. We thus require � „1 {pi} fi D for all
D œ �. This is indeed the case since we actually have D œ � by the construction of G(�),
which implies � „1 {pi} fi D.

2. The clause xi ‚ qi is similarly a RAT for xi with respect to � fi {xi ‚ pi}.
3. The clause xi ‚ pi ‚ qi is similarly a RAT for xi with respect to �. Moreover, it is a

BC for xi with respect to {xi ‚ pi, xi ‚ qi} since {pi, pi, qi} and {qi, pi, qi} are both
tautological. As a result, xi ‚ pi ‚ qi is a RAT with respect to � fi {xi ‚ pi, xi ‚ qi}.
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It follows by induction that we can derive �ú from G(�) in RAT≠. Since �ú is a resolution
proof of � fi �ú, and since G(�) contains �, we also have a resolution proof of G(�) fi �ú.
Thus, we have a RAT≠ proof of G(�) of size |�ú

| + |�ú
| = sizeER(�). J

As a consequence of the above, if a sequence È�Í of CNFs is easy for ER, then, independent
of whether È�Í is easy or hard for RAT≠, the sequence G(È�Í) := (G(�1), G(�2), . . . ) is easy
for RAT≠. In contrast, the following result implies that the extension variables added by G

are of no use to BC≠.

I Lemma 42. For every CNF �, we have sizeBC≠(G(�)) Ø sizeRes(� fi B≠(�)).

Proof. When � is satisfiable, the inequality holds trivially, so suppose that � is unsatisfiable.
Applying Lemma 33 to G(�), we have

sizeBC≠(G(�)) Ø sizeRes
!
G(�) fi B≠(G(�))

"
. (5)

We claim that no clause in B≠(G(�)) is blocked for a literal of any of the variables in
X =

)
x1, . . . , xt(�)

*
. To see this, consider a clause C of the form x ‚̇ C Õ, where x œ X. If C

is blocked for x with respect to G(�), then C Õ is a satisfying assignment to projx(G(�)) = �
by Lemma 35. Since � is unsatisfiable, no such assignment exists. Therefore, C cannot be
blocked for x, which leaves us with

B≠(G(�)) = B≠
var(�)

(G(�)). (6)

Furthermore, since � ™ G(�), every clause in B≠
var(�)

(G(�)) has to be blocked in particular
with respect to �. This requires B≠

var(�)
(G(�)) to consist of clauses of the form C ‚̇ D, where

C œ B≠(�) and var(D) ™ X (with D possibly empty). In light of this, consider a partial
assignment – such that

–(z) =
I

1 if z œ X

undefined otherwise.

It is straightforward to see that G(�)|– = �. Additionally, for every clause C ‚̇ D (of the
above form) in B≠

var(�)
(G(�)), the restriction (C ‚̇ D)|– is either 1 or C. We thus have

1
G(�) fi B≠

var(�)
(G(�))

2---
–

= � fi B≠(�). (7)

Putting (5), (6), and (7) together, we finally obtain

sizeBC≠(G(�)) Ø sizeRes
!
G(�) fi B≠(G(�))

"

= sizeRes
1

G(�) fi B≠
var(�)

(G(�))
2

Ø sizeRes
11

G(�) fi B≠
var(�)

(G(�))
2---

–

2
(Lemma 15)

= sizeRes
!
� fi B≠(�)

"
,

which is the desired inequality. J

For certain CNFs, the above result carries over to GER≠.

I Lemma 43. For every CNF � such that ker(�) = �, we have sizeGER≠(G(�)) Ø sizeRes(� fi

B≠(�)).
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Proof. The proof is available in the full version. J

To prove the separation, we invoke the above results with � as the pigeonhole principle,
which states that every “pigeon” i œ [n + 1] is mapped to some “hole” k œ [n] and that no
two distinct pigeons i, j œ [n + 1] are mapped to the same hole. It is defined for n œ N+ as

PHPn :=
€

iœ[n+1]

{pi,1 ‚ · · · ‚ pi,n} fi

€

i,jœ[n+1], i ”=j

kœ[n]

{pi,k ‚ pj,k},

where we call the first set of clauses the pigeon axioms and the second set the hole axioms.

