
EPiC Series in Computing

Volume 94, 2023, Pages 386–404

Proceedings of 24th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning

Toward Optimal Radio Colorings of Hypercubes
via SAT-solving

Bernardo Subercaseaux and Marijn J.H. Heule

Carnegie Mellon University
{bsuberca, mheule}@cs.cmu.edu

Abstract

Radio 2-colorings of graphs are a generalization of vertex colorings motivated by the
problem of assigning frequency channels in radio networks. In a radio 2-coloring of a graph,
vertices are assigned integer colors so that the color of two vertices u and v di↵er by at
least 2 if u and v are neighbors, and by at least 1 if u and v have a common neighbor. Our
work improves the best-known bounds for optimal radio 2-colorings of small hypercube
graphs, a combinatorial problem that has received significant attention in the past. We
do so by using automated reasoning techniques such as symmetry breaking and Cube
and Conquer, obtaining that for n = 7 and n = 8, the coding-theory upper bounds of
Whittlesey et al. (1995) are not tight. Moreover, we prove the answer for n = 7 to be
either 12 or 13, thus making a substantial step towards answering an open problem by
Knuth (2015). Finally, we include several combinatorial observations that might be useful
for further progress, while also arguing that fully determining the answer for n = 7 will
require new techniques.

1 Introduction

Frequency Assignment Problems (FAPs) in radio networks, are mathematical formulations for
the problem of assigning frequencies to radio transmitters in a way that maximizes frequency
reuse while keeping signal interference to acceptable levels [1, 2, 3, 4]. In 1980, Hale formalized
FAPs as graph labeling problems, initiating an active area of combinatorial research [2, 3, 5, 6].
Arguably the most elemental formulation of a FAP is that of radio 2-colorings, introduced by
Griggs and Yeh in the early 1990s [7], which we define next.

Definition 1 (Radio 2-coloring). Given a graph G = (V,E), and a natural number s � 1, a
radio 2-coloring of G of span s is a function f : V (G) ! {0, . . . , s}1 such that:

1. f(u) 6= f(v), if u and v are at distance 2.

2. |f(u)� f(v)| � 2, if u and v are at distance 1.

Naturally, this definition induces a notion of chromatic number:

1One can equivalently consider labels in {1, . . . , s+ 1}, but we stick to the range {0, . . . , s} for consistency
with the existing literature [5, 6].

R. Piskac and A. Voronkov (eds.), LPAR 2023 (EPiC Series in Computing, vol. 94), pp. 386–404

http://orcid.org/0000-0003-2295-1299
http://orcid.org/0000-0002-5587-8801

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

Definition 2 (Radio 2-chromatic number). The radio 2-chromatic number of a graph G, de-
noted by �(G), is the smallest s for which G admits a radio 2-coloring with span s.2

The radio 2-chromatic number has been studied for several graph families [5, 6], and in
particular, several bounds are known for the family of hypercube graphs [7, 9, 10].

Definition 3. For any natural number n � 1, the hypercube graph of order n, denoted by
Qn, has vertex set {0, 1}n, and edges between elements of {0, 1}n that di↵er in exactly one
component.

Example 1. Figure 2 (on page 5) illustrates a radio 2-coloring for Q4 with 8 colors (span of
7), which turns out to be optimal [10].

In the early 1990s, Griggs and Yeh [7], and Jonas [11] proved the first general bounds on
�(Qn), and later on Whittlesey et al. [10] improved the general upper bound by 1, while also
providing a di↵erent and more refined upper bound. The following theorems summarize these
results.

Theorem 1 (Griggs and Yeh [7], Jonas [11]). For any n � 5, we have n+3  �(Qn)  2n+1.

Theorem 2 (Whittlesey et al. [10]). For any n � 1, we have �(Qn)  2n.

Theorem 3 (Whittlesey et al. [10]). For any k � 1 and q  k + 1, we have

�(Q2k�q)  2k + 2k�q+1 � 2.

Table 1 shows the upper bounds obtained through Theorem 3 for small values of n, while Fig-
ure 1 shows the general curve of both upper and lower bounds.

Interestingly, it turns out that computing �(Qn) is a remarkably hard computational prob-
lem, even for very modest values of n. In The Art of Computer Programming [12], Donald
Knuth presented the following open problem:

Open Problem 1. Find �(Qn) for any n > 6.3

To the best of our knowledge, all previous conjectures about the value �(Qn) have been
shown to fail, as we summarize next. According to Calamoneri [5], Griggs and Yeh conjectured
that �(Qn) = n+3 (i.e., the lower bound from Theorem 1), however, this is incompatible with
Griggs and Yeh’s 1992 article which mentions already that �(Q8) � 12, and that no evident
pattern emerges from the values �(Qn) with n  5 that they computed [7]. On the other
hand, Frieder et al. [9] proposed an algorithm for radio 2-coloring Qn, which they incorrectly
conjectured to be optimal. However their algorithm yields a radio 2-coloring of span 15 for
Q5, whereas it is known that �(Q5) = 8 [7]. The last candidate formula is therefore the upper
bound from Theorem 3, which matches the answer up to n = 6. However, this article proves
that this cannot be a formula for �(Qn) either. Indeed, we show the following.

Theorem 4. 12  �(Q7)  13 and 12  �(Q8)  14.

2Unfortunately, the literature on this problem does not have a uniform notation; radio 2-colorings are also
known as L1(2, 1)-labelings [7], L(2, 1)-labelings [6], or L(2,1)-labelings [8], and the radio-2-chromatic number is
sometimes denoted as �(·) [7], �2(·) [6], �2,1(·) [5], or rc2(·) [2].

3It is worth mentioning that Open Problem 1 is assigned an estimated di�culty of 46 in Knuth’s scale, which
ranges from 0 to 50.

387

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

value of n

�
(Q

n
)

Upper bound of Theorem 3
Upper bound of Theorem 2
Lower bound of Theorem 1

Figure 1: Illustration of the bounds obtained by Theorems 1 to 3.

As the upper bounds obtained from Theorem 3 are 14 for n = 7 and 15 for n = 8, we show
the first instance of a gap between �(Qn) and Theorem 3. Moreover, in Section 5 we show
evidence suggesting that the entire coding theoretical approach of Whittlesey et al. [10] cannot
directly provide a better bound than 14 for �(Q7), thus implying that new techniques will be
required. The following paragraphs present more context on the computation of �(Qn).

