
What’s in a Name?
Linear Temporal Logic

Literally Represents Time Lines
Runming Li§

Carnegie Mellon University

Pittsburgh, PA, USA
runmingl@andrew.cmu.edu

Keerthana Gurushankar§

Carnegie Mellon University

Pittsburgh, PA, USA
kgurusha@andrew.cmu.edu

Marijn J.H. Heule
Carnegie Mellon University

Pittsburgh, PA, USA
marijn@cmu.edu

Kristin Yvonne Rozier
Iowa State University

Ames, IA, USA
kyrozier@iastate.edu

Abstract—Linear Temporal Logic (LTL) is arguably the most
popular specification language for formal verification of safety-
critical systems. However, LTL formulas can be unintuitive and
error-prone for human practitioners to specify and validate.
Meanwhile, drawing timelines remains one of the most popular
methods for specifying and validating requirements for indus-
trial system designs, such as in aerospace operational concepts.
Therefore, we provide a new timeline tool for visualizing LTL
specifications as timelines, providing provably-correct, intuitive
equivalents between these two specification formats. Our tool
generates timeline visualizations by translating LTL formulas
to intermediate representations as Büchi automata and then
regular expressions, and finally simplifying and visualizing the
expressions. We provide an algorithm for this visualization, a
theoretical soundness analysis, and an implementation.

Index Terms—Modal and Temporal Logics, Logic and Verifi-
cation, Regular languages

I. PROLOGUE

Requirement specification is a central step in the develop-
ment of safety-critical systems. For example, here is a real-
world requirement specification from an air traffic control
system [1]

“If a TSAFE command is sent to an aircraft,
controller/AutoResolver should then hand off the control of

this aircraft”

Such natural language requirements are often ambiguous and
not amenable to formal analysis, so we must instead specify
such requirements using rigorous formalized semantics for the
purpose of verification and validation. The above requirement,
when translated to Linear Temporal Logic (detailed in Sec-
tion II-A), may be expressed as follows:

⇤(tsafe.TSAFE_command1^
controller.CTR_control_1

!X (¬controller.CTR_control_1))

Though, as [1] demonstrates, validating that the resulting
formula represents the intended requirement is difficult, even
for professionals; in this case study a subtle misconception

§These authors contributed equally to this work

in the initial formalization of a requirement hid an important
safety concern present in the early design-stage requirements.
Using the play-on-words ”Little Tricky Logic,” [2] points to
endemic misconceptions in the understanding of LTL.

The need for validation of requirements formalizations
has been widely recognized, and tools for several different
formalisms have contributed strategies for breaking up the
formalisms into patterns and adding GUIs to make validation
easier. For example, the web-based modeling tool piStar-ext
adds a GUI with text, symbols, and diagrams to enable users
to better validate iStar-language models [3]. Hanfor, a GUI,
web-based tool supported formalization of system require-
ments into an LTL-like structured natural language patterns
for several industry projects in the automotive and railway
domains [4]. The ForeMoSt framework enables validation of
safety assurance cases by translating structured arguments
into formal strategies and validating them automatically using
the Lean theorem prover [5]. AutoTap provides users with
a GUI utilizing structured English to write and edit LTL
formulas representing Trigger-Action Programs (another form
of assume-guarantee contracts) for smart devices and cloud
services [6].

There has been a recent boom in validation capabilities for
the related, but arguably simpler, specification logic Mission-
time LTL (MLTL) [7], which adds finite, integer-bounded,
closed intervals to the temporal operators of LTL. The runtime
verification engine R2U2 includes a web-based GUI enabling
specifiers to visualize properties of (sets of) MLTL runtime
monitors, such as their shared subformulas and resource usage
on embedded systems [8]. The FRET tool’s GUI color-codes
segments of structured natural language to elicit more accurate
MLTL formulas from system designers [9]. The WEST tool
provides an interactive GUI for MLTL formula validation
via regular expressions and truth-table-like visualizations [10].
Now we need tools like these for LTL.

The common and intuitive technique of validating LTL
formulas via sets of positive and negative examples (i.e.,
demonstrating traces that both satisfy and violate a given LTL
formula) is insufficient for understanding and explainability of
LTL specification [11]. Thus, a significant hurdle remains: how

can we convincingly demonstrate to the humans in the loop,
from system designers to certifiers, that the analyzed formulas
truly represent the desired system requirements?

We take a simple idiomatic approach to address this prob-
lem. Since Linear Temporal Logic formulas differentiate tem-
poral information, we devise a tool, ltl2timeline, which
can draw timelines to depict the satisfying traces of the LTL
formula, and thereby represent the specified behavior in a more
natural, human-intelligible form.

Our tool, ltl2timeline, uses a remarkably simple algo-
rithm: transforming an input LTL formula through a sequence
of automata and regular expression-based intermediate repre-
sentations. Yet, it is surprisingly effective at providing small
representations for a range of LTL formulas. It visualizes the
above air traffic control requirement behavior with the timeline
shown in Example V.1.

We make the following contributions in our paper:
• We provide the tool, ltl2timeline, which takes LTL

formulas and synthesizes timeline visualizations for them.
• We prove correctness in Section IV. We show that for ev-

ery LTL formula, the timeline outputted indeed represents
the set of satisfying traces.

• We showcase the results of our tool on a range of example
formulas from real-life industrial verification efforts in
Section V and Section VI, including discussing the air
traffic control example above.

II. SETTING THE STAGE

We begin by setting up the prerequisite definitions involved
in our work. First, we provide the definition and semantics
for LTL. In the following subsections, we define (state-based)
Büchi automata and !-regular expressions, which are general-
izations of the well-known deterministic finite automata (DFA)
and regular expressions, for the case of infinite words. Lastly,
we describe the graphic visualizations we will use to depict
timelines.

