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Risk-Averse Decision Making
Under Uncertainty

Mohamadreza Ahmadi*~, Ugo Rosolia

and Aaron D. Ames

Abstraci—A large class of decision making under un-
certainty problems can be described via Markov decision
processes (MDPs) or partially observable MDPs (POMDPs),
with application to artificial intelligence and operations
research, among others. In this article, we consider the
problem of designing policies for MDPs and POMDPs with
objectives and constraints in terms of dynamic coherent
risk measures rather than the traditional total expectation,
which we refer to as the constrained risk-averse prob-
lem. Our contributions can be described as follows: first,
for MDPs, under some mild assumptions, we propose an
optimization-based method to synthesize Markovian poli-
cies. We then demonstrate that such policies can be found
by solving difference convex programs (DCPs). We show
that our formulation generalize linear programs for con-
strained MDPs with total discounted expected costs and
constraints; second, for POMDPs, we show that, if the co-
herent risk measures can be defined as a Markov risk tran-
sition mapping, an infinite-dimensional optimization can
be used to design Markovian belief-based policies. For
POMDPs with stochastic finite-state controllers (FSCs), we
show that the latter optimization simplifies to a (finite di-
mensional) DCP. We incorporate these DCPs in a policy
iteration algorithm to design risk-averse FSCs for POMDPs.
We demonstrate the efficacy of the proposed method with
numerical experiments involving conditional-value-at-risk
and entropic-value-at-risk risk measures.

Index Terms—Markov processes, stochastic systems,
uncertain systems.

[. INTRODUCTION

UTONOMOUS systems are being increasingly deployed

in real-world settings. Hence, the associated risk that stems
from unknown and unforeseen circumstances is correspondingly
on the rise. This demands for autonomous systems that can
make appropriately conservative decisions when faced with
uncertainty in their environment and behavior. Mathematically
speaking, risk can be quantified in numerous ways, such as
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chance constraints [1] and distributional robustness [2]. How-
ever, applications in autonomy and robotics require more “nu-
anced assessments of risk” [3], motivating the need for risk-
averse safety analysis [4] and synthesis [5] for autonomous
systems (see an application to bipedal robots [6]).

Artzner et al. [7] characterized a set of natural properties
that are desirable for a risk measure, called a coherent risk
measure, and have obtained widespread acceptance in finance
and operations research, among other fields.

A popular model for representing sequential decision making
under uncertainty is a Markov decision processes (MDP) [8].
MDPs with coherent risk objectives were studied in [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], and [19]. In [9] and
[11], the authors proposed a sampling-based algorithm for find-
ing saddle point solutions using policy gradient methods. How-
ever, Tamar et al. [11] required the risk envelope appearing in
the dual representation of the coherent risk measure to be known
with an explicit canonical convex programming formulation.
While this may be the case for CVaR, mean-semideviation, and
spectral risk measures [12], such explicit form is not known for
general coherent risk measures, such as EVaR. Furthermore, it
is not clear whether the saddle point solutions are a lower bound
or upper bound to the optimal value. Saddle-point problems
are solved also in [13] to compute stochastic approximations to
risk-aware MDPs. Also, policy-gradient-based methods require
calculating the gradient of the coherent risk measure, which is
not available in explicit form in general. For the CVaR measure,
MDPs with risk constraints and total expected costs were studied
in [14] and [15] and locally optimal solutions were found via
policy gradients, as well. However, this method also leads to
saddle point solutions (which cannot be shown to be upper
bounds or lower bounds of the optimal value) and cannot be
applied to general coherent risk measures. In addition, because
the objective and the constraints are in terms of different coherent
risk measures, the authors assume there exists a policy that
satisfies the CVaR constraint (feasibility assumption), which
may not be the case in general. Following the footsteps of [16],
a promising approach based on approximate value iteration was
proposed for MDPs with CVaR objectives in [17]. A policy iter-
ation algorithm for finding policies that minimize total coherent
risk measures for MDPs was studied in [ 18] and a computational
nonsmooth Newton method was proposed in [18]. Similarly an
offline iterative algorithm was proposed also in [19].

When the states of the agent and/or the environment are not
directly observable, a partially observable MDP (POMDP) can
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be used to study decision making under uncertainty introduced
by the partial state observability [20]. POMDPs with coherent
risk measure objectives were studied in [21] and [22]. Despite the
elegance of the theory, no computational method was proposed
to design policies for general coherent risk measures. In [23], we
proposed a method for finding finite-state controllers (FSCs) for
POMDPs with objectives defined in terms of coherent risk mea-
sures, which takes advantage of convex optimization techniques.
However, the method can only be used if the risk transition
mapping is affine in the policy.

Summary of contributions: In this article, we consider MDPs
and POMDPs with both objectives and constraints in terms of
coherent risk measures. Our contributions are fourfold.

1) For MDPs, we use the Lagrangian framework and refor-
mulate the problem into a inf-sup problem. For Markov
risk transition mappings, we propose an optimization-
based method to design Markovian policies that lower
bound the constrained risk-averse problem.

2) For MDPs, we evince that the optimization problems
are in the special form of DCPs and can be solved by
the disciplined convex—concave programming (DCCP)
method. We also demonstrate that these results gener-
alize linear programs for constrained MDPs with total
discounted expected costs and constraints.

3) For POMDPs, we demonstrate that, if the coherent risk
measures can be defined as a Markov risk transition map-
ping, an infinite-dimensional optimization can be used to
design Markovian belief-based policies, which in theory
requires infinite memory to synthesize (in accordance
with classical POMDP complexity results).

4) For POMDPs with stochastic FSCs, we show that the
latter optimization converts to a (finite dimensional) DCP
and can be solved by the DCCP framework. We incorpo-
rate these DCPs in a policy iteration algorithm to design
risk-averse FSCs for POMDPs.

We assess the efficacy of the proposed method with numeri-
cal experiments involving conditional-value-at-risk (CVaR) and
entropic-value-at-risk (EVaR) risk measures.

Preliminary results on risk-averse MDPs were presented
in [24]. This article, in addition to providing detailed proofs and
new numerical analysis in the MDP case, generalizes [24] to
partially observable systems (POMDPs) with dynamic coherent
risk objectives and constraints.

The rest of this article is organized as follows. In the following
section, we briefly review some notions used in this article. In
Section ITI, we formulate the problem under study. In Section IV,
we present the optimization-based method for designing risk-
averse policies for MDPs. In Section V, we describe a policy
iteration method for designing finite-memory controllers for
risk-averse POMDPs. In Section VI, we illustrate the proposed
methodology via numerical experiments. Finally, Section VII
concludes this article.

Notation: We denote by R™ the n-dimensional Euclidean
space and N the set of nonnegative integers. Throughout
this article, we use bold font to denote a vector and (-)"
for its transpose, e.g., @ = (ay,...,a,)", withn € {1,2,...}.
For a vector a, we use a = (<X)0 to denote element-wise
nonnegativity (nonpositivity) and a = 0 to show all elements

of a are zero. For two vectors a,b € R™, we denote their inner
product by (a,b), ie., (a,b) = a'b. For a finite set A, we
denote its power set by 24, i.e., the set of all subsets of A.
For a probability space (wr,F,P) and a constant p € [1, 00),
Ly(wr,F,P) denotes the vector space of real valued random
variables ¢ for which E|c|P < co.