Asymptotics of �(Qn). The asymptotic behavior of �(Qn) is not well understood yet; Whit-
tlesey et al. [10] proved that lim inf �(Qn)/n = 1, but to the best of our knowledge, it is not
known whether lim sup�(Qn)/n < 2. As a consequence, improving computational methods to
compute �(Qn) for slightly larger values of n might serve as a guide toward understanding its
limiting behavior.

Complexity of computing �(Qn). The problem of deciding whether �(G)  s for an ar-
bitrary graph G was proven to be NP-hard by Griggs and Yeh [7]. Moreover, Fiala et al. [13]
proved that this problem is hard for every fixed s � 4. Nonetheless, particular classes of graphs
might make the problem easier. For example, Chang and Kuo give a polynomial time algorithm
for trees [4]. To the best of our knowledge, no polynomial time algorithm is known for hyper-
cubes. The class of regular graphs, to which hypercubes belong, is enough for NP-hardness, as
proved by Fiala and Kratochv́ıl [8]. Moreover, Fiala et al. [14] showed intractability in several
fixed-parameter settings, while showing e�cient algorithms for graphs of bounded vertex-cover
number or neighborhood diversity, both of which are unbounded parameters for the class of
hypercubes.

388

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

Table 1: Best known bounds on �(Qn). Bold values show our improvements, and italic values
show the improvements made by Jonas [11] over the general bound of Theorem 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

upper bound 2 4 6 7 8 10 13 14 15 15 15 16 18 22 30 31
lower bound 2 4 6 7 8 10 12 12 12 13 14 15 16 17 18 20

SAT-solving to compute �(Qn). Our work is primarily concerned with computing �(Qn)
exactly for small values of n, hopefully contributing to reveal patterns that could help a sharper
understanding of �(Qn) as a general function of n. Given the hardness results summarized in
the previous paragraph, we do not expect e�cient algorithms for deciding whether �(Qn)  s,
for given values of n and s. Therefore, our approach consists of solving SAT instances [15] that
encode whether �(Qn)  s. In order to make them tractable, we perform several optimizations
over naively generated instances, such as symmetry breaking [15] and Cube and Conquer [16].
Our work follows the line of the approach of Subercaseaux and Heule to compute the packing-
chromatic number of the infinite square grid [17, 18].

We conclude this introduction with the organization of the paper. Section 2 presents the
direct encoding of �(Qn)  s as a CNF formula Qs

n . Then, Section 3 describes the symmetries
in Qs

n and how to break them in order to reduce solving time. Section 4 shows how the
Cube and Conquer paradigm can be used on this problem, and Section 5 shows how the coding
theoretical approach of Whittlesey et al., [10] can be recreated with SAT solving and shown
to be tight. Then, Section 6 studies how from the combinatorial proofs of lower bounds e.g.,
Theorem 1) one can derive additional constraints that speed up SAT solving. Finally, Section 7
details our experimental results, and Section 8 presents concluding remarks and challenges to
guide further progress.

2 Encoding

Let Qs
n be the CNF encoding we will build for the problem of determining if �(Qn)  s.

To construct Qs
n start by defining variables xu,c meaning that vertex u receives color c (i.e.,

f(u) = c). These are the only variables in Qs
n , and thus we have #vars(Qs

n) = 2n · (s+ 1).
Next, for every vertex u, add a clause to Qs

n forcing that u will be colored:

_

c2{0,...,s}

xu,c.

Then, for each pair of vertices u, v at distance 2 from each other, and every color c 2
{0, . . . , s}, add a clause

xu,c _ xv,c.

Finally, for every pair of colors c1, c2 2 {0, . . . , s} with |c1 � c2|  1, and pair of adjacent
vertices u, v, add to Qs

n the clauses
xu,c1 _ xv,c2 .

This is enough for constructing Qs
n , and by simply counting the described clauses we obtain:

#clauses(Qs
n) = 2n + (s+ 1)2n�1

✓
n

2

◆
+ n2n (3s+ 1) .

389

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

Table 2: Size of instances Qs
n , for n  8, with s chosen as the upper bound for �(Qn) according

to Theorem 3.

n s #vars #clauses

1 2 6 16
2 4 20 118
3 6 56 548
4 7 128 1808
5 8 288 5472
6 10 704 17248
7 14 1920 58816
8 15 4096 151808

Table 2 displays the number of variables and clauses for some instances of interest.

3 Symmetry Breaking

In the context of SAT solving one can distinguish between two kinds of symmetries: internal
symmetries, which are symmetries within a given solution, and solution symmetries, which

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

color 0

color 1

color 2

color 3

color 4

color 5

color 6

color 7

Figure 2: Illustration of a radio 2-coloring of Q4 (represented by its Hasse diagram) with 8
colors. The span of this coloring is 7, thus proving that �(Q4)  7. Interestingly, this solution
is highly symmetric: for any vertex v it holds that f(v � 0111) = f(v), where � denotes
the bitwise-xor, and moreover, f(v � 1001) = s � f(v). Section 3 expands on these forms of
symmetries within solutions, and how they can be exploited to speed up computation.

390

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

are symmetries between di↵erent solutions [15, 19]. In other words, internal symmetries map
particular solutions of combinatorial problems onto themselves, while solution symmetries map
solutions onto di↵erent (but equivalent) ones. In general, internal symmetries are useful for
obtaining faster SAT results, while solution symmetries allow for obtaining UNSAT results
faster.

For a simple example, if we consider the problem of finding pairs of integers a, b such that
a+ b = 10, then the function g(a, b) = (a� 7, b+ 7) is a map between solutions (e.g., (6, 4) !
(�1, 11)), whereas the particular solution (5, 5) is invariant under the symmetry h(a, b) = (b, a),
and thus we say it contains an internal symmetry. To exploit the solution symmetry g, we can
enforce, for example, the constraint a < 0, as any solution (a, b) can be mapped onto one with
a < 0 by successive applications of g. The idea is that, in a problem where one searches for
an UNSAT proof, the addition of extra constraints over the solution will make it easier for the
solver to deduce that no solution to the problem exists. The point of internal symmetries, on
the other side, is that, if we know that there exists at least one solution respecting a given
internal symmetry, we can reduce the search space by enforcing the symmetry as a constraint.
Continuing with our example, by knowing that at least one solution respecting the symmetry
h exists, we can enforce the constraint a = b, thus reducing the problem to finding a single
integer a such that 2a = 10.

We next describe both solution symmetries and internal symmetries over Qs
n . While it is

simple to observe that if f is a radio 2-coloring with span s for any graph G, then f
0(v) := s�v

is also a radio 2-coloring, it turns out there are many more symmetries between solutions for
instances Qs

n ; as many as n! · 2n. To understand all such symmetries, we first describe the
automorphisms of Qn, that is, the symmetries of hypercube graphs, and then explain how to
use them for breaking symmetry in Qs

n .

