
2744 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 6, NOVEMBER 2023

Control Barrier Functions and Input-to-State Safety
With Application to Automated Vehicles

Anil Alan , Graduate Student Member, IEEE, Andrew J. Taylor , Chaozhe R. He ,
Aaron D. Ames , Fellow, IEEE, and Gábor Orosz , Senior Member, IEEE

Abstract— Balancing safety and performance is one of the
predominant challenges in modern control system design. More-
over, it is crucial to robustly ensure safety without inducing
unnecessary conservativeness that degrades performance. In this
work, we present a constructive approach for safety-critical
control synthesis via control barrier functions (CBFs). By filtering
a hand-designed controller via a CBF, we are able to attain per-
formant behavior while providing rigorous guarantees of safety.
In the face of disturbances, robust safety and performance are
simultaneously achieved through the notion of input-to-state safety
(ISSf). We take a tutorial approach by developing the CBF-design
methodology in parallel with an inverted pendulum example,
making the challenges and sensitivities in the design process
concrete. To establish the capability of the proposed approach,
we consider the practical setting of safety-critical design via CBFs
for a connected automated vehicle (CAV) in the form of a class-
8 truck without a trailer. Through experimentation, we see the
impact of unmodeled disturbances in the truck’s actuation system
on the safety guarantees provided by CBFs. We characterize these
disturbances and using ISSf, produce a robust controller that
achieves safety without conceding performance. We evaluate our
design both in simulation, and for the first time on an automotive
system, experimentally.

Index Terms— Connected automated vehicles (CAVs), control
barrier functions (CBFs), input-to-state safety (ISSf), robust
safety-critical control.

I. INTRODUCTION

SAFETY is an ever more pressing requirement for modern
control systems as they are deployed into increasingly

complex real-world environments. Simultaneously, meeting
performance requirements is a major driving factor in control
system design. As these two objectives may naturally oppose
each other, it is necessary to consider an active approach
for enforcing safety that impacts performance only when
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it is critical for the safety of the system [1], [2]. Control
barrier functions (CBFs) have been demonstrated to be a
powerful tool for constructively synthesizing controllers that
yield strong performance and intervene only when safety is
at risk of being compromised [3], [4], [5]. The utility of
CBFs has been confirmed by their experimental application on
real-world control systems, including mobile robots [1], [6],
robotic swarms [7], autonomous aerial vehicles [8], robotic
arms [9], robotic manipulators [10], quadrupedal robots [11],
and bipedal robots [12], as well as simulation results on
automotive systems [3], autonomous naval vehicles [13], and
spacecraft [14]. The variety in this collection of results indi-
cates that CBFs capture fundamental concepts underlying the
notion of safety, irrespective of a specific domain, and suggests
that CBFs are a valuable tool to consider in the process of
modern control system design.

One of the appealing features of the CBF-based method-
ology for safety-critical control synthesis is the relatively
intuitive nature of the theoretical safety guarantees they endow
a system with. The study of set invariance, or the state of
a system remaining within a prescribed set, has long been of
interest in the study of dynamic systems [15] and control [16].
The foundational work in [17] proposed the notion of a barrier
function as a tool for checking the invariance of a set given
a model of the system dynamics. In simple terms,1 a barrier
function takes positive values for states inside a set, and is
zero on the boundary of the set. If the time derivative of the
barrier function is positive on the boundary of the set, the value
of the barrier must grow and the system thus must remain
in the set. This idea was quickly adapted to the context of
control synthesis, yielding CBFs and a means to constructively
achieve set invariance. Synthesis was first proposed through
structured controllers [19] but was later expanded using convex
optimization to produce safety-filters that minimally modify
a hand-designed controller to ensure safety [1], [3], [4].
The combination of intuitive theoretical concepts with rela-
tively simple control synthesis techniques promoted a rapid
development of CBFs, including formulations for higher-order
systems [20], [21], [22] and discrete-time systems [23], as well
as constructive tools for synthesizing CBFs [24], [25], [26] and
methods for sets with complex geometries [27], [28].

Inherent in the theoretical safety guarantees provided by
CBFs is a dependence on the model of the system dynamics,

1We recommend the reader to [18] for a comprehensive mathematical study
of the connections between barrier functions and set invariance.
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Fig. 1. Experimental configuration for heavy-duty CAV problem. (Top) Controller design without robustifying element yields safety violation. (Bottom)
Robust safety-critical controller ensures CAV brakes early and aggressively enough to maintain safe distance.

thus raising subsequent questions of robustness. Resulting
works have explored robustness to disturbances [29], [30],
[31], [32], [33], [34], [35], measurement errors [36], unmod-
eled dynamics [37], and sector-bounded uncertainties [38].
The early work in [29] noticed robustness to disturbances
inherent in CBFs, which drew inspiration from the notion
of input-to-state stability frequently seen when considering
robust stabilization of nonlinear systems [39], was formalized
into the idea of input-to-state safety (ISSf) in [32]. Instead
of trying to keep a specific set invariant in the presence of
disturbances as in [30] and [31], which may induce conser-
vativeness and degrade the performance of a controller, ISSf
quantifies how the set kept invariant grows in the presence
of disturbances. Moreover, it provides a simple modification
for CBF-based controllers to control this growth, which was
extended in [34] to permit greater performance while maintain-
ing meaningful safety guarantees. As we demonstrate in this
work, this paradigm for robust safety naturally lends itself to
the design-test-redesign process, as the growth of the invariant
set can be tuned to satisfy safety requirements while meeting
performance metrics.

Despite the fact that CBFs were initially presented as a tool
for safety-critical control synthesis for automotive systems [3],
[29], they have yet to be experimentally realized on them.
A primary challenge in using CBFs to ensure safety for a
complex system such as a full-scale connected automated
vehicle (CAV) lies in addressing discrepancies between the
system model and the real-world system. In the context of a
heavy-duty CAV, a significant portion of these discrepancies
arise due to simplified models of the complex interactions
within the CAV braking elements [40], and manifest as dis-
turbances in the input applied to the system. Accounting for
these complicated interactions in the controller design may
greatly increase the intricacy of the resulting controller, but
completely ignoring them may yield safety violations under
critical conditions such as a harsh brake from a preceding
vehicle as seen in Fig. 1 (top). Thus, balancing the complexity
of the model used in design with the need to satisfy safety
requirements is a challenging yet appropriate setting to deploy
a robust CBF-based control design.

There are two main contributions to this article. The first
is a tutorial presentation of a robust safety-critical design

methodology using CBFs and ISSf. Concepts are introduced in
parallel with an inverted pendulum example, thus providing a
concrete context for readers to quickly establish an understand-
ing of the relevant details in safety-critical control synthesis.
We provide an appropriate level of theoretical discussion to
clearly state the theoretical safety guarantees achieved with
this control paradigm but focus predominantly on the practical
challenges and trade-offs encountered in safety-critical control
design. Compared to the original works [3], [4] and overview
work [5] on CBFs, we believe that this presentation provides a
more approachable introduction to the topic of safety-critical
control synthesis for practitioners. Moreover, all details nec-
essary to exactly recreate the simulation results in the inverted
pendulum example are provided.

The second contribution of this work is a more practi-
cal application of the presented safety-critical control design
methodology that considers a heavy-duty CAV, seen in Fig. 1.
We highlight the entire process of safety-critical control
design including system modeling, specification of safety
requirements via a CBF, nominal performance-based controller
design, simulation, and experimental testing on a full-scale
automated class-8 truck. The impacts of unmodeled distur-
bances seen in experimental results are quantified and used to
robustify the safety-critical controller, which is subsequently
implemented in simulation and experimentally. We believe
that combined tutorial presentation and the proposed design-
test-redesign process on a challenging real-world system is
precisely the approach necessary to advance CBF-based con-
trol design from the academic setting to a tool useful for the
practicing control engineer.

The organization of this article is as follows. In Section II
we present the safety-critical control problem, review CBFs,
and explore how a nominal controller may be modified via
CBFs to endow a system with theoretical safety guarantees.
In Section III we introduce disturbances into the input of
the system and explore how these impact theoretical safety
guarantees through the lens of ISSf. Moreover, we present
a simple framework for robustly modifying a CBF and the
resulting controller design to provide a measure of control
over how these safety guarantees degrade. In Section IV the
CAV problem is presented considering an automated heavy-
duty vehicle. A CBF specified to encode safety for the CAV
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Fig. 2. Mechanical model of an inverted pendulum control system.

and a hand-designed nominal controller are incorporated into
a safety-critical controller that is evaluated in simulation and
verified to ensure safety. In Section V we deploy the controller
experimentally and see how unmodeled disturbances lead
to degradation of safety guarantees. We characterize these
disturbances and robustify the controller design, and lastly
verify the ability of this controller to meet safety requirements
both in simulation and experiments.

