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Parameterized Barrier Functions to Guarantee
Safety Under Uncertainty
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Abstract—Deploying safety-critical controllers in prac-
tice necessitates the ability to modulate uncertainties in
control systems. In this context, robust control barrier
functions—in a variety of forms—have been used to obtain
safety guarantees for uncertain systems. Yet the differing
types of uncertainty experienced in practice have resulted
in a fractured landscape of robustification—with a variety
of instantiations depending on the structure of the uncer-
tainty. This letter proposes a framework for generalizing
these variations into a single form: parameterized barrier
functions (PBFs), which yield safety guarantees for a wide
spectrum of uncertainty types. This leads to controllers
that enforce robust safety guarantees while their conser-
vativeness scales by the parameterization. To illustrate
the generality of this approach, we show that input-to-
state safety (ISSf) is a special case of the PBF framework,
whereby improved safety guarantees can be given relative
to ISSH.

Index Terms—Safety guarantee, uncertainty, robust con-
trol barrier functions.

|. INTRODUCTION

ONTROL barrier functions (CBFs) [1] have become a

popular tool for synthesizing safety-critical controllers
due to their generality and relative ease of synthesis and imple-
mentation. Safety is encoded by a single scalar inequality
constraint, by which CBFs provide an easy-to-compute condi-
tion that implies the safety of the system when satisfied. The
efficacy of this approach has been demonstrated in a vari-
ety of applications such as multi-agent systems [2], robotic
manipulators [3], autonomous vessels [4] and autonomous
trucks [5]. One of the main challenges in obtaining formal
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Fig. 1. llustration of the parameterized barrier function (PBF) frame-
work. PBF establishes safety guarantees for a wide range of robust
safety-critical controllers designed for systems with uncertainties.

safety guarantees with CBFs in practice is uncertainty: both
of the internal model used to synthesize the CBF controller,
and the external environment with which the system interacts.
Since CBFs use models to calculate safe actions, a mis-
match between a system and its model can lead degradations
in safety [6].

Robustness against uncertainties is typically achieved by
introducing a robustifying term in the CBF condition. In one
of the first works on robust CBFs [7], a robustifying term was
added based upon a bound on the uncertainties with the result
being robust safety. Later, different observer and identification
techniques have been proposed to alleviate the conservative-
ness of robust controllers by estimating the uncertainty, or
considering specific classes of uncertainties [8], [9], [10], [11],
[12], [13]. Data-driven methods account for uncertainties in
a similar fashion where a sufficient condition for the safety
is found using properties of uncertainties [14], [15], [16].
Learning can also be utilized to estimate a robustifying term in
an episodic fashion [17]—this has been deployed successfully
on robotic systems [18]. In the case of stochastic estimation
techniques, probabilistic safety guarantees are obtained using
chance constraints with the standard deviation of the process
used as an upper confidence bound [19], [20].

To quantify the effect of uncertainties on safety, it is impor-
tant to characterize how adding a robustness term impacts the
ability to satisfy a safety constraint. On one hand, various
studies focused on ensuring safety w.r.t. a more conservative
constraint for robustness [9], [10], [11]. Similar concepts were
investigated to improve the feasibility of a stability problem
with control Lyapunov functions before in [21], and of a safety
problem with CBFs more recently in [22]. On the other hand,
input-to-state safety (ISSf) [23], inspired from input-to-state
stability [24], enforces safety w.r.t. a relaxed safety constraint
that is parameterized by the robustifying term. Arbitrarily
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small relaxation in the safety constraint can be achieved, and
the robustness-safety trade-off can be improved with less con-
servative “tunable” ISSf conditions [25]. ISSf has proven to
be useful when implementing CBFs in practice; for example,
in safety aware control of quadrupeds [26], and control of
full-scale trucks [5]. However, the fact that ISSf relaxes the
safety constraint prevents the analysis of conservative con-
troller performance that may occur when robustness terms
overcome the uncertainty.

