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Abstract— Active lower-limb prostheses could enable more
natural assisted locomotion by contributing net positive work
through important gait events, such as ankle push-off. This
paper uses multi-contact models of locomotion together with
force-based nonlinear optimization-based controllers to achieve
human-like kinematic behavior, including ankle push-off, on
a powered transfemoral prosthesis. In particular, we leverage
model-based control approaches for dynamic bipedal robotic
walking to develop a systematic method to realize human-like
walking on a powered prosthesis that does not require subject-
specific tuning. The proposed controller is implemented on a
prosthesis for 2 subjects without tuning between subjects, emu-
lating subject-specific human kinematic trends on the prosthesis
joints. These experimental results demonstrate that our force-
based nonlinear control approach achieves better tracking of
human-like kinematic trajectories, with an average RMSE of
0.0223 during weight-bearing, compared to 2 non-force-sensing
methods with an average RMSE of 0.0411 and 0.0430.

I. INTRODUCTION

In human walking, ankles contribute the most positive
work of trailing leg joints in forward rocking [1] and
contribute up to 60% of the total energy generated by a
limb during a gait cycle [2]. Ankle push-off specifically
contributes to the forward acceleration of the body [3] and
also greatly smooths the transition from double support to
swing phase in human gait [4]. Researchers showed for a
simple powered walking model, that toe push-off can supply
energy to the system at a quarter of the cost of applying a hip
torque because this toe push-off reduces the collision energy
loss at heel strike [5]. For amputees specifically, increasing
prosthetic ankle push-off can reduce the loading impulse
of the intact limb and the risk of knee osteoarthritis for
amputees [6]. While the importance of an ankle that can
generate net positive work is clear, especially for amputees,
current commercially available devices for amputees remain
mostly limited to passive devices. Additionally, for powered
prostheses, controlling ankle actuators to produce natural and
dynamic walking has proven challenging.

Lower-limb passive prostheses cannot contribute net pos-
itive work to a human the way muscles do [7]. Amputees
walking with these devices expend more energy in walking,
exhibit a decrease in comfortable walking speed, and have
shorter step length [8], [9]. Powered prostheses can generate
net positive work, but require a control strategy. One of the

*This material is based upon work supported by NSF Awards 1923239
and 1924526, and Wandercraft under Award No. WANDERCRAFT.21. This
research was approved by California Institute of Technology Institutional
Review Board with protocol no. 21-0693 for human subject testing.

R. Gehlhar and A. Ames are with the Department of Mechanical and
Civil Engineering, California Institute of Technology, Pasadena, CA 91125
USA. Emails: {rgehlhar, ames}@caltech.edu

Fig. 1. (top) Subject 1 and (bottom) Subject 2 walking with powered
prosthesis controlled by multi-domain model-based prosthesis controller
with real-time force sensing following provably stable human-like walking
trajectories. Labels indicate the respective domain the human-prosthesis is
in in the multi-domain hybrid-system graph shown in Fig. 2

most commonly used control methods for these devices is
impedance control [10]–[12], which divides the gait cycle
into multiple discrete phases and tunes impedance parameters
for each phase. This process takes hours to tune [13] to
achieve human-like walking behavior [14] and needs to be
repeated for every subject and behavior. Given there are over
600,000 lower-limb amputees in the US alone [15], it is not
feasible to conduct this process for every potential user.

With the goal of developing a more systematic method
to construct controllers for powered prostheses, we look to
model-based control methods developed for bipedal robots
that generate stable walking trajectories offline [16]–[18].
The hybrid zero dynamics (HZD) framework [19] used by
these methods accounts for the impact dynamics present in
walking at foot strike and the zero dynamics that occur
from underactuation. This framework also allows modeling
of multiple domains of continuous dynamics and the discrete
connections between them as encoded by a directed cycle.
This multi-domain hybrid system can model multi-contact
behavior, such as the changing contacts of heel-toe roll used
for ankle push-off, and can be used to generate trajectories
that satisfy formal guarantees of stability. By tracking these
trajectories online through a model-independent method, the
end result has been multi-contact walking on bipedal robots
[18], [20] and a powered prosthesis [21].