A. Linear Temporal Logic (LTL)

Definition II.1 (Linear Temporal Logic (LTL)). The syntax of
an LTL formula over a set of atomic propositions AP , where
p 2 AP is a propositional variable, consists of the following
grammar:

' =p | ¬' | ' ^ | ' _ | '! | ⇤' | ⌃' | X'
| ' U | ' R

Remark II.1. Intuitively, ⇤' says that formula ' is true at
every time step; ⌃' says that formula ' is true either now or
at some time in the future; X' says formula ' is true at the
next time step immediately after the current one; ' U says
that formula ' is true until (strictly before) such time formula
 becomes true (and is either true now or in the future);
and ' R says that formula must be true now and remain
true unless formula ' becomes true, after which point we can

release (if formula ' is never true, then formula must
remain true at all times).
Remark II.2. The ltl2timeline tool uses a concrete input
syntax of ASCII symbols to represent those logical connec-
tives, in order to simplify typesetting connectives such as ⇤
and ⌃. For reference, the concrete syntax appears in Appendix
A.

Definition II.2 (Semantics of LTL). Let ⇡ : ! ! 2AP be a
computation or trace that stores the truthhood and falsehood
of every atomic proposition at every time step, where ! is
the set of natural numbers that label the time step. Then we
say ⇡, i |= ', that is, computation ⇡ starting from time i 2 !
models LTL formula ' whenever the result of this evaluation
satisfies '; see Rozier [12] for the full LTL semantics.

B. State-based Büchi automata (BA)

Definition II.3 (!-word). Let ⌃ be an alphabet. An !-word
or infinite run of ⌃, is an infinite string s = (s0, s1, s2, . . .)
where each si 2 ⌃.

Definition II.4 (Büchi automaton (BA)). A Büchi automaton
is a 5-tuple, (Q,⌃, �, s, F) consisting of

1) a finite set of states Q
2) a finite alphabet of input symbols ⌃
3) a transition relation � ✓ (Q⇥ ⌃)⇥Q
4) an initial or start state called s 2 Q
5) a set of accepting states F ✓ Q

A BA accepts an infinite run iff at least one of its infinitely
visited states is in F .

C. !-regular expressions

Definition II.5 (Regular expression). Let a be a symbol in ⌃,
A be a regular expression, and ✏ be the empty expression. We
define regular expressions using the following grammar:

A = ; | ✏ | a | AA | A+A | A⇤

Definition II.6 (Semantics of regular expressions). Let L (A)
denote the set of propositional formulas accepted by regular
expression A, also called the language accepted by A. We
define L (A), inductively as:

L (;) = ;
L (✏) = {✏} (✏ denotes the empty string)
L (a) = {a}

L (A1A2) = {s1s2 | s1 2 L(A1) and s2 2 L(A2)}
L (A1 +A2) = L(A1) [L(A2)

L (0)(A) = {✏}
L (i+1)(A) = {s1s2 | s1 2 L(A) and s2 2 L(i)(A)}

L (A⇤) =
[

i�0

L(i)(A)

Remark II.3. For the purpose of our tool, we define ⌃ as the
set of propositional logic formulas:

a 2 ⌃ = p | > | ? | ¬' | ' ^ | ' _ | '!

Definition II.7 (!-regular expressions). Our definition II.5
of regular expressions concerns only finite-length strings.
However, since LTL formulas reason about events that happen
over an infinite-length timeline, we need to model them using
infinite regular expressions (i.e., !-regular expressions), which
we define via the following grammar:

B = A! | AB | B +B

Definition II.8 (Semantics of !-regular expressions). Let ⌃!

denote the set of infinite-length strings over fixed alphabet
⌃. Let L!(B) denote the !-language accepted by !-regular
expression B. Then we define L!(B) inductively as:

L!(A
!) = {s1s2s3 · · · | si 2 L (A) and i � 1}

(✏ 62 L (A))
L!(AB) = {s1s2 | s1 2 L (A) and s2 2 L!(B)}

L!(B1 +B2) = L!(B1) [L!(B2)

Remark II.4. Definitions II.5 and II.7 are the standard def-
initions of regular expressions and !-regular expressions,
respectively. We include them here for completeness. For the
remainder of the paper, we denote arbitrary regular expressions
using A and !-regular expressions by B.

D. Timelines

We present timelines as graphic visualizations containing
the following features:

• Every timeline starts with a node named “start.”
• Every node represents one time step, and each node

has a propositional logic formula , which specifies the
behavior of atomic propositions at that time step. The
formula must be true at that time step. If = 1, that
means all atomic propositions can behave arbitrarily.

• An egg-shaped node with a caption “repeats 0 - 1”
means to repeat the (one time step) current node for
arbitrarily finitely many times.

• A node with label “· · · ” means to repeat the pattern prior
to it and after it arbitrarily finitely many times.

• The grey box means repeat infinitely. Once we reach the
end of a timeline in the grey box, we must reenter the
same grey box from any of its (left) starting points.

• Timelines can occur in parallel, signifying that any of the
parallel timelines could happen.

The manifestation of timelines we use here is one of
possibly many timeline representations that we devised for
the purpose of visualizing LTL formulas. We show how to
construct such timelines from LTL formulas in Section IV-C.

Example II.1. In Figure 1, one can reason about two parallel
timelines: the upper timeline starts with p holding in the first
time step, followed by entering the grey box with one step of
¬p and one step of p. Then at the end of the grey box, we
reenter the box, with the next time step being ¬p, and so on.
The lower timeline starts with one step of ¬p and one step of
p outside the grey box, and then enters the infinite run of ¬p
and p repeating.

¬p pstart

p

¬p p

Fig. 1: Example of one possible timeline for the specification
“p oscillates every time step.”

Example II.2. In Figure 2, one can reason about one timeline:
the atomic proposition a is false for finitely many time steps
as signified by the second node (note that this could be zero
time steps); followed by one node with a that substantiates the
specification of “a is eventually true.” Once a is true at some
point, the later time steps can behave arbitrarily as signified
by the infinite run of > (true) in the grey box.