II. SAFETY-CRITICAL CONTROL

In this section, we provide a review of safety and CBFs
which will be used in the formulation of the safety-critical
control problem. To make these concepts more concrete,
we apply them to an inverted pendulum system.

A. Control Barrier Functions

Consider the nonlinear control affine system

ẋ = f(x)+ g(x)u (1)

with state x ∈ Rn , input u ∈ Rm , and continuous functions
f : Rn

→Rn and g : Rn
→Rn×m . Systems described by such

equations often appear in robotics, aerospace, power electron-
ics, and automotive systems.

Example 1: Consider a control system for an inverted pen-
dulum as depicted in Fig. 2, and described by the model

d
dt

[
θ

θ̇

]
=

[
θ̇

g
l

sin θ

]
︸ ︷︷ ︸

f(x)

+

[
0
1

ml2

]
︸ ︷︷ ︸

g(x)

u (2)

with pendulum angle θ ∈ R and angular velocity θ̇ ∈ R defin-
ing the state x = [θ, θ̇ ]⊤, and parameters given by the
mass m, length l, and gravitational acceleration constant g.
In this example we will use the parameter values m = 2 [kg],
l = 1 [m] and g = 10 [m/s2]. The single input u ∈ R is a
torque applied on the pendulum.

The input u is often specified via a state-feedback con-
troller k : Rn

→Rm , yielding the closed-loop system dynamics

ẋ = f(x)+ g(x)k(x). (3)

We assume that for any initial condition x0 ≜ x(0) ∈ Rn , there
exists a unique solution x(t) to (3) for t ≥ 0, such that the
system is forward complete [41]. The notion of safety is
formalized by specifying a safe set in the state space that the
state of the system must remain in to be considered safe. This
can be utilized in many practical applications such as distance-
keeping [3], lane-keeping [6], and collision avoidance [7]

Fig. 3. Simulation results for the inverted pendulum system. The gold ellipse
is the safe set C as defined in (8). The black line is the set where Lgh(x) = 0 as
defined in (11). The dashed blue line is the trajectory of the system evolving
under kn as defined in (16), which leaves the safe set C. The green and purple
regions indicate where the controller kn meets and fails to meet the CBF
condition, respectively. The red dashed line is the trajectory of the system
evolving under kQP as defined in (21) and (22), which remains inside the safe
set C.

of automated vehicles. In particular, consider a set C ⊂ Rn

defined as the 0-super level set of a continuously differentiable
function h : Rn

→R, yielding

C =
{
x ∈ Rn

: h(x) ≥ 0
}

(4)

∂C =
{
x ∈ Rn

: h(x) = 0
}

(5)

Int(C) =
{
x ∈ Rn

: h(x) > 0
}

(6)

where ∂C and Int(C) are the boundary and interior, respec-
tively, of the set C. We refer to C as the safe set. This
construction motivates the following definitions of forward
invariance and safety.

Definition 1 (Forward Invariance and Safety): A set
C ⊂ Rn is forward invariant if for every x0 ∈ C, the solution
x(t) to (3) satisfies x(t) ∈ C for all t ≥ 0. The system (3) is
safe with respect to the set C if the set C is forward invariant.

Example 2: A set C that we wish to keep safe for the
inverted pendulum that restricts the angular position and
velocity is given by the 0-super level set of the function

h
(
θ, θ̇

)
= 1 −

θ2

a2 −
θ̇2

b2 −
θ θ̇

ab
(7)

with parameters a, b > 0. In this example we will use the
parameter values a = 0.25 [rad] and b = 0.5 [rad/s]. The
resulting set

C =

{[
θ

θ̇

]
∈ R2

∣∣∣∣1 −
θ2

a2 −
θ̇2

b2 −
θ θ̇

ab
≥ 0

}
(8)

is an ellipse as depicted in Fig. 3 by a gold region.
Before defining CBFs, we review the following defini-

tions [5], [42]. We denote a continuous function α : R≥0 →

R≥0 as class K∞ (α ∈ K∞) if α(0) = 0, α is strictly increasing
and limr→∞ α(r) = ∞. As an example, any function in the
form α(r) = r c where c > 0 is class K∞. Note that differ-
entiability is not required for a class K∞ function. Similarly,
a continuous function α : R → R is said to belong to extended
class K∞ (α ∈ Ke

∞
) if α(0) = 0, α is strictly increasing, and

limr→∞ α(r) = ∞ and limr→−∞ α(r) = −∞. The previous
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Fig. 4. Visualization of class Ke
∞ functions and their inverses.

example of α(r) = r c is class Ke
∞

for c = 1, 3, 5, . . . The
inverses of class K∞ and class Ke

∞
functions belong to class

K∞ and class Ke
∞

, respectively. Examples of these functions
and their inverses are depicted in Fig. 4. We may use these
functions to define CBFs.

Definition 2 (CBF, [4]): Let C ⊂ Rn be the 0-super level
set of a continuously differentiable function h : Rn

→ R. The
function h is a CBF for the system (1) on C if there exists
α ∈ Ke

∞
such that for all x ∈ Rn

sup
u∈Rm


ḣ(x,u)︷ ︸︸ ︷

∂h
∂x
(x)f(x)︸ ︷︷ ︸

L fh(x)

+
∂h
∂x
(x)g(x)︸ ︷︷ ︸
Lgh(x)

u

 > −α(h(x)). (9)

An equivalent way to express (9) is given in [30] as

Lgh(x) = 0 H⇒ L fh(x)+ α(h(x)) > 0. (10)

This expression is often an easier condition to evaluate in
certifying that a given function is a CBF.

Example 3: The function h given as in (7) is a CBF for
the inverted pendulum system (2) on C. To see this, consider
a function α ∈ Ke

∞
defined as α(r) = αcr with αc > 0 satis-

fying αc ≤ b/a. In this example we use the parameter value
αc = 0.2 [1/s]. The CBF condition defined in (10) yields that

Lgh
(
θ0, θ̇0

)
= 0 H⇒ θ̇0 = −

b
2a
θ0. (11)

This equation defines a line as depicted in Fig. 3 by a solid
black line. We have that on this line

L fh
(
θ0, θ̇0

)
+ α

(
h
(
θ0, θ̇0

))
= αc +

3
4a2

(
b
a
− αc

)
θ2

0 > 0

such that the condition (10) is met for our choice of αc.
We note that if we consider a set, denoted by C̃ and defined

as the 0-super level set of a function h̃ : R2
→ R given by

h̃
(
θ, θ̇

)
= 1 −

θ2

a2 −
θ̇2

b2 (12)

which does not include the term θ θ̇/ab, then the function h̃
is not a CBF for the system (2) on C̃. To see this, note that

Lgh̃
(
θ0, θ̇0

)
= 0 H⇒ θ̇0 = 0. (13)

In turn, we have that for any α ∈ Ke
∞

L fh̃
(
θ0, θ̇0

)
+ α

(
h̃
(
θ0, θ̇0

))
= α

(
1 − θ2

0

/
a2). (14)

The condition (10) is not satisfied for |θ0| ≥ a (including
|θ0| = a, which would be in ∂ C̃ and thus in the safe set). Thus
it is important to choose the safe set and design the CBF to
be compatible with the system dynamics, eliminating points
where the CBF condition is not met.

Given a CBF h for (1) on C and a corresponding function
α ∈ Ke

∞
, we can consider the point-wise set of all control

values that satisfy (9)

KCBF(x) =
{
u ∈ Rm

∣∣ ḣ(x,u) ≥ −α(h(x))
}
. (15)

One of the main theoretical results for CBFs relates controllers
taking values in the set KCBF to the safety of (3) on C.

Theorem 1 ([4], [18]): Let C ⊂ Rn be the 0-super level set
of a continuously differentiable function h : Rn

→ R. If h is a
CBF for (1) on C, then the set KCBF(x) is nonempty for each
x ∈ Rn , and for any continuous controller k : Rn

→ Rm such
that k(x) ∈ KCBF(x) for all x ∈ Rn , the system (3) is safe with
respect to the set C.