Automorphisms of Qn. It is well known that the group of automorphisms of Qn (also known
as the hyperoctahedral group) has size n! · 2n. We will show this in a way that is helpful for
guiding our symmetry breaking approach. Let u be any vertex of Qn, and define the closed
neighborhood of u, denoted by N [u], as

N [u] := {u} [N (u),

where N (u) denotes the set of neighbors of u in Qn. The key for understanding the automor-
phisms of Qn is that any such automorphism � is uniquely determined by

F (u) := {(v,�(v)) | v 2 N [u]},

the mapping of the closed neighborhood of u. This is because, as we prove next, every vertex
w that is not in the set N [u], is mapped to a vertex �(w) that is uniquely determined by its
distance to the elements of N [u]. Indeed, given that Qn is clearly a vertex-transitive graph, we
can assume without loss of generality that u = ~0 and N (u) is the set of canonical vectors ei (i.e.,
the vector with a 1 in its i-th, and 0 everywhere else), for 0  i < n. If we let b be the distance
between u = ~0 and another vertex w, then w has exactly b bits on, and moreover, its i-th bit
is on if and only if the distance between w and ei is b � 1. Therefore, the distances between
a vertex w and the vertices in N [u] are enough to fully specify the identity of w. Finally, the
number of choices for F (u) can be computed as follows: there are 2n options for �(u), as the
graph is vertex-transitive, and once �(u) has been determined, the automorphism condition
implies that �(v) 2 N (�(u)) for every v 2 N (u). But this is equivalent to saying that � needs
to bijectively map the set

S
v2N (u) {�(v)} to N (�(u)), which can be done in n! di↵erent ways

391

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

as each set has size n.

In order to obtain an n! · 2n factor of improvement, we need to break all symmetries of Qn,
which means that we need to distinguish a particular vertex u, obtaining a 2n factor, and then
break the symmetry on the neighborhood of u for the n! factor.

Symmetry breaking I. First, given that Qn is vertex-transitive, we can assume that if any
vertex receives a given color c, then vertex ~0 receives color c. This means that if in radio
2-coloring of Qn there are ` vertices getting color c, we obtain an improvement factor of `

2n . If
` = 1 this is clearly optimal, but for larger values of ` a more sophisticated approach that we
detail next is required.

For any vertex v, let us define S(v) as the sorted sequence of colors that the vertices in N (v)
receive. Then, we can break the symmetry between the ` vertices receiving color c by assuming
that S(~0) is lexicographically smallest amongst the sequences S(v) for every vertex v that
receives color c. In case there are no two vertices u, v receiving color c such that S(u) = S(v),
this assumption divides the number of cases by ` and thus fully breaks symmetries of Qn.
Enforcing S(~0) to be lexicographically smallest can be expensive in terms of the number of
clauses, and thus we do not implement such a further optimization. Given that a priori we
cannot assume that any specific color c will be assigned to some vertex in an optimal radio
2-coloring (besides color 0, which can easily be seen to always appear in any optimal radio
2-coloring without loss of generality), we use the following conditional constraint: if at least
one vertex receives color c, then vertex ~0 receives color c. Therefore, we add the following 2n�1
clauses:

x~0,c _ xu,c, 8u 2 {0, 1}n \ {~0}.

Symmetry breaking II. Once a vertex u (e.g., ~0) has been distinguished, breaking the
symmetry of its neighborhood N (u) can be done as follows. First, observing that all vertices
in N (u) are at distance at most 2 from each other, we know they must receive di↵erent colors.
Furthermore, we can assume the sequence of colors they receive will be strictly increasing.

To implement this, consider without loss of generality that u = ~0, it is enough to enforce
that if ei, the unit vector with a 1 in its i-th position, gets some color a, then ei+1 cannot get
any color b < a. Concretely, we add the following O(ns2) clauses:

xei,a _ xei+1,b, 8i 2 {1, . . . , n� 1}, a 2 {0, . . . , s}, b 2 {0, . . . , a� 1}.

This implies that the n di↵erent colors assigned to vertices in N (~0) cannot be permuted
anymore, thus dividing by n!, the number of permutations over the colors assigned to N (~0).

Internal symmetries. Internal symmetries can be observed in optimal radio 2-colorings.
For example, the coloring of span 7 presented in Figure 2 has the following internal symmetry:

Each color c 2 {0, . . . , 7} is assigned to exactly two vertices, which we denote uc and
vc. It then holds, for every c 2 {0, . . . , 7}, that uc = vc� 0111, where � denotes the
bitwise-xor, interpreting the vertices of {0, 1}7 as bit-vectors.

For example, color 6 is assigned to vertices 0011 and 0100, while color 3 is assigned to
vertices 1011 and 1100. The knowledge of this internal symmetry allows for a speed-up by
simply adding constraints stating that any pair of vertices u, v such that u = v � 0111 must

392

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

receive the same color. Unfortunately, it is not the case that for every n such that Qn admits
a solution of span s, there exists a mask m and a solution symmetric under u = v �m for all
vertices. A slightly more involved internal symmetry that appears to exist for every optimal
span (although we leave a proof or refutation of its existence as a challenge in Section 8) is the
following (for every n):

There exists a mask m, such that at least one radio 2-coloring f for Qn of optimal
span s exists which satisfies that: f(v �m) = s� f(v) for every vertex v.

This internal symmetry is also present in Figure 2 using mask 1001. In Appendix A.1 and
Appendix A.2, we present certificates for our improved upper bounds for n = 7 and n = 8,
using the same internal symmetry although with di↵erent masks.

Interestingly, finding a mask m that works for a particular instance Qs
n is not as hard as

it can appear at first. Naively, the total number of masks is 2n, and testing each candidate
mask mi can be done by setting a timeout parameter t and running the instance Qs

n , with the
additional constraints corresponding to the candidate mask mi, for that amount of time. Such
a process would take time 2n · t in the worst case. However, by observing as in Section 3 that
the di↵erent bits are interchangeable under permutations, we can assume that the bits of the
desired mask m, if it exists, are sorted. This way, one only needs to test n di↵erent candidate
masks, reducing the time down to t · n.

4 Cube and Conquer

The Cube and Conquer [16] approach to SAT solving consists of splitting a SAT formula '
into a sequence of formulas '1, . . . ,'m, in such a way that ' is satisfiable if, and only if, at
least one of the formulas 'i is satisfiable. The main consequence is that it is then possible for
a solver to work on the di↵erent instances 'i in parallel. Moreover, incremental solvers can
take advantage of the overlap between the di↵erent 'i formulas, reusing computation across
them [16].