In order to retain stability guarantees online, control
Lyapunov functions (CLFs) were employed in a quadratic
program (QP) on bipedal robots [22], [23]. CLFs require
knowledge of the full-order dynamics which is unavailable
on a prosthesis since the human dynamics are unknown. Pre-
vious work developed a separable subsystem framework [24],
[25] and proved that signals from an inertial measurement
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unit (IMU) and a load cell at the socket interface could com-
plete the prosthesis model and a class of prosthesis subsystem
controllers could guarantee full-order system stability [26].

This paper implements a controller of the class in [26]
to realize multi-contact behavior on a prosthesis tracking
human-like trajectories generated through HZD methods.
This paper differs from [21] in both method and results,
using a formally grounded force-based controller to achieve
human-like walking, verified through the kinematics. The
work of [27] realized the first model-based lower-limb pros-
thesis controller with real-time force sensing on the knee of
a powered prosthesis in 2 phases, stance and swing, with 1
prescribed walking gait. This paper extends the work of [27]
in 3 major ways:

1) we simultaneously apply the first model-based lower-
limb prosthesis controller with real-time force sensing
to the ankle in addition to the knee of a transfemoral
prosthesis,

2) we expand this model-based controller to a 6-domain
hybrid system framework to emulate human multi-
contact behavior (heel-toe roll),

3) we demonstrate this new controller on 2 subjects with 2
different subject-specific prescribed walking gaits, and
compare it to 2 other control methods.

This paper overviews the multi-domain hybrid system used
to model multi-contact behavior and presents the system
dynamics used to model the human and prosthesis in Section
II. Section III describes the separable output functions we
use to construct a controller for the prosthesis. This section
also covers the trajectory generation method that aims to
match human kinematic data while also satisfying stability
guarantees for the human-prosthesis system. To implement
these trajectories, we construct our control method in Section
IV. In Section V, we describe the powered prosthesis plat-
form on which we implement the controller. We realize this
controller on 2 subjects and present the resultant human-like
joint trajectories of the prosthesis along with comparisons
to 2 other tested control methods. Finally, we discuss future
directions in Section VI.

II. HUMAN-PROSTHESIS MULTI-DOMAIN MODEL

To model the multi-contact behavior of human walking,
we use a multi-domain hybrid system model. To obtain the
dynamics for this system, we model the human-prosthesis
system as a walking robot.

Multi-Domain Hybrid System. We consider 3 phases per
step for human walking: heel strike (hs) when the swinging
foot’s heel reaches the ground, toe strike (ts) when that foot’s
toe reaches the ground, and heel lift (hl) when the other foot’s
heel lifts off of the ground and becomes the swinging leg. We
omit a fourth phase of the toe lifting between toe strike and
heel lift because it is a very short phase. Since a human
walking with a prosthesis is an asymmetric system, we
consider separate phases for the right and left leg, prefacing
the abbreviations with “r” and “l” respectively, giving a total
of 6 phases. The current phase of the system is dictated by the

Fig. 2. Six-domain directed graph of human-prosthesis hybrid system,
modeling respective foot contact points for different phases of walking.

foot contacts present. The set of all contact points is given
by C = {rh, rt, lh, lt} signifying the right heel, right toe,
left heel, and left toe, respectively. Fig. 2 shows the contact
points present for each phase, or domain, of walking.

To account for the impact dynamics that occur when a
foot strikes the ground in walking, we model the human-
prosthesis system as a hybrid system. This multi-domain
hybrid control system is defined as a tuple [20], [28]:

H C = (Γ, D, U , S, ∆, FG),

where:
• Γ = (V, E) is a directed cycle, with vertices V =

{rhs, rts, rhl, lhs, ltl, lhl} and edges E = {e =
{v → v+}}|v∈V , where v+ is the subsequent vertex
of v in the directed graph;

• D = {Dv}|v∈V , set of domains of admissibility, mean-
ing a set of physically feasible states;