The first goal of this letter is to generalize the concept of
robust CBFs across various forms of robustification methods
in the literature. Second, we formulate parameterized barrier
Junctions (PBFs), where safety guarantees are parameterized
relative to a given safety constraint with a generalized robust
CBE. The parameterization allows for the relaxation of the
strict safety condition expressed in the robust CBF formula-
tion. This gives us flexibility to establish safety guarantees
for other levels sets of the CBF in the case that the nom-
inal robust CBF conditions are not met. Third, we connect
the ISSf framework to PBFs and show that it is possible to
obtain improved safety guarantees for ISSf-CBF-based con-
trollers. An inverted pendulum example is used throughout to
illustrate the key concepts.

Il. BACKGROUND
Consider a nonlinear control system of the form:

x=f( x)+g(t, u, (1

with state x<cR" and input u e R™. The functions
FRxR*—->R" and g:RxR"— R™™ are Ilocally
Lipschitz continuous in x and piece-wise continuous in f.
A feedback controller k£ : R x R" — R™, u = k(t, x), that is
locally Lipschitz continuous in x and piece-wise continuous
in t implies there exists a time interval I(fp, xo) € R for each
initial condition x(fy) = xp such that the closed loop system
has a unique solution x(f) for all ¢ € I(fp, xo) [27]. For conve-
nience we take fyp = 0 and assume that the solution exists for
all time, that is, (0, xg) = [0, co) for all xp € R™.

Safety is formally defined as the forward invariance of a
set in the state space. We define the O-superlevel set of a
continuously differentiable function 4 : R" — H, H c R:

S={xeR"| h(x) >0}, 2)

such that S is nonempty and has no isolated points, and we say
that the system (1) with a controller u = k(t, x) is safe w.r.t. the
setSifxp e S = x(f) e Sforallt > 0and xg € S. Control
barrier functions [1] give us tools to synthesize controllers with
safety guarantees.

Definition 1 [1]: A continuously differentiable function i
is a control barrier function (CBF) for (1) on & if 0 is a
regular value' and there exists a function & € !C;f such that
the following holds for all > 0 and x € S:

sup [VAX)f (t, X) + Vh(X)g(t, x)u] > —a(h(x)).  (3)

uckm

lyf h(x) =q = Vh(x) # 0, then q is a regular value of A.
2Punction ¢ : R - R belongs to extended class-Koo (o € Kgy) if it is
continuous, strictly increasing, «(0) = 0, and limr— 400 @(r) = £00.

The existence of a CBF implies that the set of controllers:

Kcpe(t,x) = {u € R™ | VRX)f (1, x) 4
+ Vh(x)g(t, x)u > —a(h(x))}
is not empty, and the main result in [1] states that controllers
taking values in Kcgr ensure safety:

Theorem 1 [1]: Let h be a CBF for (1) on S. Then, any
controller u = k(t, x) € Kcpr(t, x) renders (1) safe w.r.t. S.

I1l. RoBUST CONTROL BARRIER FUNCTIONS
Safety guarantees established by CBFs may deteriorate in

the presence of an uncertainty in the model. Consider:
X =f(t,x) + g(t, Du+F(t,x) + gt u, ®)

where the unknown functions f: Rso x R” - R” and
g2 :Ryo x B" — R™™ are assumed to be locally Lipschitz
in x and piece-wise continuous in f. Uncertainties f and g
are often called as additive and multiplicative uncertainties,
respectively, emphasizing their relationship with the input u
in the dynamics. Their effect on safety is seen in &

f:n(r,x, u)

fz(t, x, u) = VR(X)f(t, x) + Vh(x)g(t, x):;
+ Vh(x)f(r, x)d + LVh(x)g(r, x)u, ©6)
Lyh(t.x)

Lh(t.x)

where h, denotes the known portion of h while the Lie
derivatives th(t, x) and Lzh(t, x) are unknown. A controller
u = k(t,x) € Kcgp(t, x) yields:

h(t, x, k(t, ) > —a(h(x)) + Lyh(t, X) + Lgh(t, k2, %), (7)

and no longer satisfies the condition i > —a(h).