We now present a general description of the Cube and Conquer approach, and then a
particular instantiation of it for the problem at hand.

The general paradigm. If = (c1 _ c2 _ · · · _ cm) is a tautological DNF, then we have

SAT(') () SAT(' ^) () SAT

m_

i=1

(' ^ ci)

!
() SAT

m_

i=1

'i

!
,

where the di↵erent 'i := (' ^ ci) are the instances resulting from the split.
Intuitively, each cube ci represents a case, i.e., an assumption about a satisfying assignment

to ', and soundness comes from being a tautology, which means that the split into cases is
exhaustive. If the split is well designed, then each 'i is a particular case that is substantially
easier to solve than ', and thus solving them all in parallel can give significant speed-ups,
especially considering the sequential nature of CDCL, at the core of most solvers.

Split algorithms for radio coloring hypercubes. As is generally the case in parallel
computation, optimal performance requires all cores or processors to be equally busy. As a
consequence, we want the di↵erent formulas 'i to correspond to cases of roughly the same
di�culty. Moreover, the number m of cases in the split should be fairly large, as that way the

393

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

total work associated with all cases is closer to being a continuous variable that could be divided
exactly by p, the number of processors. Concrete examples of the impact of these parameters
on solving time can be found in recent work by Subercaseaux and Heule using the Cube and
Conquer paradigm on a di↵erent coloring problem [17, 18]. Furthermore, the march cc tool [16]
is able to automatically generate splits, even allowing the user to specify the target number of
cases. However, due to its generality, march cc can be beaten on specific problems by designing
split algorithms with knowledge of the problem at hand.

We now present a concrete split algorithm for this problem. A comparison of the perfor-
mance between our algorithm and march cc is discussed in Section 7.

A Custom Split Algorithm. Given our symmetry breaking approach assigns a color c to
vertex ~0 (see Section 3), this algorithm assigns colors to the vertices in B

n
2 the set of vertices of

{0, 1}n with exactly 2 bits on. The motivation for this is that all such vertices are at distance
2 from ~0 and thus cannot share its color c. Let B ✓ B

n
2 be a subset of Bn

2 that will be chosen
manually. Then, for each assignment q : B ! {0, . . . , s} \ {c}, we create a cube

cq :=
^

v2B
xv,q(v).

This algorithm would generate s|B| cubes a priori. However, some of these cubes are clearly
unsatisfiable, as if u, v 2 B

n
2 share a bit on (e.g., 0101 and 1001), then u and v are distance

2 and thus cannot be assigned the same color. This allows us to immediately discard any
assignment q such that q(u) = q(v). By doing so, we significantly reduce the number of cubes.

5 A Coding Theoretical Encoding

Considering that the best known theoretical upper bounds for �(Qn) use coding theory meth-
ods [10], we studied whether a coding theoretical encoding allows SAT solvers to match, or
improve Theorem 3. Our main result in this section is that, at least for n = 7, the coding
theory approach of [10] cannot be trivially modified to obtain a better bound. Amongst other
things, coding theory studies how binary messages, say from {0, 1}k, can be exchanged in a
way that tolerates noise in the communication channel [20]. More precisely, a binary word
w 2 {0, 1}k can be encoded into a codeword cw 2 {0, 1}n, with n > k, such that flipping a
certain number of bits in cw (say, at most 2) still allows the recipient to recover the original
word w. Consider a code C : {0, 1}k ! {0, 1}n, and let I be its image. Naturally, being able to
decode codewords with at most 2 bits flipped implies that any pair of codewords cw1 , cw2 2 I

must di↵er by at least 5 bits (if cw1 di↵ers from cw2 in 4 bits, there is a distorted word c̃ that
di↵ers both from cw1 and cw2 in 2 bits, and thus a recipient would not be able to tell whether
c̃ corresponds to a distortion on cw1 or on cw2).

This problem is tightly related to radio 2-colorings; Whittlesey et al. [10] use a linear code
to map Qn into Qk (k < n) in such a way that vertices u, v of Qn that are at distance 2 from
each other are mapped onto di↵erent vertices of Qk, and then they color Qk injectively. For
example, to obtain an upper bound of 14 for �(Q7), they map Q7 to Q3, and then label Q3

using colors {0, . . . , 14}. A natural question, considering that Q3 only has 8 vertices, is whether
after the mapping one could obtain a radio 2-coloring by using colors {0, . . . , 13} for Q3. We
show this to not be possible by using the following encoding.

Let n and k be fixed. Then, create variables xu,v for u 2 {0, 1}n, v 2 {0, 1}k that represent
that vertex u will be mapped to vertex v. Naturally, we create next 2n clauses stating that

394

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

each vertex in Qn must be mapped onto some vertex of Qk:

8u 2 {0, 1}n,
_

v2{0,1}k

xu,v.

It is not necessary to force that each vertex of Qn will be mapped onto a single vertex of Qk.
Then, create variables yv,c stating that vertex v 2 Qk will receive color c. We add therefore 2k

clauses:
8v 2 {0, 1}k,

_

c2{0,...,s}

yv,c.

We then must enforce that if neighboring vertices u1, u2 from Qn are mapped onto v1, v2

respectively, then the colors received by v1 and v2 must di↵er by 2. Similarly, if u1 and u2 were
at distance 2, then v1 and v2 must receive di↵erent colors. Concretely, we add the following
clauses corresponding to the distance 1 condition:

8u1, u2 2 {0, 1}n such that distance(u1, u2) = 1,

8c1, c2 2 {0, . . . , s} such that |c1 � c2|  1,

8v1, v2 2 {0, 1}k,
⇣
xu1,v1 _ xu2,v2 _ yv1,c1 _ yv2,c2

⌘
.

Similarly, the following clauses take care of the distance 2 condition:

8u1, u2 2 {0, 1}n such that distance(u1, u2) = 2,

8c 2 {0, . . . , s},
8v1, v2 2 {0, 1}k,

⇣
xu1,v1 _ xu2,v2 _ yv1,c _ yv2,c

⌘
.

Although the size of this encoding is extremely large, instances for n = 7 are still solvable.
Concretely, it amounts to

⇥
�
s · n2 · 22k+n

�

many clauses, and yet by running it with parameters n = 7, k = 3 and s = 14 we quickly
recover the solution of span 14 from Whittlesey et al. from [10]. Furthermore, by obtaining an
UNSAT result for parameters n = 7, k = 3 and s = 13, we confirm that no mapping from Q7

to Q3 allows for a solution of span 13. In contrast, we show in Theorem 4 that there is a more
general solution of span 13 for Q7, implying therefore that the coding theory approach of [10] is
inherently sub-optimal, as opposed to the possibility of their upper bound being algebraically
loose. This computation took 438 seconds (hardware details in Section 7).