>start
¬a

repeats 0 - 1 a

Fig. 2: Example of a timeline for the specification “a is
eventually true.”

III. ALGORITHM: “THOUGH SHE BE BUT LITTLE, SHE IS
FIERCE§”

On a high level, our algorithm for converting LTL formulas
into timeline visualizations (depicted in Figure 3) works as
follows.

1) Convert the given LTL formula to its corresponding
Büchi automaton.

2) Derive the !-regular expression corresponding to the
Büchi automaton.

3) Simplify the derived !-regular expression. (Note that
this step represents a stylistic choice balancing size,
complexity, and clarity.)

4) Visualize the !-regular expression as a timeline accord-
ing to its structure.

A. LTL to BA

The automata-theoretic approach [13] to evaluating LTL
(e.g., via reducing LTL formulas to their corresponding Büchi
automata) has been well-studied [14], [15], [16], [17], [18].
Our tool ltl2timeline uses SPOT [19]1 for this step,
which provides a provably-correct implementation of the trans-
lation from LTL formulas to minimally-sized Büchi automata.

B. BA to !-regex

We translate Büchi automata to !-regular expressions by
first finding the regular expressions for paths from the start
state to some final state (say rsf), and for those for paths
looping from the final state back to itself (say r↵), and
finally combining those to form the !-expression for satisfying

§William Shakespeare, A Midsummer Night’s Dream

1We used SPOT version 2.11.

LTL Buchi AutomatonSPOT ω-regexba2wregex Simplified ω-regexSimplifier TimelineVisualizer

Fig. 3: ltl2timeline algorithm outline

runs
⇣
+f2F rsfr!↵

⌘
. Our visualization algorithm finds regular

expressions for finite paths by iteratively deleting interior
nodes in the digraph of the automaton.

The algorithm to convert Büchi automata to !-regular
expressions ba2wregex combines Algorthms 1–4 below.

Algorithm 1 reduce nfa
Input: (G, v): NFA G with state v that is not initial or final
Output: Deletes state v from G while ensuring L (G) re-

mains unchanged
for every u

rin��! v, v
rout��! w do

if v has a self-edge v
rloop���! v then

replace edges u
rin��! v, v

rout��! w with
u

rinrloop⇤rout��������! w
else

replace edges u
rin��! v, v

rout��! w with u
rinrout����! w

end if
end for
delete node v from G

Algorithm 2 nfa2regex
Input: (G, s, f): NFA G with initial state s and final state f
Output: The regular expression corresponding to all paths

from s to f
while there exists an interior vertex v do

reduce nfa(G, v)
combine multi-edges, i.e., convert r1 : u ! w, r2 : u !

w to r1|r2 : u ! w
end while
return (rss|rsfr⇤↵rfs)⇤rsfr↵

Algorithm 3 nfa2regex firstvisit
Input: (G, s, f): NFA G with initial state s and final state f
Output: The regular expression of all paths from s reaching
f for the first time
delete all out edges from f in G
return nfa2regex(G, s, f)

Algorithm 4 ba2wregex
Input: G, a Büchi automaton
Output: The !-regular expression recognized by G

return
S

f2F (nfa2regex firstvisit(G, s, f)nfa2regex(G, f, f))

C. !-regex simplification

The !-regular expression generated in Section III-B may not
be the “simplest” for the purpose of visualizing the timeline.

We have observed multiple patterns in the resulting !-regular
expression that could be simplified. For example, an !-regular
expression of the form of r⇤r! represents the same timeline
as r! , but the latter is more intuitive and concise. For this
purpose, we devised some simplification rules in our tool,
based on our observation of common patterns in the generated
!-regular expressions.

There is no agreed-upon canonical form for regular expres-
sions representing LTL formulas, hence we do not hope to find
the shortest possible regular expression for visualization. Reg-
ular expression simplification comes down to regular expres-
sion equivalence checking, which is computationally hard [20].
For purpose of simplification, one could perform a search over
equivalent regular expressions and decide which one is simpler
to use. However, this strategy is expensive in terms of the
running time, and for the purpose of visualization, we did not
use this strategy in our tool. We consider simplification for the
purpose of finding the most intuitive regular expression for a
given LTL formula to be an interesting direction for future
work.

Rule-based simplification: Here we show a demonstrating
subset of the simplification rules we encoded. In theory
one could add more rules to the tool, so long as they are
sound; here we only choose to encode the rules that represent
common patterns we have observed in the generated !-regular
expressions.

r1 + r1r
⇤
2 =) r1r

⇤
2

r + r =) r

r1 + r⇤2r1 =) r⇤2r1

(r⇤)! =) r!

(r1r
⇤
2)r

!
2 =) r1r

!
2

(r1r2)r
!
2 =) r1r

!
2

r⇤r! =) r!

rr! =) r!

Result of simplification: These simplification rules lead
to more intuitive representations of timelines. Here we demon-
strate their effects using an example.

Example III.1. Using our algorithm, the LTL formula ' =
⇤(a ! ⌃(¬a)) generates the un-simplified !-regular expres-
sion ((¬a)|(aa⇤(¬a)))((¬a)|(aa⇤(¬a)))! , and the simplified
version ((¬a)|(aa⇤(¬a)))! , which correspond to the two
timelines in Figure 4 and Figure 5, respectively.

Remark III.1. Both simplified and un-simplified !-regular
expressions could generate correct timeline representations
that faithfully represent the set of satisfying traces of the
original LTL formula '. Nonetheless, we, as human users,

¬a

a
a

repeats 0 - 1 ¬a

start

¬a

a a
repeats 0 - 1 ¬a

Fig. 4: Timeline visualization for !-regular expression ((¬a)|(aa⇤(¬a)))((¬a)|(aa⇤(¬a)))! .

¬a

a
a

repeats 0 - 1 ¬a

start

Fig. 5: Timeline visualization for simplified !-regular expression ((¬a)|(aa⇤(¬a)))! .

oftentimes find the simplified version more intuitive to reason
about.