In the literature this problem is often addressed by adding a
compensation term to the safety constraint (3) for robustness
against the uncertainty. To capture this term for a variety of
approaches, we generalize the notion of robust CBF, which
was first proposed in [7] using a specific compensation term
for a specific type of uncertainty.

Definition 2: A continuously differentiable function A is
a robust control barrier function (RCBF) for (5) on &
if 0 is a regular value of h and there exist functions
0 R0 xR"xR™ —» R and o € Kg, such that the follow-
ing holds for all t >0 and x € S:

sup [fa(t, x, u) — o (t, x, u)] > —a(h(x)). (8)
uck™

The compensation term o allows one to cancel the unde-
sired effects of uncertainties on safety. Similar to CBFs, the
existence of a RCBF yields a set of robustly safe controllers:

Krepr(t, x) = {u € R™ | ho(t, x, u) — o' (t, x, u) > —a(h(x))}, (9)

and the following theorem, generalized from [7], gives a
sufficient condition to obtain robust safety results:

Theorem 2: Let h be a RCBF for (5) on S with o satisfying:
Lf.&(r, x) + Lzh(t, x)u + o (t,x,u) = 0, (10)

for all t>0, x€dS and u € R™. Then, any controller
u = k(t, x) € Krcpe(t, x) renders (5) safe w.r.t. S.
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TABLE I

A BRIEF SUMMARY OF ROBUST CONTROL BARRIER FUNCTION (RCBF) AND INPUT-TO-STATE SAFETY (1SSF)

BASED METHODS FOR ROBUST SAFETY-CRITICAL CONTROL, WITH THE CORRESPONDING o TERM
USED IN (9), TO PROVIDE SAFETY WITH ROBUSTNESS AGAINST THE UNCERTAINTIES IN (5)

Method Summary o(t,z,u)
[71 Bounded uncertainty: || f(¢,z)| < p. [|Vh(z)|p
Bounded uncertainty: || f(t,z)| < p,
28] continuous non-increasing k with x(0) =1 K(h(x))|IVh(z)llp
s f is a convex hull of functions v;(z),i = 1, e, q - mmte{l’ a3 Vh ()i (x)
[15] g is a convex hull of functions p;(x),i=1,---,q, —mine (. g} VR(2)pi(x)u
[12] [f, (g diag(u)) ]T = (z,u)f, and A, b st A <b Alélgb Vh(z)v(z,u)d
Sector bounded nonlinear perturbation at input, B
M g S, 3 defining:gas= (e 0 Vg 2and 9= (8 =a) (Blrai), (Lgh(z) — Lgsh(z)) u + 0||ull|| Lgsh(x)]|
& [8] f estimates f and by defines an error band. —Vh(z)f(z) + ba(t)
< b(t,z) = L zh(t,z) is Lipschitz in ¢ (constant L) .
m 9 ? A f 1 » i
2 b estimates b and kj, is estimation gain. o(t, @) + Lo/ ky
L: h(t z) = p(t,x)8, ||9] <@ . — A ”
11 t 6, —p(t,x)0(t t O (t
[11) i 10,000 o min {|o(t, 2) 3, (¢, 2)0(t) + Io(t, )00 (t) }
N -
[14] f and § are Lipschitz in z (with Ly, Lg), 'El ()\?Fi = IXll(Lf + Lglluill)l|lz — :z:‘-||) ,
3N data x;, u; and &; so Fy = &; — f(x;) + glx;)u . A; are Lagrange multipliers.
hn(t,z,u) = 0, h is Lipschitz in z and u , i _ _
: —hi + La||z — ;| + Lu|lu —
[16] (with L, L), 3N data x;, u; and h; i€[1-N] [ i+ Lefle — @il + Lullu u""]
“ 23] Bounded uncertainty, continuously differentiable | Vh(z)||?
4 e(r) > 0 with 3¢(r) > 0 e(h(z))
1 s 2 - TABLE Il
Remark 1: Robust .safety.-crltlcal controller design is often PARAMETERS USED FOR EXAMPLE 1
formulated as the optimization problem: o= 10 ms? ey e =T
k(t,x) = argmin lu — ka(t, x)||2 (11) F=2N q =4 l:‘radz q2 = 2 sfrad
ueRr o, x,40) — o (8, x, 0) > —a(h(D), a.=81s | K, =061/ | Kg=0.6 1/s
where kg : R>g x R” — R™ is a desired controller. i .
A p.lethora of metl_10d§ has been proposed in the literature — [ 2 ] A [ ; :| U+ [Fr ], (14)
to design o; see a list in Table I for RCBF-based methods %Slﬂl’l b= ) %ﬂlcosxl
as well as an input-to-state safety-based method that will be S e E—e—=
fltx) g(t.x) Fit.x)