Proofs of Theorem 1 may be found in [4] and [18]. We note
the distinction between a strict inequality in the CBF condition
in (9) and a nonstrict inequality in (15). As studied in [30],
satisfaction of the strict inequality in (9) and (10) is a property
of the function h and the dynamics f and g, but does not
depend on a specific controller. This property is useful in
establishing regularity properties of controllers synthesized
with the CBF h. In particular, it imposes requirements on
the function h when Lgh(x) = 0, as seen in the preceding
example. In contrast, enforcing safety via Theorem 1 only
requires that the inputs specified by a given controller meet
the nonstrict inequality in (15) (such an input’s existence is
implied by the CBF condition in (9)).

B. Safety-Critical Controller

It is often possible to design a controller that achieves a
desired degree of performance, but for which it is difficult to
verify necessary safety requirements are met.

Example 4: Consider a continuous controller kn : R2
→ R

for the inverted pendulum model (2) that stabilizes the
pendulum to an upright position, given by the feedback
linearization [43] or computed torque controller [44] of the
form

kn
(
θ, θ̇

)
= ml2

(
−

g
l

sin θ − K pθ − Kd θ̇
)

(16)

with controller gains K p, Kd > 0. This controller yields the
closed-loop system

d
dt

[
θ

θ̇

]
=

[
0 1

−K p −Kd

][
θ

θ̇

]
(17)

such that the upright equilibrium x∗ =
[
0, 0

]⊤ is exponentially
stable. In this example we will use the parameter values
K p = 0.6 [1/s2] and Kd = 0.6 [1/s]. We use numerical integra-
tion to determine a solution trajectory from the initial condition
x(0) = [−0.1, 0.5]⊤ ∈ C. This trajectory is depicted in Fig. 3
by a dashed blue curve. Although the controller kn stabilizes
the system to the upright position, in doing so it causes the
state of the system to leave the safe set C.
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CBFs provide a means for modifying a controller to ensure
it explicitly enforces the safety of the system. Suppose that
we have a continuous controller kn:Rn

→Rm , referred to as
the nominal controller, that does not necessarily ensure the
closed-loop system (3) is safe with respect to the set C,
but achieves a desired degree of performance. Furthermore,
suppose that we have a CBF h for (1) on C with corresponding
function α ∈ Ke

∞
. The goal of maintaining the performance

of the nominal controller kn while ensuring the safety of the
system (3) with respect to the set C motivates an optimization-
based safety-critical controller kQP:Rn

→Rm defined as

kQP(x) = argmin
u∈Rm

1
2
∥u − kn(x)∥2

2

s.t. L fh(x)+ Lgh(x)u ≥ −α(h(x)). (18)

This controller takes the same value as the nominal con-
troller if the nominal controller meets the requirements
for safety specified by the CBF h, i.e., kQP(x) = kn(x) if
kn(x) ∈ KCBF(x). If the nominal controller does not meet the
safety requirements, i.e., kn(x) /∈ KCBF(x), the input is chosen
to meet the safety requirement with the smallest deviation from
the value of kn. The following theorem describes the feasibility
and closed-form solution of the optimization problem defining
this controller.

Theorem 2: Let C be the 0-superlevel set of a continuously
differentiable function h : Rn

→ R, and let kn : Rn
→ Rm be

a continuous controller. If h is a CBF for (1) on the set C with
corresponding function α ∈ Ke

∞
, then the optimization prob-

lem in (18) is feasible for any x ∈ Rn and has a closed-form
solution given by

kQP(x) = kn(x)+ max{0, η(x)}Lgh(x)⊤ (19)

where the function η : Rn
→ R is defined as

η(x)=


−

L fh(x)+Lgh(x)kn(x)+α(h(x))∥∥Lgh(x)
∥∥2

2

, if Lgh(x) ̸= 0

0, if Lgh(x) = 0.
(20)

Furthermore, kQP is continuous and kQP(x) ∈ KCBF(x) for all
x ∈ Rn .

A proof of this theorem is provided in the appendix. The
function η only takes positive values (η(x) > 0) when the
nominal controller does not meet safety requirements

L fh(x)+ Lgh(x)kn(x)+ α(h(x)) < 0

and thus the nominal controller kn is only modified when
it does not satisfy safety requirements. The second case in
the definition of the function η is presented to resolve the
singularity that occurs at Lgh(x) = 0 when the closed-form
solution (19) is implemented. We note that, as stated in
Theorem 2, the controller kQP is continuous, and thus, this
singularity does not produce a large jump in the input. It may
even be ignored if the controller is implemented as the
optimization problem in (18) and numerically solved.

Remark 1: For a single input (m = 1), if Lgh(x) > 0 for a
particular x ∈ Rn , the controller (19) can be expressed as

kQP(x) = max
{

kn(x),−
L fh(x)+ α(h(x))

Lgh(x)

}
. (21)

Similarly, if Lgh(x) < 0 for a particular x ∈ Rn , the con-
troller (19) reduces to

kQP(x) = min
{

kn(x),−
L fh(x)+ α(h(x))

Lgh(x)

}
. (22)

These controllers can be switched between based on the sign
of Lgh(x), with kQP(x) = kn(x) when Lgh(x) = 0.

Example 5: We deploy the switching controller kQP : R2
→

R defined in (21) and (22) for the inverted pendulum system
using the nominal controller kn : R2

→ R defined in (16).
We use numerical integration to determine a solution trajectory
from the initial condition x(0) = [−0.1, 0.5]⊤ ∈ C. This tra-
jectory is depicted in Fig. 3 by a dashed red curve. We see that
the controller kQP ensures that the solution trajectory remains
within the safe set C by deviating from the nominal controller
in the purple region as specified by (21) and (22).

III. ROBUSTNESS TO DISTURBANCE

A challenge frequently encountered when deploying model-
based controllers onto real-world systems is a mismatch
between the commanded input and the input actually received
by the system. This mismatch can arise due to actuator
dynamics, actuator delays, input quantization, input saturation,
or noise. In the case when a state feedback controller k is
utilized, any error in state measurements can cause further
variation from the ideal control effort. These imperfections
in how control inputs affect the system can lead to degra-
dation in the safety guarantees attained by the safety-critical
controller (19).

In this section we consider a system with an input distur-
bance

ẋ = f(x)+ g(x)(u + d(t)) (23)

where d : R≥0 → Rm reflects a time varying disturbance mod-
ifying the input u (such that the input the system actually
receives is u + d(t)). We assume that the disturbance is
bounded and piecewise continuous2 in time. This is a practical
assumption, and determining such bounds on the disturbance
is an important step of the control design. This assumption
also allows us to define

∥d∥∞ = sup
t≥0

∥d(t)∥2 <∞. (24)

Given a continuous controller k : Rn
→ Rm , we may also

introduce the notion of a disturbed closed-loop system

ẋ = f(x)+ g(x)(k(x)+ d(t)). (25)

As before, we assume that for any initial condition x0 ≜ x(0) ∈
Rn and any bounded and piecewise continuous disturbance
signal d:R≥0 → Rm , there exists a unique solution x(t) to (25)
for t ≥ 0.

Example 6: We will consider an example disturbance signal
for the inverted pendulum specified as

d(t) = M(1 − s(t − 5)− s(t − 10)+ s(t − 15)) (26)

where M ≥ 0 and s : R → R is the Heaviside function

s(τ ) =

{
0, if τ < 0
1, if τ ≥ 0.

(27)

2We take this definition as in [45], with the existence of one-sided limits.
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Fig. 5. Disturbance signal for the inverted pendulum system example as
defined in (26).

With this disturbance, we have ∥d∥∞ = M . In this example,
we use the parameter value M = 0.75 [N·m] and the corre-
sponding disturbance signal is depicted in Fig. 5.