6 Lower Bound Optimizations

Even though Theorem 1 establishes that �(Qn) � n + 3, and the proof of said bound is quite
simple, SAT solvers struggle to prove for example that �(Q11) � 14, even taking over 2 seconds
to deduce that �(Q12) � 14, which is almost a trivial result. This section shows how we can

395

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

take inspiration from the general combinatorial proofs of these lower bounds to speed up SAT
solvers.

First, let us consider a proof of �(Qn) � n + 2, which is slightly simpler than the bound
of Theorem 1.

Fact 1. For n � 2, �(Qn) � n+ 2.

Rather than providing a formal proof here (which we o↵er in Appendix A.3 for complete-
ness), let us provide a slightly incomplete argument that has the benefit of making our opti-
mization more intuitive.

Assume the symmetry-breaking predicates described in Section 3 have been applied, and
vertex ~0 is assigned color 3, for example. Then, given that the sequence of colors for the
neighbors of ~0 is strictly increasing, the best case (i.e., minimizing the span) for that sequence
of n colors is

0, 1, 5, 6, . . . , n, n+ 1, n+ 2,

from which immediately follows that �(Qn) � n + 2. However, we observe experimentally
that SAT solvers do not obtain this conclusion succinctly without additional guidance. We can
provide such guidance by adding clauses of the form:

m�1_

c=0

xei,c

!
_ xei+1,m, 8i 2 {1, . . . , n� 1}, 8m 2 {0, . . . , s},

recalling that ei denotes the bit-vector with a single bit on, in the i-th position. The reason
we can add these clauses without losing any solution is that, if the i-th neighbor of ~0 does
not receive any color in {0, . . . ,m � 1} then it must receive a color greater or equal then m,
and thus the (i + 1)-th neighbor of ~0 cannot receive color m given that the sequence of colors
must be increasing. Furthermore, the addition of these clauses greatly simplifies the reasoning
required to deduce �(Qn) � n + 2; if e1 does not get color 0, then e2 cannot get color 1, and
given it also cannot get colors in {2, 3, 4}, it must get color at least 5. By continuing this
simple line of deduction we infer that en must get color at least n + 2. The addition of these
clauses brings down the runtime for instance �(Q12)  13 from 2.5 seconds to 1.2 seconds.
More importantly, without these additional clauses, the solver learns 21142 clauses, faces 21693
conflicts, and performs 5390207 propagations. On the other hand with the additional clauses,
it only performs 250 propagations and faces exactly 1 conflict. Thus, the 1.2 seconds of solving
time are almost entirely used in parsing the clauses. The proof for the lower bound in Theorem 1
is slightly more involved, as it uses a counting argument over the vertices at distance 2 from ~0.
We leave the task of designing additional clauses that could guide solvers towards such a proof
as future work, and discuss it further in Section 8.

7 Experiments

Experimental Setup. In terms of software, for CNF instances we run experiments both
on the state-of-the-art solver CaDiCaL [21], and on YalSAT/PalSAT [22]. Experimentally, local
search solvers (e.g., YalSAT/PalSAT) worked much better than CDCL solvers (e.g., CaDiCaL) for
satisfiable instances. All Cube and Conquer experiments were run using a new implementation
of parallel iCaDiCaL because it supports incremental solving [16, 23]. In terms of hardware, all
our experiments were run on the Bridges2 cluster of the Pittsburgh Supercomputing Center [24],
which has 512GB of RAM and two AMD EPYC 7742 CPUs, each with: 64 cores of 2.25-
3.40GHz, 256MB L3, and 8 memory channels.

396

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

Table 3: Runtime in seconds for instances Q9
6 (1 core with CaDiCaL) and Q11

7 (128 cores with
iCaDiCaL) as a function of the color assigned to vertex ~0. The best time for each instance is
written in boldface.

Instance Assigned color
0 1 2 3 4 5 6 7 8 9 10 11

Q9
6 192 165 130 144 114 116 157 122 168 186 - -

Q11
7 4853 3974 2977 3337 3248 3096 3669 3370 2799 2688 3524 4356

Main Theorem. For proving the first part of Theorem 4, we need to obtain a satisfying
assignment to Q13

7 . A solution for this instance is obtained in 11.67 seconds with PalSAT (128
cores), and is depicted in Figure 3. For the lower bound, we need an UNSAT result for Q11

7 ,
which turns out to be significantly harder than the upper bound computation. Our fastest
run took 2588 seconds using our custom split algorithm for Cube and Conquer, as well as the
symmetry breaking predicates of type I and II described in Section 3, forcing vertex ~0 to receive
color 24. On the other hand, by exploiting internal symmetry as described in Section 3, we
obtain a satisfying assignment to Q14

8 in 1.93 seconds with PalSAT (128 cores). In contrast,
when removing the internal symmetry constraints, the runtime goes up to 316.01 seconds.
This provides the second upper bound, while the lower bound comes simply from using that
�(Q7)  �(Q8).

7.1 Symmetry Breaking Experiments

We experiment with di↵erent parameters and heuristics for doing symmetry breaking. First,
considering that in principle the color c assigned to vertex ~0 (see Section 3) can take any value
in {0, . . . , k}, we experimented with all choices of c over instances Q9

6 and Q11
7 , both of which

are unsatisfiable. The results are displayed in Table 3 and Figure 4. For the instance Q9
6 ,

only symmetry breaking predicates of type I are used, while for Q11
7 we include the symmetry

breaking predicates of type II. Instance Q9
6 is solved with CaDiCaL (1 core), while Q11

7 using
iCaDiCaL (128 cores) over the cubes generated by the split algorithm II. Note that the optimal
choice of c is dependent on the instance, and while 4 (or symmetrically, 9� 4 = 5) works best
for Q9

6 , it turns out that 2 (or symmetrically, 11� 2 = 9) works best for Q11
7 .

We compare as well the relative impact of the symmetry breaking predicates of type I and
type II, showing our results in Table 4. As expected, the type II constraints are the most
e↵ective as they divide the search space by n!, which is larger than 2n for n � 4. Interestingly,
our results show a speed-up factor over twice as large as the number of symmetries; while
6! · 26 = 46080, the runtime for Q9

6 decreases by a factor of 4679
0.05 = 93580.