described in Section V. To illustrate robust safety we now
consider a certain class of uncertainty with bounded additive
term and no multiplicative term:

It 0l < p,

for all > 0, x € R" with some bound p > 0. Inspired by [7],
we will use a compensation term of the form:

g(t,x) =0, (12)

o(t,x,u) = |[Vh@)]|p, (13)

which, along with (12), implies that (10) is satisfied, and thus
the controller (11) with (13) keeps the set S safe. Results
obtained through Theorem 2 are illustrated using an inverted
pendulum example with a time varying uncertainty.

Example 1: Consider the inverted pendulum in Fig. 2(a)
that consists of a massless rod of length / and a concentrated
mass m. The pendulum is actuated with a torque u, while an
unknown external force F(f) is acung horizontally on the mass
With the angle 6, angular velocity 6, and state x = [8 9] the
equation of motion of the pendulum reads:

where the parameter g is the gravitational acceleration. All the
parameters used in this example are given in Table II.

The external force F(f) yields an additive uncertainty f
(8(t,x) = 0). We assume that there exists an upper bound

F such that |[F(f)] < F, Vt > 0, which yields p = m% A

piece-wise continuous force is considered for simulations:
F(t) =F(1 — 2s(t — 5) + s(t — 10) + s(t — 15)),  (15)

where s is the Heaviside function.

We seek to design a control torque u such that we keep the
pendulum upright within a given safe region of angles, even
with the disturbance F(f). The set S is defined using:

1 277 qq2
hx)=1—=xTAx, A= [ 1 , 16)
2 Q92 243 (

with parameters g1, g2 > 0 given in Table II. The resulting set
& is the black ellipse in Fig. 2(b). Note that Vi(x) = 0 only
if x = 0, while h(0) = 1, thus 0 is a regular value of A.
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Fig. 2. (a) Inverted pendulum model. (b) The safe set S (black ellipse)
and simulated trajectories (colored curves) with the controller (11) for
different values of the estimated uncertainty bounds; cf. (13) and (18).

A desired controller is selected as:
ka(x) = mI*(—g/Isinx; — Kpx; — Kax2) a7

with parameters K, Ky > 0. We use (11) as robust safety-
critical controller with o in (13) and «(r) = a.r, ac > 0.
Simulation results are depicted in Fig. 2(b) as a blue curve.
The controller successfully keeps the system safe w.r.t. S.

To achieve robust safety, the compensation term o is typ-
ically designed based on certain properties of f and g such
as the upper bound p in (12); see Table I. In practice, these
properties may be hard to estimate, thus the compensation (10)
required for robust safety may not be realized. For example, if
p in (12) is not known precisely, one may rely on an estimation
p of p instead, with the compensation term:

o(t,x,u) = [VA@)|p. (18)

Then, under-approximating the size of the uncertainty
may yield safety degradation, while over-approximation
may induce conservative behavior that is not captured by
Theorem 2. We illustrate these for the inverted pendulum
problem.