• U = {uv}|v∈V , set of admissible control inputs;
• S = {Se}|e∈E , set of guards or switching surfaces,

with Se ⊂ Dv , that are transition points between one
domain, Dv , and the next, Dv+ , in the directed cycle;

• ∆ = {∆e}|e∈E , set of reset maps, ∆e : Se ⊂ Dv →
Dv+ , that define the discrete transitions triggered at Se,
giving the postimpact states of the system: x+ = ∆e(x),
where x ∈ Dv and x+ ∈ Dv+ ;

• FG = {(fv, gv)}v∈V with (fv, gv), a control system on
Dv , that defines the continuous dynamics ẋ = fv(x) +
gv(x)uv for each x ∈ Dv and uv ∈ U .

Human-Prosthesis Model. To define a control system for a
human wearing a prosthesis, we model this human-prosthesis
system as a series of 8 rigid links and 12 joints in 2D
space, shown in Fig. 3. We define these 12 DOFs by
configuration coordinates q = (qTl , q

T
f , q

T
p )

T ∈ R12 which
define configuration space Q. Here ql ∈ R7 represents
the coordinates of the human, including the floating base
coordinates qB ∈ R3; qf ∈ R3 is the x and z Cartesian
position and pitch of the fixed joint that connects the human
to the prosthesis at the socket; and qp ∈ R2 represents the
prosthesis subsystem coordinates. We have mr = 4 available
actuators for the human and ms = 2 for the prosthesis,
meaning all joints that are not fixed or a floating base are
actuated. The following Euler-Lagrange equation gives the
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Fig. 3. (left) Human-prosthesis model with the prosthesis subsystem and
coordinates in red, the human remaining system and coordinates in blue,
and the ground model and coordinates in green. (middle) The equivalent
prosthesis subsystem modeled with its own base coordinates q̄B and fixed
joint forces Ff . (right) Powered prosthesis platform AMPRO3 labeled with
subsystem coordinates and hardware component names.

constrained dynamics [29],

D(q)q̈ +H(q, q̇) = Bvuv + JT
h,v(q)λh,v (1)

Jh,v(q)q̈ + J̇h,v(q, q̇)q̇ = 0,

where D(q) is the inertia matrix; H(q, q̇) contains the
centrifugal, Coriolis, and gravity terms; Bv is the domain
dependent actuation matrix, uv is the control input for Dv ,
and Jh,v(q) is the Jacobian of the holonomic constraints
hv(q) for the contact points in Dv . This Jacobian projects
the ground reaction forces (GRFs) λh,v .

We compute human model parameters by using human
inertia, limb mass, and limb length percentage data from
[30], [31] and a given subject’s weight, height, and sex.
We obtain model parameters of our powered prosthesis,
AMPRO3 [32], from a CAD model.
Prosthesis Subsystem. To implement a model-based pros-
thesis controller, we require a model with states and inputs
that can be measured on-board. Using a floating base with
coordinates q̄B at the human-prosthesis interface, we have
configuration coordinates q̄ = (q̄TB , q

T
p )

T , shown in Fig. 3.
The dynamics for this robotic subsystem are,

D̄(q̄)¨̄q + H̄(q̄, ˙̄q) = B̄vus,v + J̄T
h,v(q̄)λ̄h,v + J̄T

f (q̄)Ff (2)

J̄h,v(q̄)¨̄q +
˙̄Jh,v(q̄, ˙̄q) ˙̄q = 0, (3)

including the interaction forces Ff it experiences with the
human at the fixed joint and its projection Jf . The base
coordinates q̄B and their velocities ˙̄q are measured by an
IMU. The interaction forces Ff are measured by a load
cell at the socket interface, the vertical force and pitch
moment components of λ̄h,v are measured by an insole
pressure sensor, and the horizontal component of λ̄h,v can
be calculated by solving for ¨̄q in the dynamics (2) and
substituting it into the holonomic constraint equation (3):