D. !-regex to timeline

Our tool uses Graphviz [21] to achieve the timeline visual-
ization step. By construction of our algorithm, every !-regular
expression is in the form of

A1A
!
2 +A3A

!
4 + · · ·+A2n�1A

!
2n

where Ai are regular expressions, A2i�1 could be ✏, and
✏ 62 L (A2i). At a high level, we visualize each regular
expression Ai as a set of accepted inputs. We view each
union operator as a set of parallel timelines. We denote that
each A2i�1 gets concatenated with A2i, which then repeats
infinitely many times by surrounding these repeating final
nodes with grey boxes. Figure 6 presents a generic timeline
resulting from this construction pattern.

A1 A2

A3 A4

...

A2n�1 A2n

start

Fig. 6: Generic timeline construction created from A1A!
2 +

A3A!
4 + · · ·+A2n�1A!

2n.

IV. THEORETICAL ANALYSES: “IF WE ARE TRUE TO
OURSELVES, WE CAN NOT BE FALSE TO ANYONE§”

We prove the correctness of our translation pipeline. The
correctness of the translation from LTL formulas to Büchi
automata stems from using SPOT [19]. Below, we prove the
correctness of (i) the translation from Büchi automata to !-
regular expressions, and (ii) the (!-)regular expression rewrite
rules we apply. Lastly, we outline the correctness of our
timeline visualizations.

A. Correctness of Regex Translation

Lemma IV.1. For any NFA G and any state v in G that

is neither a start state or a final state, reduce nfa(G, v)
preserves the regular language accepted by G.

Proof. Let G0 be the graph of G post reduction by the
application of reduce nfa(G, v). We show that the trace of
every path accepted by G is also accepted by G0. Suppose a
path accepted by G does not pass through v, clearly the lemma
holds. Otherwise, suppose the path passes through v; since v is
an interior node, v cannot be the first or last in the path. Thus,
for every pass through v, let u 6= v be the last node passed
before entering v, and likewise w be the first node after exiting
v. We show that the regular language of sub-traces from u to
w in G (shown in Figure 7) is identical to that in G0. Suppose

u v w
ruv

rvv

rvw

Fig. 7: A path from u to w in G.

there is no loop at v, the path from u to w must simply be

§William Shakespeare, Hamlet

u
ruv��! v

rvw��! w, with the trace r = ruvrvw. If there is a loop
edge rvv , this edge can be traveled any number of times before
exiting v, thus the regular expression is r = ruvr⇤vvrvw. This
edge u

r�! w was added to G0. Thus, for every path accepted
by G, for every subpath entering and exiting v from some u
to w, there exists a corresponding subpath from u to w in G0,
and thus a corresponding path accepted by G0.

Lemma IV.2. For any NFA G with start state s and (exactly

one) final state f , nfa2regex(G, s, f) outputs the regular

expression capturing all paths from s to f (i.e., L (G), the

language accepted by G).

Proof. The while loop clearly terminates since the number of
interior nodes is strictly decreasing, and upon termination, G
is an NFA containing only the nodes s and f . Now, every
non-terminal visit from s to f and back to s, can be replaced
by an edge s

rsfr
⇤
ffrfs�����! s, instead of the edge f ! s. This NFA

yields the regular language (rss|rsfr⇤↵rfs)⇤rsfr↵ , as produced
by the algorithm.

Lemma IV.3. For any NFA G with start state s and (exactly

one) final state f , nfa2regex firstvisit(G, s, f) outputs the

regular expression of all paths from s to f , visiting f for

the first time.

Proof. Let G0 be G with all out-edges (including loops) from
f deleted. We claim that L (G0) is equal to the language L 0

of all paths from s reaching f for the first time.
First we show L (G0) ✓ L 0, i.e., every path accepted by

G0 starts in s and ends by reaching f for the first time. Since
s and f are the initial and final states of G0 respectively,
clearly every path accepted by G must start in s and end in f .
Further, as f has no out-edges in G, any accepted path must
end immediately once it reaches f . Thus it must end once it
reaches f for the first time.

Also, we show L 0 ✓ L (G0), i.e., every path starting in s
and ending by reaching f for the first time is accepted by G0.
If a path contains an out-edge of f , it cannot be in L 0 as the
trace continues beyond the first time step at f . Thus, every
trace in L 0 only uses edges in G0, and is thus accepted by G
iff it is accepted by G0.

Theorem IV.1. For any Büchi automaton G with start state

s and final states F , ba2wregex(G) outputs the !-regular

language accepted by G.

Proof. We show that

L =
[

f2F

nfa2regex(G, s, f) (nfa2regex firstvisit(G, f, f))!

and the !-language accepted by G, L!(G) are identical.
First, L ✓ L!(G) since for every infinite run in L , by

definition of L , there is some f 2 F such that passes through
f infinitely often. The converse is true as well: for every
infinite run q0, q1, . . . accepted by G, then q0 = s and by
definition of the accepting language, there is some accepting
state f , passed through infinitely often; thus the run is in
nfa2regex(G, s, f) (nfa2regex firstvisit(G, f, f))! .

B. Correctness of Rewrite Rules

Lemma IV.4. For all regular expressions r1, r2, r, each of

the following rewrite rules preserve the regular or !-regular

language represented by the expressions:

r1 + r1r
⇤
2 =) r1r

⇤
2 (1)

r + r =) r (2)
r1 + r⇤2r1 =) r⇤2r1 (3)
(r⇤)! =) r! (4)
(r1r

⇤
2)r

!
2 =) r1r

!
2 (5)

(r1r2)r
!
2 =) r1r

!
2 (6)

r⇤r! =) r! (7)
rr! =) r! (8)

The soundness of each of these translations follows directly
from the semantics detailed in Definition II.8.

C. Correctness of Timeline Visualizations

Inductively, we show how to faithfully capture each form of
regular and !-regular expressions as timeline representations.

a) Regular expressions:

1) A = ;. Visualized as no timeline. An empty regular
expression signifies nothing is true at any time.