Example 2: Consider the system in Example 1 and (18).
If the uncertainty is under-approximated (p < p), (10) is not
satisfied and Theorem 2 cannot establish safety guarantees.
Indeed, simulations capture safety degradation where x(f)
leaves S; see the red curve in Fig. 2(b) for p =p/2. If
the uncertainty is over-approximated (p > p), (10) holds and
Theorem 2 implies that the set S is safe. The corresponding
simulation results, depicted in Fig. 2(b) as a green curve for
P = 2p, comply with this. However, we observe conservative
behavior where x(f) evolves inside a smaller subset of S.

IV. PARAMETERIZED BARRIER FUNCTIONS

To quantify safety degradation and conservativeness emerg-
ing from non-ideal compensation of uncertainties, we extend
the RCBF-based safety guarantees by introducing the concept
of parameterized barrier function.

Our key idea is to establish safety guarantees for other
superlevel sets of i than S. Thus, we introduce the set:

S* £ {xeR" | Hix, h*) = 0}, (19)
3S* £ [xeR" | H(x,h*) =0}, (20)

where the function H : R" x H — R is given as:
H(x, h*) & h(x) — h*; 1)

with i defining S in (2) and a parameter h* € H < R to be
determined. We have S* > S if h* <0, $* =S if h* =0,
and 8* C S if h* > 0; see Fig. 1. We assume that the set S*
is nonempty and has no isolated points for any h* ¢ H.

Definition 3: Function H is a parameterized barrier func-
tion (PBF) for (5) on &* if h is a RCBF for (5) on $* and h*
is a regular value of #.

Next, we state conditions for the safety of (5) w.r.t. S*, to
ultimately capture safety degradation and conservativeness.

Theorem 3: Let H be a PBF for (5) on &* with h* € H and
o satisfying:

th(t, x) + Lzh(t, x)u+ o (t, x, u) > a(h), (22)

for all t>0, xcdS* and u € R™. Then, any controller
u = k(t,x) € Krcpr(t, x) renders (5) safe w.r.t. S*.

Proof: H is continuously differentiable since i is a RCBF
and h* is a constant, and we have:

H(t, X, u) = fzn(t, x,u) + th(t, x) + Lgh(t, x)u. (23)
For any controller u = k(t, x) € Krcgr(f, x) this yields:
H(t, x, k(t, x)) > —a(h(x)) + o (t, x, k(t, X))
+ Lf}z(r, x) + Lgh(t, 0)k(t, x).  (24)
Considering x € 3S8*, i.e., h(x) = h*, (22) implies that
H(t, x, k(t, x)) > 0. (25)

Since h* is a regular value of & we have that 0 is a regular
value of H. Thus, the rest of the proof follows from [29]. W

Remark 2: Theorem 3 relaxes the sufficient condition (10),
which is based on certain known properties of the unknown
functions f and g, and consequently establishes more accu-
rate safety guarantees. Indeed, Theorem 2 is a special case
of Theorem 3 with #* = 0. If (22) holds with h* < 0, condi-
tion (10) may not hold and Theorem 2 cannot establish safety.
Still, Theorem 3 provides safety guarantees w.rt. §* O S,
hence it quantifies safety degradation. If (22) holds with
h* > 0, condition (10) also holds, and Theorem 2 establishes
safety w.r.t. S. However, Theorem 3 provides safety w.r.t.
S* C &, hence it quantifies conservativeness.

More accurate safety guarantees can be established for the
compensation term in (18) through Theorem 3 as follows.

Corollary 1: Consider (5) with (12) and (18). Assume that

there exist 8,8 : H — Rxo such that for any h* € H:
3(h") < IVA@)|| < 8(h"), (26)
Vx € 38*. If H is a PBF for (5) on &* with #* defined by:
oty = [SED@—p) if p<p.
S —p) if p>p,
then u = k(t, x) € Krcpg(t, x) renders (5) safe w.r.t. S*.
Proof: The choice (18) of the robustifying term o implies:
Lzh(t, x) + Lgh(t, )u + o (t, x, u) > [VA®)||(} — p). (28)

This leads to (22) by using (26) and (27), and the rest of the
proof follows from Theorem 3. |
Remark 3: The value of h* given by (27) quantifies safety
degradation and conservativeness. If the uncertainty is under-
approximated (p < p), (27) yields h* < 0 and $* O &, while
over-approximation (p > p) leads to h* > 0 and $* C S.