I Theorem 44. RAT≠ is exponentially separated from GER≠.

Proof. Cook [7] constructed polynomial-size ER proofs of PHPn, which implies by Lemma 41
that sizeRAT≠(G(PHPn)) = nO(1). Kullmann [22, Theorem 2] proved that sizeRes(PHPn fi

B≠(PHPn)) = 2�(n). Noting that ker(PHPn) = PHPn for all n œ N+, we apply Lemma 43
to obtain sizeGER≠(G(PHPn)) = 2�(n). Thus, G(ÈPHPÍ) exponentially separates RAT≠ from
GER≠. J

5.2 Exponential separation of GER≠ from RAT≠

We proceed in a similar way to the previous section. Let � be a CNF and (�ú, �ú) be a
minimum-size ER proof of �. Take a set

)
y1, . . . , yt(�)

*
™ V \ var(� fi �ú) of t(�) distinct

variables. Consider the transformation

H(�) := � fi

t(�)€

i=1

{xi ‚ yi, xi ‚ yi}, (8)

where x1, . . . , xt(�) are the extension variables used in �ú. As before, only one of the two
systems can make any use of the extension variables incorporated into the formula. This
time, the temporary deletion available to GER≠ makes the di�erence.

I Lemma 45. For every CNF �, we have sizeGER≠(H(�)) Æ sizeER(�).

Proof. Let (�ú, �ú) be the minimum-size ER proof of �. We will show that the clauses in
�ú

fi (H(�) \ �) can be derived from � in some sequence by blocked clause additions, which
implies by Lemma 31 that �ú is a blocked extension for H(�).

Recall that extension clauses can be derived in sequence by blocked clause additions.
Then, since �ú is an extension for �, we derive �ú by such a sequence. Next, from � fi �ú,
we derive the clauses in H(�) \ �. Let us write t for t(�). Consider the sequence (x1 ‚

y1, . . . , xt ‚ yt, x1 ‚ y1, . . . , xt ‚ yt). For each i œ [t], the ith clause xi ‚ yi in the first
half of the sequence is blocked for yi since yi does not occur in any of the earlier clauses.
Similarly, the ith clause xi ‚ yi in the second half of the sequence is blocked for yi since the
only earlier occurrence of yi is the clause xi ‚ yi and {xi, xi} is tautological. As a result, �ú

is a blocked extension for H(�).
Since �ú is a resolution proof of �fi�ú, and since H(�) contains �, we also have a resolution

proof of H(�) fi �ú. Thus, we have a GER≠ proof of H(�) of size |�ú
| + |�ú

| = sizeER(�). J

I Lemma 46. Let � be a CNF, and let n = |var(�)|. We have sizeRAT≠(H(�)) Ø
sizeRAT≠ (�)

n+1
.
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Proof. We write t for t(�). Let V = var(H(�) \ �) (i.e., the set of variables added by H),
and let – be a partial assignment such that

–(z) =
I

1 if z œ V

undefined otherwise.

We claim that, for all N œ N+, given a RAT≠ derivation � = (�1, . . . , �N ) with �1 = H(�),
there exists a RAT≠ derivation �Õ = (�1, . . . , �N Õ) with N Õ

Æ N · (|var(�)| + 1) such that
�1|– = � = �1,
�N |– ™ �N Õ , and
�N |– ˆ �N Õ .

The second condition above implies in particular that if ‹ œ �N , then ‹ œ �N Õ . This in
turn implies the desired statement, since it means that if H(�) has a RAT≠ proof of size N ,
then � has a RAT≠ proof of size at most N · (|var(�)| + 1).