A. Input-to-State Safety

In the presence of an input disturbance, input-to-state safe
CBFs (ISSf-CBFs) provide a tool for designing controllers
with a formal safety guarantee [32], [34]. First, we present
the notion of ISSf which captures the intuition that it may no
longer be possible to render the set C forward invariant (and
thus safe) in the presence of disturbances. Instead, a larger set
that scales proportionally with the disturbance may instead
be rendered forward invariant. Specifically, consider the set
Cδ ⊂ Rn defined as

Cδ =
{
x ∈ Rn

: h(x)+ γ (h(x), δ) ≥ 0
}

(28)

∂Cδ =
{
x ∈ Rn

: h(x)+ γ (h(x), δ) = 0
}

(29)

Int(Cδ) =
{
x ∈ Rn

: h(x)+ γ (h(x), δ) > 0
}

(30)

with γ : R × R≥0 → R≥0 satisfying γ (a, ·) ∈ K∞ for all
a ∈ R. This implies Cδ = C when δ = 0. We also require
γ (·, b) to be continuously differentiable for all b ∈ R≥0.
We have that ∂Cδ and Int(Cδ) are the boundary and interior,
respectively, of the set Cδ . With this construction in mind,
we have the following definition.

Definition 3 (ISSf): Let C ⊂ Rn be the 0-super level set of
a continuously differentiable function h:Rn

→ R. The system
(25) is input-to-state safe (ISSf) with respect to the set C
if there exists γ : R × R≥0 → R≥0 satisfying γ (a, ·) ∈ K∞

for all a ∈ R and γ (·, b) continuously differentiable for all
b ∈ R≥0 such that for all δ ≥ 0 and d : R≥0 → Rm satisfying
∥d∥∞ ≤ δ, the set Cδ defined by (28)–(30) is forward invariant.
If the system (25) is input-to-state safe with respect to the
set C, the set C is referred to as an input-to-state safe set (ISSf
set).

Similar to how CBFs were defined in Section II, we now
define ISSf-CBFs as a tool for robust safety-critical control
synthesis.

Definition 4 [ISSf-CBF]: Let C ⊂ Rn be the 0-superlevel
set of a continuously differentiable function h:Rn

→ R. The
function h is an ISSf-CBF for (23) on C if there exists an
α ∈ Ke

∞
and a continuously differentiable function ϵ:R →

R>0 such that for all x ∈ Rn

sup
u∈Rm

[
L fh(x)+ Lgh(x)u

]
> −α(h(x))+

∥∥Lgh(x)
∥∥2

2

ϵ(h(x))
. (31)

Given an ISSf-CBF h for (23) and corresponding functions
α ∈ Ke

∞
and ϵ:R → R>0, we can consider the point-wise set

of all control values that satisfy (31)

KISSf(x) =

{
u ∈ Rm

∣∣∣∣∣ ḣ(x,u) ≥ −α(h(x))+

∥∥Lgh(x)
∥∥2

2

ϵ(h(x))

}
.

(32)

The last term introduced in (31) requires the controller to
enforce safety more conservatively as the function Lgh(x),
which multiplies the disturbance, grows in magnitude. Intu-
itively, this term requires the controller to be safer when the
disturbance may have a substantial impact on safety because
of Lgh(x) taking large values. In the case that a constant
offset is introduced instead of this term, the boundedness
of Lgh(x) would be required to obtain similar formal safety
guarantees. A constant offset throughout the state space would
also yield conservative controller performance further inside
the set. As we will explore later, the function ϵ will serve
as a design parameter used to tune the balance between
performance and safety. In particular, it allows a designer to
emphasize safety near the boundary of the safe set, but relax
safety and allow performance when the state is comfortably
within the safe set. The reason for the specific structure of this
term is seen most clearly in the proof of the following theorem
(provided in [34]) which relates properties of the function ϵ
and controllers synthesized via an ISSf-CBF to the ISSf of C.

Theorem 3 [34]: Let C ⊂ Rn be the 0-super level set of a
continuously differentiable function h : Rn

→ R. Let h be an
ISSf-CBF for (23) on C with corresponding functions α ∈ Ke

∞

and ϵ:R → R>0 such that ϵ and α−1
∈ Ke

∞
are continuously

differentiable and ϵ satisfies

dϵ
dr
(h(x)) ≥ 0 (33)

for all x ∈ Rn , where (dϵ/dr)(h(x)) is the derivative of ϵ
evaluated at h(x). Then the set KISSf(x) is nonempty for each
x ∈ Rn , and if a continuous controller k : Rn

→ Rm satisfies
k(x) ∈ KISSf(x) for all x ∈ Rn , then for any δ ≥ 0, the system
(25) is safe with respect to the set Cδ defined as in (28)–(30)
with γ defined as

γ (h(x), δ) ≜ −α−1
(
−
ϵ(h(x))δ2

4

)
(34)

for all d satisfying ∥d∥∞ ≤ δ. This implies C is an ISSf set.
Remark 2: The original definition of ISSf presented in [32]

differs from Definition 3 in the function γ . We allow γ to be a
function of h in addition to δ. This leads to a generalization of
the ISSf-CBF definition in [32], which reduces to the definition
given in [32] if ϵ(r) = c > 0 for all r ∈ R. The definitions
presented here provide a factor of flexibility in controller
design as detailed in [34].

The boundary of the set Cδ that is rendered forward invariant
is defined as a level-set of the ISSf-CBF h as in (29). Given
a δ ≥ 0, the value of h on this level set, denoted as h∗

≤ 0,
can be found by solving the equation

h∗
−α−1

(
−
ϵ(h∗)δ2

4

)
︸ ︷︷ ︸

γ (h∗,δ)

= 0. (35)
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Fig. 6. Examples of the function ϵ that satisfy the condition in (33).

By definition, γ (h∗, δ) must be strictly positive for δ > 0,
implying that h∗ < 0 in the presence of disturbances. The
safety-critical controllers designed in Section III-B will guar-
antee h(x(t)) ≥ h∗. Moreover, as δ increases, h∗ must get
more negative, implying that the boundary of Cδ falls farther
from the boundary of C. Control over this degradation in
safety can be achieved by modifying the function ϵ to yield
different values of h∗ as specified in (35). From a practical
perspective, h(x) ≥ h∗ can be seen as a preferred safety
property that inherently possesses robustness, while h∗ must
satisfy a minimum tolerable safety requirement in the presence
of disturbances. With this mindset, a control designer must
appropriately choose ϵ to ensure h∗ meets these minimum
tolerable safety requirements. Various functions that satisfy
the necessary conditions for ϵ can be seen in Fig. 6.

Example 7: Given our choice of α for the inverted pendu-
lum system, we have that

γ
(
h
(
θ, θ̇

)
, δ

)
=
ϵ
(
h
(
θ, θ̇

))
δ2

4αc
. (36)

As our disturbance signal is bounded by M , the forward invari-
ant set is determined by considering δ = M . Thus, we use
δ = 0.75 [N·m]. We choose the exponential function

ϵ(r) = ϵ0eλr (37)

with parameters ϵ0 > 0 and λ ≥ 0, reducing (35) to

h∗
+
ϵ0eλ h∗

δ2

4αc
= 0. (38)

Once ϵ0 and λ are specified, (38) can be solved for h∗ to
find the value of h that corresponds to the boundary ∂Cδ . The
left panel of Fig. 7 shows the value of h∗ for the different
choices of ϵ0 and λ specified in Table I. The boundary ∂Cδ
corresponding to each set of parameters is shown in the middle
panel of Fig. 7. The black and red parameter sets return
(approximately) the same value of h∗, and thus the produce
the same boundary ∂Cδ . In contrast, the green parameter set
yields a larger set Cδ as indicated by the smaller value of h∗

in Table I.

B. Robust Safety-Critical Controller

As we saw with CBFs, it is possible to use an ISSf-CBF to
synthesize controllers that render a set Cδ forward invariant,
thus rendering the set C ISSf. Suppose that we have an
ISSf-CBF h for (23) on C with corresponding functions

TABLE I
PARAMETERS SETS USED IN (37) AND (38) FOR

THE INVERTED PENDULUM EXAMPLE

α ∈ Ke
∞

and ϵ:R → R>0 that meet the requirements of Theo-
rem 3, and a continuous nominal controller kn:Rn

→ Rm that
is not necessarily safe. Motivated by the optimization-based
controller in (18), we define a controller kQP:Rn

→ Rm as

kQP(x) = argmin
u∈Rm

1
2
∥u − kn(x)∥2

2

s.t. ḣ(x,u) ≥ −α(h(x))+

∥∥Lgh(x)
∥∥2

2

ϵ(h(x))
. (39)

We note the bound δ does not explicitly appear in the
controller (39), and thus the controller performance does not
depend on the accuracy of the bound. Rather, the accuracy
plays a role in the computation of h∗, and thus whether
or not the expanded safe set will meet safety requirements.
The following theorem provides a closed-form solution to the
optimization problem defining this controller and specify the
continuity and safety properties of the resulting controller.