27
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— h(z(t)) forp<p
~==-h*forp<p
0.5 —_—

x(t)) for i > p
---h*forji>p

—h=0

Fig. 3. The time evolution of the RCBF, h(x(t)), for the simulations of
Example 2, and the safety guarantees established in Example 3 using
the PBF framework in the form of a lower bound h* for h(x(t)).

Example 3: Consider the setup of Example 2. Based
on (16), we get Vh(x) = —Ax, and it can be shown
that (26) holds for any h* € H = (—o0, 1] and for all x € 35*
with §(h*) = \/2Ao(1 — h*) and 8(h*) = v/2A(1 — h*), where
0 < A <A are the eigenvalues of A. Since any h* <1 is a
regular value of A, Corollary 1 establishes safety w.r.t. the set
S* with h* given by (27).

The value of A* is depicted in Fig. 3 with dashed line
along with A(x(f)) corresponding to the simulated trajectories
in Fig. 2(b). Observe that for the case of under-approximation
(p < p, red) the PBF framework successfully quantifies safety
degradation by a lower bound A* <0 for h(x(f)), which
complies with the simulation results. For the case of over-
approximation (p > p, green) the bound h* > O captures the
safe but conservative system behavior.

V. INPUT-TO-STATE SAFETY VIA PBFs

A well-known existing concept proposed to characterize
safety degradation is input-to-state safety (ISSf) [23].3 In this
section we show that ISSf is a special case of the PBF frame-
work (restricted to h* < 0). Then, we propose a method that
endows ISSf-CBF-based controllers with more accurate safety
guarantees (including #* = 0 and A* > 0).

In essence, ISST gives ways to quantify safety degradation
in the presence of a bounded disturbance such as (12). This
inspired PBFs, as ISSf considers safety degradation in the
context of safety guarantees for another superlevel set of h:

Sisst = {x € R7|hx) — o~ (—eh)p?/4) = 0}, @9)

with a continuously differentiable function € : H — R.¢ that
satisfies ﬁ%(r) >0, VreH and a~! € K, [25]. ISS{-CBFs
provide controllers with safety guarantees w.r.t. Sysst.

Definition 4: A continuously differentiable function 4 is an
input-to-state safe control barrier function (ISSf-CBF) for (5)
if there exist a function o € Kg, such that the following holds
forall t = 0 and x € R™:

IVAX)|12

sup [ (t, %, w)] > —a(h(x) + = o

uckm

(30)

3All:huugh ISSf was originally proposed for matched input disturbances, in
this letter we extend it for additive type of uncertainties f.

Remark 4: While the original ISSf formulation in [23]
considers %ﬁ(r) =0, our work in [5] shows that controller

performance can be improved by choosing %(r} > 0 through
experiments with a full-scale automated truck.

Reference [25, Th. 3] establishes safety for (5) w.r.t. Syssy,
if the controller takes values in the non-empty set:

IVAX)|1? ]
eh(x) | G

In the next theorem, we link ISSf-CBFs to the PBF framework
and establish the same result via PBFs.

Theorem 4: If h is an ISSf-CBF for (5) with (12), then H
is a PBF for this system on §* with:

Kissi(t, x) = [H eR" | ho(t, x,u) > —a(h(x)) +

o (X, u) — IVAM)|* 32)

o e(hx) ’

and A* < 0 being the unique solution of:
h* — a1 (—e(k*)pzm) if], (33)

Furthermore, any controller u = k(f,x) € Kissf(f, x) ren-
ders (5) safe w.r.t. 8* = Sigsr D S.