We proceed by induction. For a derivation � = (�1) of size 1 with �1 = H(�), the
derivation �Õ = (�1|–) satisfies the conditions above. Let � = (�1, . . . , �m) be a RAT≠

derivation with �1 = H(�). Suppose that �Õ = (�1, . . . , �mÕ) is a RAT≠ derivation with
mÕ

Æ m · (|var(�)| + 1) satisfying the above conditions. Let C be a clause that is derived
from �m either by resolution, weakening, or RAT addition. We will show that there exists
a RAT≠ derivation from �mÕ |– of a CNF that contains and is subsumed by (�m fi {C})|–.
For simplicity, we will establish this for �m|– instead of �mÕ |–, with the understanding that
the containment and the subsumption conditions above imply by Lemma 37 that the same
derivation can be made also from �mÕ |–. There exists a trivial derivation when – |= C since
it implies that (�m fi {C})|– = �m|–, so suppose that – ”|= C. As a consequence, – does
not satisfy any subset of C.

From this point on, we write � instead of �m to reduce clutter.
Case 1 (C is a resolvent of D, E œ � on v.) Without loss of generality, suppose that v œ D

and v œ E.
Case 1.1 (v œ V .) We have E|– = (E \ {v})|–. Since (E \ {v}) ™ C, we have E|– œ �|–

and E|– ™ C|–, so C|– is derived from �|– by weakening.
Case 1.2 (v /œ V .) Since (D \ {v}) ™ C and (E \ {v}) ™ C, and since – does not set v,

we have D|– œ �|– and E|– œ �|–. Moreover, C|– is a resolvent of D|– œ �|– and
E|– œ �|–, so C|– is derived from �|– by resolution.

Case 2 (C is a weakening of a clause D œ �.) Since D ™ C, we have D|– œ �|– and
D|– ™ C|–, so C|– is derived from �|– by weakening.

Case 3 (C is a RAT for p œ C with respect to �.) Since we assumed – ”|= C, there are two
possibilities: either p œ V or var(p) /œ V .
Case 3.1 (p œ V .) Either p = xi or p = yi for some i œ [t]. Suppose p = xi. (The

case for p = yi is symmetric.) Since C is a RAT for xi with respect to �, and
since xi ‚ yi œ �, we have � „1 (C \ {xi}) fi {yi}. By Lemma 17, we also have
�|– „1

!
(C \ {xi}) fi {yi}

"--
–
, which simplifies to �|– „1 C|–. By Lemma 36, there

exists a resolution derivation of C|– from �|– of size |var(�|–)| + 1 Æ |var(�)| + 1.
Moreover, the final CNF in this derivation is subsumed by �|– fi C|– = (� fi {C})|–
as desired.

Case 3.2 (var(p) /œ V .) The clause C is of the form C Õ
‚̇ p with var(p) /œ V . Since C is

a RAT for p with respect to �, for every clause D œ � of the form DÕ
‚̇ p, we have

� „1 C Õ
fi DÕ. We will show that C|– is a RAT with respect to �|–. Every clause

D œ � such that – |= D simply disappears from �|–, so such clauses are irrelevant
when determining whether C|– is a RAT with respect to �|–. On the other hand, for
D œ � of the form DÕ

‚̇ p such that – ”|= D, we have �|– „1 (C Õ
fi DÕ)|– by Lemma 17.

Thus, C|– is a RAT for p with respect to �|–. J
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Let n = 2k for k œ N+. For a propositional variable x, let us write x ”= 0 and x ”= 1 to
denote the literals x and x, respectively. To prove the separation, we invoke the above results
with � as the bit pigeonhole principle, which states that for all i, j œ [n + 1] such that i ”= j
the binary strings pi

1
. . . pi

k
and pj

1
. . . pj

k
are di�erent. It is defined for n as

BPHPn :=
€

i,jœ[n+1], i ”=j

(h1,...,hk)œ{0,1}k

A
kfl

¸=1

pi

¸
”= h¸ ‚

kfl

¸=1

pj

¸
”= h¸

B
.

I Theorem 47. GER≠ is exponentially separated from RAT≠.

Proof. Buss and Thapen [4, Theorem 4.4] gave polynomial-size proofs of BPHPn in SPR≠,
which ER simulates. By Lemma 45, we have sizeGER≠(H(BPHPn)) = nO(1). They [4,
Theorem 5.4] also proved that sizeRAT≠(BPHPn) = 2�(n). Applying Lemma 46 gives
sizeRAT≠(H(BPHPn)) = 2�(n). Thus, H(ÈBPHPÍ) exponentially separates GER≠ from
RAT≠. J

Theorem 2 follows directly from Theorems 44 and 47.