2) A = ✏. Omitted in the visualization.
3) A = a. Visualized as a single timeline node with a.

A regular expression of a propositional logic formula
signifies that the atomic proposition is true at the current
time step.

4) A = A1A2. Visualized as the timeline of A1 followed
by the timeline of A2. A concatenation of two regular
expressions signifies that the first regular expression
must be true before the second regular expression can
be true in the time step.

5) A = A1+A2. Visualized as the timelines of A1 and A2

in parallel. A union of two regular expressions signifies
that either of the regular expressions can be true, which
ltl2timeline represents by parallel timelines.

6) A = A⇤
1. If A1 is a propositional logic formula, then

its visualization is an egg-shaped node with the caption
“repeats 0 - 1.” If A1 is a regular expression involving
concatenation or a star (⇤) then its visualization is the
timeline of A1 followed by a node with label “· · · ,”
and that timeline pattern again. A Kleene star of a
regular expression signifies that the regular expression
can be repeated any number of times, including 0 times,
which matches the meaning of our representation of
an egg-shaped node and a “· · · ” node as described in
Section II-D.

b) !-regular repressions:

1) B = A! . Visualized as a grey box enclosing the timeline
of A. An ! in a regular (sub-)expression signifies that the
regular expression repeats infinitely many times, which
matches the meaning of our grey box representation,
because every time a timeline traversal reaches the end

of the grey box, it must reenter the same grey box again,
hence designating an infinite repeat.

2) B = AB. Visualized as the timeline of A followed
by the timeline of B. A concatenation of a regular
expression and an !-regular expression signifies that the
first must be true before the second !-regular expression
can be true in the following time steps.

3) B = B1 + B2. Visualized as the timelines of B1 and
B2 in parallel. A union of two !-regular expressions
signifies that either of the !-regular expressions can be
true, which we represent by parallel timelines.

V. TOOL SHOWCASE: “BE GREAT IN ACT, AS YOU HAVE
BEEN IN THOUGHT§”

To demonstrate using ltl2timeline, we present three
examples, one from a real-world model checking exercise from
Zhao and Rozier [1], one from a randomly generated LTL
formula, and one that specifically shows the applicability of
ltl2timeline to specification validation.

Example V.1. Zhao and Rozier [1] presents a model ver-
ification specification, “[i]f a TSAFE command is sent to
an aircraft, controller/AutoResolver should then hand off the
control of this aircraft,” which corresponds to the LTL formula

⇤(tsafe.TSAFE_command1^
controller.CTR_control_1.

!X (¬controller.CTR_control_1))

For simplicity, we swap the concrete atomic proposition to a, b
and get

⇤(a ^ b ! X (¬b)).

For this LTL formula, ltl2timeline generates the timeline
representation in Figure 8.

Example V.2. SPOT [22] includes a command-line tool for
random LTL formula generation called randltl [23]. We
used it to generate the following LTL formula.

p2 ^ (⌃⇤p0 U X (⇤p1 ^ (((p0 ! p2) ^ (p2 ! p0)) U ⌃p0)))
This formula is reasonably complicated, and hard for humans
to reason about directly. For this LTL formula, our tool
generates the timeline representation in Figure 9.

Remark V.1. These two examples show that our tool can
generate reasonably intuitive diagrams for both real-world and
randomly-generated formulas.

Example V.3. Suppose we have the specification “p oscillates
every time step.” Human specifiers often write one of the
following two LTL formulas to describe this specification.

• ⇤((p ^ X (¬p)) _ ((¬p) ^ Xp))
• ⇤((p ^ X (¬p)) ^ ((¬p) ^ Xp))

It may be hard, without rigorous analysis, to distinguish
which one faithfully represents the specification. However,
ltl2timeline generates the two timelines for these two

§William Shakespeare, King John

formulas shown in Figures 10 and 11, which clearly show the
first formula is correct and the second formula is equivalent
to ?.

VI. PLAYING IT OUT

We quantify the usability and performance of
ltl2timeline by compiling an extensive set of LTL
formulas used in the analysis of real-life systems, defining
timeline metrics, and characterizing the result of visualizing
the set of real-life LTL formulas over those metrics. Our
experimental evaluation conclusively demonstrates that
ltl2timeline scales to provide helpful visualizations of
LTL formulas written by humans.

A. Timeline Metrics

We use two measures of complexity for timeline visualiza-
tions: timeline length and star height. We use timeline length
as a proxy for size of our timeline visualization graphs. Since
Kleene stars are the trickiest operator to depict in timelines, we
also use star height, a well-studied measure for the structural
complexity of regular expressions, to measure the complexity
of our visualizations.

Definition VI.1 (Timeline Length). We define the timeline
length of a regular expression tllen(A) recursively as follows.

tllen(;) undefined
tllen(✏) = 0

tllen(a) = 1

tllen(A1A2) = tllen(A1) + tllen(A2)

tllen(A1 +A2) = max(tllen(A1), tllen(A2))

tllen(A⇤) = tllen(A)

We also extend this definition to !-regular expressions as
follows.

tllen(A!) = tllen(A)

tllen(AB) = tllen(A) + tllen(B)

tllen(B1 +B2) = max(tllen(B1), tllen(B2))

Then tllen captures the length of the longest path in our
timeline graph visualization.

Definition VI.2 (Star height). We define the star height of
regular and !-regular expressions to be the star-nesting depth
in the (unsimplified) expression.

h(;) = h(✏) = h(a) = 0

h(A1A2) = h(A1 +A2) = max(h(A1), h(A2))

h(A⇤) = 1 + h(A)

h(A!) = h(A)

h(AB) = max(h(A), h(B))

h(B1 +B2) = max(h(B1), h(B2))

¬a _ ¬b

a ^ b ¬b

¬b
¬a _ ¬b

repeats 0 - 1 a ^ b

start

¬a _ ¬b
repeats 0 - 1 a ^ b

Fig. 8: Timeline for ⇤(a ^ b ! X (¬b)).

p1

p0 ^ p1

start

p2

p2

p2

p0 ^ p1

¬p0 ^ p1 ¬p0 ^ p1
repeats 0 - 1 p0 ^ p1

>
>

repeats 0 - 1

Fig. 9: Timeline for p2 ^ (⌃⇤p0 U X (⇤p1 ^ (((p0 ! p2) ^ (p2 ! p0)) U ⌃p0))).