λ̄h,v = (J̄h,vD̄
−1J̄T

h,v)
−1(J̄h,vD̄

−1(H̄ − B̄vus,v − J̄T
f Ff )− ˙̄Jh,v ˙̄q),

where we now drop the arguments for notational simplicity.
Compliant Ground Model. To account for the compliance
the prosthesis foot and human foot experience in ground
contact with their shoes, we include a spring-damper at the
base of each foot in our robot model to serve as a “ground

model”. We use a spring stiffness of 60, 000N/m and a
damping coefficient of 600Ns/m [33], [34]. These prismatic
joints have coordinates qrs and qls for the right and left
spring, respectively. This allows us to generate model-based
trajectories with more realistic impact dynamics. Since on
hardware the prosthesis is measuring the forces at the level of
the shoe insole, instead of the forces beneath the shoe, we do
not include this ground model in our prosthesis subsystem.
Nonlinear Control System. We form the full-order robotic
dynamic system (1) into a nonlinear control system ODE
with states xq = (qT , q̇T )T :

ẋq =

[
q̇

D−1(−H + JT
h,vλh,v)

]
︸ ︷︷ ︸

fq,v(xq)

+

[
0

D−1Bv

]
︸ ︷︷ ︸
gq,v(xq)

uv. (4)

By rearranging the states as x = (xT
r , x

T
s )

T , with xr =
(qTl , q

T
f , q̇

T
l , q̇

T
f )

T and xs = (qTp , q̇
T
p )

T , we obtain a control
system of this form [24]:[

ẋr

ẋs

]
=

[
fr
v(x)

fs
v(x)

]
︸ ︷︷ ︸

fv(x)

+

[
gr1,v(x) gr2,v(x)

0 gsv(x)

]
︸ ︷︷ ︸

gv(x)

[
ur,v

us,v

]
,

xr ∈Rnr , xs ∈ Rns , ur,v ∈ Rmr,v , us,v ∈ Rms,v .

We consider the bottom row of this matrix to be the
separable subsystem and the top row to be the remaining
system [24], [25]. This form shows the dynamics of xs do
not depend on inputs ur,v , allowing us to construct model-
based controllers for subsystem outputs independent of the
remaining system. While this subsystem depends on full-
system states, we obtain an equivalent subsystem by the same
ODE transformation used for (4):

ẋs = f̄s(X ) + ḡs(X )us, (5)

X = (x̄T
r , x

T
s , F

T
f )T ∈ Rn̄.

Here x̄r = (q̄TB , ˙̄q
T
B)

T are measurable states. For this robotic
system form, a transformation T exists such that T (x) = X
and f̄s

v (X ) = fs
v (x) and ḡsv(X ) = gsv(x) for all x [24]. With

an IMU and load cell to complete the model, we can now
develop model-based controllers for the prosthesis subsystem
based solely on the prosthesis model and locally available
sensory information.

III. GENERATING SUBJECT-SPECIFIC HUMAN-INSPIRED
WALKING TRAJECTORIES

To develop a model-based controller for the prosthesis, we
start by constructing outputs for the entire human-prosthesis
system such that we can generate prosthesis trajectories
that are provably stable with a human model. To generate
trajectories that both emulate human kinematic behavior and
are provably stable for a human model walking with a
powered prosthesis, we included human motion capture data
in a hybrid zero dynamics [19] optimization problem. This
combined approach was first developed in [20], [35]. Here
we extend it to generate gaits with subject-specific motion
capture data and realize these walking gaits on 2 subjects
through an online CLF optimization-based controller.
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Separable Output Construction. We define the outputs as,

yv(x) = yav (x)− ydv(τv(x), αv),

where yav is the actual output of Dv and ydv is the desired
output given by a Bézier polynomial defined by parameters
αv and modulated by a state-based phase variable:

τv(x) =
δv(x)− δ0v

δfv − δ0v
.

Here δv(x) is a function of the states that monotonically
increases from δ0v to δfv during a domain.