6 Exponential separation of SBC≠ from RAT≠

Recall the transformation in (8), which we used to construct formulas separating GER≠ from
RAT≠. We had

H(�) = � fi

t(�)€

i=1

{xi ‚ yi, xi ‚ yi},

where x1, . . . , xt(�) are the extension variables used in a minimum-size ER proof (�ú, �ú) of
�. We prove below that SBC≠ can use those variables and simulate the ER proof of �, so
deletion is not the only way to overcome the obstacles in H(�) that prevent RAT≠ from
gaining any speedup.

I Lemma 48. For every CNF �, we have sizeSBC≠(H(�)) Æ 2 · sizeER(�).

Proof. We write t for t(�). Let (⁄1, . . . , ⁄t) be the sequence of t sets of extension clauses
that make up �ú. For each i œ [t], we will first derive the clauses in ⁄Õ

i
:= {xi ‚ yi ‚ pi, xi ‚

yi ‚ qi, xi ‚ yi ‚ pi ‚ qi} by a sequence of SBC additions. Consider an arbitrary i œ [t], and
suppose that we have derived

t
i≠1

j=1
⁄Õ

j
from H(�) by a sequence of SBC additions, so the

current CNF is � = H(�) fi
t

i≠1

j=1
⁄Õ

j
.

1. The clause E1

i
:= xi ‚ yi ‚ pi is an SBC for L = {xi, yi} with respect to � because xi ‚ yi

and xi ‚ yi are the only clauses in � that intersect with L, and both of these clauses also
intersect with L (i.e., there is nothing to check).

2. The clause E2

i
:= xi ‚ yi ‚ qi is similarly an SBC for L = {xi, yi} with respect to �.

Furthermore, we have E1

i
fl L = ?, so E2

i
is an SBC with respect to � fi

)
E1

i

*
.

3. The clause E3

i
:= xi ‚ yi ‚ pi ‚ qi is similarly an SBC for M = {xi, yi} with respect to �.

It is also an SBC for M with respect to
)

E1

i
, E2

i

*
since

!
E3

i
\M

"
fi

!
E1

i
\M

"
= {pi, qi, pi}

and
!
E3

i
\ M

"
fi

!
E2

i
\ M

"
= {pi, qi, qi} are both tautological. As a result, E3

i
is an SBC

with respect to � fi
)

E1

i
, E2

i

*
.

It follows by induction that we can derive
t

t

i=1
⁄Õ

i
from H(�) in SBC≠. For each i œ [t],

resolving E1

i
and E2

i
against xi ‚ yi and resolving E3

i
against xi ‚ yi gives ⁄i, thus we can

derive �ú from H(�) in SBC≠. Since �ú is a resolution proof of � fi �ú, and since H(�)
contains �, we also have a resolution proof of H(�) fi �ú. In the end, we have an SBC≠ proof
of H(�) of size at most 2|�ú

| + |�ú
| Æ 2 · sizeER(�). J
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It is now straightforward to deduce Theorem 4 by invoking Lemmas 46 and 48 with � as
the bit pigeonhole principle (in the manner of the proof of Theorem 47).

7 Exponential separation of SBC≠ from GER≠

We now give polynomial-size SBC≠ proofs of PHPn. More specifically, we observe that the
SPR≠ proofs of PHPn constructed by Buss and Thapen [4, Theorem 4.3] are in fact valid
SBC≠ proofs, so the proof below closely follows theirs. (No knowledge of SPR≠ is required
to follow this section.)

I Lemma 49. sizeSBC≠(PHPn) = nO(1).
Proof. We essentially formalize in SBC≠ a short inductive proof of PHPn, which assumes
without loss of generality that the smallest pigeon is mapped to the smallest hole, derives
from this assumption a renamed instance of PHPn≠1, and inductively repeats these steps
until deriving a trivial contradiction.