Il. PRELIMINARIES

In this section, we briefly review some notions and definitions
used throughout this article.

A. Markov Decision Processes

AnMDPisatuple M = (S, Act, T, ko) consisting of a set of
states S = {s1,..., 55/} of the autonomous agent(s) and world
model, actions Act = {1, ..., s} available to the agent,
a transition function T'(s;|s;, &), and ko describing the initial
distribution over the states.

This article considers finite MDPs, where S and Act are finite
sets. For each action the probability of making a transition from
state s; € S to state s; € S under action @ € Act is given by
T'(sj|s:i, ). The probabilistic components of an MDP must
satisfy the following:

{EseST(ﬂsi, a)=1 Vs;eS VaeAct

ESES '“;U(S) =1

B. Partially Observable MDPs

A POMDP is a tuple PM = (M, O, O) consisting of an
MDP M, observations O = {0y, ...,0/p|}, and an observation
model O(o | s). We consider finite POMDPs, where O is a finite
set. Then, for each state s;, an observation o € O is generated
independently with probability O(o|s;), which satisfies

D O(ols)=1 VseS.
00
In POMDPs, the states s € S are not directly observable. The
beliefs b € A(S), i.e., the probability of being in different states,
with A(S) being the set of probability distributions over S, for
all s € § can be computed using the Bayes’ law as follows:

ro(s)O(0o | s)

bole) = S k()0 [ ) M
0(0r | ) Cyes T(s | 5 ae)ber(s)
b = £ 2
L e W e 7 R
forallt > 1.

C. Finite-State Control of POMDPs

It is well established that designing optimal policies for
POMDPs based on the (continuous) belief states requires un-
countably infinite memory or internal states [25], [26]. This
article focuses on a particular class of POMDP controllers,
namely, FSCs.

A stochastic FSC for PM is given by the tuple G =
(G,wr, k), where G = {g1, 92, . - . , g|c|} is a finite set of inter-
nal states (I-states), wr : G x O — A(G x Act) is a function
of internal stochastic FSC states g and observation o, such that
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wr(gk, 0) is a probability distribution over G x Act. The next
internal state and action pair (g, «) is chosen by independent
sampling of wr(gk,0). By abuse of notation, wr(g;, &|gk, 0)
will denote the probability of transitioning to internal stochastic
FSC state g; and taking action «, when the current internal state
is g and observation o is received. k : A(S) — A(G) chooses
the starting internal FSC state gy, by independent sampling of
£(ko), given initial distribution k¢ of PM, and k(g|kp) will
denote the probability of starting the FSC in internal state g
when the initial POMDP distribution is xq-

D. Coherent Risk Measures

Consider a probability space (€2, F,P), a filtration JFy C
---Fn CF, and an adapted sequence of random vari-
ables (stage-wise costs) ¢;, t =0,..., N, where N € N>y U
{oo}. For t =0,...,N, we further define the spaces C; =
Lp(Q, F:,P),pe[1,00),Cen =C¢ x -+ x Cy,andC = Cp X
Cy x ---. We assume that the sequence c € C is almost
surely bounded (with exceptions having probability zero), i.e.,
max; ess sup |c;(w)| < oo.

In order to describe how one can evaluate the risk of subse-
quence ¢, - .., cy from the perspective of stage ¢, we require
the following definitions.

Definifion 1 (Conditional Risk Measure): A mapping p;.n :
Ci.n — C;, where 0 < t < N, is called a conditional risk mea-
sure, if it has the following monoticity property:

pen(€) < pun(c) Ve, Ve € Cpysuchthate < .

Definition 2 (Dynamic Risk Measure): A dynamic risk mea-
sure is a sequence of conditional risk measures pg.y : C.y —
Ct,t:{}:...,N.

One fundamental property of dynamic risk measures is their
consistency over time [18, Definition 3]. That is, if ¢ will be as
good as ¢’ from the perspective of some future time #, and they
are identical between time 7 and #, then ¢ should not be worse
than ¢’ from the perspective at time .

In this article, we focus on time consistent, coherent risk
measures, which satisfy four nice mathematical properties, as
defined below [12, p. 298].

Definifion 3 (Coherent Risk Measure): We call the one-step
conditional risk measures p; : C;1 1 +Ci, t=1,...,.N—1a
coherent risk measure if it satisfies the following conditions.

1) Convexity: pi(Ae+(1 —A))<Ape(e)+(1 —A)pe(c),
forall A € (0,1) and all ¢, ¢ € Cpy1.

2) Monotonicity: If ¢ < ¢’ then p;(c) < pi(c’) forall ¢, €
Ct+]_.

3) Translational invariance: p(c+ c') = ¢+ pe(c’) for all
ceCiandc € Ciyq.

4) Positive homogeneity: p;(Bc) = Bp;(c) forall ¢ € Cyy4
and 8 > 0.

We are interested in the discounted infinite horizon problems.
Let v € (0,1) be a given discount factor. For ¢ = 0,1,..., we
define the functional

pg,t(c()a- i i )= POt (Co,’}fcl,. i ,"ytct)

po(co+ p1(ver + pa (Y2 + - -

+pe1 (7 o1 + pe (Ver)) ).

Finally, we have total discounted risk functional p” :C = R
defined as

p'(¢) = lim pg ,(co, .-, cr)- ®3)

From [18, Th. 3], we have that p? is convex, monotone, and
positive homogeneous.

For details regarding different examples of coherent of risk
measures we consider in this article, i.e., CVaR and EVaR, please
refer to the Appendix.

11l. PROBLEM FORMULATION

Consider a stationary controlled Markov process {g;}, = 0,
1, ... (an MDP or a POMDP) with initial probability distribution
kp, wherein policies, transition probabilities, and cost functions
do not depend explicitly on time. Each policy = = {m}:°,
leads to cost sequences ¢; = c(g¢, o), t = 0,1,... and di =
di(gt,0¢),t =0,1,...,i=1,2,...,n.. Wedefine the dynamic
risk of evaluating the «-discounted cost of a policy m as

“4)

and the ~-discounted dynamic risk constraints of executing
policy  as

D;'(H‘D': :IT) = p’Y (d‘(qos aﬂ)! ds(Qla al)a as -) < .Bi

Jy (Ko, ™) = p" (c(qo, 0), c(q1, 1), - - .)

i =1y 2pemnme (D)
where p7 is defined in (3), qo ~ Kp, and 5 >0, 1 =1,
2,...,n.,are given constants. We assume that ¢(-, -) and d*(-, -),
1=1,2,...,n,, are nonnegative and upper bounded. For a

discount factor v € (0, 1), an initial condition ¢, and a policy
m, we infer from [18, Th. 3] that both J, (o, 7) and D; (ko,m)
are well-defined (bounded), if ¢ and d are bounded.

In this work, we are interested in addressing the following
problem.

Problem 1: For a controlled Markov decision process (an
MDP or a POMDP), a discount factor v € (0,1), and a total
risk functional J,, (o, ) as in (4) and total cost constraints (5),
where {p; }52, are coherent risk measures, compute

7" € argmin, J,(ko, ™)

subjectto D, (ko,m) = 3. (6)

We call a controlled Markov process with the “nested” ob-
jective (4) and constraints (5) a constrained risk-averse Markov
process.