To develop a controller for the subsystem (5), we select
separable outputs yv(x) = (yrTv (x), ysTv (xs))

T , such that
outputs for the subsystem ysv(xs) and their Lie derivatives
[36] do not require information about the remaining system
[24]. We define the following separable subsystem outputs:

yas,v(xs)|v∈{rhs,rhl,lhs,ltl,lhl} = [θpk, θpa]
T ,

yas,rts(xs) = [vrhip, θpk]
T ,

with,

vrhip(xs) = (r̄B + rpk)θ̇pk + (r̄B + rpa)θ̇pa,

where r□ is the length between the joint specified in the
subscript and the following distal joint, and r̄B is the length
between the prosthesis base frame and the prosthesis knee.

To do state-based control for the first 4 domains, we define,

δrhs(xs) = θ̄By,

δv(xs)|v∈{rts,rhl,lhs} = r̄B θ̄By + rpkθpk + rpaθpa.

For Dlts and Dlhl we calculate τv based on the current time
and predicted time duration from trajectory generation.
Human Walking Data. We used the average human relative
joint trajectories from the motion capture data set of [37].
For each of our subjects, we selected a data set obtained with
subjects with similar height and mass. To divide the data into
segments for each domain, we used gait cycle percentage
estimates of walking phases from [38]. For each segment of
data for a given domain, we fit Bézier polynomials to the data
using fit in MATLAB. Since there is not an impact causing
discrete dynamics between the ts and hl domains, we used
a single Bézier stretched across both domains. This process
gave a set of Bézier coefficients αH

v for each domain.
Hybrid Zero Dynamics Optimization. To generate desired
trajectories similar to the Bézier polynomials fit to human
data that are also provably stable for our prosthesis model,
we constructed a human model with computed parameters,
as described in II, for each subject. To guarantee stability
for these models, we construct a constraint for our hybrid
system. In the continuous dynamics of each domain, Dv ,
we drive our outputs to 0 through the control input uv .
This reduces the system to a lower dimensional manifold
called the partial hybrid zero dynamics (PHZD) surface (or
hybrid zero dynamics surface in domains without a velocity
modulating output) [35]:

PZαv
= {x ∈ Dv : y2,v(x, αv) = 0, ẏ2,v(x, αv) = 0}.

The control input uv only guarantees PHZD for Dv . To guar-
antee PHZD for the entire multi-domain hybrid system, we
require the PHZD surface remain invariant through impact,
mathematically expressed as,

∆e(Se ∩ PZαv
) ⊆ PZαv+ .

To find parameters αv that define desired trajectories that
both match human data and satisfy this invariant condition,
we formulate the following optimization:

c⋆v = argmin
6∑

i=1

wi(θ
j
i −B(αH

v,i, τv(x))
2 + uT

v uv

s.t. ∆e(Se ∩ PZαv
) ⊆ PZαv+

physical constraints
c⋆v = (α⋆T

v , vd⋆hip,v, δ
0⋆
v , δf,⋆v )T .

Here we minimize the difference between the joint states
θj = (θlh, θlk, θla, θrh, θpk, θpa)

T and the Bézier fit
B(αH

v,i, τv(x)) of human joint data evaluated at the phase
variable. We simultaneously minimize the torque to reduce
the energy expenditure and generate smoother torque pro-
files. We include other physical constraints such as holo-
nomic constraints, virtual constraints (outputs), and decision
variable bounds. The solution to the optimization c⋆v gives
parameters α⋆

v to define our desired trajectories, desired hip
velocity vdhip,v , and phase variable parameters δ0⋆v and δf⋆v
for each domain. We solve this nonlinear hybrid optimization
problem through FROST software [39].