Recall that PHPn consists of the clauses Pi := pi,1 ‚ · · · ‚ pi,n and Hi,j,k := pi,k ‚ pj,k for
i, j œ [n + 1] and k œ [n] with i ”= j.

For i œ [n ≠ 1], j œ [n + 1], and k œ [n] such that j, k > i, let

Ci,j,k := pi,k ‚ pj,i ‚

Q

cca
fl

¸œ[n+1]

¸ ”=i

p¸,k

R

ddb ‚

Q

cca
fl

¸œ[n+1]

¸ ”=j

p¸,i

R

ddb .

Also, for i œ [n ≠ 1], let �i := {Ci,j,k | j œ [n + 1], k œ [n], and j, k > i}. We will first show
that, for all i œ [n ≠ 1], from �i≠1 := PHPn fi

t
i≠1

¸=1
�¸ we can derive the clauses in �i in any

order by a sequence of set-blocked clause additions, which implies that we can obtain �n≠1

from PHPn in SBC≠. Afterwards, we will give a polynomial-size resolution derivation of the
empty clause from �n≠1, concluding the proof.

For every clause Ci,j,k œ �i and every subset �Õ
i

™ �i \ {Ci,j,k}, we claim that Ci,j,k is
an SBC for L = {pi,k, pj,i, pi,i, pj,k} ™ Ci,j,k with respect to �i≠1 fi �Õ

i
. This requires us to

show that for all D œ �i≠1 fi �Õ
i

with D fl L ”= ? and D fl L = ? the set
!
Ci,j,k \ L

"
fi

!
D \ L

"

is tautological. There are three cases.

Case 1 (D œ PHPn.) If D is a clause in PHPn such that D fl L ”= ? and D fl L = ?, then
either D = Hi,iÕ,i for some iÕ

œ [n + 1] such that iÕ
”= j or D = Hj,jÕ,k for some jÕ

œ [n + 1]
such that jÕ

”= i. If D = Hi,iÕ,i, then we have piÕ,i œ Ci,j,k \ L and piÕ,i œ D \ L, so the
union of the two sets is tautological. The argument for the case of D = Hj,jÕ,k is similar.

Case 2 (D œ
t

i≠1

¸=1
�¸.) Let D = CiÕ,jÕ,kÕ be an arbitrary clause in

t
i≠1

¸=1
�¸, where iÕ < i and

jÕ, kÕ > iÕ. A simple inspection shows that we have D fl L ”= ? if and only if kÕ = i or
kÕ = k. If kÕ = i, then pi,i œ D. Noting that iÕ

”= j, if kÕ = k, then pj,k œ D. Either
way, D fl L = ? fails to hold, so there exists no D œ

t
i≠1

¸=1
�¸ such that D fl L ”= ? and

D fl L = ?.
Case 3 (D œ �Õ

i
.) Let D = Ci,jÕ,kÕ be an arbitrary clause in �Õ

i
, where jÕ, kÕ > i. It is

straightforward to see that we have pi,i œ D unless jÕ = i. Then, since jÕ > i, there exists
no D œ �Õ

i
such that D fl L = ?.

Thus, we obtain �n≠1 from PHPn in SBC≠, and now we construct a resolution proof of
�n≠1. First, for each (i, j, k) such that Ci,j,k is defined, we resolve Ci,j,k against the axioms
for the holes k and i to derive pi,k ‚ pj,i. Then, for each i œ [n] and j œ [n + 1] such that
j > i, we derive the clause pj,i by induction on i as follows: Fix i and j such that j > i. Let

�i,j := {pi,k | k œ [n] and k < i} fi {pi,i ‚ pj,i} fi {pi,k ‚ pj,i | k œ [n] and k > i},
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where we have the clauses in the first set from the induction hypothesis, the second set from
PHPn, and the third set from resolving Ci,j,k against the hole axioms in the previous step.
Resolving each clause in �i,j against the pigeon axiom Pi thus gives pj,i. Finally, we resolve
for each i œ [n] the clause pn+1,i against Pn+1 to derive the empty clause. J

Kullmann [22, Lemma 9.4] showed that sizeGER≠(PHPn) = 2�(n), so Theorem 5 follows
by Lemma 49.
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