¬p pstart

p

¬p p

Fig. 10: Timeline for ⇤((p ^ X (¬p)) _ ((¬p) ^ Xp)).

start

Fig. 11: Timeline for ⇤((p^X (¬p))^ ((¬p)^Xp)) (a single
“start” means every time step is ?).

B. Experimental Analysis

Feasibility. We study the feasibility of our tool on a
benchmark suite of LTL formulas gathered from real world
use cases. We gather a test suite totalling 91 formulas from
two real-world requirement specification applications. We take
6 specifications from NASA’s Automated Airspace Concept
(AAC) [24]. We also collect formulas from the Acacia suite
of examples [16]: 85 formulas extracted from the suite of
23 collections of formulas. We choose to visualize each
formula individually, rather than visualize a complete set of
(conjuncted) specifications, as a complete specification set may
describe a large, complex system, and we only target the use
case of validating individual formulas.

We run ltl2regex on these 91 examples: 87 of the 91
input formulas complete execution within a timeout of 20
seconds for the feasibility tests. Within the 87, two examples
have regular expressions of star height 8 and are intractable
to generate graph visualizations of. We are able to generate
tractable visualization on the remaining 85, or over 93% of
benchmarks tested. The plots of visualization complexity on
these formula appear below in Figure 12.

Scalability. We study the scalability of our tool on a bench-
mark suite of LTL formulas that scales in size. According to
Rozier and Vardi [16], the LTL formula required to encode a
n-bit binary counter scales in size as n gets larger. Therefore
the benchmark for scalability consists of LTL formulas that
describe n-bit counters. Figure 13 shows that the timeline
length grows approximately exponentially with the number of
bits in the counter, which matches the result in Rozier and
Vardi [16].

In Figure 13, the x-axis ranges from 1 to 6, after which
point it hits the 30 seconds timeout we set for the scalability
tests, as the timeline length grows exponentially fast.

VII. ARTIFACT AVAILABILITY: “THOUGHT IS FREE§”

The tool we present in this paper is available at

https://github.com/EULIR/ltl-explainability

§William Shakespeare, The Tempest

https://github.com/EULIR/ltl-explainability

Fig. 12: Visualization complexity metrics for formulas col-
lected from Acacia [16] and NASA’s AAC [24].

which comes with two command-line tools, ltl2regex and
ltl2timeline. The specific usage of the tool can be found
in the artifact repository.

The set of LTL formulas we used to evaluate our tool
in Section VI can be found in the artifact repository under
ltl-formulas directory.

VIII. DENOUEMENT

Based on our results, we propose the following questions
for discussions and future work:

• Can there be more simplification methods as described
in Section III-C? The answer is definitely positive. For
example, we can add more rule-based simplifications by
finding more intuitive patterns in the generated !-regular
expressions. Other simplifications are also possible; for
example, if the generated !-regular expression is r1+ r2
where r1, r2 are not syntactically equivalent (or equiva-
lent up to algebraic rules) !-regular expressions, but they
accept the same set of infinite-length strings, then we can

Fig. 13: Scalability measured with binary counter examples
from Rozier and Vardi [16].

simplify this down to just r1. This reduces the problem
to equivalence testing on !-regular expressions, which is
decidable. In a similar vein, many more simplifications
may apply, but the question is how useful are they? In
the end, we have to balance the efficiency, simplicity, and
understandabillity of each output visualization.

• Can we define timelines more formally so that one can do
this process reversely (i.e., a tool that converts timeline
representation to its corresponding LTL formula)? That
would be very useful in practice. However, a direct
reverse of the algorithm we presented in this paper may
not be viable.

Going forward, it will become important to conduct a user
survey to gather data from a representative audience of system
engineers regarding what timeline visualizations help most
with formula validation. Specifically, we list the following
questions regarding the intuitive aesthetics of timelines.

• Can lines in timelines be curved or do they need to
be straight? If a timeline has a curved line is that still
visually, intuitively a line? Does the placement of the
line matter as to whether it is intuitive for the line to be
straight or curved (e.g., to save space or reduce possible
visual clutter)?

• Can there be back edges in a limited fashion (i.e., to
simplify formulas) in timelines? Most of our formulas
have a star-height of 1, so if we limit the back-edge
representation to only surrounding a single node, that
would simplify most formulas. We can then use the
expanded notation for stared formulas larger than a single
proposition, thus navigating the trade-off between having
a small representation and limiting the visual complexity.
One criticism of this approach may be that back edges
cause confusion between timeline and automata repre-
sentations, and that with back edges timelines stop being
intuitive with respect to the linearity of time.

• What are intuitive representations of star-formulas
and do they change depending on the formula?
Common regular expression visualizers use two ways to
represent stars in regular expressions. We can represent
a stared formula inside a box [25] with related caption
to indicate the repetition (similar to the design decision
we made in ltl2timeline); or with back edges [26].
Does using the box cause confusion with respect to the
LTL ⇤ operator? What is the most intuitive way to remind
users of the corner case where the starred formula occurs
zero times?

• When do we choose to unroll for clarity? When do
we merge parallel parts of timelines? To merge parts of
lines, we have to check for logical equivalence of the parts
of the timelines we want to merge. By our algorithm, we
generate parallel lines only when the formulas are not
syntactically equivalent, so we would be guaranteed to
run the more complex check for logical equivalence. In
some cases, this could provide a clarifying simplification,
with the cost of a repetitive computationally-expensive
check. Would it make sense to offer an “optimizing”
compilation option to users that takes longer to create
a timeline representation but checks for smaller repre-
sentations via logical equivalence?