IV. CONTROLLER REALIZATION

To enforce these trajectories on the prosthesis subsystem,
we employ a rapidly exponentially stabilizing CLF (RES-
CLF), following the construction method in [17].
Subsystem RES-CLF. We differentiate the outputs,[

ẏs1,v
ÿs2,v

]
=

[
Lf̄s

v
ys1,v

L2
f̄s
v
ys2,v

]
︸ ︷︷ ︸

Lf̄s
v
ys
v

+

[
Lḡs

v
ys1,v

Lḡs
v
Lf̄s

v
ys2,v

]
︸ ︷︷ ︸

Āv

us, (6)

with Lie derivatives in Lf̄s
v
ysv and Āv . Here Āv is invertible

because the outputs are linearly independent, making the
system feedback linearizable [36] with the control law,

us(X ) = Ā−1
v (−Lf̄s

v
ysv + ν). (7)

Here ν is an auxiliary control input a user can select to
stabilize the linearized system, which takes this form with
coordinates ξ = (ysT1 , ysT2 , ẏsT2 )T ,

ξ̇ =

0 0 0
0 0 I
0 0 0


︸ ︷︷ ︸

F

ξ

I 0
0 0
0 I


︸ ︷︷ ︸

G

ν.

For this linear system and weighting matrix Q = QT > 1,
we solve the continuous time algebraic Riccati equation for
solution P = PT > 0 to construct a RES-CLF:

V (ξ) = ξT IεP Iε︸ ︷︷ ︸
Pε

ξ, with Iε := diag(I,
1

ε
I, I).
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Taking the derivative yields the convergence constraint:

V̇ (ξ, ν) = LFV (ξ) + LGV (ξ)ν ≤ −1

ε

λmin(Q)

λmax(P )
V (ξ),

with Lie derivatives along the linearized output dynamics,

LFV (ξ) = ξT (FTPε + PεF )ξ,

LGV (ξ) = 2ξTPεG.

Force Sensing ID-CLF-QP. To develop a hardware imple-
mentable form of a RES-CLF, we construct a variation of
the inverse dynamics CLF QP (ID-CLF-QP), introduced in
[23], that was developed for the prosthesis subsystem in
[27]. To prescribe a desired behavior to our output dynamics
(ẏsT1,v, ÿ

sT
2,v) = ν, we define a desired auxiliary control input,

νpd := Kpy
s
2,v(xs)+Kdẏ

s
2,v(xs)+Kya ẏs,a2,v(xs)+Kvy

s
1,v(xs).

We added the Kya ẏs,a2,v(xs) to the typical output PD law
[17], [23] to reduce oscillations observed on hardware. In
our QP cost we will minimize the difference between our
actual auxiliary control input ν and νpd. If we solved (7) for
ν, the expression would involve computationally expensive
matrix inversions prone to numerical error [23]. Instead we
use ν = (ẏsT1,v, ÿ

sT
2,v)

T and rewrite our outputs in terms of the
subsystem configuration coordinates q̄ and velocities ˙̄q:

[
ẏs1,v
ÿs2,v

]
=

 ∂ys
1,v

∂q̄

∂
∂q̄

(
∂ys

2,v

∂q̄
˙̄q

)
︸ ︷︷ ︸

J̇y(q̄, ˙̄q)

˙̄q +

[
∂ys

1,v

∂ ˙̄q
∂ys

∂q̄

]
︸ ︷︷ ︸
Jy(q̄)

¨̄q.

We will include these terms in the QP cost with the holo-
nomic constraints, enforcing these as soft constraints, using,

Jc(q̄) =

[
Jy(q̄)
J̄h(q̄)

]
, J̇c(q̄, ˙̄q) =

[
J̇y(q̄, ˙̄q)
˙̄Jh(q̄, ˙̄q)

]
.

With these terms, we formulate our ID-CLF-QP,

Υ⋆
v = argmin

Υ∈Rηv

∣∣∣∣∣∣J̇c,v(q̄, ˙̄q) ˙̄q + Jc,v(q̄)¨̄q − µ
∣∣∣∣∣∣2 + σW (Υ) + ρζ

s.t. D̄(q̄)¨̄q + H̄(q̄, ˙̄q) = B̄vus,v + J̄T
h,v(q̄)F̃g,v

+ J̄T
f (q̄)Ff

LFVv(X ) + LGVv(X )
(
J̇y,v ˙̄q + Jy,v ¨̄q

)
≤ −1

ε

λmin(Q)

λmax
Vv(X ) + ρ

− umax ≤ us,v ≤ umax,
(8)

with decision variables Υ̃v = (¨̄qT , uT
s,v, λ̄h,x,v, ζ)