For MDPs, the authors in [17] and [27] showed that such
coherent risk measure objectives can account for modeling errors
and parametric uncertainties. We can also interpret Problem 1
as designing policies that minimize the accrued costs in a risk-
averse sense! and at the same time ensuring that the system
constraints, e.g., fuel constraints, are not violated even in the
rare but costly scenarios.

'With the exception of conditional expectation as the coherent risk measure.
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Note that in Problem 1 both the objective function and the
constraints are in general nondifferentiable and nonconvex in
policy m (with the exception of total expected cost as the coherent
risk measure p” [28]). Therefore, finding optimal policies in
general may be hopeless. Instead, we find suboptimal polices by
taking advantage of a Lagrangian formulation and then using an
optimization form of Bellman’s equations.

Next, we show that the constrained risk-averse problem
is equivalent to a nonconstrained inf-sup risk-averse problem
thanks to the Lagrangian method.

Proposition 1: Let J, (ko) be the value of Problem 1 for a
given initial distribution g and discount factor . Then, (i) the
value function satisfies

Jy (ko) = infsup L. (7, L) (7
T -0
where A is the vector of the Lagrange multipliers and
Ly(m, 1) = Jy(ko,7) + (A, (Dy(ko,7) = B))  (8)

is the Lagrangian function.

(ii) Furthermore, a policy =" is optimal for Problem 1, if and
only if J, (ko) = supy.o Ly (7", 1).

Proof: (i) If for some 7 Problem 1 is not feasible, then
sup; g L (m, A) = co. In fact, if the ith constraint is not sat-
isﬁed_, iex D;‘;, > (', we can achieve the latter supremum by
choosing A; — oo, while keeping the rest of A’s constant or
zero. If Problem 1 is feasible for some 7, then the supremum is
achieved by setting A = 0. Hence, L, (A, ) = J,(xo, 7) and

infsup L, (m,A) = J, (Ko, ™)
T A0

inf
m: Dy (ro,m)<P
which implies (i).
(ii) If 7 is optimal, then, from (7), we have

Jy (ko) = sup L (7", &).
-0

Conversely, if Jy (ko) = sup,; o L(w,’A) for some 7', then
from (7), we have inf; sup,, o Ly(m, A) = sup,, g L (7,  A).
Hence, 7’ is the optimal policy. |

IV. CONSTRAINED RISK-AVERSE MDPs

Atany time ¢, the value of p; is J;-measurable and is allowed
us to depend on the entire history of the process {sg, s1,---}
and we cannot expect to obtain a Markov optimal policy [29],
[30]. In order to obtain Markov policies, we need the following
property [18].

Definition 4 (Markov Risk Measure): Let m,n € [1,00)
such that 1/m+1/n=1 and P={peL,(S,2°P)|
Y eesP(s)P(s') =1, p>0}. A one-step conditional risk
measure p; : Cry1 — C; is aMarkov risk measure with respect to
the controlled Markov process {s; },t = 0,1, .. .,if there exists a
risk transition mapping o : £,,(S,25,P) x S x P — R such
that for all v € £,,(S,25,P) and oy € 7(s;), we have

)]

pe(v(se41)) = oe(v(Se41), Ser P(Se41]5¢, )

where p : § x Act — P is called the controlled kernel.
In fact, if p; is a coherent risk measure, o; also satisfies the
properties of a coherent risk measure (Definition 3). In this

article, since we are concerned with MDPs, the controlled kernel
is simply the transition function 7"

Assumption 1: The one-step coherent risk measure p; is a
Markov risk measure.

The simplest case of the risk transition mapping is in the con-
ditional expectation case pg(v(sty1)) = E{v(sty1) | st 01},
iie.,

o {v(st41), 5e, P(Se4158, 1)}

= E{v(st41) | 81,4}
== Z v(se41)T (Se41 | 8¢, ).

SH-IES

(10)

Note that in the total discounted expectation case o is a linear
function in v rather than a convex function, which is the case
for a general coherent risk measures. For example, for the CVaR
risk measure, the Markov risk transition mapping is given by

o{v(ss41), s, P(St41]5¢, 1) }

C+2 Y (@lsern) = Oy Tlotnn | t,0)

8168

= inf
CeER

where (-)4 = max{-,0} is a convex function in v.

If o is a coherent Markov risk measure, then the Markov
policies are sufficient to ensure optimality [18].

In the next result, we show that we can find a lower bound to
the solution to Problem 1 via solving an optimization problem.
We later show that this optimization problem has some nice
properties that can be used to synthesize risk-averse policies.

Theorem 1: Consider an MDP M with the nested risk ob-
jective (4), constraints (5), and discount factor v € (0,1). Let
Assumption 1 hold and p;, £ = 0,1, ... be coherent risk mea-
sures as described in Definition 3. Then, the solution (V7,1%)
to the following optimization problem (Bellman’s equation):

sup (HOaV’Y) - (JL::@)
Vo, A-0

subject to
V,i(s) < e(s,a) + (A, d(s,a))

+90{V4(s'),s,p(s'|s,a)} Vse€S VaeAct
(1)

satisfies

Jy (ko) = (Ko, V) — (A%, B). (12)

Proof: From Proposition 1, we have known that (7) holds.
Hence, we have

Jy (ko) = il;fi‘ig (Jy (Ko, m) + (A, (Do (Ko, ™) — B)))
= it;fig%) (Jy (K0, ) + (A, Dy (K0, m)) — (X, 8))
= it;fig%) (P"(e) + (A, p"(d)) — (1, B))

= inf sup (P"(c) +p" (A, d)) — (A, B))

Authonzed licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY . Downloaded on February 04,2024 at 20:05:14 UTC from |EEE Xplore. Restrictions apply.



AHMADI et al.: RISK-AVERSE DECISION MAKING UNDER UNCERTAINTY

59

> infsup (p"(c + (A,d)) — (4, B))
T A-0

> supinf (p"(c+ (A, d)) — (A, B)) (13)
A-0 T

wherein the fourth, fifth, and sixth inequalities above, we used

the positive homogeneity property of p”, subadditivity property

of p* [7, Proposition 2.1], and the minimax inequality, respec-

tively. Since (A, ) does not depend on , to find the solution

the infimum it suffices to find the solution to

inf 57 (2)

where & = ¢ + A/d. The value to the abovementioned optimiza-
tion can be obtained by solving the following Bellman equa-
tion [18, Th. 4]:

Va(s) = inf (&(s,0) +70{V5(s), 5,p(s'ls, @)}).