Theorem 4: Let C be the 0-superlevel set of a function
h : Rn

→ R, and let kn : Rn
→ Rm be a continuous controller.

If h is an ISSf-CBF for (23) on the set C with corresponding
functions α ∈ Ke

∞
, with continuously differentiable inverse

α−1
∈ Ke

∞
, and continuously differentiable ϵ:R → R>0 sat-

isfying (33), then the optimization problem in (39) is feasible
for any x ∈ Rn and has a closed-form solution given by

kQP(x) = kn(x)+ max{0, η(x)}Lgh(x)⊤ (40)

where the function η:Rn
→ R is defined as

η(x)=

−
ḣ(x,kn(x))+α(h(x))∥∥Lgh(x)

∥∥2
2

+
1

ϵ(h(x))
, if Lgh(x) ̸= 0

0, if Lgh(x) = 0.
(41)

Furthermore, kQP is continuous and kQP(x) ∈ KISSf(x) for all
x ∈ Rn .

The proof of this theorem is similar to the proof of Theo-
rem 2 with simple modifications for ϵ, and thus, it is omitted.

Remark 3: For a single input (m = 1), if Lgh(x) > 0 for a
particular x ∈ Rn , the controller (40) can be expressed as

kQP(x) = max
{

kn(x),−
L fh(x)+ α(h(x))

Lgh(x)
+

Lgh(x)
ϵ(h(x))

}
. (42)

Similarly, if Lgh(x) < 0 for a particular x ∈ Rn , the con-
troller (40) reduces to

kQP(x) = min
{

kn(x),−
L fh(x)+ α(h(x))

Lgh(x)
+

Lgh(x)
ϵ(h(x))

}
. (43)

These controllers can be switched between depending on the
sign of Lgh(x), with kQP(x) = kn(x) when Lgh(x) = 0.
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Fig. 7. (Left) Curves corresponding to the value of h∗ solving (38) across the (ϵ0, λ ) parameter space for the inverted pendulum example. (Center) Boundary
of the set Cδ rendered forward invariant for different choices of the parameters ϵ0 and λ for the inverted pendulum example. Note that the Cδ contains the set
C for each parameter choice. (Right) Simulation results for the inverted pendulum system with disturbances. The gold ellipse is the safe set C defined in (8).
The blue line is the trajectory of the system evolving under kQP defined in (21) and (22), which is not robust to disturbances and leaves the safe set. The
black, green, and dashed red lines are trajectories of the system evolving under kQP defined in (42) and (43) with different values for ϵ0 and λ .

Example 8: We deploy the safety-critical controller kQP
defined in (21) and (22) with the nominal controller kn as
in (16) to the inverted pendulum system without considering
the disturbance d defined in (26). We see in the right panel
of Fig. 7 that this controller fails to keep the system in the
safe set C and deviates from it significantly. We next deploy
the safety-critical controller kQP defined in (42) and (43) with
the nominal controller kn as in (16). The exponential function
given in (37) is utilized with the parameter pairs as specified
in Table I.

We first observe in the right panel of Fig. 7 that with the
black parameter set, the system is very conservative and the
trajectory of the system rapidly converges to the equilibrium.
Increasing the value of ϵ0 returns the green parameter set.
We see in the center panel of Fig. 7 that a larger value of
ϵ0 leads to a larger set Cδ as specified by the smaller value of h∗

in Table I, while in the right panel of Fig. 7 we see that a larger
value of ϵ0 allows the system to evolve less conservatively.
This highlights that larger values of ϵ0 generally lead to less
conservative closed-loop behavior and an expansion of the set
possessing theoretical safety guarantees.

Comparing the red and black parameter sets, we can see
in the left panel of Fig. 7 that the red parameters lie on
the same h∗-level-set curve as the black parameters, and thus
return the same expanded safe set Cδ as seen in the center
panel of Fig. 7. In contrast, we see in the right panel of
Fig. 7 that the closed-loop system is much less conservative
and approaches the boundary of the safe set. This behavior
indicates that ϵ0 and λ can be jointly tuned to return the same
theoretical guarantees as a small value of ϵ0 without inducing
conservativeness.

The red parameter set has the same value of ϵ0 as the green
parameter set, allowing us to observe directly the impact of λ .
We see in the center panel of Fig. 7 that the red parameters
yield a smaller set Cδ , implying stronger theoretical safety
guarantees, while in the right panel of Fig. 7 we see that
the closed-loop behavior of the red parameter set is much
less conservative. Thus, the introduction of λ not only allows
one to improve the theoretical safety guarantees for a fixed
value of ϵ0, but also allows one to reduce the conservativeness
of the system. Lastly, we see in the right panel of Fig. 7
that for all three parameter sets, the controller keeps the

trajectories within C, and thus, within Cδ , that is, it guarantees
h(x(t)) ≥ h∗.

IV. SAFETY-CRITICAL CONTROLLER DESIGN FOR
A CONNECTED AUTOMATED TRUCK

In this section, we design a safety-critical longitudinal
controller for a connected automated truck. We first introduce
the physical system and define a safe set via a CBF. We then
present a nominal performance-based controller, and synthe-
size a safety-critical controller that modifies this nominal
controller in a minimally invasive way while ensuring safety.
We note that these constructions assume no explicit uncertainty
in our system model.

A. Modeling Longitudinal Dynamics

In this work we consider a rear-axle-driven truck without a
trailer. Assuming the truck’s tires roll without slipping and the
truck travels on a flat road with no headwind, the longitudinal
dynamics of the truck are described by the following model:

v̇ =
T

meff R
−

kv2
+ mgγ
meff

. (44)

Here the state is given by the truck’s longitudinal speed
v ∈ R, the input is the torque applied on the rear axle T ∈ R,
and the parameters in the model are the mass of the truck m,
the mass moment of inertia of the rotating elements I , the
tire radius R, the effective mass meff = m +

I
R2 , the air drag

constant k, gravitational acceleration g, and rolling resistance
coefficient γ . Note that the second term in (44) is dissipative
in nature, and slows down the vehicle when it has a positive
velocity. This term may be accounted for in the control
design via feedback linearization [43], or may be ignored
as its omission introduces a factor of conservativeness to
the controller in terms of safety. The torque input to the
system is computed from a desired longitudinal acceleration
command u ∈ R via feed-forward maps. This torque input
command is provided by a drive-by-wire system to the braking
systems that produce the actual torque T ; see Fig. 8. With
these feed-forward maps in mind, we simplify the longitudinal
dynamics model to

v̇ = u. (45)
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Fig. 8. Connected automated truck following a connected vehicle.

Now let us consider the scenario when the truck follows a
connected vehicle as depicted in Fig. 8. Using the truck model
in (45), the dynamics of this connected system are given by

Ḋ = vL − v

v̇ = u

v̇L = aL (46)

where vL, aL ∈ R are the speed and acceleration of the
lead vehicle, respectively, and D ∈ R denotes the bumper-
to-bumper headway distance between the truck and the lead
vehicle, yielding the state x = [D, v, vL]

⊤
∈ R3. The truck

and lead vehicle are outfitted with vehicle-to-everything (V2X)
communication systems, permitting the truck to receive motion
information from the lead vehicle such as its GPS position
which yields the distance D, its speed vL, and its acceleration
aL. We assume that the leader’s behavior satisfies

aL ∈
[
−aL, aL

]
, vL ∈ [0, vL] (47)

where the parameters aL, aL, vL > 0 reflect a city-driving
scenario; see Table II.

B. Safety and Control Barrier Function

The safety task for the truck is to maintain a safe distance
behind the leader. This task motivates a CBF of the form

h(D, v, vL) = D − ρ(v, vL) (48)

where the headway function ρ : R2
→ R describes the min-

imum safe distance between the vehicles given their current
velocities, v and vL. Motivated by [4] and [46], we define the
headway function as

ρ(v, vL) = c0 + c1v + c2vL + c3v
2
+ c4vvL + c5v

2
L (49)

with parameters ci ∈ R for i = 0, . . . , 5; see Table II. The
value of the function ρ is visualized in Fig. 9. The corre-
sponding safe set defined by h is given by

C =


D
v

vL

 ∈ R3

∣∣∣∣∣∣ D ≥ ρ(v, vL)

. (50)

To verify that the function h is a CBF for (46), observe that

Lgh
(
D0, v0, vL,0

)
= 0 H⇒ c1 + 2c3v0 + c4vL,0 = 0 (51)

Fig. 9. Value of the function ρ defined in (49), which defines the minimum
safe following distance as a function of the leader’s velocity vL and truck
velocity v.