7.2 Cube and Conquer Experiments

Table 5 presents a comparison of the 3 Cube and Conquer approaches described in Section 4.
We observe a linear order speed-up, as our use of Cube and Conquer decreases the runtime
by a ⇥50 factor using 128 cores. Even though march cc performs roughly 4 times faster on

4It might be possible to obtain a slight improvement by forcing color 9, as suggested by Table 3 (considering
the symmetry between forcing a center color c and s � c) we do not have a theoretical explanation for why
choosing 9 instead of 2 could be advantageous.

397

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

A

N L K I H E C

F D C E J H G E C N J N F C E D G K L N I

J H K A D A I H L J L E C A F C A I N N K A J E G L J G N J A A F N D

L N E A A D N G I L G F J A C N N L A K J A I D L K F H C A E A L H J

E N F L G C I C J N K N D E G H D E F L C

C K H J E I N

A

A color 0 C color 2 D color 3 E color 4 F color 5 G color 6 H color 7
I color 8 J color 9 K color 10 L color 11 N color 13

Figure 3: Illustration of a radio 2-coloring for Q7 with span 13, showing that �(Q7)  13.

Table 4: Runtime in seconds for instances Q9
6 and Q10

7 under di↵erent kinds of symmetry
breaking constraints. All runs were performed with CaDiCaL on a single core.

Instance no SBPs type I type II type I + type II

Q9
6 4679 102 0.87 0.05

Q10
7 > 12 hrs > 12 hrs 183.81 7.64

398

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

0 1 2 3 4 5 6 7 8 9 10

120

140

160

180

200
w
al
lc
lo
ck

ti
m
e
(s
ec
on

d
s) Q9

6

0 1 2 3 4 5 6 7 8 9 10 11 12

3,000

4,000

5,000

w
al
lc
lo
ck

ti
m
e
(s
ec
on

d
s)Q11

7

Figure 4: The impact of assigning color c to vertex ~0 performance for instances Q9
6 and Q11

7 .
We remark the vertical symmetry in these plots, stemming from the fact that if f is a radio
2-coloring of span s for some graph, then g(v) := s� f(v) also is.

Table 5: Runtime in seconds and (# of cubes) for the instance Q11
7 under di↵erent split

algorithms. For the march cc tool we experiment with di↵erent values of the depth parameter,
thus controlling the number of cubes. In all cases, both types of symmetry breaking constraints
are applied. All runs were performed with iCaDiCaL on 128 cores.

Instance march cc [16] custom split no split

depth
15 16 17 18

Q10
7 0.32 (1174) 0.17 (1300) 0.16 (1373) 0.18 (1421) 0.8 (720) 7.64

Q11
7 > 16 hrs (26826) > 16 hrs (47762) > 16 hrs (82426) > 16 hrs (137729) 2588 (523710) > 48 hrs

the small instance Q10
7 , our split algorithm is over 12 faster for Q11

7 . In particular, for the
instance Q11

7 , at least 5 cubes produced by march cc, at any depth configuration, take over
10 times the entire runtime of our custom split algorithm. This showcases the importance of
designing custom split algorithms tailored to the problem at hand.

Note that a free parameter in the custom split algorithm we present is the choice of the set
S of vertices over which the cubes are defined. Naturally, the larger the value of |S| is, the more
cubes the algorithms will produce. However, as |S| grows, each cube enforces more constraints
and thus becomes easier to solve. Consequently, finding the optimal set S is a non-trivial
task that we explored experimentally, finding the set S = {0011, 0101, 0101, 1001, 1010, 1100}
to perform the best for the instance Q11

7 , while for the smaller instance Q10
7 , the set S =

{0011, 0101, 0101}, performs better as otherwise the sheer number of cubes becomes a bottle-
neck.

8 Conclusion and Challenges

We have presented the first study on how SAT solving and automated reasoning techniques
can be used for computing optimal radio 2-colorings of hypercube graphs. On the theoretical
side, we have proved a gap between �(Qn) and the upper bound of Whittlesey et al. [10], thus

399

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

motivating a more refined theoretical study of �(Qn); we have shown that the upper bounds of
Whittlesey et al. [10] are not tight, and in particular we show this for 7, a number of the form
2k � 1, for which the bounds of Theorem 2 and Theorem 3 coincide. This seems to suggest
that 2n might only be a loose upper bound in general, making the problem of computing
limn!1 �(Qn)/n an even more exciting line of further research. On the practical side, we have
shown the advantages of using symmetry breaking and the Cube and Conquer paradigm. On
the one hand, breaking solutions symmetry provides up to a ⇥93 000 speed-up factor for UNSAT
instances (e.g., Q9

6 , where n! · 2n = 46080), while exploiting internal symmetry provides up to
a ⇥100 speed-up factor for SAT instances. On the other hand, using Cube and Conquer allows
for a linear speed-up, as using 128 cores yields over a ⇥50 speed-up factor. Furthermore, we
have shown how a custom split algorithm can be over 50 times faster than the standard tool
march cc [16], supporting recent results in other combinatorial problems [17, 18].

Despite our progress, Knuth’s Open Problem 1 remains unsolved. Our main goal for future
work is thus to solve Open Problem 1, which will probably require new combinatorial insights.
At this point, it is unclear whether settling �(Q7) or �(Q11) will be easier. For settling �(Q7),
we conjecture that an extra speed-up factor of around ⇥1000 on comparable hardware will be
needed. For settling �(Q11), we believe that cardinality constraints can influence solvers to
reason in a similar way to how the lower bound of Jonas [11] was originally proved, which we
expect to provide a significant practical speed-up. To conclude, we present a set of challenges
for guiding further research on this problem.

Challenge 1. Prove or disprove that �(Qn)  2n� 1 for every n � 4.

Challenge 2. Prove or disprove that �(Qn) � n + 4 for every n � 6. Note that Jonas
proved this for n = 8 and n = 16 [11]. Observe that this challenge is at least as hard as
Knuth’s Open Problem 1, because for n = 11 it would establish �(Qn) = 15.

Challenge 3. Develop a local search algorithm that can find the currently known upper
bounds for �(Qn) for n  12.

Challenge 4. Prove or disprove that, for any n with �(Qn) = s, there exists a mask
m, such that at least one radio 2-coloring f of optimal span s exists which satisfies that
f(v �m) = s� f(v) for every vertex v.

Challenge 5. Develop a better split algorithm that allows solving instance Q11
7 in less

than 5 minutes on comparable hardware. We believe such a speed-up might be required
to solve instance Q12

7 , which we conjecture to be unsatisfiable.

Challenge 6. Extend our result presented in Section 5 by showing that no mapping from
Q7 to Qk with k 2 {4, 5, 6} allows for a radio 2-coloring of span 13.