Next, we show that the solution to the abovementioned Bellman
equation can be alternatively obtained by solving the convex
optimization

sup (ko, V)
Vy
subject to
Vy(s) < &(s, ) +90{Vs(s), 5,p(sls, )} Vs, a.
Define

Do = &(s, (s)) + 70 {v(s"), 5, p(s'|s, 7(s))}

and Dv := mingeaca(€(s, @) + yo{v(s'), s, p(s'|s, a)}) for all
s € 8. From [18, Lemma 1], we infer that ©,. and © are nonde-
creasing; i.e., for v < w, we have D ;v < D w and Dv < Dw.
Therefore, if V, < D,V,, then DV, < D,(D,V,), which
implies that V,, < D,V, < D.(D,V,) = D2V, By repeated
application of © ., we obtain

Vo S0 S VS —"1

(14)

Vse &S

Note that by definition of D (-), any feasible solution to (14)
must satisfy V, < ©;V, and, hence, must satisfy V, < V,;.
Thus, given that all entries of ko are positive, V.7 is the optimal
solution to (14). Substituting (14) back in the last inequality
in (13) yields the result. ]

Once the values of 1" and V', are found by solving optimiza-
tion problem (11), we can find the policy as

m'(s) € argmingeaq (<(s,@) + (A", d(s,))

+70{V; (), 5,p(s |5, @)})-

One interesting observation is that if the coherent risk measure
p is the total discounted expectation, Theorem 1 can be sim-
plified to the following Corollary, which was formulated in [28]
for constrained MDPs using properties of Markov processes.

Corollary 1: Let the assumptions of Theorem 1 hold and let
pe(-) = E(-|st, 1), t = 1,2, .. .. Then, the solution (V7,1%) to
optimization (11) satisfies

Iy (o) = (Ko, V5) — (A%, B).

15)

Furthermore, with p;(-) = E(:|ss, ), t = 1,2, ..., optimiza-
tion (11) becomes a linear program.

Proof: From the derivation in (13), we observe the two
inequalities are from the application of (a) the subadditivity
property of p” and (b) the max-min inequality. Next, we show
that in the case of total expectation both of these properties lead
to an equality.

a) Subadditivity property of p”: for total expectation, we
have

Y Er vtet+) EX A d) =) Erai(cH1, dy)).
i I3 t

Thus, equality holds.

b) Max-min inequality: in the g (-) = Y, Ef +*(-) case,
both the objective function and the constraints are linear
in the decision variables 7 and A. Therefore, the sixth line
in (13) reads as

infsup (p"(c+ (A,d)) — (X,8))
T A-0

—mfsup (Z Eg (e + (A, de)) — (Lﬁ)) - (16)
= ¢

Since the expression inside parentheses above is convex in
T (IEIED is linear in the policy) and concave (linear) in A. From
Minimax Theorem [31], we have that the following equality
holds:

inf sup (Z ]E::o")ft(ct +(X,d¢)) — (1, JB))

T =0

A0 T

= sup inf (Z EX Y (ce+ (A, de)) — (ln@)) :

Furthermore, from (10), we see that o is linear in v for total
expectation. Therefore, the constraint in (11) is linear in V,
and A. Since (Ko, V) — (X, 3) is also linear in V,s and As,
optimization (11) becomes a linear program in the case of total
expectation coherent risk measure. |

In [24], we presented a method based on difference convex
programs to solve (11), wherein p? is an arbitrary coherent
risk measure and we described the specific structure of the
optimization problem for conditional expectation, CVaR, and
EVaR. In fact, it was shown that (11) can be written in a standard
DCP [32] format as

S fod) — (V)

subject to

Fi(V5) —g1(X) —g2(V,) <0 Vs, a.

DCPs arise in many applications, such as feature selection in
machine learning [33] and inverse covariance estimation in
statistics [34]. Although DCPs can be solved globally [32],
e.g., using branch and bound algorithms [35], a locally opti-
mal solution can be obtained based on techniques of nonlinear
optimization [36] more efficiently. In particular, in this work,
we use a variant of the convex—concave procedure [37], [38],
wherein the concave terms are replaced by a convex upper

)
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bound and solved. In fact, the DCCP [38] technique linearizes
DCP problems into a (disciplined) convex program (carried out
automatically via the DCCP Python package [38]), which is then
converted into an equivalent cone program by replacing each
function with its graph implementation. Then, the cone program
can be solved readily by available convex programming solvers,
such as CVXPY [39].

We end this section by pointing out that solving (11) using
the DCCP method only finds the (local) saddle points to opti-
mization problem (11). Nevertheless, every saddle point to (11)
satisfies (12) (from Theorem 1). In fact, every saddle point is a
lower bound of the optimal value of Problem 1.

V. CONSTRAINED RISk-AVERSE POMDPs

So far, we considered MDPs where information about the
states are directly observable. In this section, we propose a policy
synthesis methodology for MDPs with partial state information.
In fact, for POMDPs, we can find a lower bound to the solution
to Problem 1 via solving an infinite-dimensional optimization
problem. Note that a POMDP is equivalent to a belief MDP {b; },
t=1,2,..., where b; is defined in (2).

Theorem 2: Consider a POMDP P M with the nested risk ob-
jective (4) and constraint (5) with v € (0, 1). Let Assumption 1
hold, let p;, ¢ = 0, 1, ... be coherent risk measures, and suppose
c(-,-) and {d'(-,-)};; be nonnegative and upper bounded.
Then, the solution (1, V) to the following Bellman’s equation:

sup (bOaV’Y) - (ln@)
Voa=0

subject to
V,(b) < (b, o) + (A, d(b, a))

+yo{V, ('), b,p(H|b,a)} Vbe A(S) Va € Act
(18)

where c¢(b,a) =3, sc(s,a)b(s) and d(b,a)=3)" s

d(s, a)b(s) satisfies

Jy(bo) = (bo, V7)) — (A%, B). (19)
Proof: Note that a POMDP can be represented as an MDP
over the belief states (2) with initial distribution (1). Hence, a

POMDP is a controlled Markov process with states b € A(S),
where the controlled belief transition probability is described as

p(t' | b,a) = p(¥' | b,0,@)p(o| b,a)

oc@

o ;o O(O | s, 0:) ZS’ES T(S | 3:! a)b(s’)
=2 (b 500 15:0) > s T( [ 5, a)b(s'))

os@
x Y O(o|s,@) Y T(s|s " a)b(s")
se8S s"eS
with
OB {1 o
0 otherwise.

The rest of the proof follows the same footsteps on Theorem 1
over the belief MDP with p(¥'|b, @) as defined above. |

Unfortunately, since b € A(S) and hence V,, : A(S) — R,
optimization (18) is infinite-dimensional and we cannot solve it
efficiently.

If the one-step coherent risk measure p; is the total discounted
expectation, we can show that optimization problem (18) sim-
plifies to an infinite-dimensional linear program and equality
holds in (19). This can be proved following the same lines as the
proof of Corollary 1 but for the belief MDP. Hence, Theorem 2
also provides an optimization based solution to the constrained
POMDP problem.

A. Risk-Averse FSC Synthesis Via Policy Iteration

In order to synthesize risk-averse FSCs, we employ a policy
iteration algorithm. Policy iteration incrementally improves a
controller by alternating between two steps: Policy evaluation
(computing value functions by fixing the policy) and policy im-
provement (computing the policy by fixing the value functions),
until convergence to a satisfactory policy [40]. For a risk-averse
POMDP, policy evaluation can be carried out by solving (18).
However, as mentioned earlier, (18) is difficult to use directly
as it must be computed at each (continuous) belief state in the
belief space, which is uncountably infinite.