Fig. 10. Value of L fh(x)+ α(h(x)) as defined in (52) when Lgh(x) = 0
for various distances. As the function is strictly positive over the domain of
interest, h is a CBF on C for (46).

TABLE II
PARAMETER VALUES USED IN CONTROLLER DESIGN

which describes a line in (v, vL) space where the condi-
tion (10) must be met for all D ∈ R. We consider α(r) = αcr
with αc > 0, yielding

L fh
(
D, v0, vL,0

)
+ α

(
h
(
D, v0, vL,0

))
= vL,0 − v0 − aL

(
c2 + c4v0 + 2c5vL,0

)
+αc

(
D − ρ

(
v0, vL,0

))
. (52)

Since checking the condition (10) analytically may be cum-
bersome using (52), we graphically evaluate it over a range
of D and vL,0 (and v0 defined implicitly through (51)) while
taking the worst case value of aL making (52) as negative as
possible; see Fig. 10. For αc = 0.1 [1/s], the value of (52) is
strictly positive, ensuring the condition (10) is satisfied.
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Fig. 11. (Top) Range policy V defined in (54). (Bottom) Speed policy W
defined in (55).

C. Controller Design

Beyond the task of safety, we wish for our controller to have
other desirable properties such as plant stability and string
stability in the presence of communication delay [47] or opti-
mal performance considering energy efficiency and passenger
comfort [48]. To accomplish this, we first design a nominal
controller that prioritizes performance. In particular, we design
a connected cruise controller (CCC) for the truck that utilizes
information about the lead vehicle available through V2X
connectivity. We propose the controller structure

kn(D, v, vL) = A(V (D)− v)+ B(W (vL)− v) (53)

with parameters A, B > 0, functions V :R≥0 → R≥0, and
W :R≥0 → R≥0. The first term in (53) specifies the distance-
based speed error with the range policy

V (D) = max{0,min{κ(D − Dst), v}} (54)

depicted in the top panel of Fig. 11, producing a desired
speed based on the distance D. Here Dst > 0 is the desired
stopping distance, 1/κ > 0 is the desired time headway, and
Dgo = v/κ + Dst. The second term in (53) specifies the error
related to the relative speed with the speed policy

W (vL) = min{vL, v} (55)

depicted in the bottom panel of Fig. 11, which bounds the
speed error if the lead vehicle violates vL ≤ v.

Having designed the CBF h and the performance-based
nominal controller kn, we can unify them via the safety-critical
controller formulation for single input systems given in (21)
and (22). Here we have

L fh(D, v, vL) = vL − v − aL(c2 + c4v + 2c5vL)

Lgh(D, v, vL) = −c1 − 2c3v − c4vL (56)

where Lgh(D, v, vL) < 0 for v ≥ 0 and vL ∈ [0, vL]. Then one
may utilize the switch structure (22)

kQP(D, v, vL) = min{kn(D, v, vL), ks(D, v, vL)} (57)

where the first term is given by (53) and the second term is
defined as

ks(D, v, vL) = −
L fh(D, v, vL)+ αch(D, v, vL)

Lgh(D, v, vL)
. (58)

This controller utilizes the nominal controller kn to optimize
the performance when it is safe. Otherwise, the provably
safe controller ks becomes smaller than kn and intervenes

to ensure safety. Note that Lgh(D, v, vL) > 0 for sufficiently
large vL > v (as c4 is negative) as well as sufficiently negative
v < 0, yielding the switch structure (21), but this is outside
the domain of interest in this application.

We simulate both the nominal controller and safety-critical
controller via numerical integration of the model (46) from the
initial condition x(0) = [27.4, 16, 16]⊤ ∈ C. We use parameter
values as specified in Table II. The acceleration aL of the lead
vehicle is given by a time profile reflecting a hard braking
event, as seen in the left panel of Fig. 12. The velocity
of the truck converges to zero and a crash does not occur
for both controllers, but only the safety-critical controller
ensures the truck maintains a safe distance (indicated by
hQP(x(t)) ≥ 0) as seen in Fig. 12 (center, right). We see that
the nominal controller brakes less aggressively than the safety-
critical controller, and thus does not react quickly enough to
avoid violating the safe following distance requirement.

V. EXPERIMENTAL RESULTS AND ROBUST DESIGN

In this section we provide a description of the auto-
mated truck experimental configuration and present results
using the nominal and safety-critical controllers. Furthermore,
we deploy the method of robust control design using ISSf
developed in Section III, and demonstrate its advantages
experimentally.

A. Experimental Setup and Procedure

The automated truck used in our experiments is an Interna-
tional ProStar+ Class-8 truck developed by the Navistar [49];
see Fig. 13(a). Both the automated truck and the lead vehicle
are equipped with a V2X onboard unit (OBU) developed
by Commsignia [50]. These units are equipped with an
accelerometer, gyroscope, magnetometer, and GPS unit. Fur-
thermore, these OBUs support peer-to-peer communication
such that the automated truck may receive position, velocity,
and acceleration data from the lead vehicle through V2X
antennas shown in Fig. 13(a). The automated truck is addi-
tionally equipped with a mobile real-time targeting machine
developed by Speedgoat [51], which interfaces with the V2X
OBU and the truck’s engine controller unit (ECU) through a
controller area network (CAN) bus. The Speedgoat runs the
controller for the system given a measurement stream of values
for D, v, vL, and aL coming from the V2X OBUs. It computes
a desired acceleration input and converts it to a corresponding
torque value through a feed-forward map. A drive-by-wire
system on the truck controls the engine and the brake torques
accordingly. The steering of the truck is done manually by a
human driver in the experiments.

In an effort to evaluate the repeatability of our experiments,
it is necessary to eliminate variation in the lead vehicle’s
behavior, which is being driven by a human. To achieve this,
we record a time profile of position, velocity, and acceleration
of the lead vehicle while it performs a hard braking event.
This profile for aL and vL is seen in the left and center panels
of Fig. 12, and was used to produce our simulation results.
During our experiments, this data is played back to the truck
controller as a perceived lead vehicle, which the truck uses in
it control computations. Experiments also include a physical
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Fig. 12. (Left) Example profile for acceleration aL of lead vehicle used in numerical simulation. (Center) Velocity vL of lead vehicle (black) and velocity
of the truck using the nominal controller (53) (blue) and safety-critical controller (57) (red). (Right) Following distance D and value of CBF h using the
nominal controller and safety-critical controller.

lead vehicle for visualization purposes which travels on the
other lane for safety reasons; see Fig. 13(b)–(e) and notice the
“collision” in panel (c). We note that this lead vehicle closely
follows the previously recorded time profiles, but does not
provide any data to the truck during the actual experiments.
Importantly, our quantitative analysis of safety is performed by
evaluating the CBF using the truck’s measured state with the
recorded time profiles of the perceived lead vehicle. A video
of the experiments is available at [52].

B. Input Disturbances

We deploy both the nominal and safety-critical controller
on the automated truck with results as seen in the left panel
of Fig. 14. We see that not only does the nominal controller
consistently fails to meet the safety requirements imposed by
the CBF h, but the safety-critical controller also consistently
fails to meet the safety requirements. The top row in Fig. 1
illustrates an experimental run with the nominal controller.

To understand why the safety-critical controller fails,
we examine the discrepancy between the commanded acceler-
ation and actual acceleration of the automated truck, as seen in
the center panel of Fig. 14. One may observe a delay between
the commanded acceleration and the achieved acceleration.
This delay in acceleration is due to the fact that the brakes of
the truck are a complex nonlinear dynamical system that has
been imperfectly abstracted away by the feed-forward maps
that allow the simplified model in (45). Rather than working
with the braking dynamic system and improving the feed-
forward maps, we describe the discrepancy in commanded and
actual acceleration as a disturbance in the simplified model

v̇ = u + d(t) (59)

where d:R≥0 → R reflects the difference between commanded
acceleration and actual acceleration.