T . Here
µpd = (νTpd, 0

T )T , W (Υ) is a regularization term to make
the system well-posed, σ and ρ are user-selected weights,
and ζ is a relaxation term to allow the torque bounds
(−umax, umax) to be met. (We omit the arguments of Jy, J̇y
for notational simplicity.) The GRFs F̃g,v contain the GRFs
present for Dv . We obtain the vertical GRF Fg,z and pitch
moment Mg,y from a pressure sensor and the QP solves for
x-component of the holonomic constraint λ̄h,x. Even though

the desired auxiliary control law νpd differs from that which
guarantees stability of the linearized system (6), we still
have stability guarantees since the QP selects values that
satisfy the CLF constraint. The dimensions and components
of this controller are domain-dependent since the outputs and
contact points change with domain. We apply and compute
GRFs respective to the domain’s contact points.

V. EXPERIMENTAL RESULTS

We realize this model and force-based multi-domain con-
troller on our powered prosthesis platform for 2 subjects,
resulting in human-like multi-contact behavior.

Prosthesis Platform. We implement the ID-CLF-QP (8)
on the powered prosthesis platform AMPRO3 [32], Fig. 3.
This platform consists of two brushless DC motors (MOOG
BN23) coupled with pulley systems and harmonic gear
boxes. These motors are controlled with ELMO motion
controllers (Gold Solo Whistle) which obtain joint position
and velocity measurements from incremental encoders. The
motor controllers send this feedback to the microprocessor,
a Beaglebone Black Rev C (BBB), which returns a com-
manded torque. The controller algorithm is coded in C++
and ROS and runs at 111 Hz on the BBB.

A SensorProd Inc. Tactilus Insole Sensor System, High-
Performance V Series (SP049) is placed inside the prosthesis
shoe to measure GRFs. An UP Board (2/32) scans the
pressure sensors readings and sends the measurements to
the BBB. A 6-axis load cell (M3564F, Sunrise Instruments)
connects the distal end of the iWalk human adapter to the
proximal end of the prosthesis such that it measures the
forces the human exerts on the prosthesis through the adapter.
The load cell signals go through its signal conditioning box
(M8131) and then to the BBB. A Yost Labs 3-Space™
Sensor USB/RS232 IMU is mounted to the iWalk to measure
the global rotation and velocity of the human’s thigh and
connects to the BBB. Everything is powered by a Zippy
4000mAh 10S LiPo battery pack. The whole system weighs
10.54 kg, while the prosthesis on its own weighs 5.95kg.
For more details on the platform, see [32], and for the force
sensors and IMU, [27].

Experimental Set-up. Two non-amputee subjects wore the
prosthesis device through an iWalk adapter. Subject 1 was
a 1.7 m, 66 kg female and Subject 2 was a 1.8 m 75 kg
male. Both subjects wore a shoe lift on their left leg to
even out the limb length difference caused by the prosthesis.
The subjects were allowed a chance to walk with the device
before data recording started. Then they walked with each of
the 3 controllers for at least 4 sets of 8 step cycles, taking a
short break between controllers. The controllers included the
ID-CLF-QP with force sensing (8) (“sensor” controller), the
ID-CLF-QP with no force sensing (“no sensor” controller),
and a PD controller 1. When no force sensing was used, all of

1A small mechanical issue was present in the PD controller test with
Subject 2. Because the tracking results were comparable to the PD controller
test with Subject 1 we consider the effect of the mechanical issue to be minor
and included the results for completeness.
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TABLE I
TRACKING RMSE DURING ALL DOMAINS

Knee RMSE (rad) Ankle RMSE (rad)
Subject 1 Subject 2 Subject 1 Subject 2

Sensor 0.0228 0.0230 0.0179 0.0150
No Sensor 0.0334 0.0315 0.0270 0.0306
PD Control 0.0242 0.0250 0.0494 0.0316