In the following, we show that if instead of considering
policies with infinite-memory, we search over finite-memory
policies, then we can find suboptimal solutions to Problem 1
that lower bound .J, (ko). To this end, we consider stochastic
but finite-memory controllers as described in Section II-C.

Closing the loop around a POMDP with an FSC G induces a
Markov chain. The global Markov chain MC?XMG’Q (or simply
MC, where the stochastic FSC and the POMDP are clear from
the context) with execution {[so, gol, [s1,91],---}, [st, g¢) €
S x G. The probability of initial global state [sg, go] is

tinit ([0, go]) = Ko(s0)r(golro)-
The state transition probability, T™, is given by
TM ([st+1,9e41] [s2, :])

=" 3" O(olst)wr(ges1, alge, )T (ses1lse, ).

0@ acAct

B. Risk Value Function Computation

Under an FSC, the POMDP is transformed into a Markov
chain M?‘:’éxg with design probability distributions wr and &.
The closed-loop Markov chain Mgféxg is a controlled Markov
process with {g:} = {[s¢, g:]}, t = 1,2, . ... In this setting, the
total risk functional (4) becomes a function of ¢;,; and FSC G,
i.e.,

Iy (tinit, G) = p7 (c([s0, 90], @0), e([s1, 91], 1), - -..)
(20)

S0 ~ Ko, go ~ K

where a;s and g;s are drawn from the probability distribution
wr(ges+1, @t | gt,0¢). The constraint functionals D;(:,m,g),
1 =1,2,...,n, can also be defined similarly.
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Let .J, (tisi) be the value of Problem 1 under an FSC G.
Then, it is evident that J,(bg) > J, (¢init), since FSCs restrict
the search space of the policy . That is, they can only be as
good as the (infinite-dimensional) belief-based policy 7(b) as
|G| — oo (infinite-memory).

Risk value function optimization: For POMDPs controlled
by stochastic FSCs, the dynamic program is developed in the
global state space S x G. From Theorem 1, we see that for a
given FSC, G, and POMDP P M, the value function V., 1([s, g])
can be computed by solving the following finite dimensional
optimization:

sup  {Linit, Vy,m) — (A, B)
Vo MAED
subject to
Vym(s.gl) < D pla| 9)é([s, g], @)
acAct
+0 {Va,m([s g): 5,9}, T (s, ] |[s, 9]) }
VsesS Vgedld
(21)
where  p(a| 9)=3_ g ocowr (9 @] g,0)0(0lg’), and
é([s, g,
a) = c([s,g], @) + (X,d([s,g],a)). Then, the solution
(V.M A7) satisfies
Iy (tinit) > (Linit, VY 1) — (A%, B)- (22)

Note that since p” is a coherent, Markov risk measure (As-
sumption 1), v — o(v,-,-) is convex (because o is also a
coherent risk measure). In fact, optimization problem (21) is
indeed a DCP in the form of (17), where we should replace V,
with V, xq and set fo(A) = (X, 8), 9o(Vy 1) = (tinits Viy 1)
H(Vym) =Vom, g1(X) = Ygena (@ | 9)&([s, g], @), and
92(Vym) =70 (Va5 )

The abovementioned optimization is in standard DCP form
because fj and g; are convex (linear) functions of A and gg, f1,
and g» are convex functions in V,, 4.

Solving (17) gives a set of value functions V, s4. In the
following section, we discuss how to use the solutions from this
DCP in our proposed policy iteration algorithm to sequentially
improve the FSC parameters wr.

C. I|-States Improvement

Let V., 1(g) € RIS! denote the vectorized Vi, p([s, g]) in
s. We say that an I-state g is improved, if the tunable FSC
parameters associated with that I-state can be adjusted so that
17,;1 (g) increases.

To begin with, we compute the initial I-state by finding the
best valued I-state for a given initial belief, i.e., £(ginit) = 1,
where

Ginit = argmax <bmn, V’y,M(Q)) .
geiG

After this initialization, we search for FSC parameters wr that
result in an improvement.

I-state improvement optimization: Given value functions
Vy.m([s, g]) forall s € Sand g € G and Lagrangian parameters
A, for every I-state g, we can find FSC parameters wr that result
in an improvement by solving the following optimization:

max €
E)OSWT(gsJalgso)

subject to
Improvement Constraint:
Vym(ls,g]) +e<rhs.of (21) VseS
Probability Constraints:

>

(g, a)eGxAct

wr(g,alg,0)=1 VYoeO

wr(g/a|g,0)>0 VYdeGacActocO. (23)

Note that the abovementioned optimization searches for wr
values that improve the I-state value vector V’;‘. m(g) by maxi-
mizing the auxiliary decision variable e.

Optimization problem (23) is in general nonconvex. This can
be inferred from the fact that, although the first term in the r.h.s.
of (21) is linear in wr, its convexity or concavity is not clear in
the o term for a general coherent risk measure. Fortunately, we
can prove the following result, where in we show that for several
examples of coherent risk measures (23) either becomes a linear
program or a convex optimization problem.

Proposition 2: Let V., 5 and A be given. Then, the I-state
improvement optimization (23) is a linear program for condi-
tional expectation and CVaR risk measures. Furthermore, (23)
is a convex optimization for EVaR risk measure.

Proof: Please refer to the Appendix. |

If no improvement is achieved by optimization (23), i.e.,
e = 0, for fixed number of internal states |G|, we can increase | G|
by one following the footsteps of the bounded policy iteration
method proposed in [23, Sec. V.B].

D. Policy lteration Algorithm

Algorithm 1 outlines the main steps in the proposed policy
iteration method for the constrained risk-averse FSC synthesis.
The algorithm has two distinct parts. First, for fixed parameters
of the FSC (wr), policy evaluation is carried out, in which
V,.m([s, g]) and A are computed using DCP (21) (Steps 2, 10,
and 18). Second, after evaluating the current value functions and
the Lagrange multipliers, an improvement is carried out either
by changing the parameters of existing I-states via optimiza-
tion (23), or if no new parameters can improve any I-state, then
a fixed number of I-states are added to escape the local minima
(Steps 14—17) based on the method proposed in [23, Sec. V.B].

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the proposed methodology with
numerical experiments. In addition to the traditional total expec-
tation, we consider two other coherent risk measures, namely,
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Algorithm 1: Policy Iteration For Synthesizing Constrained
Risk-Averse FSC.

Input: (a) An initial feasible FSC, G. (b) Maximum size of
FSC Nz (€) Npew < Npar number of I-states
1: improved + True
2: Compute the value vectors, 177 .m and Lagrange
multipliers A, based on DCP (21).
3: while |G| < N,,,, and improved = T'rue do

4: improved + False
5: for all I-states g € G do
6: Solve the I-State Improvement Optimization (23).
7 if I-State Improvement Optimization results in € > 0
then
8: Replace the parameters wr for I-state g
0: improved < True
10: Compute the value vectors, IT’,Y, M and Lagrange

multipliers A, based on optimization (21).
11:  if smproved = False and |G| < N,,,, then
12: Nadded — 0
13: N} o +— min(Npew, Niaz — |G|)
14:  Try to add N}, I-state(s) to G.
153 Nadded < actual number of I-states added in
previous step.
16: if ngdgdeq > 0 then
17: improved + True
18: Compute the value vectors, V’v, M and Lagrange
multipliers A, based on optimization (21).
Output: G

o H i H ; H i i
i e e : PP PP Ammmen pe===— H
: : . 0.05 | 005 1005 | .
fenenctoo.. SR Lo
E : 0.15 : : 0.05 ! E
N < " " 2 b L} .
ﬁg——ﬁl 7 0.05 0.05 0.05
0.15
\
L. .
W
M
Fig. 1. Grid-world illustration for the rover navigation example. Blue

cells denote the obstacles and the yellow cell denotes the goal.