As the disturbance d is caused by the complicated interac-
tions of the drive-by-wire system and brake dynamics, it may
be difficult to use model-based techniques to construct a
meaningful bound δ for the worst case disturbance. Instead,
we estimate the worst case disturbance empirically by compar-
ing the actual acceleration v̇(t) to the commanded acceleration
u(t). In the right panel of Fig. 14, we see that the largest
difference in the commanded and actual acceleration is around

Fig. 13. (a) Vehicles used in experiments. (b) Image from the dashboard of
the truck during an experimental run. (c)–(e) Final configurations of separate
experiments (see [52] for a video).

4 [m/s2]. Thus, we study the degradation of safety of the
system taking a slightly larger value δ = 4.5 [m/s2].
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Fig. 14. (Left) Mean value (lines) and standard deviations (fills) of the distance D and the CBF h when using the nominal controller defined in (53) (blue)
and the safety-critical controller defined in (57) (red) in the truck experiment. The repeated experiments with these controllers are highly consistent. (Center)
Discrepancy between acceleration commanded by safety-critical controller (black) and actual acceleration of the automated truck (red). (Right) Disturbance
signal in input seen by the truck used to define the model (59).

C. Robust Design

To overcome this disturbance and improve the safe behavior
of the truck, we deploy the tools of ISSf-CBFs described in
Section III. As h satisfies the CBF condition (10), it also
satisfies the ISSf-CBF condition (31), where we take

ϵ(r) = ϵ0eλr (60)

with ϵ0 > 0 and λ ≥ 0. The parameter λ introduces a measure
of flexibility by allowing one to require a greater degree of
robustness when the truck is close to the leading vehicle, and
less robustness when the distance is greater. Given (60), the
forward invariant set is given by

Cδ =


D
v

vL

 ∈ R3

∣∣∣∣∣∣ h(D, v, vL) ≥ −
ϵ0eλ h(D,v,vL)δ2

4αc

.
(61)

As discussed in the inverted pendulum example, the set Cδ
being forward invariant implies that h(x(t)) ≥ h∗, where h∗

is the value of the ISSf-CBF h on the boundary of Cδ ,
which can be calculated by solving (35). The value of h∗

for different choices of ϵ0 and λ can be seen in Table III.
We then construct an optimization-based controller giving the
switch structure (43), since Lgh(D, v, vL) < 0 for v ≥ 0 and
vL ∈ [0, v] [cf. (56)]. This results in

krob(D, v, vL) = min
{
kn(D, v, vL), ks(D, v, vL)

}
(62)

where

ks(D, v, vL) = ks(D, v, vL)+
Lgh(D, v, vL)

ϵ0eλ h(D,v,vL)
(63)

and kn and ks are given by (53) and (58), respectively.
We simulate the nominal controller, safety-critical con-

troller, and robust safety-critical controller via numerical
integration of the model (46) from the initial condition
x(0) = [27.4, 16, 16]⊤ ∈ C while disturbing the input using
the signal shown in the right panel of Fig. 14. We use
parameter values as specified in Table II. We see in the
left panel of Fig. 15 that introducing the disturbance signal
into our simulation allows us to recreate the failures of the
nominal controller and safety-critical controller that we saw
experimentally in Fig. 14. Furthermore, we see that the robust

TABLE III
SETS OF PARAMETER VALUES USED FOR THE EXPONENTIAL FUNCTION

(60) IN THE AUTOMATED TRUCK EXPERIMENTS WITH THEORETICAL
SAFETY GUARANTEE h∗ , MINIMUM EXPERIMENTAL VALUE OF

THE ISSF-CBF hmin , AND SHIFT IN THE STEADY-STATE
TRACKING DISTANCE D̃ss IN (64)

safety-critical controller maintains the safety of the system
even in the presence of the disturbance.

D. Robust Experimental Results

Here we show the results when the robust safety-critical
controller is deployed on the connected automated truck. Sets
of three experimental runs were conducted using each parame-
ter pair ϵ0 and λ shown in Table III. The experimental results
using the parameter set ϵ0 = 0.5 [s3/m] and λ = 0.4 [1/m]
(labeled as parameter pair (A)) can be seen in the right panel
of Fig. 15 and are visualized at the bottom row of Fig. 1. With
these parameters the system is safe, as the value of h does not
drop below 0. Although the robust safety-critical controller has
a larger standard deviation across the three experimental runs,
it consistently satisfies the original safety requirement.

When evaluating how the system behavior depends on the
values of the parameters ϵ0 and λ , we first consider whether
the original safety requirement is met, i.e., whether or not the
value of h remains positive. While the robust safety-critical
controller does not provide a theoretical guarantee that h will
remain nonnegative (it only guarantees that h(x(t)) ≥ h∗), for
certain values of ϵ0 and λ the original safety requirement are
still met, as seen in the inverted pendulum example as well
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Fig. 15. (Left) Following distance and value of ISSf-CBF using the nominal controller (blue), safety-critical controller (red), and robust safety-critical
controller (green) in the disturbed simulation. (Right) Mean value (lines) and standard deviations (fills) of the distance D and the ISSf-CBF h using the
nominal controller (blue), safety-critical controller (red), and robust safety-critical controller (green) in experiment.

Fig. 16. (Left) Parameter values for ϵ0 and λ used in the truck experiments, with contours showing theoretical values of h∗. Green markers denote parameter
sets that achieve the original safety goal (h ≥ 0), while red markers denote parameter sets for which the original safety goal is violated. (Center) Theoretical
values of h∗ and the shift in steady-state tracking distance D̃ss, for the parameter sets used in the truck experiments. The blue markers denote parameter sets
with λ > 0, while the black markers denote parameter sets with λ = 0. (Right) Experimental results for parameter pairs (B), (C), and (D) in Table III. Case
(B) is conservative as indicated by the large steady-state tracking distance error. Cases (C) and (D) display nearly identical behavior, but case (C) possesses
a stronger theoretical guarantee.

as the connected automated truck experiments. The minimum
value hmin of the barrier function, observed during the exper-
imental runs, is shown in Table III. This is also visualized
in the left panel of Fig. 16, where green markers indicate
sets of parameter values for which the safety requirement is
met, and red markers indicate those for which it is not met.
We see that safety can be achieved using the original ISSf-CBF
formulation in [32] (where λ = 0) for sufficiently small values
of ϵ0, but may also be achieved using small values of λ .

We remark that when changing the controller from kQP
in (57) to krob in (62), the equilibrium of the system is shifted
as can be noticed when comparing the runs on the right panel
of Fig. 15. We characterize this by the shift in the steady-state
tracking distance error defined as

D̃ss ≜ Dexp
ss − D∗. (64)

Here Dexp
ss is the steady-state distance captured in experi-

ments when the leader is moving with the steady-state speed
v∗ ∈ (0, v) before braking. The term D∗

= V −1(v∗) captures
the desired steady-state distance given by the inverse of the
range policy (54). In the experiments we have v∗ = 16 [m/s],
yielding D∗

= 25 [m]. The values of D̃ss corresponding to
different parameter pairs are given in Table III. In the middle
panel of Fig. 16 we visualize the theoretical values of h∗

and the experimental values of D̃ss for different parameter
sets. The black markers indicate parameter sets with λ = 0,
while the blue markers show parameter sets with λ > 0.

With λ = 0, the theoretical guarantees are nearly meaningless
(observe the large negative values of h∗), and improving them
requires dramatically increasing D̃ss. In contrast, the parameter
sets with λ > 0 allow us to obtain significantly (an order
of magnitude) stronger theoretical guarantees without greatly
increasing D̃ss, thereby also achieving good performance.

In the right panel of Fig. 16 we give experimental results
of three other parameter pairs labeled as (B), (C) and (D) in
Table III. The poor performance of case (B) is indicated by
the large value of D̃ss. The results for cases (C) and (D) nearly
overlap, but the introduction of λ yields a strong theoretical
guarantee for case (C), which is missing for case (D).