IX. EPILOGUE

The Achilles heel of formal verification is specification;
formal methods are only as effective at verification as their
specifications are at describing the essential properties to
verify. Yet, specification remains the biggest bottleneck to the
use of formal methods [27]. LTL is one of the most popular
specification logics for industrial-scale critical systems; in the
space domain alone, it is currently encapsulating specifications
for the development of the NASA Lunar Gateway [28],
[29], the Air Force Research Laboratory/Collins Aerospace
Spacecraft Collision Avoidance system [30], Space Systems
Finland’s Attitude and Orbit Control Systems (AOCS) [31],
and NASA/JPL’s Europa Lander Mission Concept [32] just to
name a few. Yet the humans that need to use formal verification
tools and deeply understand their results struggle to validate
that LTL formulas capture the specifications they are meant
to capture. A major contributor to LTL’s popularity is the
propensity of humans to think of requirements in terms of
timelines. This inspired the creation of LTL in the first place,
as a logic that “intuitively” represents timelines. Our work
serves to reinforce that connection, enabling visualization
of most realistic LTL formulas as timelines. By releasing
ltl2timeline, we contribute to better validation capabili-
ties for LTL specifications and aid the effort to make formal
verification more accessible and wide-spread.

Future extensions of this work include optimizations to the
algorithm and implementation to improve performance and
scalability. While we have chosen visual elements that suc-
cinctly represent timelines, it would be informative to conduct
a study on different possible visualizations and which of the
many ways of representing different timeline elements humans

find most intuitive. It is possible that factors of context, such
as the type of requirement an LTL formula describes, change
its optimal timeline representation.

ACKNOWLEDGEMENTS

This work was partially supported by the National Science
Foundation (NSF) under grants CCF-2015445, CAREER-
1664356, and CCRI-2016592.

APPENDIX

Recall from II.1 that we define an LTL formula as

' =p | ¬' | ' ^ | ' _ | '! | ⇤' | ⌃' | X'
| ' U | ' R

where p 2 AP and ' and are LTL formulas. In our tool
ltl2timeline, we use the following concrete input syntax
to represent LTL formulas in ASCII text.

abstract syntax concrete syntax description

' = p p atomic prop.
| ¬' !' negation
| ' ^ ' & conjunction
| ' _ ' | disjunction
| '! ' -> implication
| ⇤' G' globally
| ⌃' F' in the future
| X' X' next
| ' U ' U until
| ' R ' R release

REFERENCES

[1] Y. Zhao and K. Y. Rozier, “Formal specification and verification of
a coordination protocol for an automated air traffic control system,”
Science of Computer Programming Journal, vol. 96, no. 3, pp. 337–
353, December 2014.

[2] B. Greenman, S. Saarinen, T. Nelson, and S. Krishnamurthi, “Little
tricky logic: Misconceptions in the understanding of ltl,” arXiv preprint

arXiv:2211.01677, 2022.
[3] E. J. T. Gonçalves, G. Rodrigues, P. Miranda, J. Pimentel, J. Araujo, and

J. Castro, “pistar-ext: Supporting the creation of istar extensions with
the pistar tool.” in iStar, 2020, pp. 31–36.

[4] S. Becker, D. Dietsch, N. Hauff, E. Henkel, V. Langenfeld, A. Podelski,
and B. Westphal, “Hanfor: Semantic requirements review at scale.” in
REFSQ Workshops, vol. 2857, 2021.

[5] T. Viger, L. Murphy, A. Di Sandro, C. Menghi, R. Shahin, and
M. Chechik, “The foremost approach to building valid model-based
safety arguments,” Software and Systems Modeling, pp. 1–22, 2022.

[6] L. Zhang, W. He, J. Martinez, N. Brackenbury, S. Lu, and B. Ur,
“Autotap: synthesizing and repairing trigger-action programs using ltl
properties,” in 2019 IEEE/ACM 41st international conference on soft-

ware engineering (ICSE). IEEE, 2019, pp. 281–291.
[7] J. Li, M. Y. Vardi, and K. Y. Rozier, “Satisfiability checking for

Mission-time LTL,” in Proceedings of 31st International Conference on

Computer Aided Verification (CAV), ser. LNCS, vol. 11562. New York,
NY, USA: Springer, July 2019, pp. 3–22.

[8] C. Johannsen, P. Jones, B. Kempa, K. Y. Rozier, and P. Zhang, “R2U2
Version 3.0: Re-Imagining a Toolchain for Specification, Resource Esti-
mation, and Optimized Observer Generation for Runtime Verification in
Hardware and Software,” in Computer Aided Verification, C. Enea and
A. Lal, Eds. Cham: Springer Nature Switzerland, 2023, pp. 483–497.

[9] D. Giannakopoulou, T. Pressburger, A. Mavridou, and J. Schumann,
“Generation of formal requirements from structured natural language,”
in International working conference on requirements engineering: Foun-

dation for software quality. Springer, 2020, pp. 19–35.

[10] J. Elwing, L. Gamboa-Guzman, J. Sorkin, C. Travesset, Z. Wang and
K. Y. Rozier, “Mission-time ltl (mltl) formula validation via regular
expressions,” in Proceedings of the 18th International Conference on

integrated Formal Methods (iFM 202 3). Leiden, the Netherlands:
Springer, November 2023.

[11] D. Neider and R. Roy, “Expanding the horizon of linear temporal
logic inference for explainability,” in 2022 IEEE 30th International

Requirements Engineering Conference Workshops (REW). IEEE, 2022,
pp. 103–107.