CVaR and EVaR. All experiments were carried out on a Mac-
Book Pro with 2.8 GHz Quad-Core Intel Core i5 and 16 GB
of RAM. The resultant linear programs and DCPs were solved
using CVXPY [39] with DCCP [38] add-on in Python.

A. Rover MDP Example Set up

An agent (e.g., a rover) must autonomously navigate a
2-dimensional terrain map (e.g., Mars surface) represented
by an M x N grid with 0.25M N obstacles as shown in
Fig. 1. The state space is given by S = {s;|i =z + My,z €

{1,...,M},y € {1,...,N}}. The action set available to the
robot is Act = {E, W, N, S, NE, NW, SE, SW}. The state
transition probabilities for various cell types are shown for
actions E in Fig. 2, i.e., the agent moves to the grid implied
by the action with 0.7 probability but can also move to any
adjacent ones with 0.3 probability. Partial observability arises
because the rover cannot determine obstacle cell location from
measurements directly. The observation space is O = {o;]i =
4+ My,ze{l,..., M},ye{1,...,N}}. Once at an adja-
cent cell to an obstacle, the rover can identify an actual obstacle
position (dark green) with probability 0.6, and a distribution over
the nearby cells (light green).

Hitting an obstacle incurs the immediate cost of 10, while the
goal grid region has zero immediate cost. Any other grid has a
cost of 2 to represent fuel consumption. The discount factor is
set to v = 0.95.

The objective is to compute a safe path that is fuel efficient,
i.e., solving Problem 1. To this end, we consider total expecta-
tion, CVaR, and EVaR as the coherent risk measures.

Once a policy is calculated, as a robustness test, inspired
by [17], we included a set of single grid obstacles that are
perturbed in a random direction to one of the neighboring grid
cells with probability 0.3 to represent uncertainty in the terrain
map. For each risk measure, we run 100 Monte Carlo simulations
with the calculated policies and count failure rates, i.e., the
number of times a collision has occurred during a run.

B. MDP Results

To evaluate the technique discussed in Section IV, we assume
that there is no partial observation. In our experiments, we
consider four grid-world sizes of 10 x 10, 15 x 15, 20 x 20,
and 30 x 30 corresponding to 100, 225, 400, and 900 states,
respectively. For each grid-world, we randomly allocate 25%
of the grids to obstacles, including 3, 6, 9, and 12 uncertain
(single-cell) obstacles for the 10 x 10, 15 x 15, 20 x 20, and
30 x 30 grids, respectively. In each case, we solve DCP (11)
(linear program in the case of total expectation) with |S||Act| =
MN x 8 = 8M N constraints and M N + 2 variables (the risk
value functions V.,s, Langrangian coefficient A, and { for CVaR
and EVaR). In these experiments, we set € = 0.2 for CVaR and
EVaR coherent risk measures to represent risk-averse policies.
The fuel budget (constraint bound 3) was set to 50, 10, 200,
and 600 for the 10 x 10, 15 x 15, 20 x 20, and 30 x 30
grid-worlds, respectively. The initial condition was chosen as
ko(sap) = M — 1, i.e., the agent starts at the second left most
grid at the bottom.

A summary of our numerical experiments is provided in
Table 1. Note the computed values of Problem 1 satisfy E(c) <
CVaR.(c) < EVaR.(¢), which is consistent with the fact that
EVaR is a more conservative coherent risk measure than
CVaR [41].

For total expectation coherent risk measure, the calculations
took significantly less time, since they are the result of solving
a set of linear programs. For CVaR and EVaR, a set of DCPs
were solved. CVaR calculation was the most computationally
involved. This observation is consistent with [42], where it was
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Fig. 2.

TABLE |
COMPARISON BETWEEN TOTAL EXPECTATION, CVAR, AND EVAR
COHERENT RISK MEASURES

(M xN)p,  Jolko) Ti&’;“;s] #U0O. FR
(10 x 10)g 912 08 3 1%
(15 x 15)g 1253 09 6 23%
(20 x 20)g 1993 17 9 3%
(30 x 30)g 2730 24 12 41%
(10 x 10)cvirg , >1204 58 3 8%
(15 X 15)cving , >1483 93 6 18%
(20 X 20)cvigg , 2019 1034 9 19%
(30 x 30)cvary , 23495 142 12 32%
(10 x 10)cvirg , 1445 62 3 3%
(15 X 15)cvirg , 1782 90 6 5%
(20 X 20)cvirg , 22563 111 9 13%
(30 x 30)cvir, , >4483 1525 12 2%
(10 x 10)pvary , 1453 48 3 4%
(15 x 15)eviry » 1636 88 6 11%
(20 x 20)pvar, , >29.89 105 9 15%
(30 x 30)Evarg , =54.13 1499 12 12%
(10 X 10)pyery , 1803 58 3 1%
(15 x 15)pvirs , 2110 87 6 3%
(20 X 20)vir, , >2408 102 9 7%
(30 x 30)pvar, , >63.04 1425 12 10%

(M * N),, denotes experiments with grid-world of size

M x N and one-step coherent risk measure pt. J-(rg) is

the valued of the constrained risk-averse problem
(Problem 1). Total Time denotes the time taken by the
CVXPY solver to solve the associated linear programs

or DCPs in seconds. # U.0. denotes the number of single
grid uncertain obstacles used for robustness test. FR.
denotes the failure rate out of 100 Monte Carlo simulations
with the computed policy.

discussed that EVaR calculation is much more efficient than
CVaR. Note that these calculations can be carried out offline
for policy synthesis and then the policy can be applied for risk-
averse robot path planning.

The table also outlines the failure ratios of each risk mea-
sure. In this case, EVaR outperformed both CVaR and total
expectation in terms of robustness, which is consistent with the
fact that EVaR is more conservative. In addition, these results
imply that, although discounted total expectation is a measure
of performance in high number of Monte Carlo simulations, it
may not be practical to use it for mission-critical decision making

Results for the MDP example with total expectation (left), CvaR (middle), and EVaR (right) coherent risk measures. The goal is located at
the yellow cell. Notice the 9 single cell obstacles used for robustness test.

under uncertainty scenarios. CVaR and especially EVaR seem
to be a more reliable metric for performance in planning under
uncertainty.