Challenge 7. Develop e↵ective propositional constraints that guide solvers to quickly
obtain proofs of �(Qn) � n+ 3 for n  15. Cf. Section 6.

Acknowledgements

The authors thank Donald Knuth for his comments on an earlier version that helped improve
the paper. The authors are supported by National Science Foundation grant CCF-2015445.

400

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

References

[1] Dimitris Fotakis, Sotiris E. Nikoletseas, Vicky Papadopoulou Lesta, and Paul G. Spirakis. NP-
completeness results and e�cient approximations for radiocoloring in planar graphs. In Interna-

tional Symposium on Mathematical Foundations of Computer Science, 2000.

[2] Pratima Panigrahi. A survey on radio k-colorings of graphs. AKCE International Journal of

Graphs and Combinatorics, 6(1):161–169, 2009.

[3] W.K. Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE,
68(12):1497–1514, 1980.

[4] Gerard J. Chang and David Kuo. The L(2,1)-labeling problem on graphs. SIAM Journal on

Discrete Mathematics, 9(2):309–316, 1996.

[5] Tiziana Calamoneri. The L(h, k)-labelling problem: A survey and annotated bibliography. The

Computer Journal, 49(5):585–608, 2006.

[6] Roger K. Yeh. A survey on labeling graphs with a condition at distance two. Discrete Mathematics,
306(12):1217–1231, 2006.

[7] Jerrold R. Griggs and Roger K. Yeh. Labelling graphs with a condition at distance 2. SIAM

Journal on Discrete Mathematics, 5(4):586–595, 1992.

[8] Jǐŕı Fiala and Jan Kratochv́ıl. On the computational complexity of the L(2,1)-labeling problem for
regular graphs. In Mario Coppo, Elena Lodi, and G. Michele Pinna, editors, Theoretical Computer

Science, pages 228–236, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[9] Ophir Frieder, Frank Harary, and Peng-Jun Wan. A radio coloring of a hypercube. International
Journal of Computer Mathematics, 79(6):665–670, 2002.

[10] Marshall A. Whittlesey, John P. Georges, and David W. Mauro. On the �-number of Qn and
related graphs. SIAM J. Discret. Math., 8:499–506, 1995.

[11] Theodore K. Jonas. Graph coloring analogues with a condition at distance two: L(2,1) -labellings

and list lambda-labellings. PhD thesis, 1993. Copyright - Database copyright ProQuest LLC;
ProQuest does not claim copyright in the individual underlying works; Last updated - 2023-02-20.

[12] E Donald et al. The Art of Computer Programming. Volume 4, Fascicle 6. Satisfiability. Addison-
Wesley, 2015.

[13] Jǐrı́ı Fiala, Ton Kloks, and Jan Kratochv́ıl. Fixed-parameter complexity of �-labelings. Discrete

Applied Mathematics, 113(1):59–72, 2001. Selected Papers: 12th Workshop on Graph-Theoretic
Concepts in Computer Science.

[14] Jǐŕı Fiala, Tomáš Gavenčiak, Dušan Knop, Martin Koutecký, and Jan Kratochv́ıl. Fixed parameter
complexity of distance constrained labeling and uniform channel assignment problems. In Thang N.
Dinh and My T. Thai, editors, Computing and Combinatorics, pages 67–78, Cham, 2016. Springer
International Publishing.

[15] A Biere, A Biere, M Heule, H van Maaren, and T Walsh. Handbook of satisfiability: Volume 185
frontiers in artificial intelligence and applications, 2009.

[16] Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer:
Guiding CDCL SAT solvers by lookaheads. In Kerstin Eder, João Lourenço, and Onn Shehory,
editors, Hardware and Software: Verification and Testing, pages 50–65, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[17] Bernardo Subercaseaux and Marijn J.H. Heule. The packing chromatic number of the infinite
square grid is at least 14. In Kuldeep S. Meel and Ofer Strichman, editors, 25th International

Conference on Theory and Applications of Satisfiability Testing (SAT 2022), volume 236 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 21:1–21:16, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[18] Bernardo Subercaseaux and Marijn J. H. Heule. The packing chromatic number of the infinite
square grid is 15. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Al-

gorithms for the Construction and Analysis of Systems - 29th International Conference, TACAS

401

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2022, Paris, France, April 22-27, 2023, Proceedings, Part I, volume 13993 of Lecture Notes in

Computer Science, pages 389–406. Springer, 2023.

[19] Marijn Heule and Toby Walsh. Symmetry within solutions. In Proceedings of the Twenty-Fourth

AAAI Conference on Artificial Intelligence, AAAI’10, page 77–82. AAAI Press, 2010.

[20] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27(3):379–423, Jul 1948.

[21] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of

SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department of

Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

[22] Armin Biere. Yet another local search solver and Lingeling and friends entering the SAT Compe-
tition 2014. In Adrian Balint, Andon Belov, Marijn Heule, and Matti Järvisalo, editors, Proc. of
SAT Competition 2014 – Solver and Benchmark Descriptions, volume B-2014-2 of Department of

Computer Science Series of Publications B, pages 39–40. University of Helsinki, 2014.

[23] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and Armando
Tacchella, editors, Theory and Applications of Satisfiability Testing, Lecture Notes in Computer
Science, page 502–518, Berlin, Heidelberg, 2004. Springer.

[24] Shawn T. Brown, Paola Buitrago, Edward Hanna, Sergiu Sanielevici, Robin Scibek, and
Nicholas A. Nystrom. Bridges-2: A Platform for Rapidly-Evolving and Data Intensive Research,
pages 1–4. Association for Computing Machinery, New York, NY, USA, 2021.

402

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

A Appendix

A.1 Certificates of �(Q7)  13

We found several certificates of �(Q7)  13 using the parallel local search solver PalSAT. Some
of the certificates do not use the colors 1 and 12 (an example is shown below). Amongst the
certificates avoiding colors 1 and 12 we can observe various internal symmetries. For example,
if vertex v is such that f(v) = c 2 {0, 6, 7, 13} then vertex f(v � ~1) = c. Additionally, for all
colors c that occur 8 or 16 times (all colors except for 2, 4, 9, and 11) it holds that if vertex
f(v) = c, then applying the mask 1100110 results in another vertex with color c. For example
vertex v0 and v102 both have color 0.