VI. CONCLUSION

In conclusion, this work has developed a theoretically
rigorous approach for safety-critical control synthesis through
CBFs. The notion of ISSf is utilized to capture the impact of
disturbances in the input to the system. A simple parametric
modification to CBFs enabled the formulation of ISSf-CBFs
as a practical tool for achieving both performant behavior
and meaningful theoretical safety guarantees. We provided a
tutorial on these tools in the context of an inverted pendu-
lum system and carried out a practical design problem of
a safety-critical controller for a connected automated truck.
Moreover, we demonstrated the tangible benefits of the design
using ISSf-CBFs by deploying this controller experimentally
on an automated truck.
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As a closing note, we wish to remark on a set of chal-
lenges we have not explicitly addressed in this work, but
that often arise in practical applications. In particular, our
presented framework does not explicitly consider multiple
CBF constraints, input saturation, or communication delays.
Our design approach for the automated truck reveals that
domain knowledge can play a vital role in designing safety
constraints and controllers that allow one to avoid explicitly
resolving these challenges. If in a particular application these
issues cannot be resolved with our framework, we note that
recent research has presented avenues forward for multiple
CBF constraints [26], [27] and input constraints [53], [54],
and communication delays [55].

APPENDIX

A. Proof of Theorem 2

Proof: We first prove that the optimization problem in (18)
has a closed-form solution given by (19) and (20), proving it
is feasible for any x ∈ Rn and satisfies kQP(x) ∈ KCBF(x) for
all x ∈ Rn . Then we prove that kQP is a continuous function.
A thorough discussion regarding Lipschitz continuity under
more restrictive assumptions can be found in [30], which can
be extended to the controller in Theorem 4 as continuous
differentiability of ϵ implies it is locally Lipschitz continuous.

Let us first consider an x ∈ Rn such that Lgh(x) = 0. As the
function h is a CBF for (1) on the set C with corresponding
function α ∈ Ke

∞
, we know from the condition in (10) that

L fh(x)+ α(h(x)) > 0 (65)

such that the inequality constraint in (18) is satisfied for any
choice of u. A norm requires that for any y ∈ Rm , we have
∥y∥2 ≥ 0 and ∥y∥2 = 0 implies y = 0. Thus, the minimizing
choice of u is given by u = kn(x), such that kQP(x) = kn(x)
as in the closed-form solution in (19) and (20).

Next let us consider an x ∈ Rn such that Lgh(x) ̸= 0. The
cost function and constraint function defining (18) are both
convex and continuously differentiable with respect to the
decision variable u. Thus, the optimization problem is convex,
and the Karush-Kuhn Tucker (KKT) conditions provide a
necessary and sufficient3 condition for optimality [56, §5.5.3].
More precisely, the KKT conditions state that for an optimal
solution u∗

∈ Rm to (19), we must have a µ∗
∈ R such that

L fh(x)+ Lgh(x)u∗
+ α(h(x)) ≥ 0 (66)

µ∗
≥ 0 (67)

µ∗
(
L fh(x)+ Lgh(x)u∗

+ α(h(x))
)
= 0 (68)

u∗
− kn(x)− µ∗Lgh(x)⊤ = 0. (69)

The four conditions are known as primal feasibility, dual feasi-
bility, complementary slackness, and stationarity, respectively.

Rearranging the stationarity condition (69) yields

u∗
= kn(x)+ µ∗Lgh(x)⊤. (70)

3An additional constraint qualification is necessary for the KKT conditions
to be necessary and sufficient conditions for optimality. One such qualification
is Slater’s condition [56, §5.2.3], which is easily verified to hold in our setting.

To solve for the value of µ∗ (and consequently u∗), we use
the primal feasibility condition (66) and the complementary
slackness condition (68). In particular, suppose that

L fh(x)+ Lgh(x)u∗
+ α(h(x)) > 0. (71)

The complementary slackness condition (68) then implies
µ∗

= 0, and thus, we have from (70) that u∗
= kn(x). Com-

bining this with (71), we obtain

L fh(x)+ Lgh(x)kn(x)+ α(h(x)) > 0. (72)

Next let us suppose that

L fh(x)+ Lgh(x)u∗
+ α(h(x)) = 0. (73)

Using the expression for u∗ in (70) yields

L fh(x)+ Lgh(x)kn(x)+ µ∗
∥∥Lgh(x)

∥∥2
2 + α(h(x)) = 0 (74)

which may be solved for µ∗, yielding

µ∗
= −

L fh(x)+ Lgh(x)kn(x)+ α(h(x))∥∥Lgh(x)
∥∥2

2

. (75)

Given this expression, the dual feasibility condition (67)
requires that, if the equality in (73) holds, we must have

L fh(x)+ Lgh(x)kn(x)+ α(h(x)) ≤ 0. (76)

Substituting (75) into (70) yields

u∗
= kn(x)−

L fh(x)+ Lgh(x)kn(x)+ α(h(x))∥∥Lgh(x)
∥∥2

2

Lgh(x)⊤.

(77)

Noting that (71) and (72) are equivalent, and (73) and (76) are
equivalent, we may combine these results with the preceding
results obtained for Lgh(x) = 0 and conclude that

kQP(x) = kn(x)+ max{0, η(x)}Lgh(x)⊤. (78)

To show the function kQP is continuous, let us first define
a function ψ : Rn

→R as

ψ(x) = L fh(x)+ Lgh(x)kn(x)+ α(h(x)). (79)

As h is continuously differentiable, and f, g, and α are con-
tinuous, the function ψ is continuous. Consider an arbitrary
state x ∈ Rn such that ψ(x) > 0, noting that we may have
Lgh(x) = 0. By (72), we have kQP(x) = kn(x). By continuity
of ψ , there exists δ > 0 such that ψ(y) > 0 for all y ∈ Bδ(x)
(the open ball of radius δ centered at x). By (72) we then have
that kQP(y) = kn(y) for all y ∈ Bδ(x). As kn is continuous, kQP
is continuous at x.

Next consider a state x ∈ Rn such that ψ(x) < 0, noting
that we must have Lgh(x) ̸= 0 at this state. By (76) we have

kQP(x) = kn(x)−
ψ(x)∥∥Lgh(x)

∥∥2
2

Lgh(x)⊤. (80)

By the continuity of Lgh and ψ , there exists a δ > 0 such that
Lgh(y) ̸= 0 and ψ(y) < 0 for all y ∈ Bδ(x). We then have

kQP(y) = kn(y)−
ψ(y)∥∥Lgh(y)

∥∥2
2

Lgh(y)⊤ (81)
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for all y ∈ Bδ(x). As Lgh, kn, and ψ are continuous and
Lgh(x) ̸= 0, we may conclude that kQP is continuous at x.

Lastly, let us consider a state x ∈ Rn such that ψ(x) = 0,
noting that we must have Lgh(x) ̸= 0 at this state. By (76) and
the fact ψ(x) = 0, we have that kQP(x) = kn(x). Let ϵ > 0 be
arbitrary. By the continuity of Lgh, there exists δ1 > 0 such
that Lgh(y) ̸= 0 for all y ∈ Bδ1(x). Let y ∈ Bδ1(x) be such that
ψ(y) > 0. We then have kQP(y) = kn(y). By the continuity of
kn, there exists a δ2 > 0 with δ2 < δ1 such that if y ∈ Bδ2(x)
and ψ(y) > 0, then∥∥kQP(y)− kQP(x)

∥∥
2 = ∥kn(y)− kn(x)∥2 < ϵ. (82)

Next let y ∈ Bδ1 be such that ψ(y) ≤ 0, such that kQP(y) is
given in (81). Although kQP(x) = kn(x), we may use the fact
that ψ(x) = 0 to write kQP(x) as in (80). By the continuity of
kn, ψ , and Lgh, there exists a δ3 > 0 with δ3 < δ1 such that
if y ∈ Bδ3(x) and ψ(y) ≤ 0, then

∥kn(y)− kn(x)∥2 <
ϵ

2
(83)

and∥∥∥∥∥ ψ(y)∥∥Lgh(y)
∥∥2

2

Lgh(y)⊤ −
ψ(x)∥∥Lgh(x)

∥∥2
2

Lgh(x)⊤
∥∥∥∥∥

2

<
ϵ

2
. (84)

Therefore we have that if y ∈ Bδ3(x) and ψ(y) ≤ 0, then∥∥kQP(y)− kQP(x)
∥∥

2 <
ϵ

2
+
ϵ

2
= ϵ. (85)

Taking δ = min{δ2, δ3}, we have that y ∈ Bδ(x) implies∥∥kQP(y)− kQP(x)
∥∥

2 < ϵ (86)

proving kQP is continuous at x. As we considered the three
cases of ψ(x) > 0, ψ(x) < 0, and ψ(x) = 0, we have shown
the function kQP is continuous.
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