For the sake of illustrating the computed policies, Fig. 3
depicts the results obtained from solving DCP (11) for a 30 x 30
grid-world. The arrows on grids depict the (sub)optimal actions
and the heat map indicates the values of Problem 1 for each
grid state. Note that the values for EVaR are greater than those
for CVaR and the values for CVaR are greater from those of
total expectation. This is in accordance with the theory that
E(¢) < CVaR.(c) < EVaR.(c) [41]. In addition, by inspecting
the computed actions in obstacle dense areas of the grid-world
(for example, the middle right area), we infer that the actions
in more risk-averse cases (especially, for EVaR) have a higher
tendency to steer the agent away from the obstacles given the
diagonal transition uncertainty as depicted in Fig. 2; whereas,
for total expectation, the actions are merely concerned about
reaching the goal.

C. POMDP Results

In our experiments, we consider two grid-world sizes of
10 x 10 and 20 x 20 corresponding to 100 and 400 states,
respectively. For each grid-world, we allocate 25% of the grid
to obstacles, including 8, and 16 uncertain (single-cell) obstacles
for the 10 x 10 and 20 x 20 grids, respectively. In each case, we
run Algorithm 1 for risk-averse FSC synthesis with Ny, =6
and a maximum number of 100 iterations were considered.

In these experiments, we set the confidence level € = 0.15
for CVaR and EVaR coherent risk measures. The fuel budget
(constraint bound ) was set to 50 and 200 for the 10 x 10
and 20 x 20 grid-worlds, respectively. The initial condition was
chosen as kg (spr) = 1, 1.e., the agent starts at the right most grid
at the bottom.

A summary of our numerical experiments is provided in
Table I1. Note the computed values of Problem 1 satisfy E(c) <
CVaR,(c) < EVaR.(c) [41].

For total expectation coherent risk measure, the calculations
took significantly less time, since they are the result of solving
a set of linear programs. For CVaR and EVaR, a set of DCPs
were solved in the risk value function computation step. In
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Fig. 3.

Results for the POMDP example with total expectation (left), CVaR (middle), and EVaR (right) coherent risk measures. The goal is located

at the yellow cell. Notice the nine single cell obstacles used for robustness test.

TABLE I
COMPARISON BETWEEN TOTAL EXPECTATION, CVAR, AND EVAR
COHERENT RISK MEASURES

(M x N)p,  Joyltine) AIT [s] # U.O. FR.
(10 x 10)g 1053 02 3 15%
(20 x 20)g 19.98 0.3 9 37%
(10 X 10)cvarg, =1102 29 3 9%
(20 x 20)cvamy , 22019 75 9 2%
(10 X 10)cvery , 21653 3.1 3 4%
(20 x 20)cvar, , 22492 7.6 9  16%
(10 x 10)gvar, , =1502 33 3 5%
(20 x 20)Evarg , =2342 99 9 11%
(10 x 10)gvizg , =1962 39 3 2%
(20 x 20)gviR, , 22936 9.7 9 6%

(M x N)p, denotes experiments with grid-world of size
M x N and one-step coherent risk measure p¢. Joy (Linit)
is the valued of the constrained risk-averse POMDP
problem (Problem 1). AIT denotes the average time
spent for each iteration of Algorithm 1. # U.O. denotes
the number of single grid uncertain obstacles used for
robustness test. F.R. denotes the failure rate out of 100
Monte Carlo simulations with the computed policy.

the I-state improvement step, a set of linear programs were
solved for CVaR and convex optimizations for EVaR. Hence,
EVaR calculation was the most computationally involved in this
case.

The table also outlines the failure ratios of each risk measure.
In this case, EVaR outperformed both CVaR and total expec-
tation in terms of robustness, tallying with the fact that EVaR
is conservative. In addition, these results suggest that, although
discounted total expectation is a measure of performance in high
number of Monte Carlo simulations, it may not be practical
to use it for real-world planning under uncertainty scenarios.
CVaR and especially EVaR seem to be a more reliable metric
for performance in planning under uncertainty.

For the sake of illustrating the computed policies, Fig. 3
depicts the results obtained from solving (21) for a 20 x 20
grid-world. The arrows on grids depict the (sub)optimal actions
and the heat map indicates the values of (21) for each grid
state. Note that the values for EVaR are greater than those
for CVaR and the values for CVaR are greater from those of
total expectation. This is in accordance with the theory that
E(e) < CVaR.(c) < EVaR.(c) [41].

Moreover, for the 20 x 20 grid-world with EVaR coherent
risk measure, Fig. 4 depicts the evolution of the number of FSC
I-states |G| and the lower bound on the optimal value of Problem
1, J; (tinit), with respect to the iteration number of Algorithm 1.

0 20 40 60 80 100
Number of Iterations

Fig. 4. Evolution of the lower bound and the number of i-states with
respect to the number of iterations of Algorithm 1 for the 20 x 20 grid-
world and EVaR coherent risk measure.

We can see that as the number of I-states increase, the lower
bound is improved.

VIl. CoNCLUSION

We proposed an optimization-based method for designing
policies for MDPs and POMDPs with coherent risk measure
objectives and constraints. We showed that such value function
optimizations are in the form of DCPs. In the case of POMDPs,
we proposed a policy iteration method for finding suboptimal
FSCs that lower bound the constrained risk-averse problem and
we demonstrated that dependent on the coherent risk measure of
interest the policy search can be carried out via a linear program
or a convex optimization. Numerical experiments were provided
to show the efficacy of our approach. In particular, we showed
that considering coherent risk measures lead to significantly
lower collision rates in Monte Carlo simulations in navigation
problems.

In this work, we focused on discounted infinite horizon
risk-averse problems. Future work will explore other cost cri-
teria [43]. The interested reader is referred to our preliminary
results on total cost risk-averse MDPs [44], where in Bellman’s
equations for the risk-averse stochastic shortest path problem are
derived. Expanding on the latter work, we will also explore high-
level mission specifications in terms of temporal logic formulas
for risk-averse MDPs and POMDPs [45], [46]. Another area
for more research is concerned with receding-horizon motion
planning under uncertainty with coherent risk constraints [47],
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[48], with particular application in robot exploration in un-
structured subterranean environments [49] (also see works on
receding horizon path planning where the coherent risk measure
is in the total cost [50], [51] rather than the collision avoidance
constraint).

APPENDIX

A. Examples of Coherent Risk Measures

In this Appendix, we briefly review three examples of coher-
ent risk measures that will be used in this article.

Total conditional expectation: The simplest risk measure is
the total conditional expectation given by

pe(ce1) =Eleer1 | F] (24)
It is easy to see that total conditional expectation satisfies the
properties of a coherent risk measure as outlined in Definition 3.
Unfortunately, total conditional expectation is agnostic to real-
ization fluctuations of the random variable ¢ and is only con-
cerned with the mean value of ¢ at large number of realizations.
Thus, it is a risk-neutral measure of performance.

CVaR: Let c € C be a random variable. For a given confi-
dence level € € (0, 1), value-at-risk (VaR.) denotes the (1 — ¢)-
quantile value of the random variable ¢ € C. Unfortunately,
working with VaR for non-normal random variables is nu-
merically unstable and optimizing models involving VaR is
intractable in high dimensions [52].