Proof: First, we observe that (33) has a unique solu-
tion h* based on the monotonicity properties of a~! and e.
Furthermore, $* = Sigsr based on (29) and (33), while the
property €(r) > 0 for all r € H yields * <0 and &* O S.
Moreover, h* is a regular value of A thanks to the strict
inequality in (30); please refer to the proof of in [25,
Th. 3] for details. Hence, comparing (30) with (8) and (32)
establishes that H is a PBF. Finally, by noticing that

WAl | vhe)lp > —<BSP", (12) and (32) yield:
Lzh(t, x)u + th(t, X)+to(t,x, u > —e(h(x))p2/‘4. (34)

This inequality and (33) imply that condition (22) in
Theorem 3 holds, therefore (5) is safe w.r.t. S*. [ |
Next, we derive more accurate safety guarantees for ISSf-
CBF-based controllers via the PBF framework.
Corollary 2: Consider (5) with (12) and (32). Assume that
there exists § : H — Rxq such that for any h* € H:

(") = IVhM@)I, (33)
Vx € 3S§*. If H is a PBF for (5) on &* with h* satisfying:

W~ (88" e ) — 50)p) =0,

and e(h*) <2§(h*)/p holds, then u = k(t,x) € Krcpr(t, Xx)
renders (5) safe w.r.t. $* C Sigsy.
Proof: Based on (12), (32) and e(h*) < 28(h*)/p, it can be
shown that the following holds for all x ¢ 35™:
5(&*)2
L:h(t, x)u + Lzh(t,x) + o (t, x, u) > =
g()+f()+( )_e(k"‘)
Using (36) gives (22), and Theorem 3 yields safety w.r.t. S*.

Moreover, h* > a~! (—ﬂ%ﬁ) holds, thus S* € Sisst. [ |
Remark 5: Since §* C Siggr, the PBF framework provides
a tighter safety guarantee than ISSf theory. Indeed, all cases of
h* <0, h* =0 and h* > 0 can occur in (36), corresponding
to safety degradation, safety and conservativeness.
Example 4: Consider the inverted pendulum problem in

Example 1. We utilize the controller (11) with o in (32),

(36)

—8(h*)p. (37)
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Fio. 4. Safety guarantees established in Example 4 for g = 1 with
A =0 and A = 4 using the ISSf approach (S;ggf) and the PBF frame-
work (S*). While the ISSf case (cyan and red ellipses) does not capture
the conservative behavior, the PBF framework yields more accurate
safety guarantees (orange and brown ellipses) for simulated trajectories
(orange and brown curves).

e(r) = e, ¢y > 0 and A > 0. Two simulation results are
given in Fig. 4, with ¢g =1, L =0 (orange dashed-dotted
curve), and ¢y = 1, A =4 (brown dashed curve). Both sim-
ulated trajectories stay within S. Indeed, while the former
parameter pair yields a more conservative result, introducing
A alleviates the conservativeness as discussed in Remark 4.

Boundaries of the corresponding Sisse sets, calculated by
solving (33), are also plotted by cyan solid and red dashed
ellipses. As expected, these sets obtained from the ISSf theory
fail to evaluate the conservativeness. The boundaries of the sets
&*, after solving (36), are plotted by orange and brown solid
lines in Fig. 4. Indeed, they are more accurate bounds on the
trajectories of the system. This shows that the PBF framework
provides flexibility to quantify conservativeness.

VI. CONCLUSION

This letter focused on establishing safety guarantees for
control systems with uncertainties. We proposed parameter-
ized barrier functions (PBFs) that generalize existing robust
control barrier function (RCBF) formulations. We highlighted
that the PBF framework offers flexibility to evaluate not only
safety, but safety degradation and conservativeness of RCBF-
based controllers. Moreover, we showed that input-to-state
safety (ISSf) can be viewed as a special case of the PBF
framework, and we derived improved safety guarantees for
ISSf-CBF-based controllers. Future research may extend the
PBF framework to sampled-data systems to analyze robustness
against inter-sampling effects in continuous-time.
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