Color 0 0, 7, 25, 30, 42, 45, 51, 52, 75, 76, 82, 85, 97, 102, 120, 127
Color 2 6, 21, 26, 33, 47, 60, 67, 72, 95, 100, 114, 121
Color 3 11, 12, 48, 55, 81, 86, 106, 109
Color 4 2, 20, 31, 37, 46, 57, 71, 73, 90, 96, 115, 124
Color 5 13, 19, 40, 54, 78, 80, 107, 117
Color 6 1, 24, 34, 59, 68, 93, 103, 126
Color 7 15, 22, 44, 53, 74, 83, 105, 112
Color 8 3, 29, 38, 56, 64, 94, 101, 123
Color 9 4, 10, 17, 41, 50, 63, 77, 87, 88, 99, 110, 116
Color 10 27, 28, 32, 39, 65, 70, 122, 125
Color 11 5, 8, 18, 43, 49, 62, 79, 84, 89, 98, 108, 119
Color 13 9, 14, 16, 23, 35, 36, 58, 61, 66, 69, 91, 92, 104, 111, 113, 118

We were not able to find a certificate f such that (a) {1, 12} \ Range(f) = ? , and (b)
there exists a mask m for which if vertex f(v) + f(v �m) = 13. However, certificates fulfilling
condition (b) but not (a) do exist. An example is shown below using mask 0000111. Moreover,
for c 2 {4, 5, 6, 7, 8, 9}, it holds that if f(v) = c, then applying mask 0101010 results in another
vertex with color c. For example, the vertices v0 and v42 both have color 9.

Color 0 5, 8, 30, 38, 43, 49, 67, 84, 89, 108, 114, 127
Color 1 16, 27, 55, 60, 70, 77, 97, 106
Color 2 1, 12, 22, 34, 47, 57, 75, 85, 88, 100, 115, 126
Color 3 19, 29, 52, 58, 64, 78, 103, 105
Color 4 7, 10, 32, 45, 86, 91, 113, 124
Color 5 9, 21, 35, 63, 79, 80, 101, 122
Color 6 4, 24, 46, 50, 66, 93, 104, 119
Color 7 3, 31, 41, 53, 69, 90, 111, 112
Color 8 14, 18, 36, 56, 72, 87, 98, 125
Color 9 0, 13, 39, 42, 81, 92, 118, 123
Color 10 20, 26, 51, 61, 71, 73, 96, 110
Color 11 6, 11, 17, 37, 40, 62, 76, 82, 95, 99, 116, 121
Color 12 23, 28, 48, 59, 65, 74, 102, 109
Color 13 2, 15, 25, 33, 44, 54, 68, 83, 94, 107, 117, 120

403

Toward computing �(Qn) via SAT-solving. Subercaseaux and Heule

A.2 Certificates of �(Q8)  14

We found several certificates of �(Q8)  14 using the parallel local search solver PalSAT. Some
of them lack color 7, such as the one below. We did not find any certificates that lacked
another color. For some certificates, there exists the following internal symmetry with mask
m: f(v) + f(v � m) = 14. This works for any mask with 1, 4, and 5 bits set to true. The
certificate below has this internal symmetry for the mask 00000001. This certificate has also
another internal symmetry: all colors that are used 16 times (colors 0, 1, 4, 10, 13, and 14)
map unto themselves when applying the mask 10111000. For example, 2 has color 0, so
00000010� 10111000 = 186 also has color 0.

Color 0 2, 31, 40, 52, 68, 89, 111, 115, 140, 144, 167, 186, 203, 215, 225, 252
Color 1 14, 21, 24, 43, 67, 77, 86, 112, 147, 160, 173, 182, 200, 238, 245, 251
Color 2 9, 18, 36, 49, 62, 64, 91, 103, 106, 125, 133, 138, 159, 163, 184, 198, 209, 220, 233, 242
Color 3 7, 28, 34, 45, 59, 78, 85, 97, 118, 120, 128, 150, 153, 174, 181, 195, 205, 218, 228, 255
Color 4 4, 10, 17, 55, 73, 82, 95, 108, 143, 169, 178, 188, 212, 231, 234, 241
Color 5 13, 22, 33, 46, 56, 71, 92, 98, 117, 123, 131, 149, 154, 164, 191, 192, 206, 217, 237, 246
Color 6 0, 27, 39, 50, 61, 74, 81, 100, 105, 126, 134, 137, 156, 170, 177, 197, 210, 223, 227, 248
Color 8 1, 26, 38, 51, 60, 75, 80, 101, 104, 127, 135, 136, 157, 171, 176, 196, 211, 222, 226, 249
Color 9 12, 23, 32, 47, 57, 70, 93, 99, 116, 122, 130, 148, 155, 165, 190, 193, 207, 216, 236, 247
Color 10 5, 11, 16, 54, 72, 83, 94, 109, 142, 168, 179, 189, 213, 230, 235, 240
Color 11 6, 29, 35, 44, 58, 79, 84, 96, 119, 121, 129, 151, 152, 175, 180, 194, 204, 219, 229, 254
Color 12 8, 19, 37, 48, 63, 65, 90, 102, 107, 124, 132, 139, 158, 162, 185, 199, 208, 221, 232, 243
Color 13 15, 20, 25, 42, 66, 76, 87, 113, 146, 161, 172, 183, 201, 239, 244, 250
Color 14 3, 30, 41, 53, 69, 88, 110, 114, 141, 145, 166, 187, 202, 214, 224, 253

A.3 Proof of Fact 1

Proof of Fact 1. Observe first that for n � 2 there must be some vertex v such that f(v) 62
{0, n+1} in any radio 2-coloring f of Qn. Then, if we consider N (v), the set of n neighbors of
v, those vertices must receive n di↵erent colors, which cannot be in {f(v)� 1, f(v), f(v) + 1}.
That is, the sets {f(v) � 1, f(v), f(v) + 1} and {f(u) | u 2 N (v)} are disjoint and their
union has size n + 3. Moreover, given said union contains only non-negative integers, its
maximum value m must be at least n+ 2. Said maximum value m must be attained either in
{f(v)�1, f(v), f(v)+1} or in {f(u) | u 2 N (v)}. In the former case, given that f(v) 6= n+1, it
must hold that f(v) � n+2, which is enough to prove the fact. In the latter case, f(u) � n+2
for some u 2 N (v), which also proves the fact.

404

	Introduction
	Encoding
	Symmetry Breaking
	Cube and Conquer
	A Coding Theoretical Encoding
	Lower Bound Optimizations
	Experiments
	Symmetry Breaking Experiments
	Cube and Conquer Experiments

	Conclusion and Challenges
	Appendix
	Certificates of `3́9`42`"̇613A``45`47`"603A(Q7) 13
	Certificates of `3́9`42`"̇613A``45`47`"603A(Q8) 14
	Proof of fact:n+2