In contrast, CVaR overcomes the shortcomings of VaR.
CVaR with confidencelevel ¢ € (0, 1) denoted CVaR. measures
the expected loss in the (1 — )-tail given that the particular
threshold VaR, has been crossed, i.e., CVaR,(c) = E[c| ¢ >
VaR. (c)]. An optimization formulation for CVaR was proposed
in [52]. That is, CVaR; is given by

pi(ce+1) = CVaR.(ce11)

= inf (c + 2E (e — O+ | ﬂ]) 25)

where (), = max{-,0}. A value of ¢ — 1 corresponds to a
risk-neutral case, i.e., CVaR;(c) = E(c); whereas, a value of
& — 0 is rather a risk-averse case, i.e., CVaRgy(c) = VaRy(c) =
ess inf(¢) [53]. Fig. 5 illustrates these notions for an example ¢
variable with distribution p(c).

EVaR: Unfortunately, CVaR ignores the losses below the VaR
threshold. EVaR is the tightest upper bound in the sense of
Chernoff inequality for VaR and CVaR and its dual represen-
tation is associated with the relative entropy. In fact, it was
shown in [54] that EVaR. and CVaR. are equal only if there
are no losses (¢ — —oco) below the VaR. threshold. In addition,
EVaR is a strictly monotone risk measure; whereas, CVaR is
only monotone [42]. EVaR. is given by

eSet+1 5
pulecss) = int (log (w) /c) s

p(c)
- - Probability &
\-A,\‘\ .
E(e) VaR.(c)CVaR.(c) EVaR.(c)
Fig. 5. Comparison of the mean, VaR, and CVaR for a given confi-

dence = € (0,1). The axes denote the values of the stochastic variable
c and its probability density function p(c). The shaded area denotes the
%e of the area under p(c). The expected cost [E(c) is much smaller than
the worst case cost. VaR gives the value of ¢ at the (1 — =)-tail of the
distribution. But, it ignores the values of ¢ with probability below . CVaR
is the average of the values of VaR with probability less than = (average
of the worst-case values of ¢ in the (1 — &) tail of the distribution).

Similar to CVaR,, for EVaR., € — 1 corresponds to a risk-
neutral case; whereas, € — 0 corresponds to a risk-averse case.
In fact, it was demonstrated in [41, Proposition 3.2] that
lim._,o EVaR.(c) = ess inf(c).

B. Proof of Proposition 2

We present different forms of the improvement constraint
in (23) for different risk measures. Note that the rest of the con-
straints and the cost function are linear in the decision variables
€ and wr. The improvement constraint in (23) is linear in e.
However, its convexity or concavity in wy changes depending
on the risk measure one considers. We recall from the previous
section that in the policy evaluation step, the quantities for
V., . mand A = 0 (for conditional expectation, CVaR, and EVaR
measures) and ¢ for (CVaR and EVaR measures) are calculated
and, therefore, fixed here.

For conditional expectation, the improvement constraint alters
to

Vym(s,g) +€< Y ple| g)é(ls, g, )

ocAct
==y Z V. ,."V[([S:v‘ll g’])TM ([Sv’g’] |[3,g])
ge8,g'eG

Yse S Vged. 27

Substituting the expression for TM (as defined in Section V-A),
i.e.,

T (Is/ d1lls,91) = Y Olols)wr(g, alg,o)T(s'|s, )

o0 acAct

and p(a | g), ie.,

plalg)= > wr(g'alg,00(old)

g'ceG,0eQ@
we obtain
Vym([s,g) +e< > wr(g a|g,0)0(olg)é(s, 9], @)
C‘rg‘.lo

Authonzed licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY . Downloaded on February 04,2024 at 20:05:14 UTC from |EEE Xplore. Restrictions apply.



66 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 1, JANUARY 2024

+y Y Vaul(ls) ¢)O(ols)wr (g, alg, 0)T(s'ls, @)

89,0,

Yse8S VgeG.
(28)

The abovementioned expression is linear in wr as well as
€. Hence, I-state improvement optimization becomes a linear
program for conditional expectation risk measure.

Based on a similar construction, for CVaR measure, the
improvement constraint changes to

Vym((s,g)) +€< > wr(g) e | g,0)0(olg)é([s, g, )

w,g,'0
{4 23 s (679D = 0, TH(s! s 3 |
g,'s’

Yse8S VgeG.
(29)

After substituting the term for 7™, we obtain

Vom(ls,g)) +e< D wr(g) e g,0)0(0lg))é([s, g, @)

a,g,'o

#{erz 3 Fru(s/a) =0, 00k

g,s/0,a

xwr(g, alg,0)T(s'|s, cr)} Vse$S Vgedl
(30)

Furthermore, for fixed V., ¢, A, and ¢, the abovementioned
inequality is linear in wy and e. Hence, (30) becomes a linear
constraint rendering (23) a linear program (maximizing a linear
objective subject to linear constraints), i.e., optimization prob-
lem (31) shown at the bottom of this page.

For the EVaR measure, the improvement constraint is given
by

Vom(ls,g)) +e< Y wr(g) a | g,0)0(olg))é([s, g, )

Ct_.g,'O
o €Vr M IDTM([5 7 of|[5,
+7{110g (Zg,s € ([s, 9l[s g])) }
¢ €
VseS Vged.
(32)

Substituting the expression for TM, i.e.,

T (s g1lls,91) =Y Y Olols)wr(g, alg, )T (s'|s, )

oc@ acAct

we obtain

Voym(ls,9]) +e< Y wr(g) e g,0)0(0lg)é([s, g, )

a,g.'o
+Z]0g Eg‘l"g,fo,a eCVmM([S,fg‘])O(Ols)wr(g,f 0r|g, O)T(S’|s, Q)
4

£

VseS VgelG
(33)

In the abovementioned inequality, the first term on the right-
hand side of the is linear in w7 and the second term on the
right-hand side (logarithm term) is concave in wr (convex if all
terms are moved to the left side, since —log(z) is convex in
). Therefore, (33) becomes a convex constraint rendering (23),
a convex optimization problem (maximizing a linear objective
subject to linear and convex constraints) for EVaR measures.
That is, the I-state improvement optimization takes the convex
optimization form of (34) shown at the top of the next page.

max ) (Linih V’LM) - (l: .8) + €

E>Osz(gs'a|g‘.o

subject to

Improvement Constraint:

Vym((s,g)) +e= Y wr(sa|g,0)0(0lg)e(ls, 9], @) (31a)
Ct_.g,'O
]‘ | r '}
—q«{c+ LY (mls g ), Ools)r(a! alg. )T (sl a)} <0 VseS§ VgeC
gsys‘.lo‘.&
Probability Constraints:
Y wr(g/algo)=1 YocO
(g, a)eGxAct

wr(g, a|g,0) >0 Vg €G,acActocO. (31b)
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max
E‘/"‘D:L‘JT(g:'alg:O)

subject to

(tinits Vo, m) — (A, B) + €

Improvement Constraint:

Vom(ls,gl) +e— > wr(g) a| g,0)0(olg)é([s, 9], @)

)
ox.g,0

Pg/s/0a €M EIDO(0ls)wr (g, alg, 0)T(s'|s, @)

(34a)

s 11
7\ 7o -

<0 Vse8 Vged

Probability Constraints:

D

(g, a)eGxAct

wr(g, a|g,0)>0 Vg €G,ac Act,oc O.

wr(g, a|g,0)=1

Yoe O

(34b)
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