[12] K. Rozier, “Linear Temporal Logic Symbolic Model Checking,”
Computer Science Review Journal, vol. 5, no. 2, pp. 163–203, May 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.cosrev.2010.06.002

[13] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to auto-
matic program verification,” in Proceedings of the First Symposium on

Logic in Computer Science. IEEE Computer Society, 1986.
[14] M. Daniele, F. Giunchiglia, and M. Y. Vardi, “Improved automata

generation for linear temporal logic,” in Computer Aided Verification,
N. Halbwachs and D. Peled, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 249–260.

[15] C. Fritz, “Constructing büchi automata from linear temporal logic using
simulation relations for alternating büchi automata,” in Implementation

and Application of Automata, O. H. Ibarra and Z. Dang, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 35–48.

[16] K. Rozier and M. Vardi, “LTL satisfiability checking,” International

Journal on Software Tools for Technology Transfer (STTT), vol. 12, no. 2,
pp. 123 – 137, March 2010.

[17] ——, “A multi-encoding approach for LTL symbolic satisfiability check-
ing,” in 17th International Symposium on Formal Methods (FM2011),
ser. Lecture Notes in Computer Science (LNCS), vol. 6664. Springer-
Verlag, 2011, pp. 417–431.

[18] A. Duret-Lutz, “Ltl translation improvements in spot 1.0,” International

Journal of Critical Computer-Based Systems 5, vol. 5, no. 1-2, pp. 31–
54, 2014.

[19] A. Duret-Lutz, E. Renault, M. Colange, F. Renkin, A. G. Aisse,
P. Schlehuber-Caissier, T. Medioni, A. Martin, J. Dubois, C. Gillard,
and H. Lauko, “From Spot 2.0 to Spot 2.10: What’s new?” in Pro-

ceedings of the 34th International Conference on Computer Aided

Verification (CAV’22), ser. Lecture Notes in Computer Science, vol.
13372. Springer, Aug. 2022, pp. 174–187.

[20] T. S. Wim Martens, Frank Neven, “Complexity of decision problems for
simple regular expressions,” International Symposium on Mathematical

Foundations of Computer Science, pp. 889–900, 2004.
[21] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull,

“Graphviz - open source graph drawing tools,” in International Sympo-

sium Graph Drawing and Network Visualization, 2001.
[22] A. Duret-Lutz, E. Renault, M. Colange, F. Renkin, A. G. Aisse,

P. Schlehuber-Caissier, T. Medioni, A. Martin, J. Dubois, C. Gillard, and
H. Lauko, “Spot: a platform for LTL and omega-automata manipulation,”
Online: https://spot.lre.epita.fr/, 2023.

[23] A. Duret-Lutz, “Manipulating LTL formulas using Spot 1.0,” in Proceed-

ings of the 11th International Symposium on Automated Technology for

Verification and Analysis (ATVA’13), ser. Lecture Notes in Computer
Science, vol. 8172. Hanoi, Vietnam: Springer, Oct. 2013, pp. 442–445.

[24] M. Gario, A. Cimatti, C. Mattarei, S. Tonetta, and K. Y. Rozier, “Model
checking at scale: Automated air traffic control design space explo-
ration,” in Proceedings of 28th International Conference on Computer

Aided Verification (CAV 2016), ser. LNCS, vol. 9780. Toronto, ON,
Canada: Springer, July 2016, pp. 3–22.

[25] Bowen, “Regex visualizer and editor,” https://github.com/Bowen7/
regex-vis, 2022.

[26] J. Avallone, “regexper-static,” https://gitlab.com/javallone/
regexper-static, 2020.

[27] K. Y. Rozier, “Specification: The biggest bottleneck in formal methods
and autonomy,” in Proceedings of 8th Working Conference on Verified

Software: Theories, Tools, and Experiments (VSTTE 2016), ser. LNCS,
vol. 9971. Toronto, ON, Canada: Springer-Verlag, July 2016, pp. 1–19.

[28] J. B. Dabney, J. M. Badger, and P. Rajagopal, “Adding a verification
view for an autonomous real-time system architecture,” in AIAA SciTech

Forum. AIAA, 2021, p. 0566.
[29] ——, “Trustworthy autonomy for gateway vehicle system manager,” in

2023 IEEE Space Computing Conference (SCC). IEEE, 2023, pp. 57–
62.

[30] K. L. Hobbs, J. Davis, L. Wagner, and E. Feron, “Formal specifica-
tion and analysis of spacecraft collision avoidance run time assurance

requirements,” in 2021 IEEE Aerospace Conference (50100). IEEE,
2021, pp. 1–16.

[31] D. Ilić, L. Laibinis, T. Latvala, E. Troubitsyna, and K. Varpaaniemi,
“Deployment in the space sector,” in Industrial Deployment of System

Engineering Methods. Springer, 2013, pp. 45–62.
[32] S. Chien, J.-P. de la Croix, J. Russino, C. Wagner, G. Rabideau, D. Wang,

and G. Lim, “Onboard scheduling and execution to address uncertainty
for a planetary lander,” in Proceedings of 16th Symposium on Advanced

Space Technologies in Robotics and Automation. European Space
Agency, 2022.

http://dx.doi.org/10.1016/j.cosrev.2010.06.002
https://spot.lre.epita.fr/
https://github.com/Bowen7/regex-vis
https://github.com/Bowen7/regex-vis
https://gitlab.com/javallone/regexper-static
https://gitlab.com/javallone/regexper-static

	Prologue
	Setting the stage
	Linear Temporal Logic (LTL)
	State-based Büchi automata (BA)
	-regular expressions
	Timelines

	Algorithm: ``Though she be but little, she is fierce§''
	LTL to BA
	BA to -regex
	-regex simplification
	-regex to timeline

	Theoretical Analyses: ``If we are true to ourselves, we can not be false to anyone§''
	Correctness of Regex Translation
	Correctness of Rewrite Rules
	Correctness of Timeline Visualizations

	Tool Showcase: ``Be great in act, as you have been in thought§''
	Playing it out
	Timeline Metrics
	Experimental Analysis

	Artifact Availability: ``Thought is free§''
	Denouement
	Epilogue
	Appendix
	References