TABLE II
TRACKING RMSE DURING WEIGHT-BEARING DOMAINS

Knee RMSE (rad) Ankle RMSE (rad)
Subject 1 Subject 2 Subject 1 Subject 2

Sensor 0.0215 0.0276 0.0204 0.0197
No Sensor 0.0429 0.0420 0.0361 0.0432
PD Control 0.0334 0.0344 0.0606 0.0436

the GRFs were calculated through the holonomic constraints
in the ID-CLF-QP. The weights and regularization terms in
the ID-CLF-QP and the gains in νpd were kept consistent for
all tests. We set vdhip,v = 0 to allow the human to dictate the
velocity of their stance progression instead of prescribing
a set velocity. We also switched the phase variable from
state-based to time-based during Dlhs if the ground contact
guard condition was met before τ reached 1 since the state-
based phase variable would not progress as expected once the
prosthesis foot lifted off of the ground. This also ensured the
controller reached the end of the desired trajectory segment
for that domain before transitioning to the next domain to
maintain continuity of the desired trajectory.
Experimental Results. The supplemental video shows the
experiments [40]. Note that the subjects held onto the iWalk
adapter with their hand to aid their balance since handrails
were not present and there was asymmetry between their
legs. Fig. 4 shows the phase portraits of the prosthesis joints
for 8 continuous step cycles with the ID-CLF-QP (8). The
velocity varies between steps since the desired trajectories
are modulated by a state-based phase variable and because
the phase variable sometimes switches to time-based during
Dlhs. This switching causes two distinct periodic orbits to
emerge for subject 2. Future work will aim to obtain a more
consistent measure of phase.

Fig. 5 (a) shows the vertical GRF and pitch moment mea-
sured by the pressure sensor and horizontal GRF calculated
by the QP (8) during 1 step of walking with (8). For each
controller, we computed the mean of the actual trajectories,
for a set of 8 continuous step cycles, and plotted these against
the desired trajectories and the subject-specific average hu-
man joint data [37] in Fig. 5 (b). Here the ID-CLF-QP
with force sensing (8) exhibits tight tracking to the desired
trajectory, especially compared to the other controllers for the
ankle. This tracking performance is quantified by the root-
mean-square error (RMSE) in Table I showing it outperforms
the other controllers for both joints and both subjects. This
force-sensing controller responds to the user’s load, making
its benefits even more pronounced in the 4 weight-bearing
domains (Drhs,Drts,Drhl,Dlhs), shown by the RMSE in
Table II. These results demonstrate this ID-CLF-QP with
force sensing enables us to realize prescribed human-like
joint kinematics in a systematic way that does not involve
tuning between subjects.

Fig. 4. Phase portraits of the knee and ankle for 2 subjects for 8 continuous
steps cycles using the ID-CLF-QP.

Fig. 5. (a) The vertical GRF Fg,z and moment Mg,y measured by the
pressure sensor and horizontal GRF ¯λg,x during one step of walking with
the ID-CLF-QP (8). (b) The mean of the actual outputs of the knee and
ankle for 2 subjects and 3 controllers for 8 continuous step cycles plotted
against the desired trajectory and the averaged human joint data.

VI. CONCLUSION AND FUTURE WORK

This work achieved human-like multi-contact human-
prosthesis walking on 2 subjects using a model-based multi-
domain controller with real-time force sensing, with no
tuning between subjects. This approach provides a formally
based, systematic method to generate and realize human-
like motion on lower-limb powered prostheses. In terms of
tracking, this controller outperformed its counterpart without
force sensors and a standard PD controller on both subjects.
Being able to realize multi-contact behavior on prostheses
without tuning for each subject could bring the benefits
of smoother and more energy efficient gait to amputees,
restoring natural and healthy locomotion.

While this work was limited to a single trajectory for each
subject, this methodology could be extended to realize a
variety of behaviors on prostheses by generating a gait library
offline, as in [41]. This would expedite the tuning process
currently required by impedance control to realize human
kinematic trends on powered prostheses. Additionally, using
a more realistic human model, that accounts for humans’
compliance and variability between steps, could yield more
robust and natural locomotion.
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